Conductive inks for metalization in integrated polymer microsystems
Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX
2006-02-28
A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines
Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX
2012-06-19
A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)
1995-01-01
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.
Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui
2013-09-01
A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.
Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun
2017-01-01
Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175
Flexible Substrates Comparison for Pled Technology
NASA Astrophysics Data System (ADS)
Nenna, G.; Miscioscia, R.; Tassini, P.; Minarini, C.; Vacca, P.; Valentino, O.
2008-08-01
Flexible substrate displays are critical to organic electronics, e-paper's and e-ink's development. Many different types of materials are under investigation, including glass, polymer films and metallic foils. In this work we report a comparison study of polymer films as flexible substrates for polymer light emitting diodes (PLEDs) technology. The selected polymer substrates are two thermoplastic semi-crystalline polymers (PET and PEN) and a high Tg material that cannot be melt processed (PAR). Firstly, the chosen films were characterized in morphology and optical properties with the aim to confirm their suitability for optoelectronic applications. Transmittance was analysed by UV-Vis spectrophotometry and roughness by a surface profilometer. Finally, the surface energy of substrates (untreated and after UV-ozone treatment) was estimated by contact angle measurements in order to evaluate their wettability for active materials deposition.
NASA Astrophysics Data System (ADS)
Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen
2016-01-01
Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.
Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen
2016-01-08
Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.
Carbon nanotube network thin-film transistors on flexible/stretchable substrates
Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali
2016-03-29
This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.
Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi
2013-01-01
The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289
Current progress and technical challenges of flexible liquid crystal displays
NASA Astrophysics Data System (ADS)
Fujikake, Hideo; Sato, Hiroto
2009-02-01
We focused on several technical approaches to flexible liquid crystal (LC) display in this report. We have been developing flexible displays using plastic film substrates based on polymer-dispersed LC technology with molecular alignment control. In our representative devices, molecular-aligned polymer walls keep plastic-substrate gap constant without LC alignment disorder, and aligned polymer networks create monostable switching of fast-response ferroelectric LC (FLC) for grayscale capability. In the fabrication process, a high-viscosity FLC/monomer solution was printed, sandwiched and pressed between plastic substrates. Then the polymer walls and networks were sequentially formed based on photo-polymerization-induced phase separation in the nematic phase by two exposure processes of patterned and uniform ultraviolet light. The two flexible backlight films of direct illumination and light-guide methods using small three-primary-color light-emitting diodes were fabricated to obtain high-visibility display images. The fabricated flexible FLC panels were driven by external transistor arrays, internal organic thin film transistor (TFT) arrays, and poly-Si TFT arrays. We achieved full-color moving-image displays using the flexible FLC panel and the flexible backlight film based on field-sequential-color driving technique. Otherwise, for backlight-free flexible LC displays, flexible reflective devices of twisted guest-host nematic LC and cholesteric LC were discussed with molecular-aligned polymer walls. Singlesubstrate device structure and fabrication method using self-standing polymer-stabilized nematic LC film and polymer ceiling layer were also proposed for obtaining LC devices with excellent flexibility.
Optical connections on flexible substrates
NASA Astrophysics Data System (ADS)
Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter
2006-04-01
Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.
Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.
Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N
2011-09-18
Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.
Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2018-01-01
A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.
Maziz, Ali; Plesse, Cédric; Soyer, Caroline; Cattan, Eric; Vidal, Frédéric
2016-01-27
Recent progress in the field of microsystems on flexible substrates raises the need for alternatives to the stiffness of classical actuation technologies. This paper reports a top-down process to microfabricate soft conducting polymer actuators on substrates on which they ultimately operate. The bending microactuators were fabricated by sequentially stacking layers using a layer polymerization by layer polymerization of conducting polymer electrodes and a solid polymer electrolyte. Standalone microbeams thinner than 10 μm were fabricated on SU-8 substrates associated with a bottom gold electrical contact. The operation of microactuators was demonstrated in air and at low voltage (±4 V).
Flexible substrate-based devices for point-of-care diagnostics
Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark; Inci, Fatih; Demirci, Utkan
2016-01-01
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to their affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications at the POC. PMID:27344425
Flexible Substrate-Based Devices for Point-of-Care Diagnostics.
Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark A; Inci, Fatih; Demirci, Utkan
2016-11-01
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2012-04-01
Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.
Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity
NASA Astrophysics Data System (ADS)
Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang
2017-11-01
We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.
Critical Issues for Cu(InGa)Se2 Solar Cells on Flexible Polymer Web
NASA Technical Reports Server (NTRS)
Eser, Erten; Fields, Shannon; Shafarman, William; Birkmire, Robert
2007-01-01
Elemental in-line evaporation on glass substrates has been a viable process for the large-area manufacture of CuInSe2-based photovoltaics, with module efficiencies as high as 12.7% [1]. However, lightweight, flexible CuInSe2-based modules are attractive in a number of applications, such as space power sources. In addition, flexible substrates have an inherent advantage in manufacturability in that they can be deposited in a roll-to-roll configuration allowing continuous, high yield, and ultimately lower cost production. As a result, high-temperature polymers have been used as substrates in depositing CuInSe2 films [2]. Recently, efficiency of 14.1% has been reported for a Cu(InGa)Se2-based solar cell on a polyimide substrate [3]. Both metal foil and polymer webs have been used as substrates for Cu(InGa)Se2-based photovoltaics in a roll-to-roll configuration with reasonable success [4,5]. Both of these substrates do not allow, readily, the incorporation of Na into the Cu(InGa)Se2 film which is necessary for high efficiency devices [3]. In addition, polymer substrates, can not be used at temperatures that are optimum for Cu(InGa)Se2 deposition. However, unlike metal foils, they are electrically insulating, simplifying monolithically-integrated module fabrication and are not a source of impurities diffusing into the growing film. The Institute of Energy Conversion (IEC) has modified its in-line evaporation system [6] from deposition onto glass substrates to roll-to-roll deposition onto polyimide (PI) film in order to investigate key issues in the deposition of large-area Cu(InGa)Se2 films on flexible polymer substrates. This transition presented unexpected challenges that had to be resolved. In this paper, two major problems, spitting from the Cu source and the cracking of Mo back contact film, will be discussed and the solution to each will be presented.
Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.
Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping
2015-08-07
Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.
Yang, Nan; You, Ting-Ting; Gao, Yu-Kun; Zhang, Chen-Meng; Yin, Penggang
2018-06-08
Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on polymer immobilized gold nanorods polymer metafilm. Polystyrene-polyisoprene-polystyrene (SIS), a transparent and flexible along with excellent elasticity polymer was chosen as main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with polymer which can further used in most water-insoluble polymers. The SERS film performed satisfactorily while tested in a series of standard Raman probes like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film promising substrates in practical detection. Hence, the MG detection on fish surface and trace thiram detection on orange pericarp were inspected with the detection result of 1 × 10-10 M and 1 × 10-6 M which below the demand of National standard of China, exactly matching the realistic application requirements.
Biaxially oriented film on flexible polymeric substrate
Finkikoglu, Alp T [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM
2009-10-13
A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.
NASA Astrophysics Data System (ADS)
Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.
2015-11-01
This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.
Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics
NASA Astrophysics Data System (ADS)
Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet
2015-03-01
Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan
In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
Polymer substrates for flexible photovoltaic cells application in personal electronic system
NASA Astrophysics Data System (ADS)
Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.
2016-01-01
The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges
Yang, Shixuan; Lu, Nanshu
2013-01-01
Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128
Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures
NASA Astrophysics Data System (ADS)
Komsky, Igor N.
2004-07-01
Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.
Raj, C Justin; Kim, Byung Chul; Cho, Won-Je; Lee, Won-gil; Jung, Sang-Don; Kim, Yong Hee; Park, Sang Yeop; Yu, Kook Hyun
2015-06-24
Flexible supercapacitor electrodes have been fabricated by simple fabrication technique using graphite nanoflakes on polymer lapping films as flexible substrate. An additional thin layer of conducting polymer polypyrrole over the electrode improved the surface conductivity and exhibited excellent electrochemical performances. Such capacitor films showed better energy density and power density with a maximum capacitance value of 37 mF cm(-2) in a half cell configuration using 1 M H2SO4 electrolyte, 23 mF cm(-2) in full cell, and 6 mF cm(-2) as planar cell configuration using poly(vinyl alcohol) (PVA)/phosphoric acid (H3PO4) solid state electrolyte. Moreover, the graphite nanoflakes/polypyrrole over polymer lapping film demonstrated good flexibility and cyclic stability.
Nanoparticle Selective Laser Processing for a Flexible Display Fabrication
NASA Astrophysics Data System (ADS)
Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,
2010-05-01
To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.
System of fabricating a flexible electrode array
Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie; Humayun, Mark S.; Weiland, James D.
2010-10-12
An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.
System of fabricating a flexible electrode array
Krulevitch, Peter [Pleasanton, CA; Polla, Dennis L [Roseville, MN; Maghribi, Mariam N [Davis, CA; Hamilton, Julie [Tracy, CA; Humayun, Mark S [La Canada, CA; Weiland, James D [Valencia, CA
2012-01-28
An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.
Shi, Keli; Zhang, Weifeng; Gao, Dong; Zhang, Shiying; Lin, Zuzhang; Zou, Ye; Wang, Liping; Yu, Gui
2018-03-01
Conjugated polymers, which can be fabricated by simple processing techniques and possess excellent electrical performance, are key to the fabrication of flexible polymer field-effect transistors (PFETs) and integrated circuits. Herein, two ambipolar conjugated polymers based on (3E,7E)-3,7-bis(2-oxo-1H-pyrrolo[2,3-b]pyridin-3(2H)-ylidene)benzo[1,2-b:4,5-b']difuran-2,6(3H,7H)-dione and dithienylbenzothiadiazole units, namely PNBDOPV-DTBT and PNBDOPV-DTF2BT, are developed. Both copolymers possess almost planar conjugated backbone conformations and suitable highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels (-5.64/-4.38 eV for PNBDOPV-DTBT and -5.79/-4.48 eV for PNBDOPV-DTF2BT). Note that PNBDOPV-DTBT has a glass transition temperature (140 °C) lower than the deformation temperature of polyethylene terephthalate (PET), meaning well-ordered molecular packing can be obtained on PET substrate before its deformation in mild thermal annealing process. Flexible PFETs based on PNBDOPV-DTBT fabricated on PET substrates exhibit high and well-balanced hole/electron mobilities of 4.68/4.72 cm 2 V -1 s -1 under ambient conditions. After the further modification of Au source/drain electrodes with 1-octanethiol self-assembled monolayers, impressively high and well-balanced hole/electron mobilities up to 5.97/7.07 cm 2 V -1 s -1 are achieved in the flexible PFETs. Meanwhile, flexible complementary-like inverters based on PNBDOPV-DTBT on PET substrate also afford a much high gain of 148. The device performances of both the PFETs and inverters are among the highest values for ambipolar conjugated polymers reported to date. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copper cladding on polymer surfaces by ionization-assisted deposition
NASA Astrophysics Data System (ADS)
Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki
2018-03-01
Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.
Ferrocene pixels by laser-induced forward transfer: towards flexible microelectrode printing
NASA Astrophysics Data System (ADS)
Mitu, B.; Matei, A.; Filipescu, M.; Palla Papavlu, A.; Bercea, A.; Lippert, T.; Dinescu, M.
2017-03-01
The aim of this work is to demonstrate the potential of laser-induced forward transfer (LIFT) as a printing technology, alternative to standard microfabrication techniques, in the area of flexible micro-electrode fabrication. First, ferrocene thin films are deposited onto fused silica and fused silica substrates previously coated with a photodegradable polymer film (triazene polymer) by matrix assisted pulsed laser evaporation (MAPLE). The morphology and chemical structure of the ferrocene thin films deposited by MAPLE has been investigated by atomic force microscopy and Fourier transformed infrared spectroscopy, and no structural damage occurs as a result of the laser deposition. Second, LIFT is applied to print for the first time ferrocene pixels and lines onto flexible polydimethylsiloxane (PDMS) substrates. The ferrocene pixels and lines are flawlessly transferred onto the PDMS substrates in air at room temperature, without the need of additional conventional photolithography processes. We believe that these results are very promising for a variety of applications ranging from flexible electronics to lab-on-a-chip devices, MEMS, and medical implants.
Jiu, Jinting; Sugahara, Tohru; Nogi, Masaya; Araki, Teppei; Suganuma, Katsuaki; Uchida, Hiroshi; Shinozaki, Kenji
2013-12-07
Silver nanowire (AgNW) films with a random mesh structure have attracted considerable attention as high-performance flexible transparent electrodes that can replace the expensive and brittle ITO-sputtered films widely used in displays, touch screens, and solar cells. Methods such as heating, pressure treatment, and light treatment are usually used to obtain an optically transparent and electrically conductive film comparable to those of commercial ITO. However, the adhesion between the AgNW film and the substrate is so weak that other overcoatings or extra treatments are necessary. Here, a high-intensity pulsed light (HIPL) sintering technique was developed to rapidly and simply sinter the AgNW film and thus achieve strong adhesion and even high conductivity on these flexible polymer substrates which will be widely applied to the printing of electronic devices. The conductivity of the AgNW film closely depended on the thermal performance of substrates, and the adhesion was determined by the soft state of the substrate surface originating from the glass transition or melting of substrates with light intensity. The rapid sintering technique can be popularized to fabricate new devices on these polymer substrates by considering the thermal properties of the substrate to improve the performance of devices.
Polymer thermal optical switch for a flexible photonic circuit.
Sun, Yue; Cao, Yue; Wang, Qi; Yi, Yunji; Sun, Xiaoqiang; Wu, Yuanda; Wang, Fei; Zhang, Daming
2018-01-01
Flexible and wearable optoelectronic devices are the new trend for an active lifestyle. These devices are polymer-based for flexibility. We demonstrated flexible polymer waveguide optical switches for a flexible photonic integrated circuit. The optical switches are composed of a single-mode inverted waveguide with dimensions of 5 μm waveguide width, 3 μm ridge height, and 3 μm slab height. A Mach-Zehnder structure was used in the device, with the Y-branch horizontal length of 0.1 cm, the distance between two heating branches of 30 μm, and the heating branch length of 1 cm. The optical field of the device was simulated by beam propagation to optimize the electrode position. The switching properties of the flexible optical switch with different working conditions, such as contact to the polymer, silicon, and skin, were simulated. The device was prepared based on the photo curved polymer and lithography method. The end faces of the flexible film device were processed using an excimer laser with optimized parameters of 28 mJ/cm 2 and 15 Hz. The response rise time and fall time on the PMMA substrate were measured as 1.98 ms and 2.71 ms, respectively. The power consumption was 16 mW and the extinction ratio was 11 dB. The response rise and fall times on the Si substrate were measured as 1.08 ms and 1.62 ms, respectively. The power consumption was 17 mW and the extinction ratio was 11 dB. The demonstrated properties indicate that this flexible optical waveguide structure can be used in the light control area of a wearable device.
Yoon, Bora; Ham, Dae-Young; Yarimaga, Oktay; An, Hyosung; Lee, Chan Woo; Kim, Jong-Man
2011-12-08
Inkjet-printable aqueous suspensions of conjugated polymer precursors are developed for fabrication of patterned color images on paper substrates. Printing of a diacetylene (DA)-surfactant composite ink on unmodified paper and photopaper, as well as on a banknote, enables generation of latent images that are transformed to blue-colored polydiacetylene (PDA) structures by UV irradiation. Both irreversible and reversible thermochromism with the PDA printed images are demonstrated and applied to flexible and disposable sensors and to displays. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vacuum-deposited polymer/silver reflector material
NASA Astrophysics Data System (ADS)
Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.
1994-09-01
Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.
Polymer-metal hybrid transparent electrodes for flexible electronics
NASA Astrophysics Data System (ADS)
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-03-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.
Polymer-metal hybrid transparent electrodes for flexible electronics
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-01-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133
Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin
2017-09-27
Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.
2009-01-01
coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch
High-efficiency robust perovskite solar cells on ultrathin flexible substrates
Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang
2016-01-01
Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664
Thumbnail Sketches: The Chemistry of Printed Circuit Substrates: Some of the Latest Developments.
ERIC Educational Resources Information Center
Freeman, James H.
1984-01-01
Discusses some of the latest developments in the chemistry of printed circuit substrates. Topics considered include soldering, dicy (a catalyst), Kevlar (an aramid polymer fiber), maleimide copolymers, and flexible circuits. (JN)
NASA Astrophysics Data System (ADS)
Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon
2016-11-01
For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.
Submicron Surface-Patterned Fibers and Textiles
2016-11-04
These authors contributed equally Keywords: grating, fiber, polymer , patterning, textile Distribution A: approved for public release...requirements. Second, textile materials are primarily polymer -based, while most surface-patterning techniques have been developed for silicon...Alternative substrates, especially flexible polymers , remain challenging to pattern [25,26] due to the highly specific surface chemistry of different
Self-Positioned Nanosized Mask for Transparent and Flexible Ferroelectric Polymer Nanodiodes Array.
Hyun, Seung; Kwon, Owoong; Choi, Chungryong; Vincent Joseph, Kanniyambatti L; Kim, Yunseok; Kim, Jin Kon
2016-10-12
High density arrays of ferroelectric polymer nanodiodes have gained strong attention for next-generation transparent and flexible nonvolatile resistive memory. Here, we introduce a facile and innovative method to fabricate ferroelectric polymer nanodiode array on an ITO-coated poly(ethylene terephthalate) (PET) substrate by using block copolymer self-assembly and oxygen plasma etching. First, polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) micelles were spin-coated on poly(vinylidene fluoride-ran-trifluoroethylene) copolymer (P(VDF-TrFE)) film/ITO-coated PET substrate. After the sample was immersed in a gold precursor (HAuCl 4 ) containing solution, which strongly coordinates with nitrogen group in P2VP, oxygen plasma etching was performed. During the plasma etching, coordinated gold precursors became gold nanoparticles (GNPs), which successfully acted as self-positioned etching mask to fabricate a high density array of P(VDF-TrFE)) nanoislands with GNP at the top. Each nanoisland shows clearly individual diode property, as confirmed by current-voltage (I-V) curve. Furthermore, due to the transparent and flexible nature of P(VDF-TrFE)) nanoisland as well as the substrate, the P(VDF-TrFE) nanodiode array was highly tranparent, and the diode property was maintained even after a large number of bendings (for instance, 1000 times). The array could be used as the next-generation tranparent and flexible nonvolatile memory device.
Transparent and flexible heaters based on Al:ZnO degenerate semiconductor
NASA Astrophysics Data System (ADS)
Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.
2017-10-01
We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (<10 V) voltages. This study also examined identical AZO thin films on glass substrates that showed highly reproducible heating effects due to the Joule heating effect. The potential applications are foldable and wearable electronics, pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.
Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon
2012-04-01
TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.
Takahashi, Kiyonori; Ishii, Ryo; Nakamura, Takashi; Suzuki, Asami; Ebina, Takeo; Yoshida, Manabu; Kubota, Munehiro; Nge, Thi Thi; Yamada, Tatsuhiko
2017-05-01
Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li + montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semiconducting polymers with nanocrystallites interconnected via boron-doped carbon nanotubes.
Yu, Kilho; Lee, Ju Min; Kim, Junghwan; Kim, Geunjin; Kang, Hongkyu; Park, Byoungwook; Ho Kahng, Yung; Kwon, Sooncheol; Lee, Sangchul; Lee, Byoung Hun; Kim, Jehan; Park, Hyung Il; Kim, Sang Ouk; Lee, Kwanghee
2014-12-10
Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs). In contrast to undoped CNTs, which tend to form undesired aggregates, the B-CNTs exhibit an excellent dispersion in conjugated polymer matrices and improve the charge transport between polymer chains. Consequently, the B-CNT-mixed semiconducting polymers enable the fabrication of high-performance FETs on plastic substrates via a solution process; the μFET of the resulting FETs reaches 7.2 cm(2) V(-1) s(-1), which is the highest value reported for a flexible FET based on a semiconducting polymer. Our approach is applicable to various semiconducting polymers without any additional undesirable processing treatments, indicating its versatility, universality, and potential for high-performance printable electronics.
Development of flexible Ni80Fe20 magnetic nano-thin films
NASA Astrophysics Data System (ADS)
Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.
2017-11-01
Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.
Polymer absorption in dense polymer brushes vs. polymer adsorption on the brush-solvent interface
NASA Astrophysics Data System (ADS)
Milchev, Andrey; Binder, Kurt
2014-06-01
Molecular-dynamics simulations of a coarse-grained model of a dense brush of flexible polymers (of type A) interacting with a long flexible macromolecule (of type B) are presented, considering the case of an attractive AB interaction, while effective interactions between AA and BB pairs of monomers are repulsive. Varying the strength \\varepsilon_{AB} of the attraction between unlike monomers, an adsorption transition at some critical value \\varepsilon^c_{AB} is found, where the B-chain is bound to the brush-solvent interface, similar to the adsorption on a planar solid substrate. However, when \\varepsilon_{AB} is much higher than \\varepsilon^c_{AB} , the long macromolecule is gradually “sucked in” the brush, developing many pieces that are locally stretched in the z-direction perpendicular to the substrate, in order to fit between the brush chains. The resulting hairpin-like structures of the absorbed chain shows up via oscillatory decay of the bond vector autocorrelation function. Chain relaxation is only possible via reptation.
Ductile film delamination from compliant substrates using hard overlayers
Cordill, M.J.; Marx, V.M.; Kirchlechner, C.
2014-01-01
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. PMID:25641995
Ductile film delamination from compliant substrates using hard overlayers.
Cordill, M J; Marx, V M; Kirchlechner, C
2014-11-28
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.
Polymer subtrates for dry-coupled ultrasonic transducers
NASA Astrophysics Data System (ADS)
Komsky, Igor N.
2003-07-01
Dry-coupled inspection techniques are very important for applications on components with non-uniform surfaces and for inspections of advanced materials or coatings that are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, a number of polymer films have been developed to transmit the ultrasound through a dry interface. These materials are very flexible so even low pressure loading is sufficient to adapt the films to the irregular inspection surfaces. Several polymer films have been evaluated to develop dry-coupled substrates for transducer modules. The modules will be utilized to detect and characterize fatigue cracks and corrosion spots in the aircraft structures. Ultrasonic properties of the polymer films were measured and compared with the properties of plastic or rubber-like materials commonly used for ultrasonic applications. Experiments have been carried out to analyze propagation of longitudinal and shear waves in the films. Two different types of the ultrasonic modules with the flexible polymer substrates are being developed. The influence of the surface condition on the module performance was evaluated for both types of the modules.
NASA Astrophysics Data System (ADS)
Chung, Daehan; Gray, Bonnie L.
2017-11-01
We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.
NASA Astrophysics Data System (ADS)
Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng
2016-02-01
The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.
NASA Astrophysics Data System (ADS)
Matyas, J.; Olejnik, R.; Slobodian, P.
2017-12-01
A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Rybicki, George C.; Raffaelle, Ryne P.; Harris, Jerry D.; Hehemann, David G.; Junek, William; Gorse, Joseph; Thompson, Tracy L.; Hollingsworth, Jennifer A.; Buhro, William E.
2000-01-01
The key to achieving high specific power (watts per kilogram) space solar arrays is the development of a high-efficiency, thin-film solar cell that can be fabricated directly on a flexible, lightweight, space-qualified durable substrate such as Kapton (DuPont) or other polyimide or suitable polymer film. Cell efficiencies approaching 20 percent at AM0 (air mass zero) are required. Current thin-film cell fabrication approaches are limited by either (1) the ultimate efficiency that can be achieved with the device material and structure or (2) the requirement for high-temperature deposition processes that are incompatible with all presently known flexible polyimide or other polymer substrate materials. Cell fabrication processes must be developed that will produce high-efficiency cells at temperatures below 400 degrees Celsius, and preferably below 300 degress Celsius to minimize the problems associated with the difference between the coefficients of thermal expansion of the substrate and thin-film solar cell and/or the decomposition of the substrate.
Kim, Wanjung; Kim, Soyeon; Kang, Iljoong; Jung, Myung Sun; Kim, Sung June; Kim, Jung Kyu; Cho, Sung Min; Kim, Jung-Hyun; Park, Jong Hyeok
2016-05-10
Herein, we report a tailored Ag mesh electrode coated with poly(3,4-ethylenedioxythiophene) (PEDOT) polymer on a flexible polyethylene terephthalate (PET) substrate. The introduction of this highly conductive polymer solves the existing problems of Ag mesh-type transparent conductive electrodes, such as high pitch, roughness, current inhomogeneity, and adhesion problems between the Ag mesh grid and PEDOT polymer or PET substrate, to result in excellent electron spreading from the discrete Ag mesh onto the entire surface without sacrificing sheet conductivity and optical transparency. Based on this hybrid anode, we demonstrate highly efficient flexible polymer solar cells (PSCs) with a high fill factor of 67.11 %, which results in a power conversion efficiency (PCE) of 6.9 % based on a poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b'] dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71 -butyric acid methyl ester bulk heterojunction device. Furthermore, the PSC device with the Ag mesh electrode also exhibits a good mechanical bending stability, as indicated by a 70 % retention of the initial PCE after 500 bending cycles compared with the PSC device with a PET/indium tin oxide electrode, which retained 0 % of the initial PCE after 300 bending cycles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New separators for nickel-zinc batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1976-01-01
Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.
NASA Astrophysics Data System (ADS)
Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei
2017-07-01
In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.
Developing Flexible, High Performance Polymers with Self-Healing Capabilities
NASA Technical Reports Server (NTRS)
Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.
