Sample records for flexible polymeric substrate

  1. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  2. A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)

    1995-01-01

    A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.

  3. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.

  4. Top-down Approach for the Direct Synthesis, Patterning, and Operation of Artificial Micromuscles on Flexible Substrates.

    PubMed

    Maziz, Ali; Plesse, Cédric; Soyer, Caroline; Cattan, Eric; Vidal, Frédéric

    2016-01-27

    Recent progress in the field of microsystems on flexible substrates raises the need for alternatives to the stiffness of classical actuation technologies. This paper reports a top-down process to microfabricate soft conducting polymer actuators on substrates on which they ultimately operate. The bending microactuators were fabricated by sequentially stacking layers using a layer polymerization by layer polymerization of conducting polymer electrodes and a solid polymer electrolyte. Standalone microbeams thinner than 10 μm were fabricated on SU-8 substrates associated with a bottom gold electrical contact. The operation of microactuators was demonstrated in air and at low voltage (±4 V).

  5. Polymer substrates for flexible photovoltaic cells application in personal electronic system

    NASA Astrophysics Data System (ADS)

    Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.

    2016-01-01

    The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

  6. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors.

    PubMed

    Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng

    2017-11-15

    The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Flexible fluoropolymer filled protective coatings

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Mirtich, Michael J.; Sovey, James S.; Nahra, Henry; Rutledge, Sharon K.

    1991-01-01

    Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications.

  8. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  9. Superwettability-Induced Confined Reaction toward High-Performance Flexible Electrodes.

    PubMed

    Xiong, Weiwei; Liu, Hongliang; Zhou, Yahong; Ding, Yi; Zhang, Xiqi; Jiang, Lei

    2016-05-18

    To find a general strategy to realize confinement of the conductive layer for high-performance flexible electrodes, with improved interfacial adhesion and high conductivity, is of important scientific significance. In this work, superwettability-induced confined reaction is used to fabricate high-performance flexible Ag/polymer electrodes, showing significantly improved silver conversion efficiency and interfacial adhesion. The as-prepared flexible electrodes by superhydrophilic polymeric surface under oil are highly conductive with an order of magnitude higher than the Ag/polymer electrodes obtained from original polymeric surface. The high conductivity achieved via superhydrophilic confinement is ascribed to the fact that the superhydrophilic polymeric surface can enhance the reaction rate of silver deposition and reduce the size of silver nanoparticles to achieve the densest packing. This new approach will provide a simple method to fabricate flexible and highly conductive Ag/polymer electrodes with excellent adhesion between the conductive layer and the substrate, and can be extended to other metal/polymeric electrodes or alloy/polymeric electrodes.

  10. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  11. Heat resistant substrates and battery separators made therefrom

    NASA Technical Reports Server (NTRS)

    Langer, Alois (Inventor); Scala, Luciano C. (Inventor); Ruffing, Charles R. (Inventor)

    1976-01-01

    A flexible substrate having a caustic resistant support and at least one membrane comprising a solid polymeric matrix containing a network of interconnected pores and interdispersed inorganic filler particles with a ratio of filler: polymer in the polymeric matrix of between about 1:1 to 5:1, is made by coating at least one side of the support with a filler:coating formulation mixture of inorganic filler particles and a caustic resistant, water insoluble polymer dissolved in an organic solvent, and removing the solvent from the mixture to provide a porous network within the polymeric matrix.

  12. Electrical Properties and Manufacturability of ITO-MgF2 and Related Transparent Arcproof Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    2003-01-01

    To investigate the applicability of co-deposited indium tin oxide and magnesium fluoride as a transparent arcproof coating on the exterior of PowerSphere microsatellites. This included testing coating performance after deposition on flexible polymeric substrates, determining whether ultraviolet (UV) radiation present during deposition might affect the UV-curing resin contained in the substrate, and preparation of coated polymeric samples for radiation damage studies by the PowerSphere team.

  13. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  14. Flexible diode of polyaniline/ITO heterojunction on PET substrate

    NASA Astrophysics Data System (ADS)

    Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.

    2017-10-01

    Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.

  15. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics.

    PubMed

    Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik

    2013-04-01

    Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).

  16. Amorphous silicon and organic thin film transistors for electronic applications

    NASA Astrophysics Data System (ADS)

    Zhou, Lisong

    Recently, flexible thin film electronics has attracted huge research interest, and as now, many prototypes are being developed and demonstrated by companies around the world, including displays, logic circuit, and solar cells. Flexible electronics offers many potential advantages: it can not only generate new functions like flexible displays or solar cells, also allow very low cost manufacturing through the use of cheap polymeric substrates and roll-to-roll fabrication. a-Si:H TFT fabrications are compatible with flexible polyimide substrate materials. With the interests in the space environment, for the first time, we tested the performance changes of flexible a-Si:H TFTs, on polyimide substrates, due to irradiation and mechanical stress. Significant changes were found on TFTs after irradiation with fast electrons, which, however, was essentially removed by post-irradiation thermal annealing. On the other hand, few changes were found in TFTs by mechanical stress. These preliminary results indicate that it can be readily engineered for space applications. Furthermore, for the first time, we designed and fabricated ungated n+ muC-Si and gated a-Si:H strain sensors on flexible polyimide substrates. Compared with commercial metallic foil strain sensors, ungated muC-Si sensors and gated a-Si:H sensors are two orders of magnitude smaller in area and consume two orders or magnitude less power. Integration with a-Si:H TFTs can also allow large arrays of strain sensors to be fabricated. To take advantage of lower glass-transition-temperature polymeric substrate materials, reduced processing temperature is desired. The 150°C low-temperature deposition process is achieved by using hydrogen dilution in the PECVD process. The TFT performance and bias stability property are tested similar to that of a 250°C process. These results suggest its viability for practical applications. For even lower process temperature, we have considered organic TFTs. As a practical demonstration, we integrated pentacene TFTs with OLEDs in a simple display. Pentacene TFT passivation techniques were researched, and a PVA and parylene bilayer structure was used. We designed and demonstrated 48 x 48-pixel active matrix OTFTOLED displays, and to our best knowledge, they are the largest on glass substrates and the first on flexible PET substrates. Device performance, uniformity and stability are also compared. These results demonstrate that pentacene TFTs are viable candidates for active-matrix OLED displays and other flexible electronics applications.

  17. Flexible SERS Substrates: Challenges and Opportunities

    DTIC Science & Technology

    2016-01-28

    interactions between the analyte, silver nanoparticles , and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous...present our recent work on the preparation, characterization, and SERS activity of silver nanoparticle decorated polymeric electrospun nanofibers

  18. Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.

    PubMed

    Qiu, Tengfei; Luo, Bin; Giersig, Michael; Akinoglu, Eser Metin; Hao, Long; Wang, Xiangjun; Shi, Lin; Jin, Meihua; Zhi, Linjie

    2014-10-29

    A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  20. High volume method of making low-cost, lightweight solar materials

    DOEpatents

    Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

    2014-07-15

    A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  2. Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites.

    PubMed

    Lehtimäki, Suvi; Suominen, Milla; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita; Lupo, Donald

    2015-10-14

    Composite films consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) were electrochemically polymerized by electrooxidation of EDOT in ionic liquid (BMIMBF4) onto flexible electrode substrates. Two polymerization approaches were compared, and the cyclic voltammetry (CV) method was found to be superior to potentiostatic polymerization for the growth of PEDOT/GO films. After deposition, incorporated GO was reduced to rGO by a rapid electrochemical method of repetitive cathodic potential cycling, without using any reducing reagents. The films were characterized in 3-electrode configuration in BMIMBF4. Symmetric supercapacitors with aqueous electrolyte were assembled from the composite films and characterized through cyclic voltammetry and galvanostatic discharge tests. It was shown that PEDOT/rGO composites have better capacitive properties than pure PEDOT or the unreduced composite film. The cycling stability of the supercapacitors was also tested, and the results indicate that the specific capacitance still retains well over 90% of the initial value after 2000 consecutive charging/discharging cycles. The supercapacitors were demonstrated as energy storages in a room light energy harvester with a printed organic solar cell and printed electrochromic display. The results are promising for the development of energy-autonomous, low-power, and disposable electronics.

  3. Electrohydrodynamic spinning of random-textured silver webs for electrodes embedded in flexible organic solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Dai Geon; Chin, Byung Doo; Bail, Robert

    2017-03-01

    A convenient process for fabricating a transparent conducting electrode on a flexible substrate is essential for numerous low-cost optoelectronic devices, including organic solar cells (OSCs), touch sensors, and free-form lighting applications. Solution-processed metal-nanowire arrays are attractive due to their low sheet resistance and optical clarity. However, the limited conductance at wire junctions and the rough surface topology still need improvement. Here, we present a facile process of electrohydrodynamic spinning using a silver (Ag) - polymer composite paste with high viscosity. Unlike the metal-nanofiber web formed by conventional electrospinning, a relatively thick, but still invisible-to-naked eye, Ag-web random pattern was formed on a glass substrate. The process parameters such as the nozzle diameter, voltage, flow rate, standoff height, and nozzle-scanning speed, were systematically engineered. The formed random texture Ag webs were embedded in a flexible substrate by in-situ photo-polymerization, release from the glass substrate, and post-annealing. OSCs with a donor-acceptor polymeric heterojunction photoactive layer were prepared on the Ag-web-embedded flexible films with various Ag-web densities. The short-circuit current and the power conversion efficiency of an OSC with a Ag-web-embedded electrode were not as high as those of the control sample with an indium-tin-oxide electrode. However, the Ag-web textures embedded in the OSC served well as electrodes when bent (6-mm radius), showing a power conversion efficiency of 2.06% (2.72% for the flat OSC), and the electrical stability of the Ag-web-textured patterns was maintained for up to 1,000 cycles of bending.

  4. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  5. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  6. Infrared blocking, microwave and terahertz low-loss transmission AlN films grown on flexible polymeric substrates

    NASA Astrophysics Data System (ADS)

    Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.

    2017-04-01

    Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.

  7. Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics.

    PubMed

    Wu, Shuwen; Li, Jinhui; Zhang, Guoping; Yao, Yimin; Li, Gang; Sun, Rong; Wong, Chingping

    2017-01-25

    The continuous evolution toward flexible electronics with mechanical robust property and restoring structure simultaneously places high demand on a set of polymeric material substrate. Herein, we describe a composite material composed of a polyurethane based on Diels-Alder chemistry (PU-DA) covalently linked with functionalized graphene nanosheets (FGNS), which shows mechanical robust and infrared (IR) laser self-healing properties at ambient conditions and is therefore suitable for flexible substrate applications. The mechanical strength can be tuned by varying the amount of FGNS and breaking strength can reach as high as 36 MPa with only 0.5 wt % FGNS loading. On rupture, the initial mechanical properties are restored with more than 96% healing efficiency after 1 min irradiation time by 980 nm IR laser. Especially, this is the highest value of healing efficiency reported in the self-healable materials based on DA chemistry systems until now, and the composite exhibits a high volume resistivity up to 5.6 × 10 11 Ω·cm even the loading of FGNS increased to 1.0 wt %. Moreover, the conductivity of the broken electric circuit which was fabricated by silver paste drop-cast on the healable composite substrate was completely recovered via IR laser irradiating bottom substrate mimicking human skin. These results demonstrate that the FGNS-PU-DA nanocomposite can be used as self-healing flexible substrate for the next generation of intelligent flexible electronics.

  8. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    DOE PAGES

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less

  9. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.