2011-01-01
Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface tension forces to flow, mix and react to achieve healing. Vascular networks small enough to fit into such films must also overcome these same flow limitations. Self-healing has also been demonstrated in ionomeric substrates such as Surlyn , wherein the heat generated by a projectile impact triggers the latent ability of this substrate to flow back to its original shape. Recent work using Diels-Alder reactions have shown promise in bringing about actual reforming of broken chemical bonds to achieve self-healing [2]. All self-healing mechanisms that rely on the use of inherent latent substrate properties require some degree of polymer chain flow to achieve any significant level of healing.
Superwettability-Induced Confined Reaction toward High-Performance Flexible Electrodes.
Xiong, Weiwei; Liu, Hongliang; Zhou, Yahong; Ding, Yi; Zhang, Xiqi; Jiang, Lei
2016-05-18
To find a general strategy to realize confinement of the conductive layer for high-performance flexible electrodes, with improved interfacial adhesion and high conductivity, is of important scientific significance. In this work, superwettability-induced confined reaction is used to fabricate high-performance flexible Ag/polymer electrodes, showing significantly improved silver conversion efficiency and interfacial adhesion. The as-prepared flexible electrodes by superhydrophilic polymeric surface under oil are highly conductive with an order of magnitude higher than the Ag/polymer electrodes obtained from original polymeric surface. The high conductivity achieved via superhydrophilic confinement is ascribed to the fact that the superhydrophilic polymeric surface can enhance the reaction rate of silver deposition and reduce the size of silver nanoparticles to achieve the densest packing. This new approach will provide a simple method to fabricate flexible and highly conductive Ag/polymer electrodes with excellent adhesion between the conductive layer and the substrate, and can be extended to other metal/polymeric electrodes or alloy/polymeric electrodes.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
Liu, Yi-Kai; Lee, Ming-Tsang
2014-08-27
This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.
Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke
2015-01-13
Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.
NASA Astrophysics Data System (ADS)
McCann, Ronán; Hughes, Cian; Bagga, Komal; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot
2017-06-01
In this paper, we outline a novel technique for the deposition of nanostructured thin films utilizing a modified form of pulsed laser deposition (PLD). We demonstrate confined atmospheric PLD (CAP) for the deposition of gold on cyclic olefin polymer substrates. The deposition process is a simplified form of conventional PLD, with deposition conducted under atmospheric conditions and the substrate and target in close proximity. It was found that this confinement results in the deposition of nanostructured thin films on the substrate. Infrared spectroscopy showed no significant change of polymer surface chemistry as a result of the deposition process, and optical spectroscopy revealed plasmonic behavior of the resulting thin film. The effect of laser fluence on the deposition process was also examined with more uniform films deposited at higher fluences.
Optical waveguiding properties of colloidal quantum dots doped polymer microfibers.
Yu, Jiahao; Wang, Xiongbin; Chen, Rui
2018-05-14
QDs-doped polymer microfibers are fabricated through direct drawing method. By adding the polymethylmethacrylate into polystyrene, the surface quality and flexibility of microfiber are improved. Under direct excitation by the focused laser, the polymer microfibers doped with different quantum dots emit different colors and act as an optical waveguide. The waveguide properties of the microfiber are studied in detail. It is found that refractive index of the substrate and diameter of microfiber are the most important factors that affect the optical loss of this waveguide. The microfiber does not produce significant polarization after being deposited on the substrate. Moreover, exciting the QDs-doped polymer microfiber through a blue LED is demonstrated. This structure may find widespread applications in integrated photonic devices.
High-temperature crystallized thin-film PZT on thin polyimide substrates
NASA Astrophysics Data System (ADS)
Liu, Tianning; Wallace, Margeaux; Trolier-McKinstry, Susan; Jackson, Thomas N.
2017-10-01
Flexible piezoelectric thin films on polymeric substrates provide advantages in sensing, actuating, and energy harvesting applications. However, direct deposition of many inorganic piezoelectric materials such as Pb(Zrx,Ti1-x)O3 (PZT) on polymers is challenging due to the high temperature required for crystallization. This paper describes a transfer process for PZT thin films. The PZT films are first grown on a high-temperature capable substrate such as platinum-coated silicon. After crystallization, a polymeric layer is added, and the polymer-PZT combination is removed from the high-temperature substrate by etching away a release layer, with the polymer layer then becoming the substrate. The released PZT on polyimide exhibits enhanced dielectric response due to reduction in substrate clamping after removal from the rigid substrate. For Pb(Zr0.52,Ti0.48)0.98Nb0.02O3 films, release from Si increased the remanent polarization from 17.5 μC/cm2 to 26 μC/cm2. In addition, poling led to increased ferroelastic/ferroelectric realignment in the released films. At 1 kHz, the average permittivity was measured to be around 1160 after release from Si with a loss tangent below 3%. Rayleigh measurements further confirmed the correlation between diminished substrate constraint and increased domain wall mobility in the released PZT films on polymers.
Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P; Maitland, Duncan J; Rennaker, Robert L; Voit, Walter E
2012-12-01
Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic-abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol-ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.
Manna, Uttam; Carter, Matthew C D; Lynn, David M
2013-06-11
An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible packaging for PV modules
NASA Astrophysics Data System (ADS)
Dhere, Neelkanth G.
2008-08-01
Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.
Yu, You; Yan, Casey; Zheng, Zijian
2014-08-20
Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg
2016-09-01
The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.
NASA Astrophysics Data System (ADS)
Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel
2018-03-01
Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.
NASA Astrophysics Data System (ADS)
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing
2014-03-01
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing
2014-03-17
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing
2014-01-01
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742
NASA Astrophysics Data System (ADS)
Wu, Tao
We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the substrate after completion of polymerization, we show the grafting density of the polymers grafted to flexible substrates can be tuned as a function of Deltax.
NASA Astrophysics Data System (ADS)
Kim, Yeji; Chikamatsu, Masayuki; Azumi, Reiko; Saito, Takeshi; Minami, Nobutsugu
2013-02-01
We report that single-walled nanotube (SWNT) films with precisely controlled thicknesses and transmittances can be produced through the doctor-blade method using SWNT-polymer inks. The matrix polymer around SWNTs were successfully removed by either solution curing or photonic curing at room temperature, which are advantageous processes enabling direct film formation on plastic substrates. Sheet resistances as low as 68-240 Ω/sq at T=89-98% were obtained. Furthermore, the SWNT film on poly(ethylene naphthalate) exhibited superior flexibility and stability in a flexure endurance test. The method may open a wide range of opportunities for flexible electrical devices.
Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin
2016-01-13
Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.
NASA Astrophysics Data System (ADS)
Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie
2017-11-01
Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.
NASA Astrophysics Data System (ADS)
Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua
2014-06-01
We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2008-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2009-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.
2007-12-01
A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.
Screen printed UHF antennas on flexible substrates
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł
2010-09-01
Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.
Mechanically flexible organic electroluminescent device with directional light emission
Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc
2005-05-10
A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.
Coclite, Anna Maria; Howden, Rachel M; Borrelli, David C; Petruczok, Christy D; Yang, Rong; Yagüe, Jose Luis; Ugur, Asli; Chen, Nan; Lee, Sunghwan; Jo, Won Jun; Liu, Andong; Wang, Xiaoxue; Gleason, Karen K
2013-10-11
Well-adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, and thickness control. Initiated-CVD shows successful results in terms of rationally designed micro- and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative-CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering
NASA Astrophysics Data System (ADS)
Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig
The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...
2017-07-18
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
Snakes on a plane: modeling flexible active nematics
NASA Astrophysics Data System (ADS)
Selinger, Robin
Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.
Samanta, Soumen; Bakas, Idriss; Singh, Ajay; Aswal, Dinesh K; Chehimi, Mohamed M
2014-08-12
In this paper, we report a simple and versatile process of electrografting the aryl multilayers onto indium tin oxide (ITO)-coated flexible poly(ethylene naphthalate) (PEN) substrates using a diazonium salt (4-pyrrolylphenyldiazonium) solution, which was generated in situ from a reaction between the 4-(1H-pyrrol-1-yl)aniline precursor and sodium nitrite in an acidic medium. The first aryl layer bonds with the ITO surface through In-O-C and Sn-O-C bonds which facilitate the formation of a uniform aryl multilayer that is ∼8 nm thick. The presence of the aryl multilayer has been confirmed by impedance spectroscopy as well as by electron-transfer blocking measurements. These in situ diazonium-modified ITO-coated PEN substrates may find applications in flexible organic electronics and sensor industries. Here we demonstrate the application of diazonium-modified flexible substrates for the growth of adherent silver/polpyrrole nanocomposite films using surface-confined UV photopolymerization. These nanocomposite films have platelet morphology owing to the template effect of the pyrrole-terminated aryl multilayers. In addition, the films are highly doped (32%). This work opens new areas in the design of flexible ITO-conductive polymer hybrids.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
Heat resistant substrates and battery separators made therefrom
NASA Technical Reports Server (NTRS)
Langer, Alois (Inventor); Scala, Luciano C. (Inventor); Ruffing, Charles R. (Inventor)
1976-01-01
A flexible substrate having a caustic resistant support and at least one membrane comprising a solid polymeric matrix containing a network of interconnected pores and interdispersed inorganic filler particles with a ratio of filler: polymer in the polymeric matrix of between about 1:1 to 5:1, is made by coating at least one side of the support with a filler:coating formulation mixture of inorganic filler particles and a caustic resistant, water insoluble polymer dissolved in an organic solvent, and removing the solvent from the mixture to provide a porous network within the polymeric matrix.
Development of an IrO x micro pH sensor array on flexible polymer substrate
NASA Astrophysics Data System (ADS)
Huang, Wen-Ding; Wang, Jianqun; Ativanichayaphong, Thermpon; Chiao, Mu; Chiao, J. C.
2008-03-01
pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages in specific applications. It is difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to size limitation and no deformability. In this paper, we present design and fabrication processes of a miniature iridium oxide thin film pH sensor array on flexible polymer substrates. The amorphous iridium oxide thin film was used as the sensing material. A sol-gel dip-coating process of iridium oxide film was demonstrated in this paper. A super-Nernstian response has been measured on individual sensors of the array with a slope of -71.6+/-3 mV/pH at 25°C within the pH range between 2.83 and 11.04.
NASA Astrophysics Data System (ADS)
Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi
2013-03-01
In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.
Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors
2016-01-01
We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079
Light management in flexible OLEDs
NASA Astrophysics Data System (ADS)
Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan
2014-10-01
Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.
Superhydrophobicity enhancement through substrate flexibility
NASA Astrophysics Data System (ADS)
Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas; Poulikakos, Dimos
2017-11-01
Inspired by manifestations in nature, micro/nanoengineering superhydrophobic surfaces has been the focus of much work. Generally, hydrophobicity is increased through the combined effects of surface texturing and chemistry; being durable, rigid substrate materials are the norm. However, many natural and technical materials are flexible, and the resulting effect on hydrophobicity has been largely unexplored. Here, we show that the rational tuning of flexibility can work collaboratively with the surface micro/nanotexture to enhance liquid repellency performance, defined by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate stiffness and areal density imparts immediate acceleration and intrinsic responsiveness to impacting droplets, mitigating the collision and lowering the impalement probability by 60 % without the need for active actuation. We demonstrate the above discoveries with materials ranging from thin steel or polymer sheets to butterfly wings. Partial support of the Swiss National Science Foundation under Grant 162565 and the European Research Council under Advanced Grant 669908 (INTICE) is acknowledged.
Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology
Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk
2015-01-01
This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466
Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating
NASA Astrophysics Data System (ADS)
Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred
2011-03-01
We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.
Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan
2009-05-13
The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.
Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2016-01-01
We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249
Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates
NASA Astrophysics Data System (ADS)
Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.
2017-08-01
In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.
Disposable chemical sensors and biosensors made on cellulose paper.
Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan
2014-03-07
Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.
Free-standing membrane polymer laser on the end of an optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie
2016-01-25
One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.
NASA Astrophysics Data System (ADS)
Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong
2018-01-01
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.
Buck, Maren E.
2010-01-01
We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and flexible polymer thin films and membranes of potential utility in a variety of fundamental and applied contexts. PMID:20857952
Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; McGuire, Allister F.; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B.-H.; Bao, Zhenan
2017-01-01
Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics. PMID:28461459
Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan
2017-05-16
Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.
Passivation coating for flexible substrate mirrors
Tracy, C. Edwin; Benson, David K.
1990-01-01
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.
Andrei, Virgil; Bethke, Kevin; Rademann, Klaus
2016-04-28
We present a facile alternative to other well known strategies for synthesizing flexible thermoelectric materials. Instead of printing thin active layers on flexible substrates or doping conductive polymers, we produce thermoelectric pastes, using a mixture of graphite, copper(I) oxide and polychlorotrifluoroethene. The Seebeck coefficient of the investigated pastes varies between 10 and 600 μV K(-1), while the electrical conductivity spans over an even wider range of 10(-4) to 10(2) S m(-1). Here, the influence of phenomena such as percolation on the electrical transport is revealed. The resulting power factor reaches 5.69 × 10(-4) ± 0.70 × 10(-4) μW m(-1) K(-2) for the graphite-polymer paste, with an unexpected minimum at a graphite molar fraction of approximately 0.4. The values are comparable to those of the powder mixtures, which are slightly higher, but less precisely tunable. Such compounds are further evaluated for practical applications. The graphite-polymer paste is used to exemplify, how a flexible thermoelectric sensor can be easily manufactured, step by step. Our results represent a proof of principle, that thermoelectric pastes are viable alternatives to current solutions. A further expansion of the scope for the composites can be achieved by using high performance thermoelectric materials and conductive polymers.
The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates
NASA Astrophysics Data System (ADS)
Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed
2014-03-01
This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.
Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang
2017-07-01
Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cooperative rearrangements leading to long range order in monolayers of supramolecular polymers.
Vonau, F; Aubel, D; Bouteiller, L; Reiter, G; Simon, L
2007-08-24
Using scanning tunneling microscopy (STM), we followed the self-organization process of a supramolecular polymer monolayer deposited on a gold surface. During the growth of ordered domains from small to large scales, the molecule-molecule interactions were found to overrule the coupling to the substrate, causing a reorientation of the monolayer. The flexibility at the molecular level, due to reversible hydrogen bonds, was directly visualized by STM. The supramolecules were able to slide and insert between neighboring molecules, allowing the annihilation of domain boundaries and improving long range order. Large domains were found to cross monoatomic steps on the substrate without perturbation of their order.
Paintable band-edge liquid crystal lasers.
Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J
2011-01-31
In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.
Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook
2013-10-23
We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.
NASA Astrophysics Data System (ADS)
Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton
2016-01-01
In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.
Flexible MEMS: A novel technology to fabricate flexible sensors and electronics
NASA Astrophysics Data System (ADS)
Tu, Hongen
This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.
NASA Astrophysics Data System (ADS)
Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan
2017-12-01
Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.
A novel fabrication method for surface integration of metal structures into polymers (SIMSIP)
NASA Astrophysics Data System (ADS)
Carrion-Gonzalez, Hector
Recently developed flexible electronics applications require that the thin metal films embedded on elastomer substrates also be flexible. These electronic systems are radically different in terms of performance and functionality than conventional silicon-based devices. A key question is whether the metal deposited on flexible films can survive large strains without rupture. Cumbersome macro-fabrication methods have been developed for functional and bendable electronics (e.g., interconnects) encapsulated between layers of polymer films. However, future electronic applications may require electronic flexible devices to be in intimate contact with curved surfaces (e.g., retinal implants) and to be robust enough to withstand large and repeated mechanical deformations. In this research, a novel technique for surface integration of metal structures into polymers (SIMSIP) was developed. Surface embedding, as opposed to placing metal on polymers, provides better adherence while leaving the surface accessible for contacts. This was accomplished by first fabricating the micro-scale metal patterns on a quartz or Teflon mother substrate, and then embedding them to a flexible polyimide thin film. The technique was successfully used to embed micro-metal structures of gold (Au), silver (Ag), and copper (Cu) into polyimide films without affecting the functional properties of the either the metals or the polymers. Experimental results confirm the successful surface-embedding of metal structures as narrow as 0.6 microm wide for different geometries commonly used in circuit design. Although similar approaches exist in literature, the proposed methodology provides a simpler and more reliable way of producing flexible circuits/electronics that is also suitable for high volume manufacturing. In order to demonstrate the flexibility of metal interconnects fabricated using the SIMSIP technique, multiple Au electrodes (5 microm and 2.5 microm wide) were tested using the X-theta bending methodology. The X-theta bending test captures data on the electrical resistivity of micro Au electrodes fabricated using the proposed SIMSIP technique by bending them at different angles between 0o and 180o up to 50 times. The data shows that the electrical resistivity of the Au electrodes remains constant (<1% variation) despite the interconnects being repeatedly subjected to extreme tensile and compressive forces during the X-theta bending test. These results are significant from the perspective of flexible electronics and biotechnology applications since the fabricated thin films exhibit significant electrical stability, reliability and wear resistance. These surface-embedded, flexible, and mechanically stable metal interconnects will enable the further development of new electronic products with applications in biotechnology (e.g., e-skin), space exploration (e.g., satellites), and microelectronics (e.g., flat panel displays). The SIMSIP technique is also a suitable process for the nanofabrication of flexible electronic devices in applications that require intimate contact with bendable curved surfaces (e.g., retinal implants).
Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing
NASA Astrophysics Data System (ADS)
Hines, Daniel R.
Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-05
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-01
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Transferable and flexible thin film devices for engineering applications
NASA Astrophysics Data System (ADS)
Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun
2014-05-01
Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.
Flexible OLED fabrication with ITO thin film on polymer substrate
NASA Astrophysics Data System (ADS)
Kim, Sung Il; Lee, Kyo Woong; Bhusan Sahu, Bibhuti; Geon Han, Jeon
2015-09-01
This paper reports the synthesis of flexible indium tin oxide (ITO) films in a dual pulse magnetron sputtering (DPMS) system at low temperature (<100 °C) deposition condition. This study also presents experimental demonstration of the ITO films for their possible use in the fabrication of organic light emitting diode (OLED) device, and the device performance on the super polycarbonate substrates. The presented data reveals the feasibility of ITO films, with a very low sheet resistance of ∼30 Ω/□ and high transmittance of ∼88% at 550 nm, simply by the magnetron pulse mode operations with increasing pulse frequency from 0 to 50 kHz.
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
NASA Astrophysics Data System (ADS)
Das, Sayantan; Alford, T. L.
2013-06-01
Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.
NASA Astrophysics Data System (ADS)
Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger
2017-02-01
Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.
Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee
2016-01-01
This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.
Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin
2014-09-01
Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.
All dispenser printed flexible 3D structured thermoelectric generators
NASA Astrophysics Data System (ADS)
Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.
2015-12-01
This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.
Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype
NASA Astrophysics Data System (ADS)
Chlenova, A. A.; Melnikov, G. Yu.; Svalov, A. V.; Kurlyandskaya, G. V.
2016-09-01
Magnetically soft [Ti/FeNi]5/Ti/Cu/Ti/[FeNi/Ti]4 multilayered structures were obtained by magnetron sputtering. Based on them sensitive elements have been investigated with focus on the design of the giant magnetoimpedance (MI) pressure sensors. Magnetic properties and MI of fabricated sensitive elements were comparatively analyzed for both multilayers deposited both onto rigid and flexible polymer substrates. Structures on a rigid substrate had the highest MI ratio of 140 %. They showed the sensitivity of 0.70 %/Ba suitable for possible applications in pressure sensing. Structures deposited onto flexible Cyclo Olefin Copolymer substrates had slightly lower sensitivity of 0.55 %/Ba. That structures showing linear dependence of MI ratio in the pressure range of 0 to 360 Ba are promising for microfluidic and biosensor applications.
Kim, Sanghyeok; Won, Sejeong; Sim, Gi-Dong; Park, Inkyu; Lee, Soon-Bok
2013-03-01
Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.
NASA Astrophysics Data System (ADS)
Wang, Li; Luo, Yu; Liu, ZengZeng; Feng, Xueming; Lu, Bingheng
2018-06-01
This work presents an economic and controllable fabricating method of high numerical aperture (NA) polymer microlens array (MLA) based on ink-jetting technology. The MLAs are ink-jetted to align on micro platforms patterned flexible PDMS substrate. The shape of a sole lens is constructed by the ink-jetted pre-cured polymer volume confined on a micro platform. In this way, MLAs with targeted geometries-as well as tailored optical characteristics-can be printed, leading to freely designed optical properties. High NA from 0.446 to 0.885 and focal lengths between 99.26 μm and 39.45 μm are demonstrated, confirming theoretical predictions. Particularly, both the simulations and experimental measurements in optical properties are carried out, demonstrating that microlenses with shapes beyond a hemisphere (CA > 90°) exhibits higher light utilization efficiency and wider viewing angle. Meanwhile, the MLAs are fabricated on flexible PDMS substrates and can be attached to other curved surfaces for wider field of view imaging and higher sensitivity.
Low thermal budget, photonic-cured compact TiO 2 layers for high-efficiency perovskite solar cells
Das, Sanjib; Gu, Gong; Joshi, Pooran C.; ...
2016-05-25
Rapid advances in organometallic trihalide perovskite solar cells (PSCs) have positioned them to be one of the leading next generation photovoltaic technologies. However, most of the high-performance PSCs, particularly those using compact TiO 2 as an electron transport layer, require a high-temperature sintering step, which is not compatible with flexible polymer-based substrates. Considering the materials of interest for PSCs and corresponding device configurations, it is technologically imperative to fabricate high-efficiency cells at low thermal budget so that they can be realized on low-temperature plastic substrates. In this paper, we report on a new photonic curing technique that produces crystalline anatase-phasemore » TiO 2 films on indium tin oxide-coated glass and flexible polyethylene terephthalate (PET) substrates. Finally, the planar PSCs, using photonic-cured TiO 2 films, exhibit PCEs as high as 15.0% and 11.2% on glass and flexible PET substrates, respectively, comparable to the device performance of PSCs incorporating furnace annealed TiO 2 films.« less
Lattice-patterned LC-polymer composites containing various nanoparticles as additives
2012-01-01
In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
Xi, Jun; Wu, Zhaoxin; Jiao, Bo; Dong, Hua; Ran, Chenxin; Piao, Chengcheng; Lei, Ting; Song, Tze-Bin; Ke, Weijun; Yokoyama, Takamichi; Hou, Xun; Kanatzidis, Mercouri G
2017-06-01
Tin (Sn)-based perovskites are increasingly attractive because they offer lead-free alternatives in perovskite solar cells. However, depositing high-quality Sn-based perovskite films is still a challenge, particularly for low-temperature planar heterojunction (PHJ) devices. Here, a "multichannel interdiffusion" protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI 2 layer to create uniform FASnI 3 films. In this protocol, tiny FAI crystals, significantly inhibited by the introduced polymer, can offer multiple interdiffusion pathways for complete reaction with SnI 2 . What is more, water, rather than traditional aprotic organic solvents, is used to dissolve the precursors. The best-performing FASnI 3 PHJ solar cell assembled by this protocol exhibits a power conversion efficiency (PCE) of 3.98%. In addition, a flexible FASnI 3 -based flexible solar cell assembled on a polyethylene naphthalate-indium tin oxide flexible substrate with a PCE of 3.12% is demonstrated. This novel interdiffusion process can help to further boost the performance of lead-free Sn-based perovskites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.
Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao
2016-08-10
Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.
Molecular engineered conjugated polymer with high thermal conductivity
Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.
2018-01-01
Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943
Optimization of a multi-well array SERS chip
NASA Astrophysics Data System (ADS)
Abell, J. L.; Driskell, J. D.; Dluhy, R. A.; Tripp, R. A.; Zhao, Y.-P.
2009-05-01
SERS-active substrates are fabricated by oblique angle deposition and patterned by a polymer-molding technique to provide a uniform array for high throughput biosensing and multiplexing. Using a conventional SERS-active molecule, 1,2-Bis(4-pyridyl)ethylene (BPE), we show that this device provides a uniform Raman signal enhancement from well to well. The patterning technique employed in this study demonstrates a flexibility allowing for patterning control and customization, and performance optimization of the substrate. Avian influenza is analyzed to demonstrate the ability of this multi-well patterned SERS substrate for biosensing.
Stretching of Single Polymer Chains Using the Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.
1998-03-01
A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.
Biswas, Subir K; Sano, Hironari; Shams, Md Iftekhar; Yano, Hiroyuki
2017-09-06
Achieving a structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with a well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility, and a drastically low thermal expansion (13 ppm K -1 , 1/15th of the neat polymer). The nanocomposites have a three-dimensional-shape moldability, also their surface can be patterned with micro/nanoscale features with high fidelity by in situ compression molding, making them attractive as the substrate for flexible displays, smart contact lens devices, and photovoltaics. The Pickering emulsification approach should be broadly applicable for the fabrication of novel functional materials of various immiscible components.
Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng
2014-12-22
The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer
Pang, Da-Chen; Chang, Cheng-Min
2017-01-01
This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT) that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET) substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics. PMID:28632157
Characterization of polymer silver pastes for screen printed flexible RFID antennas
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta
Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.
Single molecule atomic force microscopy and force spectroscopy of chitosan.
Kocun, Marta; Grandbois, Michel; Cuccia, Louis A
2011-02-01
Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-01
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a
Polymer Light-Emitting Diode (PLED) Process Development
2003-12-01
conclusions and recommendations for Phase II of the Flexible Display Program. 15. SUBJECT TERMS LIGHT EMITTING DIODES LIQUID CRYSTAL DISPLAY SYSTEMS...space for Phase I and II confined by backplane complexity and substrate form...12 Figure 6. Semi automated I-V curve measurement setup consisting of Keithley power supply, computer and
Moorcroft, Matthew J.; Meuleman, Wouter R. A.; Latham, Steven G.; Nicholls, Thomas J.; Egeland, Ryan D.; Southern, Edwin M.