    PubMed

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-05

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  10. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  11. Solution-processed single-wall carbon nanotube transistor arrays for wearable display backplanes

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-01-01

    In this paper, we demonstrate solution-processed single-wall carbon nanotube thin-film transistor (SWCNT-TFT) arrays with polymeric gate dielectrics on the polymeric substrates for wearable display backplanes, which can be directly attached to the human body. The optimized SWCNT-TFTs without any buffer layer on flexible substrates exhibit a linear field-effect mobility of 1.5cm2/V-s and a threshold voltage of around 0V. The statistical plot of the key device metrics extracted from 35 SWCNT-TFTs which were fabricated in different batches at different times conclusively support that we successfully demonstrated high-performance solution-processed SWCNT-TFT arrays which demand excellent uniformity in the device performance. We also investigate the operational stability of wearable SWCNT-TFT arrays against an applied strain of up to 40%, which is the essential for a harsh degree of strain on human body. We believe that the demonstration of flexible SWCNT-TFT arrays which were fabricated by all solution-process except the deposition of metal electrodes at process temperature below 130oC can open up new routes for wearable display backplanes.

  12. Current progress and technical challenges of flexible liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Sato, Hiroto

    2009-02-01

    We focused on several technical approaches to flexible liquid crystal (LC) display in this report. We have been developing flexible displays using plastic film substrates based on polymer-dispersed LC technology with molecular alignment control. In our representative devices, molecular-aligned polymer walls keep plastic-substrate gap constant without LC alignment disorder, and aligned polymer networks create monostable switching of fast-response ferroelectric LC (FLC) for grayscale capability. In the fabrication process, a high-viscosity FLC/monomer solution was printed, sandwiched and pressed between plastic substrates. Then the polymer walls and networks were sequentially formed based on photo-polymerization-induced phase separation in the nematic phase by two exposure processes of patterned and uniform ultraviolet light. The two flexible backlight films of direct illumination and light-guide methods using small three-primary-color light-emitting diodes were fabricated to obtain high-visibility display images. The fabricated flexible FLC panels were driven by external transistor arrays, internal organic thin film transistor (TFT) arrays, and poly-Si TFT arrays. We achieved full-color moving-image displays using the flexible FLC panel and the flexible backlight film based on field-sequential-color driving technique. Otherwise, for backlight-free flexible LC displays, flexible reflective devices of twisted guest-host nematic LC and cholesteric LC were discussed with molecular-aligned polymer walls. Singlesubstrate device structure and fabrication method using self-standing polymer-stabilized nematic LC film and polymer ceiling layer were also proposed for obtaining LC devices with excellent flexibility.

  13. Method for producing a tube

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Pfeifer, Kent B [Los Lunas, NM; Turner, Timothy S [Rio Rancho, NM

    2007-01-02

    A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.

  14. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    PubMed

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  15. High-temperature crystallized thin-film PZT on thin polyimide substrates

    NASA Astrophysics Data System (ADS)

    Liu, Tianning; Wallace, Margeaux; Trolier-McKinstry, Susan; Jackson, Thomas N.

    2017-10-01

    Flexible piezoelectric thin films on polymeric substrates provide advantages in sensing, actuating, and energy harvesting applications. However, direct deposition of many inorganic piezoelectric materials such as Pb(Zrx,Ti1-x)O3 (PZT) on polymers is challenging due to the high temperature required for crystallization. This paper describes a transfer process for PZT thin films. The PZT films are first grown on a high-temperature capable substrate such as platinum-coated silicon. After crystallization, a polymeric layer is added, and the polymer-PZT combination is removed from the high-temperature substrate by etching away a release layer, with the polymer layer then becoming the substrate. The released PZT on polyimide exhibits enhanced dielectric response due to reduction in substrate clamping after removal from the rigid substrate. For Pb(Zr0.52,Ti0.48)0.98Nb0.02O3 films, release from Si increased the remanent polarization from 17.5 μC/cm2 to 26 μC/cm2. In addition, poling led to increased ferroelastic/ferroelectric realignment in the released films. At 1 kHz, the average permittivity was measured to be around 1160 after release from Si with a loss tangent below 3%. Rayleigh measurements further confirmed the correlation between diminished substrate constraint and increased domain wall mobility in the released PZT films on polymers.

  16. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  17. Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode.

    PubMed

    Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Maglione, Maria Grazia; Minarini, Carla

    2013-08-09

    In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.

  18. Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode

    NASA Astrophysics Data System (ADS)

    Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Grazia Maglione, Maria; Minarini, Carla

    2013-08-01

    In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.

  19. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the substrate after completion of polymerization, we show the grafting density of the polymers grafted to flexible substrates can be tuned as a function of Deltax.

  20. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication.

    PubMed

    Coclite, Anna Maria; Howden, Rachel M; Borrelli, David C; Petruczok, Christy D; Yang, Rong; Yagüe, Jose Luis; Ugur, Asli; Chen, Nan; Lee, Sunghwan; Jo, Won Jun; Liu, Andong; Wang, Xiaoxue; Gleason, Karen K

    2013-10-11

    Well-adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, and thickness control. Initiated-CVD shows successful results in terms of rationally designed micro- and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative-CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  2. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  3. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  4. A hydrogel capsule as gate dielectric in flexible organic field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, L. M.; Manoli, K.; Magliulo, M.

    2015-01-01

    A jellified alginate based capsule serves as biocompatible and biodegradable electrolyte system to gate an organic field-effect transistor fabricated on a flexible substrate. Such a system allows operating thiophene based polymer transistors below 0.5 V through an electrical double layer formed across an ion-permeable polymeric electrolyte. Moreover, biological macro-molecules such as glucose-oxidase and streptavidin can enter into the gating capsules that serve also as delivery system. An enzymatic bio-reaction is shown to take place in the capsule and preliminary results on the measurement of the electronic responses promise for low-cost, low-power, flexible electronic bio-sensing applications using capsule-gated organic field-effect transistors.

  5. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application.

    PubMed

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-22

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.

  6. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    NASA Astrophysics Data System (ADS)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  7. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization

    NASA Astrophysics Data System (ADS)

    Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.

    2017-09-01

    Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.

  8. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    NASA Astrophysics Data System (ADS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  9. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  10. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes.

    PubMed

    Zacharatos, Filimon; Karvounis, Panagiotis; Theodorakos, Ioannis; Hatziapostolou, Antonios; Zergioti, Ioanna

    2018-06-19

    Ag nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates. This process relies on the selective laser heating of the Ag NWs induced by the laser pulse energy and the subsequent localized melting of the polymeric substrate. We demonstrate that a single laser pulse can induce both transfer and curing of the Ag NW network. The feasibility of the process is confirmed experimentally and validated by Finite Element Analysis simulations, which indicate that selective heating is carried out within a submicron-sized heat affected zone. The resulting structures can be utilized as fully functional flexible transparent electrodes with figures of merit even higher than 100. Low sheet resistance (<50 Ohm/sq) and high visible light transparency (>90%) make the reported process highly desirable for a variety of applications, including selective heating or annealing of nanocomposite materials and laser processing of nanostructured materials on a large variety of optically transparent substrates, such as Polydimethylsiloxane (PDMS).

  11. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    PubMed Central

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  12. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    PubMed

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  13. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    NASA Astrophysics Data System (ADS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-10-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density ( Jsc) and 92.7% enhancement in conversion efficiency ( η) over the untreated solar cell are obtained.

  14. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  15. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.

    PubMed

    Yan, Xingbin; Chen, Jiangtao; Yang, Jie; Xue, Qunji; Miele, Philippe

    2010-09-01

    In this work, we report a low-cost technique via simple rapid-mixture polymerization of aniline using graphene oxide (GO) and graphene papers as substrates, respectively, to fabricate free-standing, flexible GO-polyaniline (PANI) and graphene-PANI hybrid papers. The morphology and microstructure of the obtained papers were characterized by FESEM, FTIR, Raman, and XRD. As results, nanostructural PANI can be deposited on the surfaces of GO and graphene papers, forming thin, lightweight, and flexible paperlike hybrid papers. The hybrid papers display a remarkable combination of excellent electrochemical performances and biocompatibility, making the paperlike materials attractive for new kinds of applications in biosciences.

  16. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Yan, You-Xian; Wang, Jin-Long; Yu, Shu-Hong

    2013-11-01

    In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications.In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications. Electronic supplementary information (ESI) available: Preparation of GO aqueous colloid solution; XPS spectra of GO paper and PDA modified rGO paper; SEM images of rGO/Ag hybrid paper after immersed in mercaptoethanol solution or in high alkaline solution; photograph and SEM image of pure rGO paper after reaction with AgNO3 solution. SEM image and TEM graph of the pre-synthesized Ag NPs and their SEM images incubated with PDA modified rGO paper; SERS spectra of R6G (1.0 × 10-4 M) molecules before and after cleaning with concentrated hydrochloric acid liquid taken on rGO/Ag hybrid paper obtained by a reaction with 1.0 M AgNO3 solution; SERS spectra of R6G (1.0 × 10-4 M) molecules with different reusable cycles taken on rGO/Ag hybrid paper obtained by a reaction with 1.0 M AgNO3 solution; comparison between different kinds of substrates with the detection limit toward R6G. See DOI: 10.1039/c3nr03857b

  17. Inverter circuits on freestanding flexible substrate using ZnO nanoparticles for cost-efficient electronics

    NASA Astrophysics Data System (ADS)

    Vidor, Fábio F.; Meyers, Thorsten; Müller, Kathrin; Wirth, Gilson I.; Hilleringmann, Ulrich

    2017-11-01

    Driven by the Internet of Things (IoT), flexible and transparent smart systems have been intensively researched by the scientific community and by several companies. This technology is already available for consumers in a wide range of innovative products, e.g., flexible displays, radio-frequency identification tags and wearable electronic skins which, for instance, collect and analyze data for medical applications. For these systems, thin-film transistors (TFTs) are the key elements responsible for the driving currents. Solution-based materials such as nanoparticle dispersions avail the fabrication on large-area substrates with high throughput processes. In this study, we discuss the integration of ZnO nanoparticle thin-film transistors and inverter circuits on freestanding polymeric substrates enclosing the main issues concerning the transfer of the integration process from a rigid substrate to a flexible one. The TFTs depict VON between -0.2 and 1 V, ION/IOFF > 104 and field-effect mobility >0.5 cm2 V-1 s-1. Additionally, in order to enhance the transistors and inverters performance, an adaptation on the device configuration, from an inverted coplanar to an inverted staggered setup, was conducted and analyzed. By employing the inverted staggered setup a considerable increase in the contact quality between the semiconductor and the drain and source electrodes was observed. As the integrated devices depict electrical characteristics which enable the fabrication of electronic circuits for the low-cost sector, inverters were fabricated and characterized, evaluating the circuit's gain as function of the applied supply voltage and circuit's geometric ratio.

  18. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrappedmore » around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.« less

  19. A flexible top-emitting organic light-emitting diode on steel foil

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyuan; Hung, Liang-Sun; Zhu, Furong

    2003-11-01

    An efficient flexible top-emitting organic light-emitting diode (FTOLED) was developed on a thin steel foil. The FTOLED was constructed on the spin-on-glass (SOG)-coated steel substrate with an organic stack of NPB/Alq 3 sandwiched by a highly reflective Ag anode and a semitransparent Sm cathode. An ultrathin plasma-polymerized hydrocarbon film (CF X) was interposed between the Ag anode and the NPB layer to enhance hole-injection, and an additional Alq 3 layer was overlaid on the Sm cathode to increase light output. The FTOLED showed a peak efficiency of 4.4 cd/A higher than 3.7 cd/A of a convention NPB/Alq 3-based bottom-emitting OLED.

  20. One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application.

    PubMed

    Park, Rowoon; Kim, Hyesu; Lone, Saifullah; Jeon, Sangheon; Kwon, Young Woo; Shin, Bosung; Hong, Suck Won

    2018-06-06

    The conversion of graphene oxide (GO) into reduced graphene oxide (rGO) is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.