2005-01-01
In this paper, we demonstrate in situ synthesis of oligonucleotide probes on poly(dimethylsiloxane) (PDMS) microchannels through use of conventional phosphoramidite chemistry. PDMS polymer was moulded into a series of microchannels using standard soft lithography (micro-moulding), with dimensions <100 μm. The surface of the PDMS was derivatized by exposure to ultraviolet/ozone followed by vapour phase deposition of glycidoxypropyltrimethoxysilane and reaction with poly(ethylene glycol) spacer, resulting in a reactive surface for oligonucleotide coupling. High, reproducible yields were achieved for both 6mer and 21mer probes as assessed by hybridization to fluorescent oligonucleotides. Oligonucleotide surface density was comparable with that obtained on glass substrates. These results suggest PDMS as a stable and flexible alternative to glass as a suitable substrate in the fabrication and synthesis of DNA microarrays. PMID:15870385
Dong, Hua; Wu, Zhaoxin; Jiang, Yaqiu; Liu, Weihua; Li, Xin; Jiao, Bo; Abbas, Waseem; Hou, Xun
2016-11-16
A typical thin and fully flexible hybrid electrode was developed by integrating the encapsulation of silver nanowires (AgNWs) network between a monolayer graphene and polymer film as a sandwich structure. Compared with the reported flexible electrodes based on PET or PEN substrate, this unique electrode exhibits the superior optoelectronic characteristics (sheet resistance of 8.06 Ω/□ at 88.3% light transmittance). Meanwhile, the specific up-to-bottom fabrication process could achieve the superflat surface (RMS = 2.58 nm), superthin thickness (∼8 μm thickness), high mechanical robustness, and lightweight. In addition, the strong corrosion resistance and stability for the hybrid electrode were proved. With these advantages, we employ this electrode to fabricate the simple flexible organic light-emitting device (OLED) and perovskite solar cell device (PSC), which exhibit the considerable performance (best PCE of OLED = 2.11 cd/A 2 ; best PCE of PSC = 10.419%). All the characteristics of the unique hybrid electrode demonstrate its potential as a high-performance transparent electrode candidate for flexible optoelectronics.
Laser micromachining as a metallization tool for microfluidic polymer stacks
NASA Astrophysics Data System (ADS)
Brettschneider, T.; Dorrer, C.; Czurratis, D.; Zengerle, R.; Daub, M.
2013-03-01
A novel assembly approach for the integration of metal structures into polymeric microfluidic systems is described. The presented production process is completely based on a single solid-state laser source, which is used to incorporate metal foils into a polymeric multi-layer stack by laser bonding and ablation processes. Chemical reagents or glues are not required. The polymer stack contains a flexible membrane which can be used for realizing microfluidic valves and pumps. The metal-to-polymer bond was investigated for different metal foils and plasma treatments, yielding a maximum peel strength of Rps = 1.33 N mm-1. A minimum structure size of 10 µm was determined by 3D microscopy of the laser cut line. As an example application, two different metal foils were used in combination to micromachine a standardized type-T thermocouple on a polymer substrate. An additional laser process was developed which allows metal-to-metal welding in close vicinity to the polymer substrate. With this process step, the reliability of the electrical contact could be increased to survive at least 400 PCR temperature cycles at very low contact resistances.
Highly efficient monolithic dye-sensitized solar cells.
Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok
2013-03-01
Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated.
NASA Astrophysics Data System (ADS)
Cruz, R. P.; Nalin, M.; Ribeiro, S. J. L.; Molina, C.
2017-04-01
Organic-inorganic hybrids (OIH) synthesized by sol gel process containing phosphotungstic acid (PWA) entrapped have been attracted much attention for ultraviolet sensitive materials. However, the limitations for practical photochromic application of these materials are the poor interaction with flexible polymer substrates such as Poly(ethyleneterephthalate) (PET) and also photo response under ultraviolet radiation. This paper describes the use of the d-ureasil HOI, based on siliceous network grafted through linkages to both ends of polymer chain containing 2.5 poly(oxyethylene) units with PWA entrapped prepared as films on recycled PET. Films were characterized by IR-ATR, XRD, TG/DTG, UV-Vis and Contact angle. XRD patterns showed that both pristine hybrid matrix and those containing PWA are amorphous. IR showed that PWA structure is preserved in the matrix and interactions between them occur by intermolecular forces. Films are thermally stable up to 325 °C and contact angle of 25.1° showed a good wettability between substrate and hybrid matrix. Furthermore, films showed fast photochromic response after 1 min of ultraviolet exposure time. The bleaching process revealed that the relaxation process is dependent of the temperature and the activation energy of 47.2 kJ mol-1 was determined. The properties of these films make them potential candidates for applications in flexible photochromic materials.
Microlens fabrication by replica molding of frozen laser-printed droplets
NASA Astrophysics Data System (ADS)
Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí
2017-10-01
In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.
High-quality graphene flakes exfoliated on a flat hydrophobic polymer
NASA Astrophysics Data System (ADS)
Pedrinazzi, Paolo; Caridad, José M.; Mackenzie, David M. A.; Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Sordan, Roman; Booth, Timothy J.; Bøggild, Peter
2018-01-01
We show that graphene supported on a hydrophobic and flat polymer surface results in flakes with extremely low doping and strain as assessed by their Raman spectroscopic characteristics. We exemplify this technique by micromechanical exfoliation of graphene on flat poly(methylmethacrylate) layers and demonstrate Raman peak intensity ratios I(2D)/I(G) approaching 10, similar to pristine freestanding graphene. We verify that these features are not an artifact of optical interference effects occurring at the substrate: they are similarly observed when varying the substrate thickness and are maintained when the environment of the graphene flake is completely changed, by encapsulating preselected flakes between hexagonal boron nitride layers. The exfoliation of clean, pristine graphene layers directly on flat polymer substrates enables high performance, supported, and non-encapsulated graphene devices for flexible and transparent optoelectronic studies. We additionally show that the access to a clean and supported graphene source leads to high-quality van der Waals heterostructures and devices with reproducible carrier mobilities exceeding 50 000 cm2 V-1 s-1 at room temperature.
Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power
NASA Technical Reports Server (NTRS)
Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.
2004-01-01
The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.
Superhydrophobicity enhancement through substrate flexibility.
Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas M; Poulikakos, Dimos
2016-11-22
Inspired by manifestations in nature, microengineering and nanoengineering of synthetic materials to achieve superhydrophobicity has been the focus of much work. Generally, hydrophobicity is enhanced through the combined effects of surface texturing and chemistry; being durable, rigid materials are the norm. However, many natural and technical surfaces are flexible, and the resulting effect on hydrophobicity has been largely ignored. Here, we show that the rational tuning of flexibility can work synergistically with the surface microtexture or nanotexture to enhance liquid repellency performance, characterized by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate areal density and stiffness imparts immediate acceleration and intrinsic responsiveness to impacting droplets (∼350 × g), mitigating the collision and lowering the impalement probability by ∼60% without the need for active actuation. Furthermore, we exemplify the above discoveries with materials ranging from man-made (thin steel or polymer sheets) to nature-made (butterfly wings).
NASA Astrophysics Data System (ADS)
Marchena, Miriam; Wagner, Frederic; Arliguie, Therese; Zhu, Bin; Johnson, Benedict; Fernández, Manuel; Lai Chen, Tong; Chang, Theresa; Lee, Robert; Pruneri, Valerio; Mazumder, Prantik
2018-07-01
We demonstrate the direct transfer of graphene from Cu foil to rigid and flexible substrates, such as glass and PET, using as an intermediate layer a thin film of polyimide (PI) mixed with an aminosilane (3-aminopropyltrimethoxysilane) or only PI, respectively. While the dry removal of graphene by an adhesive has been previously demonstrated—being removed from graphite by scotch tape or from a Cu foil by thick epoxy (~20 µm) on Si—our work is the first step towards making a substrate ready for device fabrication using the polymer-free technique. Our approach leads to an article that is transparent, thermally stable—up to 350 °C—and free of polymer residues on the device side of the graphene, which is contrary to the case of the standard wet-transfer process using PMMA. Also, in addition to previous novelty, our technique is fast and easier by using current industrial technology—a hot press and a laminator—with Cu recycling by its mechanical peel-off; it provides high interfacial stability in aqueous media and it is not restricted to a specific material—polyimide and polyamic acids can be used. All the previous reasons demonstrate a feasible process that enables device fabrication.
Electronic unit integrated into a flexible polymer body
Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Rose, Klint A [Mt. View, CA; Davidson, James Courtney [Livermore, CA; Strauch, Mark S [Livermore, CA
2008-03-11
A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
Electronic unit integrated into a flexible polymer body
Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Rose, Klint A [Mt. View, CA; Davidson, James Courtney [Livermore, CA; Strauch, Mark S [Livermore, CA
2006-04-18
A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
Electronic unit integrated into a flexible polymer body
Krulevitch, Peter A.; Maghribi, Mariam N.; Benett, William J.; Hamilton, Julie K.; Rose, Klint A.; Davidson, James Courtney; Strauch, Mark S.
2005-04-12
A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
Electronic Unit Integrated Into A Flexible Polymer Body
Krulevitch, Peter A.; Maghribi, Mariam N.; Benett, William J.; Hamilton, Julie K.; Rose, Klint A.; Davidson, James Courtney; Strauch, Mark S.
2006-01-31
A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
Towards flexible solid-state supercapacitors for smart and wearable electronics.
Dubal, Deepak P; Chodankar, Nilesh R; Kim, Do-Heyoung; Gomez-Romero, Pedro
2018-03-21
Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...
2016-02-09
To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less
High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography.
Wan, Wenqiang; Huang, Wenbin; Pu, Donglin; Qiao, Wen; Ye, Yan; Wei, Guojun; Fang, Zongbao; Zhou, Xiaohong; Chen, Linsen
2015-12-14
We report distributed Bragg reflector (DBR) polymer lasers fabricated using dot matrix holography. Pairs of distributed Bragg reflector mirrors with variable mirror separations are fabricated and a novel energy transfer blend consisting of a blue-emitting conjugated polymer and a red-emitting one is spin-coated onto the patterned substrate to complete the device. Under optical pumping, the device emits sing-mode lasing around 622 nm with a bandwidth of 0.41 nm. The working threshold is as low as 13.5 μJ/cm² (~1.68 kW/cm²) and the measured slope efficiency reaches 5.2%. The distributed feedback (DFB) cavity and the DBR cavity resonate at the same lasing wavelength while the DFB laser shows a much higher threshold. We further show that flexible DBR lasers can be conveniently fabricated through the UV-imprinting technique by using the patterned silica substrate as the mold. Dot matrix holography represents a versatile approach to control the number, the size, the location and the orientation of DBR mirrors, thus providing great flexibility in designing DBR lasers.
Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja
2018-04-04
Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.
Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook
2016-01-01
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻−1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes. PMID:27808221
NASA Astrophysics Data System (ADS)
Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook
2016-11-01
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻-1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.
Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook
2016-11-03
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻ -1 ), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Gray, Matthew H.; Tirawat, Robert
Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristinemore » and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.« less
Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le
2003-12-16
Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.
Jiang, Dongyue; Park, Sung-Yong
2016-05-21
Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.
NASA Astrophysics Data System (ADS)
Choi, Nack-Bong
Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution printing plate is investigated and the most favorable condition to transfer ink from a blanket to a cliche is studied. Consequently, a high resolution cliche is demonstrated and the printed patterns of 10mum width and 6mum line spacing are presented. In addition, the top gate a-IGZO TFTs with channel width/length of 12/6mum is successfully demonstrated by printing etch-resists. This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.
The macroscopic delamination of thin films from elastic substrates
Vella, Dominic; Bico, José; Boudaoud, Arezki; Roman, Benoit; Reis, Pedro M.
2009-01-01
The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine. PMID:19556551
Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology
NASA Technical Reports Server (NTRS)
Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah
2013-01-01
Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of different conductors may improve electrical pathways through alignment of the conductors and band gap optimization. One feature of this innovation is that flexible conductive traces could be accomplished with a conductive ink having a surface resistivity of less than 10 ohms/square. Another result was that a composite material comprising a mixture of carbon nanotubes and metallic nanoparticles could be applied by inkjet printing to flexible substrates, and the resulting applied material was one to two orders of magnitude more conductive than a material made by printing inks containing carbon nanotubes alone.
Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo
2016-01-01
We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o. PMID:26846891
Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo
2016-02-05
We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°).
Flexible Carbon Nanotube Films for High Performance Strain Sensors
Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda
2014-01-01
Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183
Wang, Wei; Hwang, Sun Kak; Kim, Kang Lib; Lee, Ju Han; Cho, Suk Man; Park, Cheolmin
2015-05-27
The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.
A stable solution-processed polymer semiconductor with record high-mobility for printed transistors
Li, Jun; Zhao, Yan; Tan, Huei Shuan; Guo, Yunlong; Di, Chong-An; Yu, Gui; Liu, Yunqi; Lin, Ming; Lim, Suo Hon; Zhou, Yuhua; Su, Haibin; Ong, Beng S.
2012-01-01
Microelectronic circuits/arrays produced via high-speed printing instead of traditional photolithographic processes offer an appealing approach to creating the long-sought after, low-cost, large-area flexible electronics. Foremost among critical enablers to propel this paradigm shift in manufacturing is a stable, solution-processable, high-performance semiconductor for printing functionally capable thin-film transistors — fundamental building blocks of microelectronics. We report herein the processing and optimisation of solution-processable polymer semiconductors for thin-film transistors, demonstrating very high field-effect mobility, high on/off ratio, and excellent shelf-life and operating stabilities under ambient conditions. Exceptionally high-gain inverters and functional ring oscillator devices on flexible substrates have been demonstrated. This optimised polymer semiconductor represents a significant progress in semiconductor development, dispelling prevalent skepticism surrounding practical usability of organic semiconductors for high-performance microelectronic devices, opening up application opportunities hitherto functionally or economically inaccessible with silicon technologies, and providing an excellent structural framework for fundamental studies of charge transport in organic systems. PMID:23082244
Towards roll-to-roll manufacturing of polymer photonic devices
NASA Astrophysics Data System (ADS)
Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.
2014-03-01
Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.
Ito, Keisuke; Saito, Akihiro; Fujie, Toshinori; Miyazaki, Hiromi; Kinoshita, Manabu; Saitoh, Daizoh; Ohtsubo, Shinya; Takeoka, Shinji
2016-04-01
Ultra-thin polymer films (nanosheets) fabricated by a layer-by-layer (LbL) method possess unique properties such as high flexibility, adhesive strength, and transparency, and can be peeled off from a substrate and attached to various surfaces via a water-soluble supporting film. Therefore, flexible and transferrable LbL nanosheets are convenient tools as coating materials. Here, we fabricated a novel antimicrobial coating material by embedding silver nanoparticles (AgNPs) in an LbL nanosheet composed of layers of chitosan and sodium alginate (Ag-LbL nanosheet) by means of a photo-reduction method. Optimizing the amount of irradiated energy applied led to robust antimicrobial efficacy against methicillin-resistant Staphylococcus aureus (MRSA), sufficient to meet ISO standards (ISO 22196), while maintaining the flexibility and adhesive potency of the LbL nanosheet. Thus, the Ag-LbL nanosheet is a promising coating material that can provide antimicrobial efficacy to various surfaces. © 2015 Wiley Periodicals, Inc.
Liu, Jinmei; Wu, Weiwei; Bai, Suo; Qin, Yong
2011-11-01
Well aligned ZnO nanowire (NW) arrays are grown on Kevlar fiber and Kapton film via the chemical vapor deposition (CVD) method. These NWs have better crystallinity than those synthesized through the low-temperature hydrothermal method. The average length and diameter of ZnO NWs grown on Kevlar fiber can be controlled from 0.5 to 2.76 μm and 30 to 300 nm, respectively. A flexible ultraviolet (UV) sensor based on Kevlar fiber/ZnO NWs hybrid structure is made to detect UV illumination quantificationally.
Park, Byoungchoo; Park, Chan Hyuk; Kim, Mina; Han, Mi-Young
2009-06-08
We present the results of a study of highly linear polarized light emissions from an Organic Light-Emitting Device (OLED) that consisted of a flexible Giant Birefringent Optical (GBO) multilayer polymer reflecting polarizer substrate. Luminous Electroluminescent (EL) emissions over 4,500 cd/m(2) were produced from the polarized OLED with high peak efficiencies in excess of 6 cd/A and 2 lm/W at relatively low operating voltages. The direction of polarization for the emitted EL light corresponded to the passing (ordinary) axis of the GBO-reflecting polarizer. Furthermore, the estimated polarization ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis could be as high as 25 when measured over the whole emitted luminance range.
Hong, Sukjoon; Yeo, Junyeob; Kim, Gunho; Kim, Dongkyu; Lee, Habeom; Kwon, Jinhyeong; Lee, Hyungman; Lee, Phillip; Ko, Seung Hwan
2013-06-25
We introduce a facile approach to fabricate a metallic grid transparent conductor on a flexible substrate using selective laser sintering of metal nanoparticle ink. The metallic grid transparent conductors with high transmittance (>85%) and low sheet resistance (30 Ω/sq) are readily produced on glass and polymer substrates at large scale without any vacuum or high-temperature environment. Being a maskless direct writing method, the shape and the parameters of the grid can be easily changed by CAD data. The resultant metallic grid also showed a superior stability in terms of adhesion and bending. This transparent conductor is further applied to the touch screen panel, and it is confirmed that the final device operates firmly under continuous mechanical stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G Ellis; P Cano; M Jadraque
Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.
NASA Astrophysics Data System (ADS)
Goshi, Noah; Castagnola, Elisa; Vomero, Maria; Gueli, Calogero; Cea, Claudia; Zucchini, Elena; Bjanes, David; Maggiolini, Emma; Moritz, Chet; Kassegne, Sam; Ricci, Davide; Fadiga, Luciano
2018-06-01
We report on a novel technology for microfabricating 3D origami-styled micro electro-mechanical systems (MEMS) structures with glassy carbon (GC) features and a supporting polymer substrate. GC MEMS devices that open to form 3D microstructures are microfabricated from GC patterns that are made through pyrolysis of polymer precursors on high-temperature resisting substrates like silicon or quartz and then transferring the patterned devices to a flexible substrate like polyimide followed by deposition of an insulation layer. The devices on flexible substrate are then folded into 3D form in an origami-fashion. These 3D MEMS devices have tunable mechanical properties that are achieved by selectively varying the thickness of the polymeric substrate and insulation layers at any desired location. This technology opens new possibilities by enabling microfabrication of a variety of 3D GC MEMS structures suited to applications ranging from biochemical sensing to implantable microelectrode arrays. As a demonstration of the technology, a neural signal recording microelectrode array platform that integrates both surface (cortical) and depth (intracortical) GC microelectrodes onto a single flexible thin-film device is introduced. When the device is unfurled, a pre-shaped shank of polyimide automatically comes off the substrate and forms the penetrating part of the device in a 3D fashion. With the advantage of being highly reproducible and batch-fabricated, the device introduced here allows for simultaneous recording of electrophysiological signals from both the brain surface (electrocorticography—ECoG) and depth (single neuron). Our device, therefore, has the potential to elucidate the roles of underlying neurons on the different components of µECoG signals. For in vivo validation of the design capabilities, the recording sites are coated with a poly(3,4-ethylenedioxythiophene)—polystyrene sulfonate—carbon nanotube composite, to improve the electrical conductivity of the electrodes and consequently the quality of the recorded signals. Results show that both µECoG and intracortical arrays were able to acquire neural signals with high-sensitivity that increased with depth, thereby verifying the device functionality.
NASA Astrophysics Data System (ADS)
Ravagnan, Luca; Divitini, Giorgio; Rebasti, Sara; Marelli, Mattia; Piseri, Paolo; Milani, Paolo
2009-04-01
Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd clusters are implanted in the polymer and form a continuous layer extending for several tens of nanometres beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared with metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.
Dye-sensitized solar cells using laser processing techniques
NASA Astrophysics Data System (ADS)
Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.
2004-07-01
Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.
Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin
2018-06-22
A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.
NASA Astrophysics Data System (ADS)
Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin
2018-06-01
A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.
NASA Astrophysics Data System (ADS)
Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo
2012-05-01
In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress (σi) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive σi that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of σi is not beneficial to cracking because there is less compensation for the external tension as σi further decreases. Based on these results, the microstructural control is revealed as a more influential factor than σi for improving crack resistance.
Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.
Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee
2017-10-24
Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.
Wireless RF communication in biomedical applications
NASA Astrophysics Data System (ADS)
Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek
2008-02-01
This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control.
Flexible fabrication and applications of polymer nanochannels and nanoslits
Chantiwas, Rattikan; Kim, Byoung Choul; Sunkara, Vijaya; Hwang, Hyundoo
2016-01-01
Fluidic devices that employ nanoscale structures (<100 nm in one or two dimensions, slits or channels, respectively) are generating great interest due to the unique properties afforded by this size domain compared to their micro-scale counterparts. Examples of interesting nanoscale phenomena include the ability to preconcentrate ionic species at extremely high levels due to ion selective migration, unique molecular separation modalities, confined environments to allow biopolymer stretching and elongation and solid-phase bioreactions that are not constrained by mass transport artifacts. Indeed, many examples in the literature have demonstrated these unique opportunities, although predominately using glass, fused silica or silicon as the substrate material. Polymer microfluidics has established itself as an alternative to glass, fused silica, or silicon-based fluidic devices. The primary advantages arising from the use of polymers are the diverse fabrication protocols that can be used to produce the desired structures, the extensive array of physiochemical properties associated with different polymeric materials, and the simple and robust modification strategies that can be employed to alter the substrate's surface chemistry. However, while the strengths of polymer microfluidics is currently being realized, the evolution of polymer-based nanofluidics has only recently been reported. In this critical review, the opportunities afforded by polymer-based nanofluidics will be discussed using both elastomeric and thermoplastic materials. In particular, various fabrication modalities will be discussed along with the nanometre size domains that they can achieve for both elastomer and thermoplastic materials. Different polymer substrates that can be used for nanofluidics will be presented along with comparisons to inorganic nanodevices and the consequences of material differences on the fabrication and operation of nanofluidic devices (257 references). PMID:21442106
Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate
NASA Astrophysics Data System (ADS)
Zhu, Yanwu; Lim, Xiaodai; Chea Sim, Mong; Teck Lim, Chwee; Haur Sow, Chorng
2008-08-01
A simple technique to transfer aligned multi-walled carbon nanotubes (MWCNTs) is demonstrated in this work. With polydimethylsiloxane (PDMS) as the transfer medium, as-grown or patterned MWCNT arrays are directly transferred onto a wide variety of Pt-coated substrates such as glossy paper, cloth, polymers, glass slides, and metal foils at low temperatures. The surface of the transferred CNTs is cleaner with better alignment, compared with the as-grown one. Furthermore, the transferred CNTs show strong adhesion and good electric contact with the target substrates. A maximal current density of ~104 A cm-2 has been achieved from the CNT interconnects prepared with this technique. Because of the lower density and open-ended structures, improved field emission performance has been obtained from CNTs transferred on polymers, based on which flexible emitter devices can be fabricated. In addition, the surface of transferred CNTs becomes more hydrophilic, with an averaged contact angle of 93.4 ± 5.8°, in contrast to the super-hydrophobic as-grown CNT surface (contact angle 151.6 ± 5.5°). With versatile properties and flexible applications, the technique provides a simple and cost-effective way towards future nanodevices based on CNTs.
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
NASA Astrophysics Data System (ADS)
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
NASA Astrophysics Data System (ADS)
Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.
2017-11-01
Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.
RGB and white-emitting organic lasers on flexible glass.
Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D
2016-02-08
Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).
Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu
Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high levelmore » of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.« less
A hydrogel capsule as gate dielectric in flexible organic field-effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, L. M.; Manoli, K.; Magliulo, M.
2015-01-01
A jellified alginate based capsule serves as biocompatible and biodegradable electrolyte system to gate an organic field-effect transistor fabricated on a flexible substrate. Such a system allows operating thiophene based polymer transistors below 0.5 V through an electrical double layer formed across an ion-permeable polymeric electrolyte. Moreover, biological macro-molecules such as glucose-oxidase and streptavidin can enter into the gating capsules that serve also as delivery system. An enzymatic bio-reaction is shown to take place in the capsule and preliminary results on the measurement of the electronic responses promise for low-cost, low-power, flexible electronic bio-sensing applications using capsule-gated organic field-effect transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Wonhee; Kang, Hong Suk; Choi, Jaeho
Silver nanowires (AgNWs) are one of the most promising materials to replace commercially available indium tin oxide in flexible transparent conductive films (TCFs); however, there are still numerous problems originating from poor AgNW junction formation and improper AgNW embedment into transparent substrates. To mitigate these problems, high-temperature processes have been adopted; however, unwanted substrate deformation prevents the use of these processes for the formation of flexible TCFs. In this work, we present a novel poly(methyl methacrylate) interlayer plasticized by dibutyl phthalate for low-temperature fabrication of AgNW-based TCFs, which does not cause any substrate deformation. By exploiting the viscoelastic properties ofmore » the plasticized interlayer near the lowered glass-transition temperature, a monolithic junction of AgNWs on the interlayer and embedment of the interconnected AgNWs into the interlayer are achieved in a single-step pressing. The resulting AgNW-TCFs are highly transparent (~92% at a wavelength of 550 nm), highly conductive (<90 Ω/sq), and environmentally and mechanically robust. Therefore, the plasticized interlayer provides a simple and effective route to fabricate high-quality AgNW-based TCFs.« less
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-21
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.
Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin
2016-05-11
Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.
Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
David M. Dean
2012-10-30
Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is themore » key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei
Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.
INK-JET PRINTING OF PF6 FOR OLED APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrasca, G.; Fasolino, T.; Miscioscia, R.
2008-08-28
In the last years there has been much interest in applying ink-jet printing (IJP) technology to the deposition of several materials for organic electronics applications, including metals, polymers and nanoparticles dispersions on flexible substrates. The aim of this work is to study the effect of ink-jet deposition of polymer films in the manufacturing of OLED devices comparing their performances to standard technologies. The ink-jet printed polymer is introduced in an hybrid structure in which other layers are deposited by vacuum thermal evaporation. The electrical and optical properties of the obtained devices are investigated.OLEDs with the same structure were fabricated bymore » spin-coating a polymer film by the same solution used as ink. Results have been compared to the above ones to determine how the deposition method affects the device optoelectronic properties.« less
NASA Astrophysics Data System (ADS)
Rahy, Abdelaziz
The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.
Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong
2018-05-09
Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.
Oxide-based thin film transistors for flexible electronics
NASA Astrophysics Data System (ADS)
He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing
2018-01-01
The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).
Ultra-smooth glassy graphene thin films for flexible transparent circuits
Dai, Xiao; Wu, Jiang; Qian, Zhicheng; Wang, Haiyan; Jian, Jie; Cao, Yingjie; Rummeli, Mark H.; Yi, Qinghua; Liu, Huiyun; Zou, Guifu
2016-01-01
Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon–like mechanical and chemical stability. Moreover, glassy graphene–based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits. PMID:28138535
All-SPEEK flexible supercapacitor exploiting laser-induced graphenization
NASA Astrophysics Data System (ADS)
Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.
2017-09-01
Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.
Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon
2018-06-13
Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.
Flexible inverted polymer solar cells fabricated in air at low temperatures
NASA Astrophysics Data System (ADS)
Kuwabara, Takayuki; Wang, Xiaofan; Kusumi, Takuji; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin
2016-08-01
A series of modified indium tin oxide (ITO) materials, including sol-gel zinc-oxide-coated ITO (ITO/ZnO), ZnO nanoparticle-coated ITO (ITO/ZnO-NP), 1,4-bis(3-aminopropyl)piperazine (BAP)-modified ITO, and polyethylenimine ethoxylated (PEIE)-modified ITO, were used for electron-collection electrodes in inverted polymer solar cells (PSCs). The modified ITO electrodes were prepared in air at temperatures below 100 °C, using various ITO films on flexible poly(ethylene terephthalate) substrates (PET-ITO) with sheet resistances ranging from 12 to 60 Ω sq-1. The PET-ITO (12 Ω sq-1)/ZnO-NP PSC exhibited an improved power conversion efficiency (PCE) (2.93%), and this PCE was ˜90% of that observed for a cell using glass-ITO/ZnO-NP (sheet resistance = 10 Ω sq-1 PCE = 3.28%). Additionally, we fabricated a flexible inverted ZnO-NP PSC using an indene-C60 bisadduct (ICBA) as the acceptor material in place of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and obtained a PCE of 4.18%.
A Study on the Thermomechanical Reliability Risks of Through-Silicon-Vias in Sensor Applications
Shao, Shuai; Liu, Dapeng; Niu, Yuling; O’Donnell, Kathy; Sengupta, Dipak; Park, Seungbae
2017-01-01
Reliability risks for two different types of through-silicon-vias (TSVs) are discussed in this paper. The first is a partially-filled copper TSV, if which the copper layer covers the side walls and bottom. A polymer is used to fill the rest of the cavity. Stresses in risk sites are studied and ranked for this TSV structure by FEA modeling. Parametric studies for material properties (modulus and thermal expansion) of TSV polymer are performed. The second type is a high aspect ratio TSV filled by polycrystalline silicon (poly Si). Potential risks of the voids in the poly Si due to filling defects are studied. Fracture mechanics methods are utilized to evaluate the risk for two different assembly conditions: package assembled to printed circuit board (PCB) and package assembled to flexible substrate. The effect of board/substrate/die thickness and the size and location of the void are discussed. PMID:28208758
Rich variety of substrates for surface enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong
2016-09-01
The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.
Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz
2014-01-01
In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243
Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan
2016-05-11
Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.
Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz
2014-10-29
In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.
van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G
1999-01-01
Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.
Principle of topography-directed inkjet printing for functional micro-tracks in flexible substrates
NASA Astrophysics Data System (ADS)
Keum, Chang-Min; Lee, In-Ho; Park, Hea-Lim; Kim, Chiwoo; Lüssem, Björn; Choi, Jong Sun; Lee, Sin-Doo
2017-06-01
We present a general principle of topography-directed (TD) inkjet printing for functional micro-tracks embedded in a flexible elastomer substrate. The essential features of the TD inkjet printing in a micro-structured substrate with periodic grooves and ridges are described in terms of the topographic parameters for the transformation from a single droplet to a filament or an edge-disjoint pattern of ink in the groove. Silver ink, being widely used for producing conductive wires by conventional inkjet printing, is utilized as a testbed in our study. The underlying mechanisms for the spreading and drying processes of ink drops under the topographic compartment can be understood in a two-dimensional parameter space of the aspect ratio of the groove and the contact angle of ink on the substrate. The wetting morphologies of ink droplets are described in an analytical model where the Laplace pressure and the mean curvature at the vapor/ink interface are taken into account. The first principle of the TD inkjet printing would be applicable for constructing a variety of functional micro-tracks with high pattern fidelity from different classes of solutions such as conducting polymers, organic semiconductors, and colloidal nanoparticles.
Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena
2017-06-01
Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.
Silver decorated polymer supported semiconductor thin films by UV aided metalized laser printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbur, Jonathan C.; Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
2016-05-15
A facile ultraviolet assisted metalized laser printing technique is demonstrated through the ability to control selective photodeposition of silver on flexible substrates after atomic layer deposition pretreatment with zinc oxide and titania. The photodeposition of noble metals such as silver onto high surface area, polymer supported semiconductor metal oxides exhibits a new route for nanoparticle surface modification of photoactive enhanced substrates. Photodeposited silver is subsequently characterized using low voltage secondary electron microscopy, x-ray diffraction, and time of flight secondary ion mass spectroscopy. At the nanoscale, the formation of specific morphologies, flake and particle, is highlighted after silver is photodeposited onmore » zinc oxide and titania coated substrates, respectively. The results indicate that the morphology and composition of the silver after photodeposition has a strong dependency on the morphology, crystallinity, and impurity content of the underlying semiconductor oxide. At the macroscale, this work demonstrates how the nanoscale features rapidly coalesce into a printed pattern through the use of masks or an X-Y gantry stage with virtually unlimited design control.« less
Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles
NASA Astrophysics Data System (ADS)
Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei
2017-02-01
Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.
Nanoscale platinum printing on insulating substrates.
O'Connell, C D; Higgins, M J; Sullivan, R P; Jamali, S S; Moulton, S E; Wallace, G G
2013-12-20
The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).
Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors
NASA Astrophysics Data System (ADS)
Marrs, Michael
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
A Route Towards Sustainability Through Engineered Polymeric Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeja-Jayan, B; Kovacik, P; Yang, R
2014-05-30
Chemical vapor deposition (CVD) of polymer films represent the marriage of two of the most important technological innovations of the modern age. CVD as a mature technology for growing inorganic thin films is already a workhorse technology of the microfabrication industry and easily scalable from bench to plant. The low cost, mechanical flexibility, and varied functionality offered by polymer thin films make them attractive for both macro and micro scale applications. This review article focuses on two energy and resource efficient CVD polymerization methods, initiated Chemical Vapor Deposition (iCVD) and oxidative Chemical Vapor Deposition (oCVD). These solvent-free, substrate independent techniquesmore » engineer multi-scale, multi-functional and conformal polymer thin film surfaces and interfaces for applications that can address the main sustainability challenges faced by the world today.« less
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A
2008-07-24
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
Dewetting of thin films on flexible substrates via direct-write laser exposure
NASA Astrophysics Data System (ADS)
Ferrer, Anthony Jesus
Microelectromechanical systems (MEMS) have enabled a wide variety of technologies both in the consumer space and in industrial/research areas. At the market level, such devices advance by the invention and innovation of production techniques. Additionally, there has been increased demand for flexible versions of such MEMS devices. Thin film patterning, represents a key technology for the realization of such flexible electronics. Patterns and methods that can be directly written into the thin film allow for design modification on the fly with the need for harsh chemicals and long etching steps. Laser-induced dewetting has the potential to create patterns in thin films at both the microscopic and nanoscopic level without wasting deposited material. This thesis presents the first demonstration of high-speed direct-write patterning of metallic thin films that uses a laser-induced dewetting phenomenon to prevent material loss. The ability to build film material with this technique is explored using various scanning geometries. Finally, demonstrations of direct-write dewetting of a variety of thin films will be presented with special consideration for high melting point metals deposited upon polymer substrates.
Poly-silicon TFT AM-OLED on thin flexible metal substrates
NASA Astrophysics Data System (ADS)
Afentakis, Themis; Hatalis, Miltiadis K.; Voutsas, Apostolos T.; Hartzell, John W.
2003-05-01
Thin metal foils present an excellent alternative to polymers for the fabrication of large area, flexible displays. Their main advantage spurs from their ability to withstand higher temperatures during processing; microelectronic fabrication at elevated temperatures offers the ability to utilize a variety of crystallization processes for the active layer of devices and thermally grown gate dielectrics. This can lead to high performance (high mobility, low threshold voltage) low cost and highly reliable thin film transistors. In some cases, the conductive substrate can also be used to provide power to the active devices, thus reducing layout complexity. This paper discusses the first successful attempt to design and fabricate a variety of active matrix organic light emitting diode displays on thin, flexible stainless steel foils. Different pixel architectures, such as two- and four-transistor implementations, and addressing modes, such as voltage- or current-driven schemese are examined. This work clearly demonstrates the advantages associated with the fabrication of OLED displays on thin metal foils, which - through roll-to-roll processing - can potentially result in revolutionizing today's display processing, leading to a new generation of low cost, high performance versatile display systems.
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Habib, Anowarul; Melandsø, Frank
2017-07-01
High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.
Sun, Qi; Aguila, Briana; Perman, Jason; Nguyen, Nicholas; Ma, Shengqian
2016-12-07
The combination of two or more reactive centers working in concert on a substrate to facilitate the reaction is now considered state of the art in catalysis, yet there still remains a tremendous challenge. Few heterogeneous systems of this sort have been exploited, as the active sites spatially separated within the rigid framework are usually difficult to cooperate. It is now shown that this roadblock can be surpassed. The underlying principle of the strategy presented here is the integration of catalytic components with excellent flexibility and porous heterogeneous catalysts, as demonstrated by the placement of linear ionic polymers in close proximity to surface Lewis acid active sites anchored on the walls of a covalent organic framework (COF). Using the cycloaddition of the epoxides and CO 2 as a model reaction, dramatic activity improvements have been achieved for the composite catalysts in relation to the individual catalytic component. Furthermore, they also clearly outperform the benchmark catalytic systems formed by the combination of the molecular organocatalysts and heterogeneous Lewis acid catalysts, while affording additional recyclability. The extraordinary flexibility and enriched concentration of the catalytically active moieties on linear polymers facilitate the concerted catalysis, thus leading to superior catalytic performance. This work therefore uncovers an entirely new strategy for designing bifunctional catalysts with double-activation behavior and opens a new avenue in the design of multicapable systems that mimic biocatalysis.
NASA Astrophysics Data System (ADS)
He, Yi
2000-10-01
Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT technology. This circuit was capable of providing continuous pixel excitation and a simple driving scheme. However, it showed an output current variation of ˜40% to 80% due to the drive TFT threshold voltage (V th) shift after long-term operation. To improve the pixel circuit electrical reliability, a four-TFT pixel electrode circuit was proposed and fabricated. This circuit only showed an output current variation <1% for the high currents (>0.5muA) even when a TFT Vth shift as large as 3V was present. This four-TFT pixel electrode circuit was used to fabricate small size active-matrix monochrome organic light-emitting display.
Park, Rowoon; Kim, Hyesu; Lone, Saifullah; Jeon, Sangheon; Kwon, Young Woo; Shin, Bosung; Hong, Suck Won
2018-06-06
The conversion of graphene oxide (GO) into reduced graphene oxide (rGO) is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.
NASA Astrophysics Data System (ADS)
Yoon, Dai Geon; Chin, Byung Doo; Bail, Robert
2017-03-01
A convenient process for fabricating a transparent conducting electrode on a flexible substrate is essential for numerous low-cost optoelectronic devices, including organic solar cells (OSCs), touch sensors, and free-form lighting applications. Solution-processed metal-nanowire arrays are attractive due to their low sheet resistance and optical clarity. However, the limited conductance at wire junctions and the rough surface topology still need improvement. Here, we present a facile process of electrohydrodynamic spinning using a silver (Ag) - polymer composite paste with high viscosity. Unlike the metal-nanofiber web formed by conventional electrospinning, a relatively thick, but still invisible-to-naked eye, Ag-web random pattern was formed on a glass substrate. The process parameters such as the nozzle diameter, voltage, flow rate, standoff height, and nozzle-scanning speed, were systematically engineered. The formed random texture Ag webs were embedded in a flexible substrate by in-situ photo-polymerization, release from the glass substrate, and post-annealing. OSCs with a donor-acceptor polymeric heterojunction photoactive layer were prepared on the Ag-web-embedded flexible films with various Ag-web densities. The short-circuit current and the power conversion efficiency of an OSC with a Ag-web-embedded electrode were not as high as those of the control sample with an indium-tin-oxide electrode. However, the Ag-web textures embedded in the OSC served well as electrodes when bent (6-mm radius), showing a power conversion efficiency of 2.06% (2.72% for the flat OSC), and the electrical stability of the Ag-web-textured patterns was maintained for up to 1,000 cycles of bending.
Integration of active devices on smart polymers for neural interfaces
NASA Astrophysics Data System (ADS)
Avendano-Bolivar, Adrian Emmanuel
The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of reliability of widely used Parylene-c encapsulation for in vivo conditions for thin film transistors is presented. These various inquiries, taken in their entirety, facilitate understanding of fundamental problems for biocompatible, chronic electronic device implants in the body, leading to a new set of tools and devices that will help understand complex problems in neuroscience and materials research.
Khadempour, Lily; Burnum-Johnson, Kristin E; Baker, Erin S; Nicora, Carrie D; Webb-Robertson, Bobbie-Jo M; White, Richard A; Monroe, Matthew E; Huang, Eric L; Smith, Richard D; Currie, Cameron R
2016-11-01
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. © 2016 John Wiley & Sons Ltd.
Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.; Nicora, Carrie D.; Webb-Robertson, Bobbie-Jo M.; White, Richard A.; Monroe, Matthew E.; Huang, Eric L.; Smith, Richard D.; Currie, Cameron R.
2016-01-01
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants’ fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats, or a mixture of all three. Across all treatments, our analysis identified and quantified 1,766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of sub-colonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase, and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. PMID:27696597
Thermal Protective Coating for High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Barron, Andrew R.
1999-01-01
The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.
Modeling of organic solar cell using response surface methodology
NASA Astrophysics Data System (ADS)
Suliman, Rajab; Mitul, Abu Farzan; Mohammad, Lal; Djira, Gemechis; Pan, Yunpeng; Qiao, Qiquan
Polymer solar cells have drawn much attention during the past few decades due to their low manufacturing cost and incompatibility for flexible substrates. In solution-processed organic solar cells, the optimal thickness, annealing temperature, and morphology are key components to achieving high efficiency. In this work, response surface methodology (RSM) is used to find optimal fabrication conditions for polymer solar cells. In order to optimize cell efficiency, the central composite design (CCD) with three independent variables polymer concentration, polymer-fullerene ratio, and active layer spinning speed was used. Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the device performance was explained by the best model. Finally, the experimental results are consistent with the CCD prediction, which proves that this is a promising and appropriate model for optimum device performance and fabrication conditions.
Pervasive liquid metal based direct writing electronics with roller-ball pen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Zhang, Qin; Liu, Jing, E-mail: jliu@mail.ipc.ac.cn
A roller-ball pen enabled direct writing electronics via room temperature liquid metal ink was proposed. With the rolling to print mechanism, the metallic inks were smoothly written on flexible polymer substrate to form conductive tracks and electronic devices. The contact angle analyzer and scanning electron microscope were implemented to disclose several unique inner properties of the obtained electronics. An ever high writing resolution with line width and thickness as 200 μm and 80 μm, respectively was realized. Further, with the administration of external writing pressure, GaIn{sub 24.5} droplets embody increasing wettability on polymer which demonstrates the pervasive adaptability of themore » roller-ball pen electronics.« less
Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng
2012-07-02
The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.
Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan
2015-05-27
Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.
NASA Astrophysics Data System (ADS)
Elam, Fiona M.; Starostin, Sergey A.; Meshkova, Anna S.; van der Velden-Schuermans, Bernadette C. A. M.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.
2017-06-01
Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense ‘barrier layer’ and comparatively porous ‘buffer layer’ onto a flexible polyethylene 2,6 naphthalate substrate. For both layers, tetraethyl orthosilicate was used as the precursor gas, together with a mixture of nitrogen, oxygen and argon. The bilayer films demonstrated exceptionally low effective water vapour transmission rates in the region of 6.1 × 10-4 g m-2 d-1 (at 40 °C, 90% relative humidity), thus capable of protecting flexible photovoltaics and thin film transistors from degradation caused by oxygen and water. The presence of the buffer layer within the bilayer architecture was mandatory in order to achieve the excellent encapsulation performance. Atomic force microscopy in addition to solvent permeation measurements, confirmed that the buffer layer prevented the formation of performance-limiting defects in the bilayer thin films, which likely occur as a result of excessive plasma-surface interactions during the deposition process. It emerged that the primary function of the buffer layer was therefore to act as a protective coating for the flexible polymer substrate material.
Genina, Natalja; Fors, Daniela; Vakili, Hossein; Ihalainen, Petri; Pohjala, Leena; Ehlers, Henrik; Kassamakov, Ivan; Haeggström, Edward; Vuorela, Pia; Peltonen, Jouko; Sandler, Niklas
2012-10-09
We combined conventional inkjet printing technology with flexographic printing to fabricate drug delivery systems with accurate doses and tailored drug release. Riboflavin sodium phosphate (RSP) and propranolol hydrochloride (PH) were used as water-soluble model drugs. Three different paper substrates: A (uncoated woodfree paper), B (triple-coated inkjet paper) and C (double-coated sheet fed offset paper) were used as porous model carriers for drug delivery. Active pharmaceutical ingredient (API) containing solutions were printed onto 1 cm × 1 cm substrate areas using an inkjet printer. The printed APIs were coated with water insoluble polymeric films of different thickness using flexographic printing. All substrates were characterized with respect to wettability, surface roughness, air permeability, and cell toxicity. In addition, content uniformity and release profiles of the produced solid dosage forms before and after coating were studied. The substrates were nontoxic for the human cell line assayed. Substrate B was smoothest and least porous. The properties of substrates B and C were similar, whereas those of substrate A differed significantly from those of B, C. The release kinetics of both printed APIs was slowest from substrate B before and after coating with the water insoluble polymer film, following by substrate C, whereas substrate A showed the fastest release. The release rate decreased with increasing polymer coating film thickness. The printed solid dosage forms showed excellent content uniformity. So, combining the two printing technologies allowed fabricating controlled-release oral dosage forms that are challenging to produce using a single technique. The approach opens up new perspectives in the manufacture of flexible doses and tailored drug-delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Cochrane, Cédric; Lewandowski, Maryline; Koncar, Vladan
2010-01-01
A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response. When submitted to repeated tensile cycles, the CPC sensor is able to detect accurately fabric deformations over each whole cycle, taking into account the mechanical behaviour of the textile substrate. Complementary information is given concerning the non-effect of aging on the global resistivity of the CPC sensor. Finally, our sensor was tested on a parachute canopy during a real drop test: the canopy fabric deformation during the critical inflation phase was successfully measured, and was found to be less than 9%.
Cochrane, Cédric; Lewandowski, Maryline; Koncar, Vladan
2010-01-01
A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response. When submitted to repeated tensile cycles, the CPC sensor is able to detect accurately fabric deformations over each whole cycle, taking into account the mechanical behaviour of the textile substrate. Complementary information is given concerning the non-effect of aging on the global resistivity of the CPC sensor. Finally, our sensor was tested on a parachute canopy during a real drop test: the canopy fabric deformation during the critical inflation phase was successfully measured, and was found to be less than 9%. PMID:22163654
Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer-Particle Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Talysa; Lee, Benjamin G; Schnabel, Manuel
2018-02-14
Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 O cm2 for 8 and 0.2% particlemore » coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.« less
Screen printed, transparent, and flexible electrodes based on graphene nanoplatelet pastes
NASA Astrophysics Data System (ADS)
Wróblewski, Grzegorz; Janczak, Daniel
Transparent, flexible and conducting graphene films were produced by screen printing method using printing pastes based on graphene nanoplatelets in polymer matrix. The transparency of received layers and the mechanical resistivity in several bending cycles were measured. Subsequently percolation threshold was investigated. Graphene layers were printed on diverse substrates (glass, Al2O3, PET) and afterwards for samples printed on glass different firing atmospheres (N2, H2, air) were studied. Best firing results (resistance decrease) were obtained for treatment in 250 °C in atmosphere of air. Finally investigation results were used to produce a transparent and elastic electrode for an electroluminescent display, showing the application potential of our graphene nanocomposite pastes.
Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.
No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu
2016-11-14
High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.
Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M
2015-11-17
The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.
Ultrathin and lightweight organic solar cells with high flexibility
Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried
2012-01-01
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014
Thin film encapsulation for flexible AM-OLED: a review
NASA Astrophysics Data System (ADS)
Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang
2011-03-01
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
A crossed dodecagonal deployable polarizer on textile and polydimethylsiloxane (PDMS) substrates
NASA Astrophysics Data System (ADS)
Mirza, Hidayath; Soh, Ping Jack; Jamlos, Mohd Faizal; Hossain, Toufiq Md; Ramli, Muhammad Nazrin; Al-Hadi, Azremi Abdullah; Sheikh, R. Ahmad; Hassan, Emad S.; Yan, Sen
2018-02-01
This paper presents the design of a flexible using two set of flexible material classes: polymer and textiles. ShieldIt Super conductive fabric and felt are used as the textile material, and its performance is compared with another version designed on a polydimethylsiloxane (PDMS) polymeric substrate. They are both built using a 4 × 4 dodecagonal unit element array backed by a rectangular patch, each sized at 54 × 64 × 3.34 mm3 (0.40 λ × 0.34 λ × 0.02λ) and 62 × 52 × 3.34 mm3 (0.35λ × 0.41λ × 0.02 λ). Both of them are validated to be operational centered at 2.2 GHz with a measured conversion efficiency of more than 90% from 1.578 to 2.578 GHz (48.12%) for the textile prototype. The results of the bending investigations suggest that the deployment mechanism must ensure a flat polarizer condition to enable its optimal performance.
NASA Astrophysics Data System (ADS)
Yu, Zhi-nong; Zhao, Jian-jian; Xia, Fan; Lin, Ze-jiang; Zhang, Dong-pu; Leng, Jian; Xue, Wei
2011-03-01
The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO 2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO 2 buffer layer under bending have better electrical stability than those with flat SiO 2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO 2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO 2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO 2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO 2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.
Flexible diode of polyaniline/ITO heterojunction on PET substrate
NASA Astrophysics Data System (ADS)
Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.
2017-10-01
Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.
Passive hybrid sensing tag with flexible substrate saw device
Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey
2012-12-25
The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.
NASA Astrophysics Data System (ADS)
Shi, HaoTian H.; Naguib, Hani E.
2016-08-01
The creation of a novel flexible nanocomposite fiber with conductive polymer polyaniline (PAni) coating on a polyethylene terephthalate (PET) substrate allowed for increased electrochemical performance while retaining ideal mechanical properties such as very high flexibility. Binder-free PAni-wrapped PET (PAni@PET) fiber with a core-shell structure was successfully fabricated through a novel technique. The PET nanofiber substrate was fabricated through an optimized electrospinning method, while the PAni shell was chemically polymerized onto the surface of the nanofibers. The PET substrate can be made directly from recycled PETE1 grade plastic water bottles. The resulting nanofiber with an average diameter of 121 nm ± 39 nm, with a specific surface area of 83.72 m2 g-1, led to better ionic interactions at the electrode/electrolyte interface. The PAni active layer coating was found to be 69 nm in average thickness. The specific capacitance was found to have increased dramatically from pure PAni with carbon binders. The specific capacitance was found to be 347 F g-1 at a relatively high scan rate of 10 mV s-1. The PAni/PET fiber also experienced very little degradation (4.4%) in capacitance after 1500 galvanostatic charge/discharge cycles at a specific current of 1.2 A g-1. The mesoporous structure of the PAni@PET fibrous mat also allowed for tunable capacitance by controlling the pore sizes. This novel fabrication method offers insights for the utilization of recycled PETE1 based bottles as a high performance, low cost, highly flexible supercapacitor device.
NASA Astrophysics Data System (ADS)
Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz
2016-04-01
Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a = 24 nm, R RMS = 28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.
All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers.
Wienhold, T; Kraemmer, S; Wondimu, S F; Siegle, T; Bog, U; Weinzierl, U; Schmidt, S; Becker, H; Kalt, H; Mappes, T; Koeber, S; Koos, C
2015-09-21
We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10(5) and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g., on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit.