  1. High-power flexible AlGaN/GaN heterostructure field-effect transistors with suppression of negative differential conductance

    NASA Astrophysics Data System (ADS)

    Oh, Seung Kyu; Cho, Moon Uk; Dallas, James; Jang, Taehoon; Lee, Dong Gyu; Pouladi, Sara; Chen, Jie; Wang, Weijie; Shervin, Shahab; Kim, Hyunsoo; Shin, Seungha; Choi, Sukwon; Kwak, Joon Seop; Ryou, Jae-Hyun

    2017-09-01

    We investigate thermo-electronic behaviors of flexible AlGaN/GaN heterostructure field-effect transistors (HFETs) for high-power operation of the devices using Raman thermometry, infrared imaging, and current-voltage characteristics. A large negative differential conductance observed in HFETs on polymeric flexible substrates is confirmed to originate from the decreasing mobility of the two-dimensional electron gas channel caused by the self-heating effect. We develop high-power transistors by suppressing the negative differential conductance in the flexible HFETs using chemical lift-off and modified Ti/Au/In metal bonding processes with copper (Cu) tapes for high thermal conductivity and low thermal interfacial resistance in the flexible hybrid structures. Among different flexible HFETs, the ID of the HFETs on Cu with Ni/Au/In structures decreases only by 11.3% with increasing drain bias from the peak current to the current at VDS = 20 V, which is close to that of the HFETs on Si (9.6%), solving the problem of previous flexible AlGaN/GaN transistors.

  2. A crossed dodecagonal deployable polarizer on textile and polydimethylsiloxane (PDMS) substrates

    NASA Astrophysics Data System (ADS)

    Mirza, Hidayath; Soh, Ping Jack; Jamlos, Mohd Faizal; Hossain, Toufiq Md; Ramli, Muhammad Nazrin; Al-Hadi, Azremi Abdullah; Sheikh, R. Ahmad; Hassan, Emad S.; Yan, Sen

    2018-02-01

    This paper presents the design of a flexible using two set of flexible material classes: polymer and textiles. ShieldIt Super conductive fabric and felt are used as the textile material, and its performance is compared with another version designed on a polydimethylsiloxane (PDMS) polymeric substrate. They are both built using a 4 × 4 dodecagonal unit element array backed by a rectangular patch, each sized at 54 × 64 × 3.34 mm3 (0.40 λ × 0.34 λ × 0.02λ) and 62 × 52 × 3.34 mm3 (0.35λ × 0.41λ × 0.02 λ). Both of them are validated to be operational centered at 2.2 GHz with a measured conversion efficiency of more than 90% from 1.578 to 2.578 GHz (48.12%) for the textile prototype. The results of the bending investigations suggest that the deployment mechanism must ensure a flat polarizer condition to enable its optimal performance.

  3. Small-volume multiparametric electrochemical detection at low cost polymeric devices featuring nanoelectrodes

    NASA Astrophysics Data System (ADS)

    Kitsara, Maria; Cirera, Josep Maria; Aller-Pellitero, Miguel; Sabaté, Neus; Punter, Jaume; Colomer-Farrarons, Jordi; Miribel-Català, Pere; del Campo, F. Javier

    2015-06-01

    The development of a low-cost multiparametric platform for enzymatic electrochemical biosensing that can be integrated in a disposable, energy autonomous analytical device is the target of the current work. We propose a technology to fabricate nano-electrodes and ultimately biosensors on flexible polymeric-based substrates (cyclo olefin polymer, and polyimide) using standard microfabrication (step and repeat lithography and lift-off) and rapid prototyping techniques (blade cutting). Our target is towards the fabrication of a miniaturized prototype that can work with small sample volumes in the range of 5-10μL without the need for external pumps for sample loading and handling. This device can be used for the simultaneous detection of metabolites such as glucose, cholesterol and triglycerides for the early diagnosis of diabetes.

  4. A Route Towards Sustainability Through Engineered Polymeric Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeja-Jayan, B; Kovacik, P; Yang, R

    2014-05-30

    Chemical vapor deposition (CVD) of polymer films represent the marriage of two of the most important technological innovations of the modern age. CVD as a mature technology for growing inorganic thin films is already a workhorse technology of the microfabrication industry and easily scalable from bench to plant. The low cost, mechanical flexibility, and varied functionality offered by polymer thin films make them attractive for both macro and micro scale applications. This review article focuses on two energy and resource efficient CVD polymerization methods, initiated Chemical Vapor Deposition (iCVD) and oxidative Chemical Vapor Deposition (oCVD). These solvent-free, substrate independent techniquesmore » engineer multi-scale, multi-functional and conformal polymer thin film surfaces and interfaces for applications that can address the main sustainability challenges faced by the world today.« less

  5. Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing

    NASA Astrophysics Data System (ADS)

    Hines, Daniel R.

    Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.

  6. Laser micromachining as a metallization tool for microfluidic polymer stacks

    NASA Astrophysics Data System (ADS)

    Brettschneider, T.; Dorrer, C.; Czurratis, D.; Zengerle, R.; Daub, M.

    2013-03-01

    A novel assembly approach for the integration of metal structures into polymeric microfluidic systems is described. The presented production process is completely based on a single solid-state laser source, which is used to incorporate metal foils into a polymeric multi-layer stack by laser bonding and ablation processes. Chemical reagents or glues are not required. The polymer stack contains a flexible membrane which can be used for realizing microfluidic valves and pumps. The metal-to-polymer bond was investigated for different metal foils and plasma treatments, yielding a maximum peel strength of Rps = 1.33 N mm-1. A minimum structure size of 10 µm was determined by 3D microscopy of the laser cut line. As an example application, two different metal foils were used in combination to micromachine a standardized type-T thermocouple on a polymer substrate. An additional laser process was developed which allows metal-to-metal welding in close vicinity to the polymer substrate. With this process step, the reliability of the electrical contact could be increased to survive at least 400 PCR temperature cycles at very low contact resistances.

  7. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Highly flexible binder-free core-shell nanofibrous electrode for lightweight electrochemical energy storage using recycled water bottles

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian H.; Naguib, Hani E.

    2016-08-01

    The creation of a novel flexible nanocomposite fiber with conductive polymer polyaniline (PAni) coating on a polyethylene terephthalate (PET) substrate allowed for increased electrochemical performance while retaining ideal mechanical properties such as very high flexibility. Binder-free PAni-wrapped PET (PAni@PET) fiber with a core-shell structure was successfully fabricated through a novel technique. The PET nanofiber substrate was fabricated through an optimized electrospinning method, while the PAni shell was chemically polymerized onto the surface of the nanofibers. The PET substrate can be made directly from recycled PETE1 grade plastic water bottles. The resulting nanofiber with an average diameter of 121 nm ± 39 nm, with a specific surface area of 83.72 m2 g-1, led to better ionic interactions at the electrode/electrolyte interface. The PAni active layer coating was found to be 69 nm in average thickness. The specific capacitance was found to have increased dramatically from pure PAni with carbon binders. The specific capacitance was found to be 347 F g-1 at a relatively high scan rate of 10 mV s-1. The PAni/PET fiber also experienced very little degradation (4.4%) in capacitance after 1500 galvanostatic charge/discharge cycles at a specific current of 1.2 A g-1. The mesoporous structure of the PAni@PET fibrous mat also allowed for tunable capacitance by controlling the pore sizes. This novel fabrication method offers insights for the utilization of recycled PETE1 based bottles as a high performance, low cost, highly flexible supercapacitor device.

  9. Buckling analysis of stiff thin films suspended on a substrate with tripod surface relief structure

    NASA Astrophysics Data System (ADS)

    Yu, Qingmin; Chen, Furong; Li, Ming; Cheng, Huanyu

    2017-09-01

    A wavy configuration is a simple yet powerful structural design strategy, which has been widely used in flexible and stretchable electronics. A buckled structure created from a prestretch-contact-release process represents an early effort. Substrates with engineered surface relief structures (e.g., rectangular islands or tripod structure) have enabled stretchability to the devices without sacrificing their electric performance (e.g., high areal coverage for LEDs/photovoltaics/batteries/supercapacitors). In particular, the substrate with a tripod surface relief structure allows wrinkled devices to be suspended on a soft tripod substrate. This minimizes the contact area between devices and the deformed substrate, which contributes to a significantly reduced interfacial stress/strain. To uncover the underlying mechanism of such a design, we exploit the energy method to analytically investigate the buckling and postbuckling behaviors of stiff films suspended on a stretchable polymeric substrate with a tripod surface relief structure. Validated by finite element analysis, the predications from such an analytical study elucidate the deformed profile and maximum strain in the buckled and postbuckled stiff thin device films, providing a useful toolkit for future experimental designs.

  10. Glucose Oxidase-Mediated Polymerization as a Platform for Dual-Mode Signal Amplification and Biodetection

    PubMed Central

    Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N

    2011-01-01

    We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335

  11. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  12. Optical behaviors of flexible photonic films via the developed multiple UV-exposed fabrications.

    PubMed

    Chien, Chih-Chieh; Liu, Jui-Hsiang

    2014-07-01

    Recently, extensive investigations are carried out on design of highly controlled architecture and morphology by polymerizing the monomers doped in well-defined liquid crystalline materials, followed by removal of the template liquid crystal molecules. In this communication, a photonic structure used as a new photonic bandgap (PBG) material is developed by imprinting helical structures on polymer matrices through multiple photocrosslinking processes in an induced chiral nematic mesophase using flexible polyethylene terephthalate (PET) films as substrates. The tuning properties of the reflection band of the imprinted cell are achieved using an uniaxial thermo-stretching equipment. Furthermore, refilling of isotropic materials into the imprinted cells tune the reflection light wavelength leads to the change of color. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  14. Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L,D-transpeptidase.

    PubMed

    Lecoq, Lauriane; Bougault, Catherine; Hugonnet, Jean-Emmanuel; Veckerlé, Carole; Pessey, Ombeline; Arthur, Michel; Simorre, Jean-Pierre

    2012-05-09

    β-lactams inhibit peptidoglycan polymerization by acting as suicide substrates of essential d,d-transpeptidases. Bypass of these enzymes by unrelated l,d-transpeptidases results in β-lactam resistance, although carbapenems remain unexpectedly active. To gain insight into carbapenem specificity of l,d-transpeptidases (Ldts), we solved the nuclear magnetic resonance (NMR) structures of apo and imipenem-acylated Bacillus subtilis Ldt and show that the cysteine nucleophile is present as a neutral imidazole-sulfhydryl pair in the substrate-free enzyme. NMR relaxation dispersion does not reveal any preexisting conformational exchange in the apoenzyme, and change in flexibility is not observed upon noncovalent binding of β-lactams (K(D) > 37.5 mM). In contrast, covalent modification of active cysteine by both carbapenems and 2-nitro-5-thiobenzoate induces backbone flexibility that does not result from disruption of the imidazole-sulfhydryl proton interaction or steric hindrance. The chemical step of the reaction determines enzyme specificity since no differences in drug affinity were observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  16. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.

  17. Fabrication of large area flexible nanoplasmonic templates with flow coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qian; Devetter, Brent M.; Roosendaal, Timothy

    Here, we describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7” x 10”) of self-assembled monolayers of polymeric nanospheres onto polyethylene terephthalate (PET) films. Here, three sets of film consisting of different diameter (ranging from 100 to 300 nm) polymeric nanospheres were used to demonstrate the capabilities of this instrument. To improve the surface wettability of the PET substrates during wet-deposition we enhanced the wettability by using a forced airmore » blown-arc plasma treatment system. Both the local microstructure, as confirmed by scanning electron microscopy, describing monolayer and multilayer coverage, and the overall macroscopic uniformity of the resultant nanostructured film were optimized by controlling the relative stage to blade speed and nanosphere concentration. As this is a scalable technique, large area films such as the ones described here, have a variety of crucial emerging applications in areas such as energy, catalysis, and chemical sensing.« less

  18. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  19. The continuous assembly and transfer of nanoelements

    NASA Astrophysics Data System (ADS)

    Kumar, Arun

    Patterned nanoelements on flexible polymeric substrates at micro/nano scale at high rate, low cost, and commercially viable route offer an opportunity for manufacturing devices with micro/nano scale features. These micro/nano scale now made with various nanoelement can enhance the device functionality in sensing and switching due to their improved conductivity and better mechanical properties. In this research the fundamental understanding of high rate assembly and transfer of nanoelements has been developed. To achieve this objective, three sub topics were made. In the first step, the use of electrophoresis for the controlled assembly of CNT's on interdigitated templates has been shown. The time scale of assembly reported is shorter than the previously reported assembly time (60 seconds). The mass deposited was also predicted using the Hamaker's law. It is also shown that pre-patterned CNT's could be transferred from the rigid templates onto flexible polymeric substrates using a thermoforming process. The time scale of transfer is less than one minute (50 seconds) and was found to be dependent on polymer chemistry. It was found that CNT's preferentially transfer from Au electrode to non-polar polymeric substrates (polyurethane and polyethylene terephalathate glycol) in the thermoforming process. In the second step, a novel process (Pulsed Electrophoresis) has been shown for the first time to assist the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 seconds, assembly resolution of 100 nm). The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process. In the third step, a novel integration of high rate pulsed electrophoretic assembly with thermally assisted transfer in a roll-to-roll process has been shown. This technique allowed the whole assembly and transfer process to take place in only 30 seconds. Further, a processing window is developed to control the percent area coverage of PANi with the aid of the belt speed. Also shown is the effect of different types of polymer on the quality of transfer, and it concluded that the transfer is affected by the polymer chemistry.

  20. Flexible graphene transistors for recording cell action potentials

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  1. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  2. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  3. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  4. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

    1980-03-13

    The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

  5. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, Gilbert W.; Lewis, Jr., John; Weber, Gary W.

    1982-01-01

    The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

  6. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Scalable creation of gold nanostructures on high performance engineering polymeric substrate

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo

    2017-12-01

    The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.

  8. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  9. Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.

    PubMed

    Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward

    2012-06-21

    We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.

  10. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  11. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    PubMed

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  12. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping.

    PubMed

    Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen

    2014-04-16

    The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  13. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOχ/ITO electrochromic devices prepared by using magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang

    2016-05-01

    Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.

  14. Laminated structures and methods and compositions for producing same

    DOEpatents

    Fumei, Giancarlo J.; Karabedian, James A.

    1977-04-05

    Methods for bonding two substrates, one of which is polymeric, which comprise coating the surface of at least one substrate with an adhesive composition comprising a major component which is an adhesive for the first substrate and a minor disperse phase which is a solution of a polymer in a solvent for the polymeric substrate and contacting the coated surface of the one substrate with the surface of the other substrate, together with adhesive compositions useful for joining such substrates, laminates so formed, and articles comprised of such laminates.

  15. Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes

    NASA Astrophysics Data System (ADS)

    Goshi, Noah; Castagnola, Elisa; Vomero, Maria; Gueli, Calogero; Cea, Claudia; Zucchini, Elena; Bjanes, David; Maggiolini, Emma; Moritz, Chet; Kassegne, Sam; Ricci, Davide; Fadiga, Luciano

    2018-06-01

    We report on a novel technology for microfabricating 3D origami-styled micro electro-mechanical systems (MEMS) structures with glassy carbon (GC) features and a supporting polymer substrate. GC MEMS devices that open to form 3D microstructures are microfabricated from GC patterns that are made through pyrolysis of polymer precursors on high-temperature resisting substrates like silicon or quartz and then transferring the patterned devices to a flexible substrate like polyimide followed by deposition of an insulation layer. The devices on flexible substrate are then folded into 3D form in an origami-fashion. These 3D MEMS devices have tunable mechanical properties that are achieved by selectively varying the thickness of the polymeric substrate and insulation layers at any desired location. This technology opens new possibilities by enabling microfabrication of a variety of 3D GC MEMS structures suited to applications ranging from biochemical sensing to implantable microelectrode arrays. As a demonstration of the technology, a neural signal recording microelectrode array platform that integrates both surface (cortical) and depth (intracortical) GC microelectrodes onto a single flexible thin-film device is introduced. When the device is unfurled, a pre-shaped shank of polyimide automatically comes off the substrate and forms the penetrating part of the device in a 3D fashion. With the advantage of being highly reproducible and batch-fabricated, the device introduced here allows for simultaneous recording of electrophysiological signals from both the brain surface (electrocorticography—ECoG) and depth (single neuron). Our device, therefore, has the potential to elucidate the roles of underlying neurons on the different components of µECoG signals. For in vivo validation of the design capabilities, the recording sites are coated with a poly(3,4-ethylenedioxythiophene)—polystyrene sulfonate—carbon nanotube composite, to improve the electrical conductivity of the electrodes and consequently the quality of the recorded signals. Results show that both µECoG and intracortical arrays were able to acquire neural signals with high-sensitivity that increased with depth, thereby verifying the device functionality.

  16. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors.

    PubMed

    Guo, Ying; Zheng, Kaiqiang; Wan, Pengbo

    2018-04-01

    The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-Assembled Nanorod Structures on Nanofibers for Textile Electrochemical Capacitor Electrodes with Intrinsic Tactile Sensing Capabilities.

    PubMed

    Shi, HaoTian H; Khalili, Nazanin; Morrison, Taylor; Naguib, Hani E

    2018-05-21

    A novel polyaniline nanorod (PAniNR) three-dimensional structure was successfully grown on flexible polyacrylonitrile (PAN) nanofiber substrate as the electrode material for electrochemical capacitors (ECs), constructed via self-stabilized dispersion polymerization process. The electrode offered desired mechanical properties such as flexibility and bendability, whereas it maintained optimal electrochemical characteristics. The electrode and the assembled EC cell also achieved intrinsic piezoresistive sensing properties, leading to real-time monitoring of excess mechanical pressure and bending during cell operations. The PAniNR@PAN electrodes show an average diameter of 173.6 nm, with the PAniNR growth of 50.7 nm in length. Compared to the electrodes made from pristine PAni, the gravimetric capacitance increased by 39.8% to 629.6 F/g with aqueous acidic electrolyte. The electrode and the assembled EC cell with gel electrolyte were responsive to tensile, compressive, and bending stresses with a sensitivity of 0.95 MPa -1 .

  18. Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering

    NASA Astrophysics Data System (ADS)

    Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig

    The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.

  19. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  20. Role of a GAG Hinge in the Nucleotide-induced Conformational Change Governing Nucleotide Specificity by T7 DNA Polymerase*

    PubMed Central

    Jin, Zhinan; Johnson, Kenneth A.

    2011-01-01

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches. PMID:20978284

  1. Interlinked population balance and cybernetic models for the simultaneous saccharification and fermentation of natural polymers.

    PubMed

    Ho, Yong Kuen; Doshi, Pankaj; Yeoh, Hak Koon; Ngoh, Gek Cheng

    2015-10-01

    Simultaneous Saccharification and Fermentation (SSF) is a process where microbes have to first excrete extracellular enzymes to break polymeric substrates such as starch or cellulose into edible nutrients, followed by in situ conversion of those nutrients into more valuable metabolites via fermentation. As such, SSF is very attractive as a one-pot synthesis method of biological products. However, due to the co-existence of multiple biochemical steps, modeling SSF faces two major challenges. The first is to capture the successive chain-end and/or random scission of the polymeric substrates over time, which determines the rate of generation of various fermentable substrates. The second is to incorporate the response of microbes, including their preferential substrate utilization, to such a complex broth. Each of the above-mentioned challenges has manifested itself in many related areas, and has been competently but separately attacked with two diametrically different tools, i.e., the Population Balance Modeling (PBM) and the Cybernetic Modeling (CM), respectively. To date, they have yet to be applied in unison on SSF resulting in a general inadequacy or haphazard approaches to examine the dynamics and interactions of depolymerization and fermentation. To overcome this unsatisfactory state of affairs, here, the general linkage between PBM and CM is established to model SSF. A notable feature is the flexible linkage, which allows the individual PBM and CM models to be independently modified to the desired levels of detail. A more general treatment of the secretion of extracellular enzyme is also proposed in the CM model. Through a case study on the growth of a recombinant Saccharomyces cerevisiae capable of excreting a chain-end scission enzyme (glucoamylase) on starch, the interlinked model calibrated using data from the literature (Nakamura et al., Biotechnol. Bioeng. 53:21-25, 1997), captured features not attainable by existing approaches. In particular, the effect of various enzymatic actions on the temporal evolution of the polymer distribution and how the microbes respond to the diverse polymeric environment can be studied through this framework. © 2015 Wiley Periodicals, Inc.

  2. Self-Healing Laminate System

    NASA Technical Reports Server (NTRS)

    Keller, Michael W. (Inventor); White, Scott R. (Inventor); Beiermann, Brett A. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  3. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    PubMed Central

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V−1 sec−1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  4. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    NASA Astrophysics Data System (ADS)

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-05-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V-1 sec-1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

  5. Two-Dimensional Fullerene Assembly from an Exfoliated van der Waals Template.

    PubMed

    Lee, Kihong; Choi, Bonnie; Plante, Ilan Jen-La; Paley, Maria V; Zhong, Xinjue; Crowther, Andrew C; Owen, Jonathan S; Zhu, Xiaoyang; Roy, Xavier

    2018-05-22

    Two-dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom-up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C 60 as a polymerizable monomer. The C 60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C 60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C 60 . The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cracking the chocolate egg problem: polymeric films coated on curved substrates

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Lee, Anna; Marthelot, Joel; Balestra, Gioele; Gallaire, François; Reis, Pedro

    2015-11-01

    Inspired by the traditional chocolate egg recipe, we show that pouring a polymeric solution onto spherical molds yields a simple and robust path of fabrication of thin elastic curved shells. The drainage dynamics naturally leads to uniform coatings frozen in time as the polymer cures, which are subsequently peeled off their mold. We show how the polymer curing affects the drainage dynamics and eventually selects the shell thickness and sets its uniformity. To this end, we perform coating experiments using silicon based elastomers, Vinylpolysiloxane (VPS) and Polydimethylsiloxane (PDMS). These results are rationalized combining numerical simulations of the lubrication flow field to a theoretical model of the dynamics yielding an analytical prediction of the formed shell characteristics. In particular, the robustness of the coating technique and its flexibility, two critical features for providing a generic framework for future studies, are shown to be an inherent consequence of the flow field (memory loss). The shell structure is both independent of initial conditions and tailorable by changing a single experimental parameter.

  7. Recent advances of conductive nanocomposites in printed and flexible electronics

    NASA Astrophysics Data System (ADS)

    Khan, Saleem; Lorenzelli, Leandro

    2017-08-01

    Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.

  8. Performance comparison of polarized white light emitting diodes using wire-grid polarizers with polymeric and glass substrates

    NASA Astrophysics Data System (ADS)

    Su, Jung-Chieh; Chou, Shih-Chieh

    2018-03-01

    Polarized white light emitting diodes (WLEDs) packaged with reflective metal wire-grid polarizer of polymeric and glass substrates were investigated. The performance comparison of polymeric wire-grid polarizer film (WGF) and nano wire-grid polarizer (NWGP) with glass substrate was evaluated. The transverse electric field (TE) polarization transmittance of WGF is less than that of NWGP due to its smaller grid parameters. Despite of the higher duty cycle of WGF, the angular-dependent extinction ratio (ER) of the polarized WLEDs (PWLEDs) with WGF is higher than that of with NWGP. Regarding increasing drive currents, the PWLEDs with NWGP had better color stability than that with WGF due to better substrate thermal stability. In summary, linewidth, period and substrate material are the crucial factors for the PWLED packaging using wire grid polarizer.