Transfer printing of thermoreversible ion gels for flexible electronics.
Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel
2013-10-09
Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 μm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.
NASA Astrophysics Data System (ADS)
Gokhale, Pritesh; Mitra, Dana; Sowade, Enrico; Yoti Mitra, Kalyan; Leonel Gomes, Henrique; Ramon, Eloi; Al-Hamry, Ammar; Kanoun, Olfa; Baumann, Reinhard R.
2017-12-01
During the last years, intense pulsed light (IPL) processing has been employed and studied intensively for the drying and sintering of metal nanoparticle layers deposited by means of printing methods on flexible polymer substrates. IPL was found to be a very fast and substrate-gentle approach qualified for the field of flexible and large-area printed electronics, i.e. manufactured via roll-to-roll processing. In this contribution, IPL is used for the fine-patterning of printed silver nanoparticle layers. The patterning is obtained by induced and controlled crack formation in the thin silver layer due to the intense exposure of IPL. The crack formation is controlled by selection of the substrate material, the fine-tuning of the morphology of the silver layer and an application of a dielectric layer on top of the silver layer that acts as a stress concentrator. Careful optimization of the IPL parameters allowed to adjust the lateral width of the crack. This novel approach turned out to be a fast and reproducible high-resolution patterning process for multiple applications, e.g. to pattern the source-drain electrodes for all-inkjet-printed thin-film transistors.
Flame resistant elastomeric polymer development. [for use in space shuttle instrument packaging
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S. G.; Sidman, K. R.
1975-01-01
Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials.
Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang
2017-09-13
Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.
A polymer/semiconductor write-once read-many-times memory
NASA Astrophysics Data System (ADS)
Möller, Sven; Perlov, Craig; Jackson, Warren; Taussig, Carl; Forrest, Stephen R.
2003-11-01
Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.
NASA Astrophysics Data System (ADS)
Sheraw, Christopher Duncan
2003-10-01
Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.
Self-assembly of block copolymers on topographically patterned polymeric substrates
Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting
2016-05-10
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
An ultra-lightweight design for imperceptible plastic electronics.
Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao
2013-07-25
Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
One-step synthesis and patterning of aligned polymer nanowires on a substrate
Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Morber, Jenny R [Atlanta, GA; Liu, Jin [Danbury, CT
2011-11-08
In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.
Flexible, highly efficient all-polymer solar cells
Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.
2015-01-01
All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658
Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Buyuktanir, Ebru Aylin
My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of SmA LCs in three-dimension by investigating the characteristic vibrational bands of LC molecules. CRM provides a precise characterization of the molecular order at different depths of the LC films. I examined the director patterns of focal conic defects of smectic A LC, colloidal smectic A LC systems, and the field-oriented nematic LC in the horizontal and vertical planes.
A three-dimensional metal grid mesh as a practical alternative to ITO
NASA Astrophysics Data System (ADS)
Jang, Sungwoo; Jung, Woo-Bin; Kim, Choelgyu; Won, Phillip; Lee, Sang-Gil; Cho, Kyeong Min; Jin, Ming Liang; An, Cheng Jin; Jeon, Hwan-Jin; Ko, Seung Hwan; Kim, Taek-Soo; Jung, Hee-Tae
2016-07-01
The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics.The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03060b
Advancing flexible volatile compound sensors using liquid crystals encapsulated in polymer fibers
NASA Astrophysics Data System (ADS)
Reyes, Catherine G.; Lagerwall, Jan P. F.
2018-02-01
Until recently, organic vapor sensors using liquid crystals (LCs) have employed rigid glass substrates for confining the LC, and bulky equipment for vapor detection. Previously, we demonstrated that coaxially electrospinning nematic LC within the core of polymer fibers provides an alternative and improved form factor for confinement. This enables ppm level sensitivity to harmful industrial organics, such as toluene, while giving the flexibility of textile-like sheets (imparted by polymer encapsulation). Moreover, toluene vapor responses of the LC-core fiber mats were visible macroscopically with the naked eye depending on the morphology of the fibers produced, and whether they were oriented in specific geometries (aligned, or random). We identified two types of responses: one corresponds to the LC transition from nematic to isotropic, and the other we suggest is due to an anchoring change at the LC-polymer interface that influences the alignment. While we need to study the presence that defects can have in more detail, we noted that fiber mat thickness is crucial in attempting to understand how and why we are able to visualize two responses in aligned LC-fiber mats. Ultimately, we noted that the response of the polymer sheath itself (softening) to organic vapor exposure affects the liquid crystal confinement in the core. From the microscopic point of view, this will influence the threshold concentration that fibers in a mat will overall respond to. In this paper we will discuss three findings the morphologies enabling LC-core fiber mat response to vapor seen both micro- and macroscopically, how thickness of the fiber mat can play a role in the visualization of the responses, and the effect that the polymer structure has in the mat's sensitivity threshold.
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr
2015-05-07
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility ofmore » the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.« less
Chip bonding of low-melting eutectic alloys by transmitted laser radiation
NASA Astrophysics Data System (ADS)
Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger
2017-06-01
Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.
Flexible Skins Containing Integrated Sensors and Circuitry
NASA Technical Reports Server (NTRS)
Liu, Chang
2007-01-01
Artificial sensor skins modeled partly in imitation of biological sensor skins are undergoing development. These sensor skins comprise flexible polymer substrates that contain and/or support dense one- and two-dimensional arrays of microscopic sensors and associated microelectronic circuits. They afford multiple tactile sensing modalities for measuring physical phenomena that can include contact forces; hardnesses, temperatures, and thermal conductivities of objects with which they are in contact; and pressures, shear stresses, and flow velocities in fluids. The sensor skins are mechanically robust, and, because of their flexibility, they can be readily attached to curved and possibly moving and flexing surfaces of robots, wind-tunnel models, and other objects that one might seek to equip for tactile sensing. Because of the diversity of actual and potential sensor-skin design criteria and designs and the complexity of the fabrication processes needed to realize the designs, it is not possible to describe the sensor-skin concept in detail within this article.
Protein-based flexible whispering gallery mode resonators
NASA Astrophysics Data System (ADS)
Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan
2016-02-01
The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia
2016-01-15
Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the poresmore » of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for the commercialization of S-ALD for coating Li ion battery electrodes.« less
NASA Astrophysics Data System (ADS)
Li, Fucheng; Chen, Shilong; Wei, Yong; Liu, Konghua; Lin, Yong; Liu, Lan
2016-07-01
We present a facile approach to prepare high-performance ultraviolet (UV)-curable polyurethane-acrylate-based flexible electrical conductive adhesive (PUA-FECA) for flexible electronics applications. PUA is employed as the polymer matrix so that the ECA is flexible and UV-curable at room temperature in just a few minutes. The effects of the PUA-FECA formulation and curing procedure on the electrical properties have been studied. Very low volume resistivity (5.08 × 10-4 Ω cm) is obtained by incorporating 70 wt.% microsized Ag-coated Cu flakes. Moreover, by simply standing the PUA-FECA paste for 4 h before exposure to UV light, the bulk resistivity of the PUA-FECA is dramatically decreased to 3.62 × 10-4 Ω cm. This can be attributed to rearrangement of Ag-coated Cu flakes in the matrix while standing. PUA-FECA also presents stable electrical conductivity during rolling and compression, excellent adhesion, and good processability, making it easily scalable to large-scale fabrication and enabling screen-printing on various low-cost flexible substrates such as office paper and polyethylene terephthalate film.
Printable Transparent Conductive Films for Flexible Electronics.
Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei
2018-03-01
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ge, Feng; Liu, Zhen; Lee, Seon Baek; Wang, Xiaohong; Zhang, Guobing; Lu, Hongbo; Cho, Kilwon; Qiu, Longzhen
2018-06-27
One-step deposition of bi-functional semiconductor-dielectric layers for organic field-effect transistors (OFETs) is an effective way to simplify the device fabrication. However, the proposed method has rarely been reported in large-area flexible organic electronics. Herein, we demonstrate wafer-scale OFETs by bar coating the semiconducting and insulating polymer blend solution in one-step. The semiconducting polymer poly(3-hexylthiophene) (P3HT) segregates on top of the blend film, whereas dielectric polymethyl methacrylate (PMMA) acts as the bottom layer, which is achieved by a vertical phase separation structure. The morphology of blend film can be controlled by varying the concentration of P3HT and PMMA solutions. The wafer-scale one-step OFETs, with a continuous ultrathin P3HT film of 2.7 nm, exhibit high electrical reproducibility and uniformity. The one-step OFETs extend to substrate-free arrays that can be attached everywhere on varying substrates. In addition, because of the well-ordered molecular arrangement, the moderate charge transport pathway is formed, which resulted in stable OFETs under various organic solvent vapors and lights of different wavelengths. The results demonstrate that the one-step OFETs have promising potential in the field of large-area organic wearable electronics.
Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’
2015-01-01
Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117
Dynamic Scaling Theory of the Forced Translocation of a Semi-flexible Polymer Through a Nanopore
NASA Astrophysics Data System (ADS)
Lam, Pui-Man; Zhen, Yi
2015-10-01
We present a theoretical description of the dynamics of a semi-flexible polymer being pulled through a nanopore by an external force acting at the pore. Our theory is based on the tensile blob picture of Pincus in which the front of the tensile force propagates through the backbone of the polymer, as suggested by Sakaue and recently applied to study a completely flexible polymer with self-avoidance, by Dubbledam et al. For a semi-flexible polymer with a persistence length P, its statistics is self-avoiding for a very long chain. As the local force increases, the blob size starts to decrease. At the blob size , where a is the size of a monomer, the statistics becomes that of an ideal chain. As the blob size further decreases to below the persistence length P, the statistics is that of a rigid rod. We argue that semi-flexible polymer in translocation should include the three regions: a self-avoiding region, an ideal chain region and a rigid rod region, under uneven tension propagation, instead of a uniform scaling picture as in the case of a completely flexible polymer. In various regimes under the effect of weak, intermediate and strong driving forces we derive equations from which we can calculate the translocation time of the polymer. The translocation exponent is given by , where is an effective exponent for the end-to-end distance of the semi-flexible polymer, having a value between 1/2 and 3/5, depending on the total contour length of the polymer. Our results are of relevance for forced translocation of biological polymers such as DNA through a nanopore.
Flexible multimode polymer waveguides for high-speed short-reach communication links
NASA Astrophysics Data System (ADS)
Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.
2018-02-01
Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (<0.04 dB/cm at 850 nm) and high bandwidth (>30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.
Mechanics of hard films on soft substrates
NASA Astrophysics Data System (ADS)
Lu, Nanshu
2009-12-01
Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the strain they are subject to. Instead of using blanket films that fail at strains less than i%, we have patterned ceramic films into a lattice of periodic, isolated islands. Failure modes such as channel cracking, debonding, and wrinkling have been identified. Island behaviors are controlled by factors such as island size, thickness, and elastic mismatch with the substrate. A very soft interlayer between the islands and the underlying polyimide substrate reduces strains in the islands by orders of magnitude. Using this approach, substrates with arrays of 200 x 200 mum2 large SiNx islands were stretched beyond 20% without cracking or debonding the islands. In summary, highly stretchable thin metal films and ceramic island arrays supported by polymer substrates have been achieved, along with mechanistic understandings of their deformation and failure mechanisms.
Formation of conductive polymers using nitrosyl ion as an oxidizing agent
Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra
2016-06-07
A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.
NASA Astrophysics Data System (ADS)
Khosla, Ajit
2017-04-01
This talk focuses on preparation, characterization and micropatterning of electrically conducting KETJENBLACK carbon black nanoparticle (80 nm-diameter) doped Polydimethylsiloxane (PDMS) by employing extrusion mixing. Previously, we had reported fabrication of various micropatternable nanocomposites for wearable sensing applications vis solvent assisted ultrasonic mixing technique[1-16] . Extrusion mixing has an advantage as no organic solvents are used and homogenous dispersion of carbon nanoparticles is observed, which is confirmed by SEM analysis. The developed nanocomposite can be micropatterened using standard microfabrication techniques. It is also observed that percolation threshold occurs at 0.51 wt% of carbon nanoparticles in polymer matrix. Examples of developed nano-composites for wearable sensing applications for precision medicine will also be discussed. References: 1.http://summit.sfu.ca/item/12017 A. Khosla. Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications. Diss. Applied Science: School of Engineering Science, 2011. 2. A. Khosla ; B. L. Gray; Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 2010, 76421V (April 09, 2010); doi:10.1117/12.847292. 3. Ang Li ; Ajit Khosla ; Connie Drewbrook ; Bonnie L. Gray; Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290G (February 14, 2011); doi:10.1117/12.873197. 4. Khosla, A. and Gray, B. L. (2010), Preparation, Micro-Patterning and Electrical Characterization of Functionalized Carbon-Nanotube Polydimethylsiloxane Nanocomposite Polymer. Macromol. Symp., 297: 210-218. doi:10.1002/masy.200900165 5. A. Khosla ; D. Hilbich ; C. Drewbrook ; D. Chung ; B. L. Gray; Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12×24 inch substrates. Proc. SPIE 7926, Micromachining and Microfabrication Process Technology XVI, 79260L (February 15, 2011); doi:10.1117/12.876738. 6. A. Khosla, and Bonnie L. Gray. "(Invited) Micropatternable Multifunctional Nanocomposite Polymers for Flexible Soft NEMS and MEMS Applications." ECS Transactions 45.3 (2012): 477-494. doi: 10.1149/1.3700913 7. Khosla, Ajit. "Nanoparticle-doped electrically-conducting polymers for flexible nano-micro Systems." Electrochemical Society Interface 21.3-4 (2012): 67-70. 8. Ajit Khosla; Smart garments in chronic disease management: progress and challenges. Proc. SPIE 8548, Nanosystems in Engineering and Medicine, 85482O (October 24, 2012); doi:10.1117/12.979667. 9. D. Chung ; A. Khosla ; B. L. Gray; Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors. Proc. SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 90600U (April 16, 2014); doi:10.1117/12.2046548. 10. Daehan Chung ; Sam Seyfollahi ; Ajit Khosla ; Bonnie Gray ; Ash Parameswaran ; Ramani Ramaseshan ; Kirpal Kohli; Initial experiments with flexible conductive electrodes for potential applications in cancer tissue screening. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290Z (February 14, 2011); doi:10.1117/12.875563. 11. A. Khosla ; B. L. Gray; New technologies for large-scale micropatterning of functional nanocomposite polymers. Proc. SPIE 8344, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2012, 83440W (April 26, 2012); doi:10.1117/12.915178. 12. A. Khosla, B.L. Gray, Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer, Materials Letters, Volume 63, Issues 13-14, 31 May 2009, Pages 1203-1206, ISSN 0167-577X, http://dx.doi.org/10.1016/j.matlet.2009.02.043. 13. Giassa, M., Khosla, A., Gray, B. et al. J Electron Test (2010) 26: 139. doi:10.1007/s10836-009-5125-3 14.Ozhikandathil, Jayan, Ajit Khosla, and Muthukumaran Packirisamy. "Electrically Conducting PDMS Nanocomposite Using In Situ Reduction of Gold Nanostructures and Mechanical Stimulation of Carbon Nanotubes and Silver Nanoparticles." ECS Journal of Solid State Science and Technology 4.10 (2015): S3048-S3052. doi:10.1149/2.0091510jss 15. Kassegne, Sam, Maria Vomero, Roberto Gavuglio, Mieko Hirabayashi, Emre Özyilmaz, Sebastien Nguyen, Jesus Rodriguez, Eda Özyilmaz, Pieter van Niekerk, and Ajit Khosla. "Electrical impedance, electrochemistry, mechanical stiffness, and hardness tunability in glassy carbon MEMS μECoG electrodes." Microelectronic Engineering 133 (2015): 36-44. 16. A. Khosla ; B. L. Gray; Fabrication and properties of conductive micromoldable thermosetting polymer for electronic routing in highly flexible microfluidic systems. Proc. SPIE 7593, Microfluidics, BioMEMS, and Medical Microsystems VIII, 759314 (February 17, 2010); doi:10.1117/12.840911.
Ding, Jianyun; Gong, Jianliang; Bai, Hua; Li, Lei; Zhong, Yawen; Ma, Zhi; Svrcek, Vladimir
2012-08-15
In Qiao's previous report, only star polymers with T(g) (glass transition temperature) below 48°C were found forming homogeneous honeycomb coatings on the nonplanar substrates. The polymers with high T(g) are believed not able to duplicate nonplanar substrate due to their brittleness. This article presents a comprehensive study on the construction of macroporous polymeric films on various nonplanar substrates with static breath figure (BF) technique, using linear polymers with high T(g). Two kinds of linear polymers with high T(g), polystyrene-b-poly(acrylic acid) and polystyrene without polar end groups, are employed to prepare 3-dimensional macroporous films on different nonplanar substrates. Scanning electronic microscopy views on the side wall in addition to views in-plane prove that polymer films with BF array perfectly replicated the surface features of these substrates. The formation processes of macropores on these substrates are analyzed in detail, and it demonstrates that neither molecular topography nor T(g) of polymers is the critical factor contouring nonplanar substrate. A new hypothesis involving polymer plasticization and conformation during the solvent evaporation is formulated. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Polymer flexibility and turbulent drag reduction.
Gillissen, J J J
2008-10-01
Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which are generated by extended polymers. Rodlike polymers always assume this favorable conformation, while randomly coiling chains need to be unraveled by fluid strain rate in order to become effective. The coiling and stretching of flexible polymers in turbulent flow produce an additional elastic component in the polymer stress. The effect of the elastic stresses on drag reduction is unclear. To study this issue, we compare direct numerical simulations of turbulent drag reduction in channel flow using constitutive equations describing solutions of rigid and flexible polymers. When compared at constant phi r2, both simulations predict the same amount of drag reduction. Here phi is the polymer volume fraction and r is the polymer aspect ratio, which for flexible polymers is based on average polymer extension at the channel wall. This demonstrates that polymer elasticity plays a marginal role in the mechanism for drag reduction.
Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.
pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.
Fabrication of multilayered thin films via spin-assembly
Chiarelli, Peter A.; Robinson, Jeanne M.; Casson, Joanna L.; Johal, Malkiat S.; Wang, Hsing-Lin
2007-02-20
An process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto the substrate having the first coating layer to form a second coating layer on the first coating layer wherein the second water-soluble polymer is of a different material than the first water-soluble polymer, and drying the second coating layer on the first coating layer so as to form a bilayer structure on the substrate. Optionally, one or more additional applying and drying sequences can be repeated with a water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species, so that a predetermined plurality of layers are built up upon the substrate.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Harris, Jerry D.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Smith, Mark A.; Cowen, Jonathan E.
2001-01-01
The key to achieving high specific power (watts per kilogram) space photovoltaic arrays is the development of high-efficiency thin-film solar cells that are fabricated on lightweight, space-qualified substrates such as Kapton (DuPont) or another polymer film. Cell efficiencies of 20 percent air mass zero (AM0) are required. One of the major obstacles to developing lightweight, flexible, thin-film solar cells is the unavailability of lightweight substrate or superstrate materials that are compatible with current deposition techniques. There are two solutions for working around this problem: (1) develop new substrate or superstrate materials that are compatible with current deposition techniques, or (2) develop new deposition techniques that are compatible with existing materials. The NASA Glenn Research Center has been focusing on the latter approach and has been developing a deposition technique for depositing thin-film absorbers at temperatures below 400 C.
NASA Astrophysics Data System (ADS)
Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.
2018-01-01
Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankow, J. W.; Glick, S. H.
2006-05-01
Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposedmore » to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.« less
Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay
2016-01-27
Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.
Xie, Jixun; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Zhao, Jingxin; Lu, Conghua
2016-01-01
Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles. This enhancing effect is attributed to the modification of internal stresses by the interpenetrated PANI/PPy microstructures. Consequently, a crack-free film with stable controlled wrinkles such as the wavelength, orientation and spatial location has been achieved. Moreover, the wrinkling PANI/PPy film can be removed from the initially deposited substrate to become free-standing. It can be further transferred onto target substrates to fabricate hierarchical patterns and functional devices such as flexible electrodes, gas sensors, and surface-enhanced Raman scattering substrates. This simple universal enhancing strategy has been extended to fabrication of other PANI-based composite systems with crack-free film integrity and stabilized surface patterns, irrespective of pattern types and film geometries. PMID:27827459
Conjugated Polymers for Flexible Energy Harvesting and Storage.
Zhang, Zhitao; Liao, Meng; Lou, Huiqing; Hu, Yajie; Sun, Xuemei; Peng, Huisheng
2018-03-01
Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium-ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho
2017-11-22
We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.
Cross Section High Resolution Imaging of Polymer-Based Materials
NASA Astrophysics Data System (ADS)
Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.
This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.
Overcoming the limitations of silver nanowire electrodes for light emitting applications
NASA Astrophysics Data System (ADS)
Chen, Dustin Yuan
The global lighting market is projected to exceed 100 billion dollars by 2020, undergoing rapid transitions driven by technological advancements. In conjunction with increased demand for new technology, global regulations have become increasingly stringent, mandating the development and implementation of more fuel-efficient light sources. As prior generations of lighting technology such as incandescent bulbs and florescent lighting progressively become phased out, newer technologies such as light emitting diodes (LEDs) and organic light emitting diodes (OLEDs) have become progressively popular and commonplace. Though they still lag behind LEDs in terms of market penetration, OLEDs have garnered increasing amounts of attention in recent years due to unique attributes such as their exotic and large scale form factors, mechanical flexibility, and potential for high volume, low-cost manufacturing. Unfortunately, the costs for OLED manufacturing are currently still prohibitively high for several applications, with the anode and substrate representing 20-25 percent of this total cost. Significant technical and processing improvements for OLED substrates are of utmost necessity for fiscal cost reduction and commercialization of OLED technology. Silver nanowires have gained traction as a potential replacement for the current status quo, indium tin oxide (ITO) due to attributes such as flexibility, low cost processing, and high optoelectronic properties. However, due to nanoscale size effects, the integration of silver nanowires in both process flows and operational use has proven to be problematic. This work makes several key contributions towards enabling the use of silver nanowires for practical and commercial applications within the lighting industry. First, a novel method for the fabrication of a high temperature-stable, flexible substrate with surface roughness (Ra) < 2 nm is presented, based on atomic layer deposition of a conformal metal oxide film on silver nanowires. This development of a thermally stable AgNW based substrate is critical for the future of flexible OLEDs, as both polymers and AgNWs are unstable at elevated temperatures required for certain OLED processing. However, at the time publication, no solutions existed for flexible OLED substrates simultaneously having thermal stability in excess of 230 °C for more than a few minutes while maintaining a smooth surface for subsequent device fabrication. The thermally stable silver nanowires developed in this work are able to withstand temperatures of 500 °C in ramping tests, and when integrated with a thermally stable polymer matrix, withstand temperatures of 300 °C for at least 6 hours, representing an increase in allowable processing temperatures of 70 °C for several hours longer. Resulting polymer light emitting devices (PLEDs) requiring high temperature processing fabricated on this thermally stable exhibit comparable performance to the same devices fabricated on ITO, validating its compatibility for integration in traditional process flows, and validity for use in extreme processing conditions. Secondly, the aforementioned method is applied to understanding the electrical stability of silver nanowires. At the time of publication, previous works on the electrical failure of silver nanowires centered on the observation of failure under current flow, without a solution offered for how to mitigate the phenomenon. However, because the underlying purpose of these electrodes is to transport current, providing a solution for the failure flow is paramount to the success of AgNWs in future commercial applications. The importance of the development of this solution cannot be understated, especially in light of the fact that silver nanowires have been shown to fail under electrical stresses below typical operating conditions of various optoelectronic devices. The same technique mentioned previously can be leveraged for electrically stable silver nanowire networks, which show significant morphological stability over pristine silver nanowires when electrically stressed at normal operating conditions for OLEDs. These electrically stable substrates were able to produce high performance OLEDs with lifetimes 140% longer than the same devices fabricated on ITO, and 20% higher than non-electrically stable AgNW-based substrates. Thirdly, the thermally and electrically stable substrate was used to fabricate a high performing perovskite quantum dot light-emitting device exhibiting high flexibility. The use of quantum dots instead of perovskite precursors and post treatment to convert the precursors to perovskite allowed for several new innovations. Due to the elimination of highly polar solvents typically required with perovskite precursors, a broadened range of architectures can be achieved. Furthermore, due to the small dimensions of the quantum dots in contrast to thick films of perovskite formed from precursors, the active layer can extremely thin, allowing for high mechanical flexibility. The performance metrics achieved of 10.4 cd/A, 8.1 lm/W, and 2.6% EQE at a brightness of 1000 cd/m2 were enabled in part by the substrate, which further allowed for the high mechanical performance. The electroluminescence performance of the perovskite quantum dot LEDs was found to be virtually fully recoverable after being subjected to a bending radius of 2.5 mm, or repeated cycles of bending and unbending to a 4 mm radius, representing the first report of a highly flexible and mechanically perovskite quantum dot light emitting device with high electroluminescence performance. The improved stability of AgNWs with regards to both manufacturing and operational use, in addition to proof of concept in various light emitting devices demonstrates the potential of this technology for large-scale, commercial lighting applications.
Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions
NASA Astrophysics Data System (ADS)
You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen
2017-04-01
Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.
Graphene films printable on flexible substrates for sensor applications
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; Faris, Tsegie; Stoeva, Zlatka; Harris, Paul G.; Chen, J.; Sharma, Ashwani K.; Ray, Asim K.