  9. Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Bickauskaite, G.; Gertus, T.; Danilevicius, P.; Paipulas, D.; Rutkauskas, M.; Gilbergs, H.; Baltriukiene, D.; Bukelskis, L.; Širmenis, R.; Bukelskiene, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-04-01

    A tightly focused ultrafast pulsed laser beam is guided into the volume of the photosensitive material and induces nonlinear photomodification. By translating the sample, the position of the focus is changed relatively, thus point-by-point complex 3D structures can be written inside the bulk. In this report, we present a Laser Two-Photon Polymerization (LTPP) setup for three-dimensional micro/nanostructuring for applications in photonics, microoptics, micromechanics, microfluidics and biomedicine. This system enables fabrication of functional devices over a large area (up to several cm in lateral size) with reproducible sub-micrometer resolution (up to 200 nm). In our experiments a Yb:KGW active media laser oscillator (75 fs, 200 kW, 515 nm frequency doubled, 80 MHz) was used as an irradiation source. The sample was mounted on XYZ wide range linear motor driven positioning stages having 10 nm positioning resolution. These stages enable an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support a linear scanning speed of up to 300 mm/s. Control of all the equipment was automated via custom made computer software "3D-Poli" specially designed for LTPP applications. The model of the structure can be imported as CAD file, this enables rapid and flexible structuring out of various photopolymers like ORMOCERs, ORMOSILs, acrylates and PEGDAs which are commonly used in conventional UV mask, nanoimprint and μ-stereolithographies. In this paper, we demonstrate polymeric microstructures fabricated over a large area on glass, plastic and metal substrates. This opens a way to produce functional devices like photonic crystals, microlenses, micromechanic and microfluidic components and artificial scaffolds as templates for cell growth. Additionally, results of primary myogenic stem cells expanding on microfabricated polymeric scaffolds are provided. Cell proliferation tests show the material and structure to be biocompatible for the biomedical practice.

  10. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.

    PubMed

    Sonati, Srinivasulu; Bhutoria, Savita; Prabhakaran, Muthuchidambaran; Acharya, Seetharama A

    2018-02-01

    A new variant of HbS, HbS-Einstein with a deletion of segment α 23-26 in the B-helix, has been assembled by semisynthetic approach. B-helix of the α chain of cis αβ-dimer of HbS plays dominant role in the quinary interactions of deoxy HbS dimer. This B-helix is the primary scaffold that provides the orientation for the side chains of contact residues of this intermolecular contact domain. The design of HbS-Einstein has been undertaken to map the influence of perturbation of molecular surface topology and the flexibility of surface residues in the polymerization. The internal deletion exerts a strong inhibitory influence on Val-6 (β)-dependent polymerization, comparable to single contact site mutations and not for complete neutralization of Val-6(β)-dependent polymerization. The scaffold modification in cis-dimer is inhibitory, and is without any effect when present on the trans dimer. The flexibility changes in the surface topology in the region of scaffold modification apparently counteracts the intrinsic polymerization potential of the molecule. The inhibition is close to that of Le Lamentin mutation [His-20 (α) → Gln] wherein a mutation engineered without much change in flexibility of the contact domain. Interestingly, the chimeric HbS with swine-human chimeric α chain with multiple non-conservative mutations completely inhibits the Val-6(β)-dependent polymerization. The deformabilities of surface topology of chimeric HbS are comparable to HbS in spite of the multiple contact site mutations in the α-chain. We conclude that the design of antisickling Hbs for gene therapy of sickle cell disease should involve multiple mutations of intermolecular contact sites.

  11. Multilayered membranes with tuned well arrays to be used as regenerative patches.

    PubMed

    Martins, Nádia I; Sousa, Maria P; Custódio, Catarina A; Pinto, Vânia C; Sousa, Paulo J; Minas, Graça; Cleymand, Franck; Mano, João F

    2017-07-15

    Membranes have been explored as patches in tissue repair and regeneration, most of them presenting a flat geometry or a patterned texture at the nano/micrometer scale. Herein, a new concept of a flexible membrane featuring well arrays forming pore-like environments to accommodate cell culture is proposed. The processing of such membranes using polysaccharides is based on the production of multilayers using the layer-by-layer methodology over a patterned PDMS substrate. The detached multilayered membrane exhibits a layer of open pores at one side and a total thickness of 38±2.2µm. The photolithography technology used to produce the molds allows obtaining wells on the final membranes with a tuned shape and micro-scale precision. The influence of post-processing procedures over chitosan/alginate films with 100 double layers, including crosslinking with genipin or fibronectin immobilization, on the adhesion and proliferation of human osteoblast-like cells is also investigated. The results suggest that the presence of patterned wells affects positively cell adhesion, morphology and proliferation. In particular, it is seen that cells colonized preferentially the well regions. The geometrical features with micro to sub-millimeter patterned wells, together with the nano-scale organization of the polymeric components along the thickness of the film will allow to engineer highly versatile multilayered membranes exhibiting a pore-like microstructure in just one of the sides, that could be adaptable in the regeneration of multiple tissues. Flexible multilayered membranes containing multiple micro-reservoirs are found as potential regenerative patches. Layer-by-layer (LbL) methodology over a featured PDMS substrate is used to produce patterned membranes, composed only by natural-based polymers, that can be easily detached from the PDMS substrate. The combination of nano-scale control of the polymeric organization along the thickness of the chitosan/alginate (CHT/ALG) membranes, provided by LbL, together with the geometrical micro-scale features of the patterned membranes offers a uniqueness system that allows cells to colonize 3-dimensionally. This study provides a promising strategy to control cellular spatial organization that can face the region of the tissue to regenerate. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Structural basis of reverse nucleotide polymerization

    PubMed Central

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Nucleotide polymerization proceeds in the forward (5′-3′) direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3′-5′) would present a “simpler” solution. Interestingly, reverse (3′-5′) nucleotide addition is catalyzed by the tRNA maturation enzyme tRNAHis guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNAHis guanylyltransferase-tRNAHis complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme’s active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5′-3′ polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process. PMID:24324136

  13. Flexible and mechanical strain resistant large area SERS active substrates

    NASA Astrophysics Data System (ADS)

    Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping

    2012-05-01

    We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.

  14. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOEpatents

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2012-01-24

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  15. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOEpatents

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  16. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  17. FAST TRACK COMMUNICATION: Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Ravagnan, Luca; Divitini, Giorgio; Rebasti, Sara; Marelli, Mattia; Piseri, Paolo; Milani, Paolo

    2009-04-01

    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd clusters are implanted in the polymer and form a continuous layer extending for several tens of nanometres beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared with metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.

  18. The Effect of Inkjet Printing over Polymeric Films as Potential Buccal Biologics Delivery Systems.

    PubMed

    Montenegro-Nicolini, Miguel; Reyes, Patricio E; Jara, Miguel O; Vuddanda, Parameswara R; Neira-Carrillo, Andrónico; Butto, Nicole; Velaga, Sitaram; Morales, Javier O

    2018-06-22

    The buccal mucosa appears as a promissory route for biologic drug administration, and pharmaceutical films are flexible dosage forms that can be used in the buccal mucosa as drug delivery systems for either a local or systemic effect. Recently, thin films have been used as printing substrates to manufacture these dosage forms by inkjet printing. As such, it is necessary to investigate the effects of printing biologics on films as substrates in terms of their physical and mucoadhesive properties. Here, we explored solvent casting as a conventional method with two biocompatible polymers, hydroxypropyl methylcellulose, and chitosan, and we used electrospinning process as an electrospun film fabrication of polycaprolactone fibers due to its potential to elicit mucoadhesion. Lysozyme was used as biologic drug model and was formulated as a solution for printing by thermal inkjet printing. Films were characterized before and after printing by mechanical and mucoadhesive properties, surface, and ultrastructure morphology through scanning electron microscopy and solid state properties by thermal analysis. Although minor differences were detected in micrographs and thermograms in all polymeric films tested, neither mechanical nor mucoadhesive properties were affected by these differences. Thus, biologic drug printing on films was successful without affecting their mechanical or mucoadhesive properties. These results open way to explore biologics loading on buccal films by inkjet printing, and future efforts will include further in vitro and in vivo evaluations.

  19. Novel polyelectrolytes

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)

    1978-01-01

    Cationic polyelectrolytes are formed by the polymerization in absence of oxygen of a monomer of the general formula: ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers. Segments of the linear polymer may be attached to or formed in the presence of polyfunctional reactive tertiary amines or halogen polymeric substrates or polyfunctional lower molecular reactive polyfunctional substrates to form branched or star polyelectrolytes by a quaternization polymerization reaction.

  20. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion.

    PubMed

    Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin

    2017-11-01

    Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.

    PubMed

    Hussain, Aftab M; Hussain, Muhammad M

    2016-06-01

    Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines

    DOEpatents

    Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX

    2012-06-19

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  3. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection

    NASA Astrophysics Data System (ADS)

    Cho, Sunghun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2014-11-01

    This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets.This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets. Electronic supplementary information (ESI) available: FE-SEM images of PSS-doped PANI/graphene nanocomposites and graphene sheets, FT-IR spectra of PSS with different Mw, XRD patterns of PSS-doped PANI polymerized with different Mw of PSS, FT-IR spectra of GO, RGO, PSS-coated GO, and PSS-coated RGO, fully XPS scanned spectra of PSS-doped PANI/graphene nanocomposites, cyclic voltammogram of PSS-doped PANI/graphene nanocomposites at different scan rates (10 to 50 mV-1), and I-V characteristics of PSS-doped PANI/graphene nanocomposites with a thickness of 5 μm. See DOI: 10.1039/c4nr04413d

  4. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    DOEpatents

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  5. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  6. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  7. Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics.

    PubMed

    Rahimi, Rahim; Ochoa, Manuel; Ziaie, Babak

    2016-07-06

    In this Research Article, we demonstrate a facile method for the fabrication of porous-carbon/silver nanocomposites using direct laser writing on polymeric substrates. Our technique uses a combination of CO2 laser-induced carbonization and selective silver deposition on a polyimide sheet to create flexible highly conductive traces. The localized laser irradiation selectively converts the polyimide to a highly porous and conductive carbonized film with superhydrophilic wettability. The resulting pattern allows for selective trapping of aqueous silver ionic ink solutions into the carbonized regions, which are converted to silver nanoparticle fillers upon an annealing step. Elemental and surface morphology analysis via XRD and SEM reveals a uniform coating of Ag nanoparticles on the porous carbon. The Ag/C composite lowers the sheet resistance of the original laser carbonized polyimide from 50 to 0.02 Ω/□. The resulting patterns are flexible and electromechanically robust with less than 0.6 Ω variation in resistance after >15000 bending flexion cycles at a radius of curvature of 5 mm. Furthermore, using this technique, we demonstrate the fabrication of a wireless resonant pressure sensor capable of detecting pressures ranging from 0 to 97 kPa with an average sensitivity of -26 kHz/kPa.

  8. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de

    2013-11-07

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order tomore » define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design.« less

  9. Conductive inks for metalization in integrated polymer microsystems

    DOEpatents

    Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX

    2006-02-28

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  10. The role of the substrate in micro-scale scratching of epoxy-polyester films

    NASA Astrophysics Data System (ADS)

    Barletta, M.; Gisario, A.