2017-03-01
Fifteen-layered graphene films have been successfully deposited onto flexible substrates using a commercial ink consisting of graphene particles dispersed in an acrylic polymer binder. A value of 74.9× {10}5 {{{cm}}}-2 was obtained for the density of defects, primarily located at the flake edges, from the ratio of the D and G Raman peaks located at 1345 {{{cm}}}-1 and 1575 {{{cm}}}-1 respectively. 0.5 {μ }{{m}} thick drop-cast films on interdigitated silver electrodes exhibited Ohmic conduction with a small activation energy of 12 meV over the temperature range from 260 to 330 {{K}}. The photo-thermoelectric effect is believed to be responsible for photoconduction through graphene films under illumination intensity of 10 mW m-2 at 270 {{nm}}, corresponding to the UV absorption peak. The photo-transient decay at the bias of 1 {{V}} involves two relaxation processes when the illumination is switched off and values of 8.9× {10}3 and 4.3× {10}4 {{s}} are found for the relaxation time constant using the Kohlrauch stretched exponential function analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank
The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.
Biosensor platform based on carbon nanotubes covalently modified with aptamers
NASA Astrophysics Data System (ADS)
Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.
2016-12-01
We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.
NASA Astrophysics Data System (ADS)
Kuwahara, Masashi; Kim, Yeji; Azumi, Reiko
2015-07-01
We have measured the complex refractive indices of a transparent, conductive carbon nanotube film by spectroscopic ellipsometry at wavelengths of 300-1700 nm (this includes the visible range). The film was produced on a quartz substrate by the doctor-blade method using single-walled carbon nanotube-polymer ink. The imaginary part of the complex refractive index of the film was found to be lower than 0.09 over the entire wavelength range. This film has a large advantage as a transparent, flexible, and conductive material.
Development of a flexible circuit board for low-background experiments
NASA Astrophysics Data System (ADS)
Poon, Alan; Barton, Paul; Dhar, Ankur; Larsen, Joern; Loach, James
2017-01-01
Future underground rare-event search experiments, such as neutrinoless double-beta decay searches, have stringent requirements for the radiopurity of materials placed near the active detector medium. Parylene is a polymer that has a high chemical purity and the vapor deposition process by which it is laid down tends to purify it further. In this talk the technique to fabricate a low-mass, flexible circuit board, with conductive traces photoligthographically patterned on a parylene substrate, is discussed. The performance of a proof-of-principle temperature sensor is presented. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231 and by the Shanghai Key Lab for Particle Physics and Cosmology (SKLPPC), Grant No. 15DZ2272100.
NASA Astrophysics Data System (ADS)
Shin, Wonjung; Cho, Wonki; Baik, Seung Jae
2018-01-01
As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.
Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode
NASA Astrophysics Data System (ADS)
Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2015-04-01
Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.
NASA Astrophysics Data System (ADS)
Tinguely, Jean-Claude; Solarska, Renata; Braun, Artur; Graule, Thomas
2011-04-01
A new approach for the large-scale production of flexible photoelectrodes for dye-sensitized solar cells (DSSCs) is presented by roll-to-roll coating of a titanium dioxide nanodispersion containing the block copolymer 'Pluronic®' (PEOx-PPOy-PEOx, PEO: poly(ethylene oxide), PPO: poly(propylene oxide)). Functional DSSCs were assembled and the different coating procedures compared with respect to their solar power conversion efficiency. It is shown that the binder 'Pluronic' can be removed at processing temperatures as low as 140 °C, thus aiding achievement of sufficient adhesion to the ITO-PET support, higher porosity of the TiO2 layer and decreased crack appearance. Further optimization of this method is particularly promising when combined with other known low-temperature methods.
NASA Astrophysics Data System (ADS)
Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun
2018-01-01
Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).
Optical behaviors of flexible photonic films via the developed multiple UV-exposed fabrications.
Chien, Chih-Chieh; Liu, Jui-Hsiang
2014-07-01
Recently, extensive investigations are carried out on design of highly controlled architecture and morphology by polymerizing the monomers doped in well-defined liquid crystalline materials, followed by removal of the template liquid crystal molecules. In this communication, a photonic structure used as a new photonic bandgap (PBG) material is developed by imprinting helical structures on polymer matrices through multiple photocrosslinking processes in an induced chiral nematic mesophase using flexible polyethylene terephthalate (PET) films as substrates. The tuning properties of the reflection band of the imprinted cell are achieved using an uniaxial thermo-stretching equipment. Furthermore, refilling of isotropic materials into the imprinted cells tune the reflection light wavelength leads to the change of color. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible and mechanical strain resistant large area SERS active substrates
NASA Astrophysics Data System (ADS)
Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping
2012-05-01
We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.
NASA Astrophysics Data System (ADS)
Lee, Jun Seop; Kim, Minkyu; Lee, Choonghyeon; Cho, Sunghun; Oh, Jungkyun; Jang, Jyongsik
2015-02-01
With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%).With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%). Electronic supplementary information (ESI) available: TEM images of Pr_rGOs, XRD spectra of various PANI-based hybrid materials, electrical conductivity of Pt_rGO/PANI:PSS with different Pt amounts, surface resistance changes of micropatterns, return loss of the antenna with bending deformation, and transmitted power efficiency of the antenna with bending cycles. See DOI: 10.1039/c4nr06189f
NASA Astrophysics Data System (ADS)
Purohit, Parag
Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone emulsions, the nano-sized droplets can penetrate deeper into the substrate to provide bounciness, whereas macro-sized droplets can coat the top layer leading to friction reduction. It was observed that at pH 5.5 the silicone treatment resulted in charge reversal of fibers as opposed to treatment at pH 9.5. On a macroscopic scale 20% reduction in frictional coefficient of the fabric was observed after treatment with quaternized (cationically modified) silicones as compared to untreated fibers. It was also observed using AFM that the fibrils treated with quaternized silicones are uniform, well stacked and smoother than the untreated fibers. Spectroscopic analysis of treated fibers using Raman spectroscopy indicated a decrease in fiber stress as a function of modification of silicone polymer and the interaction pH. It is concluded that the protonated amine functional silicone (below pH 7) as well as the quaternized silicone interacts with the negatively charged cellulose fibers primarily through electrostatic interactions. It is proposed that this initial surface coating is a uniform thin film which allows further deposition of polymer from the emulsion. It was observed that at high pH the zetapotential of silicone emulsions decreases drastically and the nano emulsions turn turbid. It is proposed that the observed electrophoretic and nephelometric behavior at high pH is due to flocculation of nanosized droplets to micron size, which eventually leads to droplets coalescing and emulsion destabilization. It is also postulated that the nano emulsion possess a critical dilution concentration (CDC), above which dilution leads to rapid coalescence. This critical dilution phase was further confirmed through polarity parameter and excimer formation studies which show significantly different polymer and surfactant microstructures near the CDC. Hence it is concluded that the observed surface properties of the substrate obtained above the CDC are significantly different than those below the CDC. The results reveal the vital role of physiochemical parameters such as pH, droplet size, and concentration on the emulsion stability as well as the observed physical/chemical properties of the substrates.
Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane
NASA Astrophysics Data System (ADS)
Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind
2018-01-01
We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.
NASA Astrophysics Data System (ADS)
Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon
2013-07-01
The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.
Complementary p- and n-type polymer doping for ambient stable graphene inverter.
Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk
2014-01-28
Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.
Piezoelectric biosensor with a ladder polymer substrate coating
Renschler, Clifford L.; White, Christine A.; Carter, Robert M.
1998-01-01
A piezoelectric biosensor substrate useful for immobilizing biomolecules in an oriented manner on the surface of a piezoelectric sensor has a ladder polymer of polyacrylonitrile. To make the substrate, a solution of an organic polymer, preferably polyacrylonitrile, is applied to the surface of a piezoelectric sensor. The organic polymer is modifying by heating the polymer in a controlled fashion in air such that a ladder polymer is produced which, in turn, forms the attachment point for the biomolecules comprising the piezoelectric biosensor.
Piezoelectric biosensor with a ladder polymer substrate coating
Renschler, C.L.; White, C.A.; Carter, R.M.
1998-09-29
A piezoelectric biosensor substrate useful for immobilizing biomolecules in an oriented manner on the surface of a piezoelectric sensor has a ladder polymer of polyacrylonitrile. To make the substrate, a solution of an organic polymer, preferably polyacrylonitrile, is applied to the surface of a piezoelectric sensor. The organic polymer is modifying by heating the polymer in a controlled fashion in air such that a ladder polymer is produced which, in turn, forms the attachment point for the biomolecules comprising the piezoelectric biosensor. 3 figs.
Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)
1995-01-01
Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.
Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng
2016-10-05
The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.
Effect of Molecular Flexibility upon Ice Adhesion Shear Strength
NASA Technical Reports Server (NTRS)
Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin
2016-01-01
Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.
Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires
2016-01-01
A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications. PMID:27615556
NASA Astrophysics Data System (ADS)
Lin, Kevin L.; Jain, Kanti
2009-02-01
Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.
NASA Astrophysics Data System (ADS)
Xu, Huijing; Weltman Hirschberg, Ahuva; Scholten, Kee; Berger, Theodore William; Song, Dong; Meng, Ellis
2018-02-01
Objective. The success of a cortical prosthetic device relies upon its ability to attain resolvable spikes from many neurons in particular neural networks over long periods of time. Traditionally, lifetimes of neural recordings are greatly limited by the body’s immune response against the foreign implant which causes neuronal death and glial scarring. This immune reaction is posited to be exacerbated by micromotion between the implant, which is often rigid, and the surrounding, soft brain tissue, and attenuates the quality of recordings over time. Approach. In an attempt to minimize the foreign body response to a penetrating neural array that records from multiple brain regions, Parylene C, a flexible, biocompatible polymer was used as the substrate material for a functional, proof-of-concept neural array with a reduced elastic modulus. This probe array was designed and fabricated to have 64 electrodes positioned to match the anatomy of the rat hippocampus and allow for simultaneous recordings between two cell-body layers of interest. A dissolvable brace was used for deep-brain penetration of the flexible array. Main results. Arrays were electrochemically characterized at the benchtop, and a novel insertion technique that restricts acute insertion injury enabled accurate target placement of four, bare, flexible arrays to greater than 4 mm deep into the rat brain. Arrays were tested acutely and in vivo recordings taken intra-operatively reveal spikes in both targeted regions of the hippocampus with spike amplitudes and noise levels similar to those recorded with microwires. Histological staining of a sham array implanted for one month reveals limited astrocytic scarring and neuronal death around the implant. Significance. This work represents one of the first examples of a penetrating polymer probe array that records from individual neurons in structures that lie deep within the brain.
Guide wire extension for shape memory polymer occlusion removal devices
Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA
2009-11-03
A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.
Pyro-electrification of polymer membranes for cell patterning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rega, R.; Gennari, O.; Mecozzia, L.
2016-05-18
In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily inmore » order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].« less
Growth and transfer of monolithic horizontal nanowire superstructures onto flexible substrates
Wang, Zhong L; Xu, Sheng
2013-08-27
In a method of making a monolithic elongated nanowire, a mask polymer layer is applied to a selected crystal surface of a seed crystal. A plurality of spaced apart elongated openings is defined through the mask polymer layer, thereby exposing a corresponding plurality of portions of the crystal surface. The openings are disposed so as to be aligned with and parallel to a selected crystal axis of the seed crystal. The portions of the crystal surface are subjected to a chemical nutrient environment that causes crystalline material to grow from the plurality of portions for at least a period of time so that monocrystalline members grow from the elongated openings and until the monocrystalline members laterally expand so that each monocrystalline member grows into and merges with an adjacent one of the monocrystalline members, thereby forming a monolithic elongated nanowire.
Highly porous ceramic oxide aerogels having improved flexibility
NASA Technical Reports Server (NTRS)
Guo, Haiquan (Inventor); Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2012-01-01
Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.
NASA Astrophysics Data System (ADS)
Brosda, Maximilian; Olowinsky, Alexander; Pelzer, Alexander
Flexible organic electronics such as OLPV and OLED modules are highly sensitive against water and oxygen. To protect them against the environment and to ensure a long lifetime visual transparent ultra high barrier films are used for the encapsulation process. These multilayer films usually consist of a polymer substrate on which, depending on the requirements, various functional layers are applied. The organic device is then fully packed in this films. Instead of conventional joining these film with adhesive, a flexible laser based process can be an interesting alternative especially for roll2roll applications. According to a precise spectral analysis and a consideration of the interaction between the laser radiation and the individual layers of the film a suitable laser beam source is selected. With this laser beam source the weldability of the films is investigated. For analysis of the weldseam and the melted volume cross sections and scanning-electron-microscopy-images are prepared. The strength of the weld is determined by T-Peel tensile tests.
Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.
Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon
2018-01-10
In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 < 1) even after 30 days of aging at 85 °C and 85% relative humidity. Further, a flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.
Yang, Xia; Hu, Xiaotian; Wang, Qingxia; Xiong, Jian; Yang, Hanjun; Meng, Xiangchuan; Tan, Licheng; Chen, Lie; Chen, Yiwang
2017-08-09
With recent emergence of wearable electronic devices, flexible and stretchable transparent electrodes are the core components to realize innovative devices. The copper nanowire (CuNW) network is commonly chosen because of its high conductivity and transparency. However, the junction resistances and low aspect ratios still limit its further stretchable performance. Herein, a large-scale stretchable semiembedded CuNW transparent conductive film (TCF) was fabricated by electrolessly depositing Cu on the electrospun poly(4-vinylpyridine) polymer template semiembedded in polydimethylsiloxane. Compared with traditional CuNWs, which are as-coated on the flexible substrate, the semiembedded CuNW TCFs showed low sheet resistance (15.6 Ω·sq -1 at ∼82% transmittance) as well as outstanding stretchability and mechanical stability. The light-emitting diode connected the stretchable semiembedded CuNW TCFs in the electric circuit still lighted up even after stretching with 25% strain. Moreover, this semiembedded CuNW TCF was successfully applied in polymer solar cells as a stretchable conductive electrode, which yielded a power conversion efficiency of 4.6% with 0.1 cm 2 effective area. The large-scale stretchable CuNW TCFs show potential for the development of wearable electronic devices.
NASA Astrophysics Data System (ADS)
Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei
2018-04-01
Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.
1997-08-19
A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.
Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.
1997-01-01
A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.
Ching, Emily S C; Lo, T S; Procaccia, Itamar
2006-08-01
Drag reduction by polymers is bounded between two universal asymptotes, the von Kármán log law of the law and the maximum drag reduction (MDR) asymptote. It is theoretically understood why the MDR asymptote is universal, independent of whether the polymers are flexible or rodlike. The crossover behavior from the Newtonian von Kármán log law to the MDR is, however, not universal, showing different characteristics for flexible and rodlike polymers. In this paper we provide a theory for this crossover phenomenology.
Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.
2017-03-01
Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.
NASA Astrophysics Data System (ADS)
Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger
2016-05-01
Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.
Materials, device, and interface engineering to improve polymer-based solar cells
NASA Astrophysics Data System (ADS)
Hau, Steven Kin
The continued depletion of fossil fuel resources has lead to the rise in energy production costs which has lead to the search for an economically viable alternative energy source. One alternative of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. In this dissertation, an integrated approach is taken to improve the overall performance of polymer-based solar cells by the development of new polymer materials, device architectures, and interface engineering of the contacts between layers. First, a new class of metallated conjugated polymers is explored as potential solar cell materials. Systematic modifications to the molecular units on the main chain of amorphous metallated Pt-polymers show a correlation that improving charge carrier mobility also improves solar cell performance leading to mobilities as high as 1 x 10-2 cm2/V·s and efficiencies as high as 4.1%. Second, an inverted device architecture using a more air stable electrode (Ag) is demonstrated to improve the ambient stability of unencapsulated P3HT:PCBM devices showing over 80% efficiency retention after 40 days of exposure. To further demonstrate the potential for roll-to-roll processing of polymer solar cells, solution processed Ag-nanoparticles were used to replace the vacuum deposited Ag anode electrode for inverted solar cells showing efficiencies as high as 3%. In addition, solution processed polymer based electrodes were demonstrated as a replacement to the expensive and brittle indium tin oxide showing efficiencies of 3% on flexible substrate solar cells. Third, interface engineering of the n-type (high temperature sol-gel processed TiO2 or ZnO, low temperature processed ZnO nanoparticles) electron selective metal oxide contacts in inverted solar cells with self-assembled monolayers (SAM) show improved device performance. Modifying the n-type layer in inverted cells with C60-SAMs containing different anchoring groups leads to an improvement in photocurrent density and fill factor leading to efficiencies as high as 4.9%.
Metallization of electronic insulators
Gottesfeld, Shimshon; Uribe, Francisco A.
1994-01-01
An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.
Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Martin, E-mail: martin.weis@stuba.sk; Otsuka, Takako; Taguchi, Dai
2015-04-21
Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the devicemore » performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.« less
A Self-Healing Aqueous Lithium-Ion Battery.
Zhao, Yang; Zhang, Ye; Sun, Hao; Dong, Xiaoli; Cao, Jingyu; Wang, Lie; Xu, Yifan; Ren, Jing; Hwang, Yunil; Son, In Hyuk; Huang, Xianliang; Wang, Yonggang; Peng, Huisheng
2016-11-07
Flexible lithium-ion batteries are critical for the next-generation electronics. However, during the practical application, they may break under deformations such as twisting and cutting, causing their failure to work or even serious safety problems. A new family of all-solid-state and flexible aqueous lithium ion batteries that can self-heal after breaking has been created by designing aligned carbon nanotube sheets loaded with LiMn 2 O 4 and LiTi 2 (PO 4 ) 3 nanoparticles on a self-healing polymer substrate as electrodes, and a new kind of lithium sulfate/sodium carboxymethylcellulose serves as both gel electrolyte and separator. The specific capacity, rate capability, and cycling performance can be well maintained after repeated cutting and self-healing. These self-healing batteries are demonstrated to be promising for wearable devices. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M.; Nemeth, William; Wang, Qi; van Duin, Adri C. T.; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-01
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-10
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Semiconductor films on flexible iridium substrates
Goyal, Amit
2005-03-29
A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.
Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun
2017-01-01
Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229
NASA Astrophysics Data System (ADS)
Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun
2017-03-01
Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq-1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq-1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.
Basu, Sarbani; Adriyanto, Feri; Wang, Yeong-Her
2014-02-28
Solution processible poly(4-vinylphenol) is employed as a transistor dielectric material for low cost processing on flexible substrates at low temperatures. A 6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene-graphene hybrid semiconductor is drop cast to fabricate bottom-gate and bottom-contact field-effect transistor devices on flexible and glass substrates under an ambient air environment. A few layers of graphene flakes increase the area in the conduction channel, and form bridge connections between the crystalline regions of the semiconductor layer which can change the surface morphology of TIPS pentacene films. The TIPS pentacene-graphene hybrid semiconductor-based organic thin film transistors (OTFTs) cross-linked with a poly(4-vinylphenol) gate dielectric exhibit an effective field-effect mobility of 0.076 cm(2) V(-1) s(-1) and a threshold voltage of -0.7 V at V(gs) = -40 V. By contrast, typical TIPS pentacene shows four times lower mobility of 0.019 cm(2) V(-1) s(-1) and a threshold voltage of 5 V. The graphene/TIPS pentacene hybrids presented in this paper can enhance the electrical characteristics of OTFTs due to their high crystallinity, uniform large-grain distribution, and effective reduction of crystal misorientation of the organic semiconductor layer, as confirmed by x-ray diffraction spectroscopy, atomic force microscopy, and optical microscopy studies.
Scalable creation of gold nanostructures on high performance engineering polymeric substrate
NASA Astrophysics Data System (ADS)
Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo
2017-12-01
The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.
Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid
2016-01-01
Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Mahua; Libera, Joseph A.; Darling, Seth B.
Sequential infiltration synthesis (SIS) is a method for growing inorganic materials within polymers in an atomically controlled fashion. This technique can increase the etch resistance of optical, electron-beam, and block copolymer (BCP) lithography resists and is also a flexible strategy for nanomaterials synthesis. Despite this broad utility, the kinetics of SIS remain poorly understood, and this knowledge gap must be bridged in order to gain firm control over the growth of inorganic materials inside polymer films at a large scale. In this paper, we explore the reaction kinetics for Al 2O 3 SIS in PMMA using in situ Fourier transformmore » infrared spectroscopy. First, we establish the kinetics for saturation adsorption and desorption of trimethyl aluminum (TMA) in PMMA over a range of PMMA film thicknesses deposited on silicon substrates. These observations guide the selection of TMA dose and purge times during SIS lithography to achieve robust organic/inorganic structures. Next, we examine the effects of TMA desorption on BCP lithography by performing SIS on silicon surfaces coated with polystyrene-block-poly(methyl methacrylate) films. After etching the organic components, the substrates are examined using scanning electron microcopy to evaluate the resulting Al 2O 3 patterns. Finally, we examine the effects of temperature on Al 2O 3 SIS in PMMA to elucidate the infiltration kinetics. The insights provided by these measurements will help extend SIS lithography to larger substrate sizes for eventual commercialization and expand our knowledge of precursor-polymer interactions that will benefit the SIS of a wide range of inorganic materials in the future.« less
In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells.
Lee, Dong-Hyun; Jo, Wonhee; Yuk, Seongmin; Choi, Jaeho; Choi, Sungyu; Doo, Gisu; Lee, Dong Wook; Kim, Hee-Tak
2018-02-07
In this study, we present a novel catalyst layer (CL) with in-plane flow channels to enhance the mass transports in polymer electrolyte membrane fuel cells. The CL with in-plane channels on its surface is fabricated by coating a CL slurry onto a surface-treated substrate with the inverse line pattern and transferring the dried CL from the substrate to a membrane. The membrane electrode assembly with the in-plane channel-patterned CL has superior power performances in high current densities compared with an unpatterned, flat CL, demonstrating a significant enhancement of the mass-transport property by the in-plane channels carved in the CL. The performance gain is more pronounced when the channel direction is perpendicular to the flow field direction, indicating that the in-plane channels increase the utilization of the CL under the rib area. An oxygen-transport resistance analysis shows that both molecular and Knudsen diffusion can be facilitated with the introduction of the in-plane channels. The direct CL patterning technique provides a platform for the fabrication of advanced CL structures with a high structural fidelity and design flexibility and a rational guideline for designing high-performance CLs.
Fabrication of strain gauge based sensors for tactile skins
NASA Astrophysics Data System (ADS)
Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.
2017-05-01
Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.
Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael
2018-03-01
Flexible manufacturing technologies for solid oral dosage forms with a continuous adjustability of the manufactured dose strength are of interest for applications in personalized medicine. This study explored the feasibility of using microvalve technology for the manufacturing of different solid oral dosage form concepts. Hard gelatin capsules filled with excipients, placebo tablets, and polymer films, placed in hard gelatin capsules after drying, were considered as substrates. For each concept, a basic understanding of relevant formulation parameters and their impact on dissolution behavior has been established. Suitable matrix formers, present either on the substrate or directly in the drug nanosuspension, proved to be essential to prevent nanoparticle agglomeration of the drug nanoparticles and to ensure a fast dissolution behavior. Furthermore, convection and radiation drying methods were investigated for the fast drying of drug nanosuspensions dispensed onto polymer films, which were then placed in hard gelatin capsules. Changes in morphology and in drug and matrix former distribution were observed for increasing drying intensity. However, even fast drying times below 1 min could be realized, while maintaining the nanoparticulate drug structure and a good dissolution behavior. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen
2014-12-01
Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.
Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food.
Chyan, Yieu; Ye, Ruquan; Li, Yilun; Singh, Swatantra Pratap; Arnusch, Christopher J; Tour, James M
2018-03-27
A simple and facile method for obtaining patterned graphene under ambient conditions on the surface of diverse materials ranging from renewable precursors such as food, cloth, paper, and cardboard to high-performance polymers like Kevlar or even on natural coal would be highly desirable. Here, we report a method of using multiple pulsed-laser scribing to convert a wide range of substrates into laser-induced graphene (LIG). With the increased versatility of the multiple lase process, highly conductive patterns can be achieved on the surface of a diverse number of substrates in ambient atmosphere. The use of a defocus method results in multiple lases in a single pass of the laser, further simplifying the procedure. This method can be implemented without increasing processing times when compared with laser induction of graphene on polyimide (Kapton) substrates as previously reported. In fact, any carbon precursor that can be converted into amorphous carbon can be converted into graphene using this multiple lase method. This may be a generally applicable technique for forming graphene on diverse substrates in applications such as flexible or even biodegradable and edible electronics.
Optical Control of Living Cells Electrical Activity by Conjugated Polymers.
Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa
2016-01-28
Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported protocol is of general validity and can be straightforwardly extended to other biological preparations.
Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira
2007-05-01
Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only
Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira
2007-08-01
Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot-pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only < or =0.4 vol%, it is concluded that this preparation method is very effective in generating bioactivity in polymer-matrix composites by loading with only very small amounts of ceramic powder.
Printing versus coating - What will be the future production technology for printed electronics?
NASA Astrophysics Data System (ADS)
Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank
2015-02-01
The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.
Optimized organic photovoltaics with surface plasmons
NASA Astrophysics Data System (ADS)
Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.
2010-06-01
In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.
Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia
2017-05-03
The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.
NASA Astrophysics Data System (ADS)
Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.
2016-10-01
Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm-1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm-1 (method 1) and >0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.
Thermal casting of polymers in centrifuge for producing X-ray optics
Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA
2012-03-27
An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.
Internal dynamics of semiflexible polymers with active noise
NASA Astrophysics Data System (ADS)
Eisenstecken, Thomas; Gompper, Gerhard; Winkler, Roland G.