    2011-02-01

    The present investigation analyzes the deformation response of electrostatically sprayed epoxy-polyester powder coatings by 'in situ' micro-mechanical tests. The characterization of the performance of the coatings was carried out by micro-scale scratching, by varying the indenter type, the applied load and the sliding speed. The tests were carried out on polymeric coatings deposited on as-received, micro and macro-corrugated AISI 304 stainless steel substrates and 'rigidly adhered' to them. Further tests were performed on 'free-standing' coatings, that is, on the as-received metal substrates pre-coated with an intermediate layer of silicon-based heat curable release coating. Experimental data allow us to evaluate the influence of the contact conditions between substrate and indenter and the role of the loading conditions on the scratch and penetration resistance of the epoxy-polyester coatings. The different responses of the polymeric coatings when deposited on untreated or pre-treated substrates as well as on an intermediate layer of release coating, contribute to a better understanding of the intrinsic roles of the polymeric material and substrate as well as the influence of the interfacial adhesion between coating and substrate.

  11. Chain polymerization of diacetylene compound multilayer films on the topmost surface initiated by a scanning tunneling microscope tip.

    PubMed

    Takajo, Daisuke; Okawa, Yuji; Hasegawa, Tsuyoshi; Aono, Masakazu

    2007-05-08

    Chain polymerizations of diacetylene compound multilayer films on graphite substrates were examined with a scanning tunneling microscope (STM) at the liquid/solid interface of the phenyloctane solution. The first layer grew very quickly into many small domains. This was followed by the slow formation of the piled up layers into much larger domains. Chain polymerization on the topmost surface layer could be initiated by applying a pulsed voltage between the STM tip and the substrate, usually producing a long polymer of submicrometer length. In contrast, polymerizations on the underlying layer were never observed. This can be explained by a conformation model in which the polymer backbone is lifted up.

  12. Passive UHF RFID Tag for Multispectral Assessment

    PubMed Central

    Escobedo, Pablo; Carvajal, Miguel A.; Capitán-Vallvey, Luis F.; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J.

    2016-01-01

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening. PMID:27428973

  13. Passive UHF RFID Tag for Multispectral Assessment.

    PubMed

    Escobedo, Pablo; Carvajal, Miguel A; Capitán-Vallvey, Luis F; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J

    2016-07-14

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening.

  14. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  15. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  16. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  17. Cellulose Nanofiber Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2012-01-01

    Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...

  18. Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2013-01-01

    Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...

  19. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    PubMed

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  20. DNA-nucleobases: Gate Dielectric/Passivation Layer for Flexible GFET-based Sensor Applications (Postprint)

    DTIC Science & Technology

    2015-09-24

    kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their

  1. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates.

    PubMed

    Wang, Bin-Bin; Liu, Xue-Ting; Chen, Jian-Meng; Peng, Dang-Cong; He, Feng

    2018-02-01

    Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce. This study systematically explored the impacts of monomeric (Mono-), low polymeric (LoP-) and high polymeric (HiP-) ProS on compositions and functional groups of EPS in activated sludge. The results showed that the change of polymerization degree of ProS significantly altered the composition of EPS. Compared to EPS Mono-ProS , the proportion of proteins in EPS LoP-ProS and EPS HiP-ProS increased by 12.8% and 27.7%, respectively, while that of polysaccharides decreased by 22.9% and 63.6%, respectively. Moreover, the proportion of humic compounds in EPS LoP-ProS and EPS HiP-ProS were ∼6 and ∼16-fold higher than that in EPS Mono-ProS , respectively. The accumulation of humic compounds in EPS increased the unsaturation degree of EPS molecules, and thereby reduced the energy requirement for electrons transition of amide bonds and aromatic groups. Size exclusion chromatography (SEC) analyses detected more molecular clusters in EPS HiP-ProS , indicating more complex composition of EPS in HiP-ProS fed activated sludge. Spectroscopic characterization revealed the dominance of hydrocarbon, protein, polysaccharide and aromatic associated bonds in all three EPS. Nevertheless, with the increase of polymerization degree of ProS, the protein associated bonds (such as CONH, CO, NC, NH) increased, while the polysaccharide associated bonds (such as COC, COH, OCOH) decreased. This paper paves a path to understand the role of ProS in affecting the production and characteristics of EPS in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques.

    PubMed

    Genina, Natalja; Fors, Daniela; Vakili, Hossein; Ihalainen, Petri; Pohjala, Leena; Ehlers, Henrik; Kassamakov, Ivan; Haeggström, Edward; Vuorela, Pia; Peltonen, Jouko; Sandler, Niklas

    2012-10-09

    We combined conventional inkjet printing technology with flexographic printing to fabricate drug delivery systems with accurate doses and tailored drug release. Riboflavin sodium phosphate (RSP) and propranolol hydrochloride (PH) were used as water-soluble model drugs. Three different paper substrates: A (uncoated woodfree paper), B (triple-coated inkjet paper) and C (double-coated sheet fed offset paper) were used as porous model carriers for drug delivery. Active pharmaceutical ingredient (API) containing solutions were printed onto 1 cm × 1 cm substrate areas using an inkjet printer. The printed APIs were coated with water insoluble polymeric films of different thickness using flexographic printing. All substrates were characterized with respect to wettability, surface roughness, air permeability, and cell toxicity. In addition, content uniformity and release profiles of the produced solid dosage forms before and after coating were studied. The substrates were nontoxic for the human cell line assayed. Substrate B was smoothest and least porous. The properties of substrates B and C were similar, whereas those of substrate A differed significantly from those of B, C. The release kinetics of both printed APIs was slowest from substrate B before and after coating with the water insoluble polymer film, following by substrate C, whereas substrate A showed the fastest release. The release rate decreased with increasing polymer coating film thickness. The printed solid dosage forms showed excellent content uniformity. So, combining the two printing technologies allowed fabricating controlled-release oral dosage forms that are challenging to produce using a single technique. The approach opens up new perspectives in the manufacture of flexible doses and tailored drug-delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A molecular dynamics study of Beta-Glucosidase B upon small substrate binding.

    PubMed

    Mazlan, Nur Shima Fadhilah; Ahmad Khairudin, Nurul Bahiyah

    2016-07-01

    Paenibacillus polymyxa β-glucosidase B (BglB), belongs to a GH family 1, is a monomeric enzyme that acts as an exo-β-glucosidase hydrolysing cellobiose and cellodextrins of higher degree of polymerization using retaining mechanism. A molecular dynamics (MD) simulation was performed at 300 K under periodic boundary condition for 5 ns using the complexes structure obtained from previous docking study, namely BglB-Beta-d-glucose and BglB-Cellobiose. From the root-mean-square deviation analysis, both enzyme complexes were reported to deviate from the initial structure in the early part of the simulation but it was stable afterwards. The root-mean-square fluctuation analysis revealed that the most flexible regions comprised of the residues from 26 to 29, 43 to 53, 272 to 276, 306 to 325 and 364 to 367. The radius of gyration analysis had shown the structure of BglB without substrate became more compact towards the end of the simulation compare to other two complexes. The residues His122 and Trp410 were observed to form stable hydrogen bond with occupancy higher than 10%. In conclusion, the behaviour of BglB enzyme towards the substrate binding was successfully explored via MD simulation approaches.

  4. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  5. Preparation and surface characterization of plasma-treated and biomolecular-micropatterned polymer substrates

    NASA Astrophysics Data System (ADS)

    Langowski, Bryan Alfred

    A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation in vivo and ex vivo. As the physical and chemical cues presented by micropatterned substrates control resulting cellular behavior, characterization of these cues via surface-sensitive analytical techniques is essential in developing cell scaffolds that mimic complex in vivo physicochemical environments. The initial focus of this thesis is the chemical and physical characterization of plasma-treated, microcontact-printed (muCP) polymeric substrates used to direct nerve cell behavior. Unmodified and oxygen plasma-treated poly(methyl methacrylate) (PMMA) substrates were analyzed by surface sensitive techniques to monitor plasma-induced chemical and physical modifications. Additionally, protein-micropattern homogeneity and size were microscopically evaluated. Lastly, poly(dimethylsiloxane) (PDMS) stamps and contaminated PMMA substrates were characterized by spectroscopic and microscopic methods to identify a contamination source during microcontact printing. The final focus of this thesis is the development of microscale plasma-initiated patterning (muPIP) as a versatile, reproducible micropatterning method. Using muPIP, polymeric substrates were micropatterned with several biologically relevant inks. Polymeric substrates were characterized following muPIP by surface-sensitive techniques to identify the technique's underlying physical and chemical bases. In addition, neural stem cell response to muPIP-generated laminin micropatterns was microscopically and biologically evaluated. Finally, enhanced versatility of muPIP in generating microscale poly-L-lysine gradients was demonstrated.

  6. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer.

    PubMed

    Zhao, Rui; Sun, Ying

    2018-02-03

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10 -7 nm -1 , respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.

  7. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer

    PubMed Central

    Sun, Ying

    2018-01-01

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10−7 nm−1, respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances. PMID:29401669

  8. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  9. Method of fabrication of microarray of gel-immobilized compounds on a chip by copolymerization

    DOEpatents

    Mirzabekov, Andrei; Timofeev, Edouard; Vasiliskov, Vadim

    2003-12-02

    A method for making polymerized molecules is provided whereby a solution containing monomer is contacted to a solid substrate so as to form discrete accumulations of the monomer on the substrate; and the accumulations are contacted with a polymerizing agent, wherein the agent is dispersed in a vehicle which prevents cross contamination of the accumulations.

  10. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  11. Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C.; Gaines, G. B.; Noel, G. T.; Sliemers, F. A.; Nance, G. P.; Bunk, A. R.; Brockway, M. C.

    1978-01-01

    Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation.

  12. Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Buyuktanir, Ebru Aylin

    My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of SmA LCs in three-dimension by investigating the characteristic vibrational bands of LC molecules. CRM provides a precise characterization of the molecular order at different depths of the LC films. I examined the director patterns of focal conic defects of smectic A LC, colloidal smectic A LC systems, and the field-oriented nematic LC in the horizontal and vertical planes.

  13. CVD Polymers for Devices and Device Fabrication.

    PubMed

    Wang, Minghui; Wang, Xiaoxue; Moni, Priya; Liu, Andong; Kim, Do Han; Jo, Won Jun; Sojoudi, Hossein; Gleason, Karen K

    2017-03-01

    Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optical connections on flexible substrates

    NASA Astrophysics Data System (ADS)

    Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter

    2006-04-01

    Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.

  15. Metallization of Various Polymers by Cold Spray

    NASA Astrophysics Data System (ADS)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  16. Reciprocating sliding wear evaluation of a polymeric/coating tribological system

    NASA Astrophysics Data System (ADS)

    Braza, J. F.; Furst, R. E.

    1993-04-01

    Reciprocating screening tests aimed at simulating a control bearing in a contaminated environment to discern the optimum polymeric/coating combination are described. The polymeric/coating systems were compared with the wear of a baseline phenolic impregnated polytetrafluoroethylene (PTFE) polyester woven fabric composite against an uncoated stainless steel substrate. The polymeric composites under consideration include a polyamide-imide (PAI), a polybenzimidazole, and an injection-moldable PEEK. Results indicate that the system of either PEEK or PAI with an E-Ni-PTFE- or TiN-coated substrate produced the best tribological system. These two composites also exhibited a significant improvement over the baseline fabric when tested against the high-velocity oxygen-fuel thermal spray coating. To discern better the optimum polymeric composite/coating system, full-scale testing must be conducted to study system dynamics, vibrations, counterface hardness and roughness, temperature, external environment and application specific conditions.

  17. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  18. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki

    2017-02-01

    We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.

  19. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    PubMed

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  20. Laser-induced crystallization of calcium phosphate coatings on polyethylene (PE).

    PubMed

    Feddes, Bastiaan; Vredenberg, Arjen M; Wehner, Martin; Wolke, Joop C G; Jansen, John A

    2005-05-01

    Calcium phosphate (CaP) coatings are used for obtaining a desired biological response. Usually, CaP coatings on metallic substrates are crystallized by annealing at temperatures of at least 400-600 degrees C. For polymeric substrates, this annealing is not possible due to the low melting temperatures. In this work, we present a more suitable method for obtaining crystalline coatings on polymeric substrates, namely laser crystallization. We were successful in obtaining hydroxyapatite coatings on polyethylene. Because of the UV transmission characteristics of the CaP coatings, the use of a low wavelength (157 nm) F(2) laser was necessary for this. As a result of the laser treatment, the CaP coating broke up into islands. The cracks between the islands became larger and the surface became porous with increasing laser energy. The mechanism behind the formation of this morphology did not become clear. However, the fact that crystalline CaP coatings can be obtained on polymeric substrates in an easy way, possibly allows for the development of new products.

  1. Ultra-slim flexible glass for roll-to-roll electronic device fabrication

    NASA Astrophysics Data System (ADS)

    Garner, Sean; Glaesemann, Scott; Li, Xinghua

    2014-08-01

    As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.

  2. Enzymatic synthesis of polymers containing nicotinamide mononucleotide

    NASA Technical Reports Server (NTRS)

    Liu, Rihe

    1995-01-01

    Nicotinamide mononucleoside 5'-diphosphate in its reduced form is an excellent substrate for polynucleotide phosphorylase from Micrococcus luteus both in de novo polymerization reactions and in primer extension reactions. The oxidized form of the diphosphate is a much less efficient substrate; it can be used to extend primers but does not oligomerize in the absence of a primer. The cyanide adduct of the oxidized substrate, like the reduced substrate, polymerizes efficiently. Loss of cyanide yields high molecular weight polymers of the oxidized form. Terminal transferase from calf thymus accepts nicotinamide mononucleoside 5'-triphosphate as a substrate and efficiently adds one residue to the 3'-end of an oligodeoxynucleotide. T4 polynucleotide kinase accepts oligomers of nicotinamide mononucleotide as substrates. However, RNA polymerases do not incorporate nicotinamide mononucleoside 5'-triphosphate into products on any of the templates that we used.

  3. Enzymatic Synthesis of Polymers Containing Nicotinamide Mononucleotide

    NASA Technical Reports Server (NTRS)

    Liu, Rihe; Orgel, Leslie E.

    1995-01-01

    Nicotinamide mononucleoside 5'-diphosphate in its reduced form is an excellent substrate for polynucleotide phosphorylase from Micrococcus luteus both in de novo polymerization reactions and in primer extension reactions. The oxidized form of the diphosphate is a much less efficient substrate; it can be used to extend primers but does not oligomerize in the absence of a primer. The cyanide adduct of the oxidized substrate, like the reduced substrate, polymerizes efficiently. Loss of cyanide yields high molecular weight polymers of the oxidized form. Terminal transferase from calf thymus accepts nicotinamide mononucleoside 5'-triphosphate as a substrate and efficiently adds one residue to the 3'-end of an oligodeoxynucleotide. T4 polynucleotide kinase accepts oligomers of nicotinamide mononucleotide as substrates. However, RNA polymerases do not incorporate nicotinamide mononucleoside 5'-triphosphate into products on any of the templates that we used.

  4. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  5. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  6. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier andmore » mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.« less

  7. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    NASA Astrophysics Data System (ADS)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  8. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    NASA Astrophysics Data System (ADS)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  9. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    PubMed Central

    Vidor, Fábio F.; Meyers, Thorsten; Hilleringmann, Ulrich

    2016-01-01

    Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates. PMID:28335282

  10. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications.

    PubMed

    Vidor, Fábio F; Meyers, Thorsten; Hilleringmann, Ulrich

    2016-08-23

    Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high- k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the I ON / I OFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V / V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates.

  11. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  12. Thin-film solar cell fabricated on a flexible metallic substrate

    DOEpatents

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  13. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOEpatents

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  14. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    NASA Astrophysics Data System (ADS)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  15. Time-dependent areal mass density for disc-shaped substrates in a corona-activated flow stream at atmospheric pressure for argon/acetylene admixture

    NASA Astrophysics Data System (ADS)

    Xie, Shuzheng; Islam, Rokibul; Hussein, Bashir; Englund, Karl; Pedrow, Patrick

    2015-09-01

    In this research we use a 40-needle array energized with 60 Hz AC voltage in the range 5 to 15 kV RMS. Plasma processing takes place downstream from a grounded planar screen (the opposing electrode). The needle-to-screen gap is in the range 4 to 10 cm and its E-field generates weakly ionized plasma via streamers and back corona. Deposited material is plasma-polymerized acetylene. Substrates are potassium bromide, mica, wood, paper, and gold-covered solids. Substrate chemical species influence the efficiency with which the disc amasses plasma-polymerized material, at least until the substrate is fully covered with film. Early plasma-polymerization is accompanied by nucleation-site-dominated nodules but longer term deposition results in a film that fully covers the substrate. We will report on time-dependent areal mass density associated with run times in the range 5-60 minutes. Film thickness will be measured using instruments that include visible light microscopy, TEM, and SEM. Others in our research group are studying areal mass density for early times (1-5 minutes) when nodule growth (at nucleation sites) dominates the deposition process.

  16. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    NASA Astrophysics Data System (ADS)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  17. Metal-assisted exfoliation (MAE): green process for transferring graphene to flexible substrates and templating of sub-nanometer plasmonic gaps (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.

    2015-09-01

    This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.

  18. AM OLED using a-Si TFT backplane on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Schmidt, John; Roush, Jerry; Chanley, Charles; Dodd, Sonia R.

    2004-09-01

    Amorphous silicon TFT technology continues to show promise for fabricating large area high resolution flexible AM OLED displays. This paper describes the recent progress in the flexible AM OLED development efforts at Honeywell since our publication in this conference's proceedings in 2003, describing the feasibility of fabricating a 64x64 pixel AM OLED on a flexible plastic substrate. In this paper we describe the design, and fabrication of a 160x160(x3) pixel AM OLED on a flexible plastic substrate with an equivalent 80cgpi resolution. Flexibility characteristics of the fabricated displays are discussed. Further advances and improvements required for extending the size and resolution of flexible AM OLED displays are discussed.

  19. Self-Supported Crack-Free Conducting Polymer Films with Stabilized Wrinkling Patterns and Their Applications

    PubMed Central

    Xie, Jixun; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Zhao, Jingxin; Lu, Conghua

    2016-01-01

    Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles. This enhancing effect is attributed to the modification of internal stresses by the interpenetrated PANI/PPy microstructures. Consequently, a crack-free film with stable controlled wrinkles such as the wavelength, orientation and spatial location has been achieved. Moreover, the wrinkling PANI/PPy film can be removed from the initially deposited substrate to become free-standing. It can be further transferred onto target substrates to fabricate hierarchical patterns and functional devices such as flexible electrodes, gas sensors, and surface-enhanced Raman scattering substrates. This simple universal enhancing strategy has been extended to fabrication of other PANI-based composite systems with crack-free film integrity and stabilized surface patterns, irrespective of pattern types and film geometries. PMID:27827459

  20. High-efficiency robust perovskite solar cells on ultrathin flexible substrates

    PubMed Central

    Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang

    2016-01-01

    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664

  1. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    PubMed

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  2. Pentacene Organic Thin-Film Transistors on Flexible Paper and Glass Substrates

    DTIC Science & Technology

    2014-02-12

    FEB 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Pentacene organic thin - film transistors on flexible...Nanotechnology 25 (2014) 094005 (7pp) doi:10.1088/0957-4484/25/9/094005 Pentacene organic thin - film transistors on flexible paper and glass substrates Adam T...organic thin - film transistors (OTFTs) were fabricated on several types of flexible substrate: commercial photo paper, ultra-smooth specialty paper and

  3. Next generation solar cells using flexible transparent electrodes based on silver nanowires and grapheme

    NASA Astrophysics Data System (ADS)

    Alomairy, Sultan

    Organic photovoltaic (OPV) devices have been developed extensively and optimised due to the use of nanomaterials in their construction. More recently, the demand for such devices to be flexible and mechanically robust has been a major area of research. Presently, Indium Tin Oxide (ITO) is the material that is used almost exclusively for transparent electrode. However, it has several drawbacks such as brittleness, high refractive index and high processing temperature. Furthermore, the price of ITO has been highly volatile due to scarcity of indium resources and the increased consumption of the material. Therefore, cheap, flexible and solution-processed transparent conductors are required for emerging optoelectronic devices with flexible construction which can be promising for wearable or environmentally adaptable devices purposes such as flexible solar cells and displays. Therefore, over the past decade an alternative material has been sought intensively, particularly in the need for producing large area flexible transparent electrodes. Many materials have been investigated but most investigations have focused on carbon nanotube (CNT), graphene flakes and metallic nanowires. Silver nanowires (Ag NWs) networks have been proven to show a high electrical conductivity with high optical transmittance. This special characteristic is desirable in transparent conductive electrodes in optoelectronic applications such as solar cells, light emitting diodes, and touch screen. On the other hand, Polymeric substrates that act as a non-brittle scaffold as well as protective packaging of the OPV are an essential element for such an “All-plastic” device. However, for such applications where the coating should be relatively hard a bottleneck to fabricating large area homogeneous films is associated with the formation of cracks as a result of local mismatches in mechanical properties during film formation. In this work, the fabrication and characterization of flexible transparent electrodes of Ag NWs on flexible substrates by spray deposition technique have been described. Furthermore, a way to enhance the electrical and mechanical properties of the Ag NWs transparent electrodes by incorporating a low density ensemble of graphene on top of the metal electrode networks using the Langmuir-Schafer has been achieved. Interestingly, the electrical conductivity in these hybrid electrodes is stable over relatively large strains during mechanical agitation indicating that such electrodes may have important application in future applications. Finally, producing crack-free monolayer latex over large area has been fabricated and characterised. Therefore, the polymer latex thin film has promising applications as purposes of hard coatings.

  4. Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing

    PubMed Central

    2012-01-01

    Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096

  5. Mechanics of hard films on soft substrates

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu

    2009-12-01

    Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the strain they are subject to. Instead of using blanket films that fail at strains less than i%, we have patterned ceramic films into a lattice of periodic, isolated islands. Failure modes such as channel cracking, debonding, and wrinkling have been identified. Island behaviors are controlled by factors such as island size, thickness, and elastic mismatch with the substrate. A very soft interlayer between the islands and the underlying polyimide substrate reduces strains in the islands by orders of magnitude. Using this approach, substrates with arrays of 200 x 200 mum2 large SiNx islands were stretched beyond 20% without cracking or debonding the islands. In summary, highly stretchable thin metal films and ceramic island arrays supported by polymer substrates have been achieved, along with mechanistic understandings of their deformation and failure mechanisms.

  6. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis.

    PubMed

    Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim

    2009-03-01

    The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.

  7. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.; Coupeau, C.; Colin, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  8. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  9. Understanding cracking failures of coatings: A fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness were found upon impact loading. This analysis provides a basis for a quantitative approach to measuring coating toughness.

  10. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and optimizing the block copolymer lithography process thus enabled the top-down fabrication of continuous two-dimensional gold networks with nanoscale properties. The lamellar structure of these networks was found to confer unique mechanical properties on the nanowire networks and suggests that materials templated via this method may be excellent candidates for integration into stretchable and flexible devices.

  11. Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

    NASA Astrophysics Data System (ADS)

    Coman, D.; Vrînceanu, N.; Oancea, S.; Rîmbu, C.

    2016-08-01

    A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrates dyed by means of laboratory scaled classic methodology with extracts from black currant fruits and green walnut shells, with the assistance of conventional and biomordants (copper sulphate, citric and tannic acids). The assistance of biomordant in the dyeing process seems to conduct to improved synergetic colouring and antibacterial performances. The main results demonstrated that the extract of green walnut shells reinforced by the biomordants solutions expressed the best antimicrobial behaviour. The present research is a milestone in the identification of potential technological alternatives applied in dyeing of synthetic and natural textile supports, quantified and controlled by antimicrobial response correlated with colorimetric features.