2017-04-01
The intramolecular dynamics of flexible and semiflexible polymers in response to active noise is studied theoretically. The active noise may either originate from interactions of a passive polymer with a bath of active Brownian particles or the polymer itself is comprised of active Brownian particles. We describe the polymer by the continuous Gaussian semiflexible-polymer model, taking into account the finite polymer extensibility. Our analytical calculations predict a strong dependence of the polymer dynamics on the activity. In particular, active semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics at weak activity to that of flexible polymers at strong activity. The end-to-end vector correlation function decays exponentially for times longer than the longest polymer relaxation time. Thereby, the polymer relaxation determines the decay of the correlation function for long and flexible polymers. For shorter and stiffer polymers, the relaxation behavior of individual active Brownian particles dominates the decay above a certain activity. The diffusive dynamics of a polymer is substantially enhanced by the activity. Three regimes can be identified in the mean square displacement for sufficiently strong activities: an activity-induced ballistic regime at short times, followed by a Rouse-type polymer-specific regime for any polymer stiffness, and free diffusion at long times, again determined by the activity.
Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer
NASA Astrophysics Data System (ADS)
Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo
2017-06-01
To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.
The continuous assembly and transfer of nanoelements
NASA Astrophysics Data System (ADS)
Kumar, Arun
Patterned nanoelements on flexible polymeric substrates at micro/nano scale at high rate, low cost, and commercially viable route offer an opportunity for manufacturing devices with micro/nano scale features. These micro/nano scale now made with various nanoelement can enhance the device functionality in sensing and switching due to their improved conductivity and better mechanical properties. In this research the fundamental understanding of high rate assembly and transfer of nanoelements has been developed. To achieve this objective, three sub topics were made. In the first step, the use of electrophoresis for the controlled assembly of CNT's on interdigitated templates has been shown. The time scale of assembly reported is shorter than the previously reported assembly time (60 seconds). The mass deposited was also predicted using the Hamaker's law. It is also shown that pre-patterned CNT's could be transferred from the rigid templates onto flexible polymeric substrates using a thermoforming process. The time scale of transfer is less than one minute (50 seconds) and was found to be dependent on polymer chemistry. It was found that CNT's preferentially transfer from Au electrode to non-polar polymeric substrates (polyurethane and polyethylene terephalathate glycol) in the thermoforming process. In the second step, a novel process (Pulsed Electrophoresis) has been shown for the first time to assist the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 seconds, assembly resolution of 100 nm). The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process. In the third step, a novel integration of high rate pulsed electrophoretic assembly with thermally assisted transfer in a roll-to-roll process has been shown. This technique allowed the whole assembly and transfer process to take place in only 30 seconds. Further, a processing window is developed to control the percent area coverage of PANi with the aid of the belt speed. Also shown is the effect of different types of polymer on the quality of transfer, and it concluded that the transfer is affected by the polymer chemistry.
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Pattanayek, Sudip K.
2018-06-01
Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.
Direct Printing of Graphene onto Plastic Substrates.
NASA Astrophysics Data System (ADS)
Hines, Daniel; Lock, Evgeniya; Walton, Scott; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn; Sheehan, Paul; Lee, Woo; Robinson, Jeremy
2011-03-01
Graphene films have been synthesized on metal foils using CVD growth and have the potential to be compatible with roll-to-roll printing. To be usable in electronic devices, these films need to be removed from the metallic substrate. Currently this is accomplished by spin coating a polymer film over the graphene and chemically etching away the metal substrate. We have developed a direct printing method that allows graphene films to be printed off the metal substrate onto a polymer substrate. This printing process does not generate chemical waste, is compatible with roll-to-toll processing and renders the metal foil reusable. Adhesion of the graphene film to the polymer substrate is established by attaching perfluorophenylazides (PFPA) azide linker molecules to a plasma activated polymer surface. The transfer printing was performed by placing the PFPA treated polymer surface in contact with a graphene covered Cu foil and heating under pressure. Graphene films successfully printed onto a polystyrene substrate have been characterized by Raman spectroscopy and electrical measurements revealed the presence of Gr on the polymer surface. Details of the printing process along with characteristics of the graphene film after printing will be presented.
Review of Recent Inkjet-Printed Capacitive Tactile Sensors
Salim, Ahmed
2017-01-01
Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile) are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research. PMID:29125584
Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
NASA Technical Reports Server (NTRS)
Wang, H. B.; Dembo, M.; Wang, Y. L.
2000-01-01
One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.
Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate
NASA Astrophysics Data System (ADS)
Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan
2015-10-01
Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.
NASA Astrophysics Data System (ADS)
Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki
2010-11-01
We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.
Hard and flexible optical printed circuit board
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-02-01
We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.
Cellulose Nanofiber Composite Substrates for Flexible Electronics
Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma
2012-01-01
Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...
Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics
Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma
2013-01-01
Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...
A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials
NASA Technical Reports Server (NTRS)
Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.
Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap
2015-06-01
Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.
NASA Astrophysics Data System (ADS)
Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.
2017-05-01
In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.
Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.
Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan
2017-12-01
While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.
Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates
Sicilia, Giovanna; Shipp, Dustin W.; Marlow, Maria; Notingher, Ioan
2017-01-01
While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering. PMID:28828895
Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.
1989-01-01
The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.
Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.
1989-11-21
The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.
Fabrication process for polymer PLC platforms with V-grooves for passive alignment
NASA Astrophysics Data System (ADS)
Park, Suntak; Lee, Jong-Moo; Ahn, Joon Tae; Baek, Yong-Soon
2005-12-01
A method for polymer planar lightwave circuit (PLC) devices fabricated on a substrate with V-grooves is developed for passive alignment of an optical fiber to a polymer waveguide. In order to minimize thickness nonuniformity of polymer layers caused by the V-grooves, dry film resist (DFR) is used. The V-grooves are covered with the DFR before the polymer layers are spin-coated on the substrate. The DFR prevents the polymer from being filled in the V-grooves as well as from being spin-coated nonuniformly on the substrate. This process provides a simple and cost-effective fabrication method of polymer PLCs or platforms for passive alignment.
NASA Astrophysics Data System (ADS)
Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan
The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaodan; Zhou, Yan; Gu, Kevin
The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less
Gu, Xiaodan; Zhou, Yan; Gu, Kevin; ...
2017-03-07
The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less
2015-09-24
kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their
Resistively heated shape memory polymer device
Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.
2017-09-05
A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.
Resistively heated shape memory polymer device
Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.
2016-10-25
A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.
Wang, Qun; Jin, Xin
2018-01-01
We report the first results of functional properties of nitrogenized silver-permalloy thin films deposited on polyethylene terephthalic ester {PETE (C10H8O4)n} flexible substrates by magnetron sputtering. These new soft magnetic thin films have magnetization that is comparable to pure Ni81Fe19 permalloy films. Two target compositions (Ni76Fe19Ag5 and Ni72Fe18Ag10) were used to study the effect of compositional variation and sputtering parameters, including nitrogen flow rate on the phase evolution and surface properties. Aggregate flow rate and total pressure of Ar+N2 mixture was 60 sccm and 0.55 Pa, respectively. The distance between target and the substrate was kept at 100 mm, while using sputtering power from 100–130 W. Average film deposition rate was confirmed at around 2.05 nm/min for argon atmosphere and was reduced to 1.8 nm/min in reactive nitrogen atmosphere. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and contact angle measurements were used to characterize the functional properties. Nano sized character of films was confirmed by XRD and SEM. It is found that the grain size was reduced by the formation of nitride phase, which in turns enhanced the magnetization and lowers the coercivity. Magnetic field coupling efficiency limit was determined from 1.6–2 GHz frequency limit. The results of comparable magnetic performance, lowest magnetic loss, and highest surface free energy, confirming that 15 sccm nitrogen flow rate at 115 W is optimal for producing Ag-doped permalloy flexible thin films having excellent magnetic field coupling efficiency. PMID:29562603
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy
2004-01-01
Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,
Roll-to-roll light directed electrophoretic deposition system and method
Pascall, Andrew J.; Kuntz, Joshua
2017-06-06
A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.
NASA Astrophysics Data System (ADS)
Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra
2017-08-01
The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.
NASA Astrophysics Data System (ADS)
Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji
2017-02-01
Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
Optimization of Organic Solar Cells: Materials, Devices and Interfaces
NASA Astrophysics Data System (ADS)
Zhou, Nanjia
Due to the increasing demand for sustainable clean energy, photovoltaic cells have received intensified attention in the past decade in both academia and industry. Among the types of cells, organic photovoltaic (OPV) cells offer promise as alternatives to conventional inorganic-type solar cells owning to several unique advantages such as low material and fabrication cost. To maximize power conversion efficiencies (PCEs), extensive research efforts focus on frontier molecular orbital (FMO) energy engineering of photoactive materials. Towards this objective, a series of novel donor polymers incorporating a new building block, bithiophene imide (BTI) group are developed, with narrow bandgap and low-lying highest occupied molecular orbital (HOMO) energies to increase short circuit current density, Jsc, and open circuit voltage, Voc.. Compared to other PV technologies, OPVs often suffer from large internal recombination loss and relatively low fill factors (FFs) <70%. Through a combination of materials design and device architecture optimization strategies to improve both microscopic and macroscopic thin film morphology, OPVs with PCEs up to 8.7% and unprecedented FF approaching 80% are obtained. Such high FF are close to those typically achieved in amorphous Si solar cells. Systematic variations of polymer chemical structures lead to understanding of structure-property relationships between polymer geometry and the resulting blend film morphology characteristics which are crucial for achieving high local mobilities and long carrier lifetimes. Instead of using fullerene as the acceptors, an alternative type of OPV is developed employing a high electron mobility polymer, P(NDI2OD-T2), as the acceptor. To improve the all-polymer blend film morphology, the influence of basic solvent properties such as solvent boiling point and solubility on polymer phase separation and charge transport properties is investigated, yielding to a high PCE of 2.7% for all-polymer solar cells. To take advantages of the inherent mechanical flexibility associated with organic materials, the development of transparent, flexible substrates to replace the conventionally used polycrystalline ITO electrodes is highly desirable. Employing an ultraflexible amorphous zinc indium tin oxide (a-ZITO) transparent conducting oxide (TCO), highly efficient OPVs with similar PCEs to rigid ones are obtained. Furthermore, these cells show no significant PCE reduction under controlled bending test.
Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar
2016-04-13
Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.
3D Printing of Ball Grid Arrays
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Hines, Daniel; Dasgupta, Abhijit; Das, Siddhartha
Ball grid arrays (BGA) are interconnects between an integrated circuit (IC) and a printed circuit board (PCB), that are used for surface mounting electronic components. Typically, lead free alloys are used to make solder balls which, after a reflow process, establish a mechanical and electrical connection between the IC and the PCB. High temperature processing is required for most of these alloys leading to thermal shock causing damage to ICs. For producing flexible circuits on a polymer substrate, there is a requirement for low temperature processing capabilities (around 150 C) and for reducing strain from mechanical stresses. Additive manufacturing techniques can provide an alternative methodology for fabricating BGAs as a direct replacement for standard solder bumped BGAs. We have developed aerosol jet (AJ) printing methods to fabricate a polymer bumped BGA. As a demonstration of the process developed, a daisy chain test chip was polymer bumped using an AJ printed ultra violet (UV) curable polymer ink that was then coated with an AJ printed silver nanoparticle laden ink as a conducting layer printed over the polymer bump. The structure for the balls were achieved by printing the polymer ink using a specific toolpath coupled with in-situ UV curing of the polymer which provided good control over the shape, resulting in well-formed spherical bumps on the order of 200 um wide by 200 um tall for this initial demonstration. A detailed discussion of the AJ printing method and results from accelerated life-time testing will be presented
Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor
NASA Astrophysics Data System (ADS)
Zhu, Shuanglin
Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.
TH-CD-201-12: Preliminary Evaluation of Organic Field Effect Transistors as Radiation Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syme, A; Lin, H; Rubio-Sanchez, J
Purpose: To fabricate organic field effect transistors (OFETs) and evaluate their performance before and after exposure to ionizing radiation. To determine if OFETs have potential to function as radiation dosimeters. Methods: OFETs were fabricated on both Si/SiO{sub 2} wafers and flexible polymer substrates using standard processing techniques. Pentacene was used as the organic semiconductor material and the devices were fabricated in a bottom gate configuration. Devices were irradiated using an orthovoltage treatment unit (120 kVp x-rays). Threshold voltage values were measured with the devices in saturation mode and quantified as a function of cumulative dose. Current-voltage characteristics of the devicesmore » were measured using a Keithley 2614 SourceMeter SMU Instrument. The devices were connected to the reader but unpowered during irradiations. Results: Devices fabricated on Si/SiO2 wafers demonstrated excellent linearity (R{sup 2} > 0.997) with threshold voltages that ranged between 15 and 36 V. Devices fabricated on a flexible polymer substrate had substantially smaller threshold voltages (∼ 4 – 8 V) and slightly worse linearity (R{sup 2} > 0.98). The devices demonstrated excellent stability in I–V characteristics over a large number (>2000) cycles. Conclusion: OFETs have demonstrated excellent potential in radiation dosimetry applications. A key advantage of these devices is their composition, which can be substantially more tissue-equivalent at low photon energies relative to many other types of radiation detector. In addition, fabrication of organic electronics can employ techniques that are faster, simpler and cheaper than conventional silicon-based devices. These results support further development of organic electronic devices for radiation detection purposes. Funding Support, Disclosures, and Conflict of Interest: This work was funded by the Natural Sciences and Engineering Research Council of Canada.« less
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces.
Zhang, Yong-Lai; Wang, Jian-Nan; He, Yan; He, Yinyan; Xu, Bin-Bin; Wei, Shu; Xiao, Feng-Shou
2011-10-18
Reported here is a facile synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Taking this nanoporous polymer as a media, superhydrophobicity is rapidly imparted onto three typical kinds of substrates, including paper, transparent polydimethylsiloxane (PDMS), and finger skin. Quantitative characterization showed that the adhesion between the water droplet and polymer-coated substrates decreased significantly compared to that on the original surface, further indicating the effective wetting mode transformation. The nanoporous polymer coating would open a new door for facile, rapid, safe, and larger scale fabrication of superhydrophobic surfaces on general substrates. © 2011 American Chemical Society
Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode
Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su
2014-01-01
Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248
Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.
Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su
2014-04-25
Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.
Highly Sensitive Flexible Human Motion Sensor Based on ZnSnO3/PVDF Composite
NASA Astrophysics Data System (ADS)
Yang, Young Jin; Aziz, Shahid; Mehdi, Syed Murtuza; Sajid, Memoon; Jagadeesan, Srikanth; Choi, Kyung Hyun
2017-07-01
A highly sensitive body motion sensor has been fabricated based on a composite active layer of zinc stannate (ZnSnO3) nano-cubes and poly(vinylidene fluoride) (PVDF) polymer. The thin film-based active layer was deposited on polyethylene terephthalate flexible substrate through D-bar coating technique. Electrical and morphological characterizations of the films and sensors were carried out to discover the physical characteristics and the output response of the devices. The synergistic effect between piezoelectric ZnSnO3 nanocubes and β phase PVDF provides the composite with a desirable electrical conductivity, remarkable bend sensitivity, and excellent stability, ideal for the fabrication of a motion sensor. The recorded resistance of the sensor towards the bending angles of -150° to 0° to 150° changed from 20 MΩ to 55 MΩ to 100 MΩ, respectively, showing the composite to be a very good candidate for motion sensing applications.
Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces
NASA Astrophysics Data System (ADS)
Kamali, Seyedeh Mahsa; Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Faraon, Andrei
2016-05-01
Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multi-functional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymer substrate that locally modify near-infrared (λ=915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. The conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.
Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu
2016-01-01
Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V−1 sec−1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121
NASA Astrophysics Data System (ADS)
Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu
2016-05-01
Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V-1 sec-1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.
NASA Astrophysics Data System (ADS)
Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki
2017-02-01
We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.
Boron hydride polymer coated substrates
Pearson, R.K.; Bystroff, R.I.; Miller, D.E.
1986-08-27
A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.
Boron hydride polymer coated substrates
Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.
1987-01-01
A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.
Flexible moldable conductive current-limiting materials
Shea, John Joseph; Djordjevic, Miomir B.; Hanna, William Kingston
2002-01-01
A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.
Nanoencapsulated aerogels produced by monomer vapor deposition and polymerization
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2011-01-01
Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating. In an embodiment, the polymer coated aerogel is comprised of a porosity and has a compressive modulus greater than the compressive modulus of the aerogel substrate.
Bergsman, David S.; Closser, Richard G.; Tassone, Christopher J.; ...
2017-01-01
An experimental investigation into the growth of polyurea films by molecular layer deposition was performed by examining trends in the growth rate, crystallinity, and orientation of chains as a function of backbone flexibility. Growth curves obtained for films containing backbones of aliphatic and phenyl groups indicate that an increase in backbone flexibility leads to a reduction in growth rate from 4 to 1 Å/cycle. Crystallinity measurements collected using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy suggest that some chains form paracrystalline, out-of-plane stacks of polymer segments with packing distances ranging from 4.4 to 3.7 Å depending on themore » monomer size. Diffraction intensity is largely a function of the homogeneity of the backbone. Near-edge X-ray absorption fine structure measurements for thin and thick samples show an average chain orientation of ~25° relative to the substrate across all samples, suggesting that changes in growth rate are not caused by differences in chain angle but instead may be caused by differences in the frequency of chain terminations. In conclusion, these results suggest a model of molecular layer deposition-based chain growth in which films consist of a mixture of upward growing chains and horizontally aligned layers of paracrystalline polymer segments.« less
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs
NASA Astrophysics Data System (ADS)
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-01
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k
Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates
NASA Astrophysics Data System (ADS)
Yuan, Hongyi; Karim, Alamgir; University of Akron Team
2011-03-01
Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu
Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures
NASA Astrophysics Data System (ADS)
Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas
Using vertically grown hydrothermal ZnO nanowires, we demonstrate the assembly of fully functional piezoelectric energy harvesters on plastics substrates. A seedless hydrothermal process is employed for the growth of single crystalline vertically orientated ZnO NWs at around 100oC. Flexible NG are assembled using ∼7 μm thick PDMS polymer matrix on a 3x3cm substrate. A representative device with an active area of 4cm2 is characterised revealing average output voltage generation of ∼22mV (±1.2) and -32mV (±0.16) in the positive and negative cycles after 3-4mm periodic deflection at 20Hz. A power density of ∼288nW/cm3 is estimated for the device. It is envisaged that such energy scavengers may find potential applications targeting self-powered systems, sensors and on-body charging of electronics.
Replacement solvents for use in chemical synthesis
Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.
2001-05-15
Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Zhang, Xiang; Zhao, Jianwen; Dou, Junyan; Tange, Masayoshi; Xu, Weiwei; Mo, Lixin; Xie, Jianjun; Xu, Wenya; Ma, Changqi; Okazaki, Toshiya; Cui, Zheng
2016-09-01
P-type and n-type top-gate carbon nanotube thin-film transistors (TFTs) can be selectively and simultaneously fabricated on the same polyethylene terephthalate (PET) substrate by tuning the types of polymer-sorted semiconducting single-walled carbon nanotube (sc-SWCNT) inks, along with low temperature growth of HfO 2 thin films as shared dielectric layers. Both the p-type and n-type TFTs show good electrical properties with on/off ratio of ≈10 5 , mobility of ≈15 cm 2 V -1 s -1 , and small hysteresis. Complementary metal oxide semiconductor (CMOS)-like logic gates and circuits based on as-prepared p-type and n-type TFTs have been achieved. Flexible CMOS-like inverters exhibit large noise margin of 84% at low voltage (1/2 V dd = 1.5 V) and maximum voltage gain of 30 at V dd of 1.5 V and low power consumption of 0.1 μW. Both of the noise margin and voltage gain are one of the best values reported for flexible CMOS-like inverters at V dd less than 2 V. The printed CMOS-like inverters work well at 10 kHz with 2% voltage loss and delay time of ≈15 μs. A 3-stage ring oscillator has also been demonstrated on PET substrates and the oscillation frequency of 3.3 kHz at V dd of 1 V is achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
El Hajj, Ahmad; Lucas, Bruno; Barbot, Anthony; Antony, Rémi; Ratier, Bernard; Aldissi, Matt
2013-07-01
The development of indium-free transparent conductive oxides (TCOs) on polymer substrates for flexible devices requires deposition at low temperatures and a limited thermal treatment. In this paper, we investigated the optical and electrical properties of ZnO/Cu/ZnO multi-layer electrodes obtained by ion beam sputtering at room temperature for flexible optoelectronic devices. This multilayer structure has the advantage of adjusting the layer thickness to favor antireflection and surface plasmon resonance of the metallic layer. We found that the optimal electrode is made up of a 10 nm-thick Cu layer between two 40 nm-thick ZnO layers, which results in a sheet resistance of 12 omega/(see symbol), a high transmittance of 85% in the visible range, and the highest figure of merit of 5.4 x 10(-3) (see symbol)/omega. A P3HT:PCBM-based solar cell showed a power conversion efficiency (PCE) of 2.26% using the optimized ZnO (40 nm)/Cu (10 nm)/ZnO (40 nm) anode.
Impermeable flexible liquid barrier film for encapsulation of DSSC metal electrodes
Yang, Junghee; Min, Misook; Yoon, Yeoheung; Kim, Won Jung; Kim, Sol; Lee, Hyoyoung
2016-01-01
Encapsulation of electronic devices such as dye-sensitized solar cells (DSSCs) is prone to degradation under normal atmospheric conditions, even with hermetic barriers on the metal electrodes. Overcoming this problem is crucial to increasing DSSC lifetimes and making them commercially viable. Herein, we report a new impermeable flexible liquid barrier film using polyvinyl alcohol (PVA) and partially reduced graphene oxide (PrGO), which dramatically enhances the lifetime of Ag metal electrodes (typically used in DSSCs) immersed in a highly acidic iodolyte solution. The Ag metal electrode encapsulated by the PVA/PrGO film survived for over 500 hrs, superior to existing barriers of glass frits, epoxy resins and polymers. The PVA/PrGO film strongly adheres to the Ag metal surface, and the resulting PVA/PrGO/Ag electrode is stable even on a curved substrate, with a sheet resistance nearly independent of curvature. These results give new insight for the design of high-performance and solution-processable flexible liquid barrier films for a wide range of applications, in particular for the encapsulation of electronic devices with liquid electrolytes. PMID:27263654
Fabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens
Li, Chenhui; Jiang, Hongrui
2014-01-01
We present a flexible variable-focus converging microlens actuated by electrowetting on dielectric (EWOD). The microlens is made of two immiscible liquids and a soft polymer, polydimethylsiloxane (PDMS). Parylene intermediate layer is used to produce robust flexible electrode on PDMS. A low-temperature PDMS-compatible fabrication process has been developed to reduce the stress on the lens structure. The lens has been demonstrated to be able to conform to curved surfaces smoothly. The focal length of the microlens is 29–38 mm on a flat surface, and 31–41 mm on a curved surface, varying with the voltage applied. The resolving power of the microlens is 25.39 line pairs per mm by a 1951 United States Air Force (USAF) resolution chart and the lens aberrations are measured by a Shack-Hartmann wavefront sensor. The focal length behavior on a curved surface is discussed and for the current lens demonstrated the focal length is slightly longer on the curved surface as a result of the effect of the curved PDMS substrate. PMID:25360324
Junction-Free Electrospun Ag Fiber Electrodes for Flexible Organic Light-Emitting Diodes.
Choi, Junhee; Shim, Yong Sub; Park, Cheol Hwee; Hwang, Ha; Kwack, Jin Ho; Lee, Dong Jun; Park, Young Wook; Ju, Byeong-Kwon
2018-02-01
Fabrication of junction-free Ag fiber electrodes for flexible organic light-emitting diodes (OLEDs) is demonstrated. The junction-free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □ -1 , leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Huanyu; Cheong, Hahn-Gil; Park, Jin-Woo
2016-05-01
We investigated the electronic properties of composite-type hybrid transparent conductive electrodes (h-TCEs) based on Ag nanowire networks (AgNWs) and indium tin oxide (ITO). These h-TCEs were developed to replace ITO, and their mechanical flexibility is superior to that of ITO. However, the characteristics of charge carriers and the mechanism of charge-carrier transport through the interface between the h-TCE and an organic material are not well understood when the h-TCE is used as the anode in a flexible organic light-emitting diode (f-OLED). AgNWs were spin coated onto polymer substrates, and ITO was sputtered atop the AgNWs. The electronic energy structures of h-TCEs were investigated by ultraviolet photoelectron spectroscopy. f-OLEDs were fabricated on both h-TCEs and ITO for comparison. The chemical bond formation at the interface between the h-TCE and the organic layer in f-OLEDs was investigated by X-ray photoelectron spectroscopy. The performances of f-OLEDs were compared based on the analysis results.
Direct Observation of a Carbon Filament in Water-Resistant Organic Memory.
Lee, Byung-Hyun; Bae, Hagyoul; Seong, Hyejeong; Lee, Dong-Il; Park, Hongkeun; Choi, Young Joo; Im, Sung-Gap; Kim, Sang Ouk; Choi, Yang-Kyu
2015-07-28
The memory for the Internet of Things (IoT) requires versatile characteristics such as flexibility, wearability, and stability in outdoor environments. Resistive random access memory (RRAM) to harness a simple structure and organic material with good flexibility can be an attractive candidate for IoT memory. However, its solution-oriented process and unclear switching mechanism are critical problems. Here we demonstrate iCVD polymer-intercalated RRAM (i-RRAM). i-RRAM exhibits robust flexibility and versatile wearability on any substrate. Stable operation of i-RRAM, even in water, is demonstrated, which is the first experimental presentation of water-resistant organic memory without any waterproof protection package. Moreover, the direct observation of a carbon filament is also reported for the first time using transmission electron microscopy, which puts an end to the controversy surrounding the switching mechanism. Therefore, reproducibility is feasible through comprehensive modeling. Furthermore, a carbon filament is superior to a metal filament in terms of the design window and selection of the electrode material. These results suggest an alternative to solve the critical issues of organic RRAM and an optimized memory type suitable for the IoT era.
Park, Junsu; Kim, Minseok; Yeom, Seung-Won; Ha, Hyeon Jun; Song, Hyenggun; Min Jhon, Young; Kim, Yun-Hi; Ju, Byeong-Kwon
2016-06-03
We report ambipolar organic field-effect transistors and complementary inverter circuits with reverse-offset-printed (ROP) Ag electrodes fabricated on a flexible substrate. A diketopyrrolopyrrole-based co-polymer (PDPP-TAT) was used as the semiconductor and poly(methyl methacrylate) was used as the gate insulator. Considerable improvement is observed in the n-channel electrical characteristics by inserting a cesium carbonate (Cs2CO3) as the electron-injection/hole-blocking layer at the interface between the semiconductors and the electrodes. The saturation mobility values are 0.35 cm(2) V(-1) s(-1) for the p-channel and 0.027 cm(2) V(-1) s(-1) for the n-channel. A complementary inverter is demonstrated based on the ROP process, and it is selectively controlled by the insertion of Cs2CO3 onto the n-channel region via thermal evaporation. Moreover, the devices show stable operation during the mechanical bending test using tensile strains ranging from 0.05% to 0.5%. The results confirm that these devices have great potential for use in flexible and inexpensive integrated circuits over a large area.
Porous light-emitting compositions
Burrell, Anthony K [Los Alamos, NM; McCleskey, Thomas Mark [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Bauer, Eve [Los Alamos, NM; Mueller, Alexander H [Los Alamos, NM
2012-04-17
Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.
NASA Astrophysics Data System (ADS)
Turner-Evans, Dan
Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.
High-performance carbon nanotube thin-film transistors on flexible paper substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong
Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.
NASA Astrophysics Data System (ADS)
Tsuruoka, Takaaki; Miyanaga, Ayumi; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke
2017-09-01
A simple composition control route to mixed-lanthanide metal-organic frameworks (MOFs) was developed based on an interfacial reaction with mixed-lanthanide metal ion-doped polymer substrates. By controlling the composition of lanthanide ion (Eu3+ and Tb3+) dopants in polymer substrates to be used as metal ion precursors and scaffolding for the formation of MOFs, [EuxTb2-x(bdc)3(H2O)4]n crystals with a tunable metal composition could be routinely prepared on polymer substrates. Inductively coupled plasma (ICP) measurements revealed that the composition of the obtained frameworks was almost the same as that of the initial polymer substrates. In addition, the resulting [EuxTb2-x(bdc)3(H2O)4]n crystals showed strong phosphorescence because of Eu3+ transitions, indicating that the energy transfer from Tb3+ to Eu3+ ions in the frameworks could be achieved with high efficiency.
Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2007-01-01
A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.
High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.
Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C
2017-10-24
Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.
Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications.
Vüllers, Felix; Gomard, Guillaume; Preinfalk, Jan B; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce; Hölscher, Hendrik; Kavalenka, Maryna N
2016-11-01
Inspired by the transparent hair layer on water plants Salvinia and Pistia, superhydrophobic flexible thin films, applicable as transparent coatings for optoelectronic devices, are introduced. Thin polymeric nanofur films are fabricated using a highly scalable hot pulling technique, in which heated sandblasted steel plates are used to create a dense layer of nano- and microhairs surrounding microcavities on a polymer surface. The superhydrophobic nanofur surface exhibits water contact angles of 166 ± 6°, sliding angles below 6°, and is self-cleaning against various contaminants. Additionally, subjecting thin nanofur to argon plasma reverses its surface wettability to hydrophilic and underwater superoleophobic. Thin nanofur films are transparent and demonstrate reflection values of less than 4% for wavelengths ranging from 300 to 800 nm when attached to a polymer substrate. Moreover, used as translucent self-standing film, the nanofur exhibits transmission values above 85% and high forward scattering. The potential of thin nanofur films for extracting substrate modes from organic light emitting diodes is tested and a relative increase of the luminous efficacy of above 10% is observed. Finally, thin nanofur is optically coupled to a multicrystalline silicon solar cell, resulting in a relative gain of 5.8% in photogenerated current compared to a bare photovoltaic device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple β-Ketothiolases Mediate Poly(β-Hydroxyalkanoate) Copolymer Synthesis in Ralstonia eutropha
Slater, Steven; Houmiel, Kathryn L.; Tran, Minhtien; Mitsky, Timothy A.; Taylor, Nancy B.; Padgette, Stephen R.; Gruys, Kenneth J.
1998-01-01
Polyhydroxyalkanoates (PHAs) are a class of carbon and energy storage polymers produced by numerous bacteria in response to environmental limitation. The type of polymer produced depends on the carbon sources available, the flexibility of the organism’s intermediary metabolism, and the substrate specificity of the PHA biosynthetic enzymes. Ralstonia eutropha produces both the homopolymer poly-β-hydroxybutyrate (PHB) and, when provided with the appropriate substrate, the copolymer poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV). A required step in production of the hydroxyvalerate moiety of PHBV is the condensation of acetyl coenzyme A (acetyl-CoA) and propionyl-CoA to form β-ketovaleryl-CoA. This activity has generally been attributed to the β-ketothiolase encoded by R. eutropha phbA. However, we have determined that PhbA does not significantly contribute to catalyzing this condensation reaction. Here we report the cloning and genetic analysis of bktB, which encodes a β-ketothiolase from R. eutropha that is capable of forming β-ketovaleryl-CoA. Genetic analyses determined that BktB is the primary condensation enzyme leading to production of β-hydroxyvalerate derived from propionyl-CoA. We also report an additional β-ketothiolase, designated BktC, that probably serves as a secondary route toward β-hydroxyvalerate production. PMID:9555876
Patterning by area selective oxidation
Nam, Chang-Yong; Kamcev, Jovan; Black, Charles T.; Grubbs, Robert
2015-12-29
Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.
Model systems for single molecule polymer dynamics
Latinwo, Folarin
2012-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980
Thin-film solar cell fabricated on a flexible metallic substrate
Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.
2006-05-30
A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).
Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate
Tuttle, J. R.; Noufi, R.; Hasoon, F. S.
2006-05-30
A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).
Observing cellulose biosynthesis and membrane translocation in crystallo
Morgan, Jacob L.W.; McNamara, Joshua T.; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G.; Zimmer, Jochen
2016-01-01
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. In crystallo enzymology with the catalytically-active bacterial cellulose synthase BcsA-B complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a “finger helix” that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves ‘up’ and ‘down’ in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA’s transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837
Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo
2012-09-26
Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.
A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators
NASA Astrophysics Data System (ADS)
Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae
2014-07-01
To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200-240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens.
A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures
NASA Astrophysics Data System (ADS)
Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.
2006-01-01
Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.
Polymer Nanofiber Based Reversible Nano-Switch/Sensor Diode (Nanosssd) Device
NASA Technical Reports Server (NTRS)
Theofylaktos, Onoufrios (Inventor); Meador, Michael A. (Inventor); Miranda, Felix A. (Inventor); Pinto, Nicholas (Inventor); Mueller, Carl H. (Inventor); Santos-Perez, Javier (Inventor)
2017-01-01
A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one polymer nanofiber deposited on the electrode. The at least one polymer nanofiber provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.
NASA Astrophysics Data System (ADS)
Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.
2016-09-01
The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements
Rager, Matthew S.; Aytug, Tolga; Veith, Gabriel M.; ...
2015-12-31
The developing field of printed electronics nanoparticle based inks such as CuO show great promise as a low-cost alternative to other metal-based counterparts (e.g., silver). In particular, CuO inks significantly eliminate the issue of particle oxidation, before and during the sintering process, that is prevalent in Cu-based formulations. We report here the scalable and low-thermal budget photonic fabrication of Cu interconnects employing a roll-to-roll compatible pulse-thermal-processing (PTP) technique that enables phase reduction and subsequent sintering of inkjet-printed CuO patterns onto flexible polymer templates. Detailed investigations of curing and sintering conditions were performed to understand the impact of PTP system conditionsmore » on the electrical performance of the Cu patterns. Specifically, the impact of energy and power of photonic pulses on print conductivity was systematically studied by varying the following key processing parameters: pulse intensity, duration and sequence. Through optimization of such parameters, highly conductive prints in < 1 s with resistivity values as low as 100 n m has been achieved. We also observed that the introduction of an initial ink-drying step in ambient atmosphere, after the printing and before sintering, leads to significant improvements in mechanical integrity and electrical performance of the printed Cu patterns. Moreover, the viability of CuO reactive inks, coupled with the PTP technology and pre ink-drying protocols, has also been demonstrated for the additive integration of a low-cost Cu temperature sensor onto a flexible polymer substrate.« less
Ha, Jewook; Chung, Seungjun; Pei, Mingyuan; Cho, Kilwon; Yang, Hoichang; Hong, Yongtaek
2017-03-15
We report a one-step interface engineering methodology which can be used on both polymer electrodes and gate dielectric for all-inkjet-printed, flexible, transparent organic thin-film transistors (OTFTs) and inverters. Dimethylchlorosilane-terminated polystyrene (PS) was introduced as a surface modifier to cured poly(4-vinylphenol) dielectric and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) electrodes without any pretreatment. On the untreated and PS interlayer-treated dielectric and electrode surfaces, 6,13-bis(triisopropylsilylethynyl)pentacene was printed to fabricate OTFTs and inverters. With the benefit of the PS interlayer, the electrical properties of the OTFTs on a flexible plastic substrate were significantly improved, as shown by a field-effect mobility (μ FET ) of 0.27 cm 2 V -1 s -1 and an on/off current ratio (I on /I off ) of greater than 10 6 . In contrast, the untreated systems showed a low μ FET of less than 0.02 cm 2 V -1 s -1 and I on /I off ∼ 10 4 . Additionally, the all-inkjet-printed inverters based on the PS-modified surfaces exhibited a voltage gain of 7.17 V V -1 . The all-organic-based TFTs and inverters, including deformable and transparent PEDOT:PSS electrodes with a sheet resistance of 160-250 Ω sq -1 , exhibited a light transmittance of higher than 70% (at wavelength of 550 nm). Specifically, there was no significant degradation in the electrical performance of the interface engineering-assisted system after 1000 bending cycles at a radius of 5 mm.
Jin, Han; Huynh, Tan-Phat; Haick, Hossam
2016-07-13
Flexible and wearable electronic sensors are useful for the early diagnosis and monitoring of an individual's health state. Sampling of volatile organic compounds (VOCs) derived from human breath/skin or monitoring abrupt changes in heart-beat/breath rate should allow noninvasive monitoring of disease states at an early stage. Nevertheless, for many reported wearable sensing devices, interaction with the human body leads incidentally to unavoidable scratches and/or mechanical cuts and bring about malfunction of these devices. We now offer proof-of-concept of nanoparticle-based flexible sensor arrays with fascinating self-healing abilities. By integrating a self-healable polymer substrate with 5 kinds of functionalized gold nanoparticle films, a sensor array gives a fast self-healing (<3 h) and attractive healing efficiency in both the substrate and sensing films. The proposed platform was used in sensing pressure variation and 11 kinds of VOCs. The sensor array had satisfactory sensitivity, a low detection limit, and promising discrimination features in monitoring both of VOCs and pressure variation, even after full healing. These results presage a new type of smart sensing device, with a desirable performance in the possible detection and/or clinical application for a number of different purposes.
Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.
Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan
2014-07-22
Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.
Highly porous ceramic oxide aerogels having improved flexibility
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2012-01-01
Ceramic oxide aerogels incorporating periodically dispersed flexible linkages are provided. The flexible linkages impart greater flexibility than the native aerogels without those linkages, and have been shown to reduce or eliminate the need for supercritical CO.sub.2-mediated drying of the corresponding wet gels. The gels may also be polymer cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions.
Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan
2016-08-10
The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting thin film surface, buried interfacial, and bulk structures is a first crucial step in understanding the structure-function relationship of such films in order to optimize device performance. An in-depth understanding on how the side-chain influences the interfacial and surface polymer orientation will guide the future molecular structure design of organic semiconductors.
High Precision Metal Thin Film Liftoff Technique
NASA Technical Reports Server (NTRS)
Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)
2015-01-01
A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.
Farah, John; Sudarshanam, Venkatapuram S.
2003-05-13
Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.
Nano-enabled sensors, electronics and energy source on polymer, paper and thread substrates
NASA Astrophysics Data System (ADS)
Mostafalu, Pooria
Over the past decades, design and development of portable devices for monitoring of biomarkers especially for at risk patients is receiving considerable attention. These devices are either single use diagnostic platforms, wearable on body or on fabric, or they are implanted close to the tissue and organ that it monitors and cures. Sensors, energy sources, and data acquisition devices are the main components of a such monitoring platform. Sensors collect the information using bio-recognition tools such as enzymes and antibodies. Then, the transducers (electrodes, fluorophore, etc) convert it to the appropriate format, for instance electrical and optical signals. After that, data acquisition system amplifies and digitizes the signal and transfers the data to the recording instruments for further processing. Moreover, energy sources are necessary for powering the sensors and electronics. In wearable and implantable applications, these devices need to be flexible, light weight and biocompatible, and their performance should be similar to their rigid counterparts. In this dissertation we address these requirement for wearable and implantable devices. We showed integrated sensors, electronics, and energy sources on flexible polymers, paper, and thread. These devices provide many advantages for monitoring of the physiological condition of a patient and treatment accordingly. Real-time capability of the platform was enabled using wireless telemetry. One of the major innovations of this dissertation is the use of thread as a substrate for making medical diagnostic devices. While conventional substrates (glass, silicon, polyimide, PDMS etc) hold great promise for making wearable and implantable devices, their overall structure and form has remained essentially two dimensional, limiting their function to tissue surfaces such as skin. However, the ability to integrate functional components such as sensors, actuators, and electronics in a way that they penetrate multiple layers of tissues in a 3D topology would be a significant surgical advance. We have devised an integrated thread-based diagnostic (TDD) system with the ability to measure physical (strain and temperature) and chemical (pH and glucose) markers in the body in vivo. Such device was made from threads, which have been widely used in the apparel industry and is readily available as a low-cost biocompatible material.
AM OLED using a-Si TFT backplane on flexible plastic substrate
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Schmidt, John; Roush, Jerry; Chanley, Charles; Dodd, Sonia R.
2004-09-01
Amorphous silicon TFT technology continues to show promise for fabricating large area high resolution flexible AM OLED displays. This paper describes the recent progress in the flexible AM OLED development efforts at Honeywell since our publication in this conference's proceedings in 2003, describing the feasibility of fabricating a 64x64 pixel AM OLED on a flexible plastic substrate. In this paper we describe the design, and fabrication of a 160x160(x3) pixel AM OLED on a flexible plastic substrate with an equivalent 80cgpi resolution. Flexibility characteristics of the fabricated displays are discussed. Further advances and improvements required for extending the size and resolution of flexible AM OLED displays are discussed.
Direct observation of single flexible polymers using single stranded DNA†
Brockman, Christopher; Kim, Sun Ju
2012-01-01
Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981
Methods of making composite optical devices employing polymer liquid crystal
Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.
1991-01-01
Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.
NASA Astrophysics Data System (ADS)
Al Akhrass, S.; Reiter, G.; Hou, S. Y.; Yang, M. H.; Chang, Y. L.; Chang, F. C.; Wang, C. F.; Yang, A. C.-M.
2008-05-01
A nonmonotonic, two-stage dewetting behavior was observed for spin coated thin viscoelastic polymer films on soft elastic substrates. At times shorter than the relaxation time of the polymer (t<τrep), dewetting generated deep trenches in the soft rubbery substrate which, in turn, almost stopped dewetting. At later stages (t≫τrep), dewetting accelerated, accompanied by an unstable rim. However, holes nucleated at t<τrep showed only this second-stage behavior. Our observations are attributed to large elastic deformations in the substrate caused by transient residual stresses within the film.
Adsorption of finite semiflexible polymers and their loop and tail distributions
NASA Astrophysics Data System (ADS)
Kampmann, Tobias A.; Kierfeld, Jan
2017-07-01
We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].
Metallization of Various Polymers by Cold Spray
NASA Astrophysics Data System (ADS)
Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen
2018-01-01
Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.
Pentacene Organic Thin-Film Transistors on Flexible Paper and Glass Substrates
2014-02-12
FEB 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Pentacene organic thin - film transistors on flexible...Nanotechnology 25 (2014) 094005 (7pp) doi:10.1088/0957-4484/25/9/094005 Pentacene organic thin - film transistors on flexible paper and glass substrates Adam T...organic thin - film transistors (OTFTs) were fabricated on several types of flexible substrate: commercial photo paper, ultra-smooth specialty paper and
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
Silicon on insulator achieved using electrochemical etching
McCarthy, A.M.
1997-10-07
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.
Silicon on insulator achieved using electrochemical etching
McCarthy, Anthony M.
1997-01-01
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.
2012-01-01
Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096
Free Surface Flows and Extensional Rheology of Polymer Solutions
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek
Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.
Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils
NASA Astrophysics Data System (ADS)
Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk
2018-01-01
Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.
Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self Assembly
NASA Astrophysics Data System (ADS)
Pan, Cheng; Li, Hongfei; Akgun, Bulent; Satijia, Sushil; Gersappe, Dilip; Zhu, Yimei; Rafailovich, Miriam
2013-03-01
Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. The mixture of polythiophene derivatives (donor) and fullerenes (acceptor) is spin coated on substrate as the active layer, and are phase-separated into interconnected domains. However, due to the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes and long path conduction, the power conversion efficiency (PCE) of BHJ solar cell is low. Therefore, morphology control in bulk heterojunction (BHJ) solar cell is considered to be critical for the power conversion efficiency (PCE). Here, we present a novel approach that introduces non-photoactive polymer that organizes the poly(3-hexylthiophene) (P3HT) into columnar phases decorated by [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at the interface. This structure represents a realization of an idealized morphology of an organic solar cell, in which, both exiciton dissociation and the carrier transport are optimized leading to increased power conversion efficiency.
Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
Cracking the chocolate egg problem: polymeric films coated on curved substrates
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas; Lee, Anna; Marthelot, Joel; Balestra, Gioele; Gallaire, François; Reis, Pedro
2015-11-01
Inspired by the traditional chocolate egg recipe, we show that pouring a polymeric solution onto spherical molds yields a simple and robust path of fabrication of thin elastic curved shells. The drainage dynamics naturally leads to uniform coatings frozen in time as the polymer cures, which are subsequently peeled off their mold. We show how the polymer curing affects the drainage dynamics and eventually selects the shell thickness and sets its uniformity. To this end, we perform coating experiments using silicon based elastomers, Vinylpolysiloxane (VPS) and Polydimethylsiloxane (PDMS). These results are rationalized combining numerical simulations of the lubrication flow field to a theoretical model of the dynamics yielding an analytical prediction of the formed shell characteristics. In particular, the robustness of the coating technique and its flexibility, two critical features for providing a generic framework for future studies, are shown to be an inherent consequence of the flow field (memory loss). The shell structure is both independent of initial conditions and tailorable by changing a single experimental parameter.
Stability of perovskite solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao
2018-02-01
Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.
NASA Astrophysics Data System (ADS)
Baur, Cary Allen
In this work, novel approaches to the design of highly piezoelectric and flexible polymer composites were explored. Diverging from past work focused on the addition of piezoelectric particles into polymer matrices, this research explores the ability to increase the piezoelectric performance of a host polymer through the incorporation of charge via polarizable, organic particles. The ability to insert charge into polymers, known as electrets, is well documented but widely considered impractical because of the low lifetime and temperature resistance of the inserted charge. Through the addition of particles that are polarizable, charge can be inserted into a system in a stable manner that results in highly charged materials with long lifetimes. Here, carbon structures, such as Buckminsterfullerenes (C60) and single-walled nanotubes (SWNTs), were composited into poly(vinylidene difluoride) at very low loading levels (0.05-0.25 wt%), resulting in the ability to insert stable charge into the system. We show that these highly charged systems can result in a doubling of the piezoelectric response of the host polymer when optimized. The low amount of nanoparticle filler required to improve these materials allows for the advantageous properties of the polymer matrix such as flexibility and compliance to be preserved, enabling highly piezoelectric and flexible system. This dissertation outlines research efforts towards the design and fabrication of 1) polymer composites with high piezoelectric response, 2) piezoelectric composites with increased operating temperatures, 3) motion control devices that incorporate piezoelectric materials and shape memory polymers, and 4) artificial muscles with piezoelectric polymers. The piezoelectric polymer composites developed in this work have potential to be utilized as highly efficient, flexible energy harvesters that can be used to capture ambient energy from environmental vibrations and motion from the human body. As actuators, these materials may find use as rapid-response muscle replacements in legs, arms, fingers, or toes. As sensors, such devices may provide electrical impulses capable of sensing small vibrations due to structural damage or movements. There is a wide range of applications for flexible piezoelectric materials that will continue to expand as technologies in monitoring, energy harvesting, and motion control continue to develop.
Microfabrication of passive electronic components with printed graphene-oxide deposition
NASA Astrophysics Data System (ADS)
Sinar, Dogan; Knopf, George K.; Nikumb, Suwas
2014-03-01
Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young's Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.
Micro-differential scanning calorimeter for liquid biological samples
Wang, Shuyu; Yu, Shifeng; Siedler, Michael S.; ...
2016-10-20
Here, we developed an ultrasensitive micro-DSC (differential scanning calorimeter) for liquid protein sample characterization. Our design integrated vanadium oxide thermistors and flexible polymer substrates with microfluidics chambers to achieve a high sensitivity (6 V/W), low thermal conductivity (0.7 mW/K), high power resolutions (40 nW), and well-defined liquid volume (1 μl) calorimeter sensor in a compact and cost-effective way. Furthermore, we demonstrated the performance of the sensor with lysozyme unfolding. The measured transition temperature and enthalpy change were in accordance with the previous literature data. This micro-DSC could potentially raise the prospect of high-throughput biochemical measurement by parallel operation with miniaturizedmore » sample consumption.« less
Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong
2017-08-16
In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10 5 ), excellent cyclic endurance (>10 3 ), and long retention time (>10 4 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.
Chen, Dongdong; Wu, Mingda; Chen, Jie; Zhang, Chunqiu; Pan, Tiezheng; Zhang, Bing; Tian, Huayu; Chen, Xuesi; Sun, Junqi
2014-11-25
Free-standing polymer films that adhere strongly to tissue and can codeliver multiple therapeutic agents in a controlled manner are useful as medical plasters. In this study, a bilayer polymer film comprising a drug reservoir layer and a supporting layer is fabricated by spin-coating poly(lactic-co-glycolic acid) (PLGA) on top of a layer-by-layer assembled film of poly(β-amino esters) (PAE), alginate sodium (ALG), and recombinant human basic fibroblast growth factor (bFGF). Apart from bFGF, the bilayer film can also load antibiotic drug ceftriaxone sodium (CTX) by a postdiffusion process. The PLGA supporting layer facilitates the direct peeling of the bilayer film from substrate to produce a robust and flexible free-standing film with excellent adhesion onto the human skin and porcine liver. The excellent adhesion of the bilayer film originates from the ALG component in the drug reservoir layer. CTX is quickly released by easily breaking its electrostatic interaction with the drug reservoir layer, whereas the sustained release of bFGF is due to the slow degradation of PAE component in the drug reservoir layer. Wounds can be synergetically treated by fast release of CTX to effectively eradicate invasive bacteria and by sustained release of bFGF to accelerate wound healing. Our results serve as a basis for designing multifunctional free-standing films with combination therapy for biomedical applications.
Methods of making composite optical devices employing polymer liquid crystal
Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.
1991-10-08
Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.
Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
GIUNTA,RACHEL K.; KANDER,RONALD G.
2000-12-18
Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.
Polymer and small molecule based hybrid light source
Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky
2010-03-16
An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.
Rebollar, Esther; Sanz, Mikel; Pérez, Susana; Hernández, Margarita; Martín-Fabiani, Ignacio; Rueda, Daniel R; Ezquerra, Tiberio A; Domingo, Concepción; Castillejo, Marta
2012-12-05
We report on the fabrication of gold coated nanostructured polymer thin films and on their characterization as substrates for surface enhanced Raman spectroscopy (SERS). Laser induced periodic surface structures (LIPSS) were obtained on thin polymer films of poly(trimethylene terephthalate) (PTT) upon laser irradiation with the fourth harmonic of a Nd:YAG laser (266 nm, pulse duration 6 ns) resulting in a period close to the incident wavelength. The nanostructured polymer substrates were coated with a nanoparticle assembled gold layer by pulsed laser deposition using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns). Different deposition times resulted in thicknesses from a few nanometres up to several tens of nanometres. Analysis by atomic force microscopy and grazing incident small angle X-ray scattering showed that gold coating preserved the LIPSS relief. The capabilities of the produced nanostructures as substrates for SERS have been investigated using benzenethiol as a test molecule. The SERS signal is substantially larger than that observed for a gold-coated flat substrate. Advantages of this new type of SERS substrates are discussed.
Microstrip Antenna Arrays on Multilayer LCP Substrates
NASA Technical Reports Server (NTRS)
Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin
2007-01-01
A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the thicknesses on cross-polarization levels, bandwidth, and efficiency at each frequency.
Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md
2016-05-11
In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
NASA Astrophysics Data System (ADS)
Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam
2017-06-01
Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.