  12. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  13. Measurement and Analysis of in vitro Actin Polymerization

    PubMed Central

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  14. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    PubMed

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  15. Polymeric Coating of Supporting Substrates Facilities: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn more about the New Source Performance Standards (NSPS) rule for polymeric coating by reading the rule summary, rule history and the code of federal regulations subpart. Information on related rules is also on this page.

  16. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md

    2016-05-11

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.

  17. Metallization of electronic insulators

    DOEpatents

    Gottesfeld, Shimshon; Uribe, Francisco A.

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  18. Flexible packaging for microelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less

  19. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  20. Development of flexible Ni80Fe20 magnetic nano-thin films

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.

    2017-11-01

    Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.

  1. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  2. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  3. Method of making controlled morphology metal-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less

  4. Flexible thin-film transistors on plastic substrate at room temperature.

    PubMed

    Han, Dedong; Wang, Wei; Cai, Jian; Wang, Liangliang; Ren, Yicheng; Wang, Yi; Zhang, Shengdong

    2013-07-01

    We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.

  5. Photopolymerization of Dienoyl Lipids Creates Planar Supported Poly(lipid) Membranes with Retained Fluidity.

    PubMed

    Orosz, Kristina S; Jones, Ian W; Keogh, John P; Smith, Christopher M; Griffin, Kaitlyn R; Xu, Juhua; Comi, Troy J; Hall, H K; Saavedra, S Scott

    2016-02-16

    Polymerization of substrate-supported bilayers composed of dienoylphosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability; however, the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl-phosphatidylcholine (mono-SorbPC), bis-dienoyl-phosphatidylcholine (bis-DenPC), and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity; however, measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate interleaflet bonding. The D values measured after polymerization were 0.1-0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV-polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed.

  6. Photopolymerization of dienoyl lipids creates planar supported poly(lipid) membranes with retained fluidity

    PubMed Central

    Orosz, Kristina S.; Jones, Ian W.; Keogh, John P.; Smith, Christopher M.; Griffin, Kaitlyn R.; Xu, Juhua; Comi, Troy J.; Hall, H. K.

    2016-01-01

    Polymerization of substrate-supported bilayers composed of dienoyl phosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability, however the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl phosphatidylcholine (mono-SorbPC), bis-dienoyl phosphatidylcholine (bis-DenPC) and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity, however measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate inter-leaflet bonding. The D values measured after polymerization were 0.1 to 0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases, and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed. PMID:26794208

  7. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    PubMed

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (< 7) after 120 min and 60 min polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  8. Photoemissive coating

    NASA Technical Reports Server (NTRS)

    Gange, R. A.

    1972-01-01

    Polystyrene coating is applied to holographic storage tube substrate via glow discharge polymerization in an inert environment. After deposition of styrene coating, antimony and then cesium are added to produce photoemissive layer. Technique is utilized in preparing perfectly organized polymeric films useful as single-crystal membranes.

  9. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.

    PubMed

    Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui

    2013-09-01

    A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.

  10. A facile method to align carbon nanotubes on polymeric membrane substrate

    PubMed Central

    Zhao, Haiyang; Zhou, Zhijun; Dong, Hang; Zhang, Lin; Chen, Huanlin; Hou, Lian

    2013-01-01

    The alignment of carbon nanotubes (CNT) is the fundamental requirement to ensure their excellent functions but seems to be desolated in recent years. A facile method, hot-press combined with peel-off (HPPO), is introduced here, through which CNT can be successfully vertically aligned on the polymeric membrane substrate. Shear force and mechanical stretch are proposed to be the main forces to align the tubes perpendicular to the substrate surface during the peel-off process. The alignment of CNT keeps its orientation in a thin hybrid membrane by dip-coating cellulose acetate dope solution. It is expected that the stable alignment of CNT by HPPO would contribute to the realization of its potential applications. PMID:24326297

  11. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    Treesearch

    Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu

    2016-01-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....

  12. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli.

    PubMed

    Versaevel, Marie; Grevesse, Thomas; Riaz, Maryam; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    This protocol describes a simple method to deposit protein micropatterns over a wide range of culture substrate stiffness (three orders of magnitude) by using two complementary polymeric substrates. In the first part, we introduce a novel polyacrylamide hydrogel, called hydroxy-polyacrylamide (PAAm), that permits to surmount the intrinsically nonadhesive properties of polyacrylamide with minimal requirements in cost or expertize. We present a protocol for tuning easily the rigidity of "soft" hydroxy-PAAm hydrogels between ~0.5 and 50 kPa and a micropatterning method to locally deposit protein micropatterns on these hydrogels. In a second part, we describe a protocol for tuning the rigidity of "stiff" silicone elastomers between ~100 and 1000 kPa and printing efficiently proteins from the extracellular matrix. Finally, we investigate the effect of the matrix rigidity on the nucleus of primary endothelial cells by tuning the rigidity of both polymeric substrates. We envision that the complementarity of these two polymeric substrates, combined with an efficient microprinting technique, can be further developed in the future as a powerful mechanobiology platform to investigate in vitro the effect of mechanotransduction cues on cellular functions, gene expression, and stem cell differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Plastic and Metal Foils for Flexible Displays

    DTIC Science & Technology

    2008-12-01

    TFTs ) arrays for high information content active matrix flexible displays for Army applications. For all flexible substrates a manufacturable...impermeable flexible substrate systems “display-ready” materials and handling protocols, (ii) high performance TFT devices and circuits fabricated...processes for integration with the flexible TFT arrays. Approaches and solution to address each of these major challenges are described in the

  14. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multi-layer electrode for high contrast electrochromic devices

    DOEpatents

    Schwendeman, Irina G [Wexford, PA; Finley, James J [Pittsburgh, PA; Polcyn, Adam D [Pittsburgh, PA; Boykin, Cheri M [Wexford, PA

    2011-11-01

    An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.

  16. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334

  17. Flexible bottom-gate graphene transistors on Parylene C substrate and the effect of current annealing

    PubMed Central

    Kim, Hyungsoo; Bong, Jihye; Mikael, Solomon; Kim, Tong June; Williams, Justin C.; Ma, Zhenqiang

    2016-01-01

    Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a Ion/Ioff ratio of 533.5 cm2/V s, 58.1 μS, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics. PMID:27795570

  18. Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.

    PubMed

    Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T

    2010-09-13

    This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.

  19. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  20. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  1. Flexible polymeric rib waveguide with self-align couplers system

    PubMed Central

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2011-01-01

    The authors report a polymeric based rib waveguide with U shape self-align fiber couplers system using a simple micromolding process with SU8 as a molding material and polydimethysiloxane as a waveguide material. The material is used for its good optical transparency, low surface tension, biocompatibility, and durability. Furthermore, the material is highly formable. This unique fabrication molding technique provides a means of keeping the material and manufacturing costs to a minimum. The self-align fiber couplers system also proves a fast and simple means of light coupling. The flexible nature of the waveguide material makes this process ideal for a potential wearable optical sensor. PMID:22171151

  2. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors.

    PubMed

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-23

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm(-2) at 1 mA cm(-2), good flexibility with a higher value (204.6 mF cm(-2)) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg(-1) (with a power density of 3.2 kW kg(-1)) and a maximum power density of 4.2 kW kg(-1) (with an energy density of 3.1 Wh kg(-1)). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  3. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  4. Development of methodologies to assess the relative hazards from thermal decomposition products of polymeric materials.

    PubMed

    Barrow, C S; Lucia, H; Stock, M F; Alarie, Y

    1979-05-01

    The physiological stress imposed upon mice due to the irritating properties of thermal decomposition products of polymeric materials was evaluated. Acute lethality and histopathological evaluation were included in the study. The rankings of the polymeric materials studied from most to least hazardous was concluded to be polytetrafluoroethylene greater than polyvinyl chloride greater than Douglas Fir and flexible polyurethane foam greater than fiber glass reinforced polyester greater than copper coated wire with mineral insulation.

  5. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    PubMed

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  6. A thermophone on porous polymeric substrate

    NASA Astrophysics Data System (ADS)

    Chitnis, G.; Kim, A.; Song, S. H.; Jessop, A. M.; Bolton, J. S.; Ziaie, B.

    2012-07-01

    In this Letter, we present a simple, low-temperature method for fabricating a wide-band (>80 kHz) thermo-acoustic sound generator on a porous polymeric substrate. We were able to achieve up to 80 dB of sound pressure level with an input power of 0.511 W. No significant surface temperature increase was observed in the device even at an input power level of 2.5 W. Wide-band ultrasonic performance, simplicity of structure, and scalability of the fabrication process make this device suitable for many ranging and imaging applications.

  7. Flexible thermochromic window based on hybridized VO2/graphene.

    PubMed

    Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok

    2013-07-23

    Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.

  8. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound

    PubMed Central

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md.

    2016-01-01

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4–9.2 GHz. PMID:28773479

  9. Dynamic Nanocomposite Self-Deactivating Fabrics for the Individual and Collective Protection

    DTIC Science & Technology

    2006-11-01

    poly-ß-cyclodextrins (PCDs) and poly- trehalose (PTH) as polymeric supports, the incorporated enzymes will be able to repair themselves through a re...POLY- TREHALOSE (PTH) In a similar manner, polymeric trehalose (PTH) was also prepared in a different molar ratio optimized to maximize...MPT), polymeric trehalose (PTH) particles were prepared as a complementary substrate to poly-ß- CD particles in various aspects serving as an

  10. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  11. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors.

    PubMed

    Jung, Joohye; Kim, Si Joon; Lee, Keun Woo; Yoon, Doo Hyun; Kim, Yeong-Gyu; Kwak, Hee Young; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2014-05-15

    Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively. © 2013 Published by Elsevier B.V.

  12. Analytical study on web deformation by tension in roll-to-roll printing process

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.

  13. Giant photoluminescence emission in crystalline faceted Si grains

    PubMed Central

    Faraci, Giuseppe; Pennisi, Agata R.; Alberti, Alessandra; Ruggeri, Rosa; Mannino, Giovanni

    2013-01-01

    Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices. PMID:24056300

  14. High Resistivity Transparent/Conductive Coatings for Space Applications: Problems and Possible Improvements

    NASA Technical Reports Server (NTRS)

    Cashman, Thomas; Demko, Rikako; Uppala, Nischala; Vemulapalli, Jyothi; Welch, Bryan; Hambourger, Paul D.

    2003-01-01

    We have prepared transparent films with a sheet relativity of 10(exp 1) to 10(exp 12) ohm/square by co-depositing a transparent conducting oxide (TCO) with magnesium fluoride, using two independently controlled RF magnetron sputter guns to facilitate adjustment of the film composition, Co-deposited indium tin oxide (ITO) and MgF2 on quartz and flexible polymeric substrate exhibited reasonably stable sheet resistivity over several months' time, with substantially lower optical reflectance than that of pure ITO. However, exposure to low-intensity blue light reduces sheet resistivity by as much as two orders of magnitude. Our results suggest this photoconductivity effect may be present in all InO(x)-based materials. We find that sheet resistivity can by "tuned" by admitting a small amount of high-purity air during deposition offering the possibility of closed loop process control.

  15. Microwave flexible transistors on cellulose nanofibrillated fiber substrates

    Treesearch

    Jung-Hun Seo; Tzu-Hsuan Chang; Jaeseong Lee; Ronald Sabo; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly...

  16. Thin film with oriented cracks on a flexible substrate

    DOEpatents

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  17. Growth Studies of Probiotic Bacteria on Short Chain Glucomannan, a Potential Prebiotic Substrate

    DTIC Science & Technology

    2012-12-05

    PROBIOTIC BACTERIA ON SHORT CHAIN GLUCOMANNAN, A POTENTIAL PREBIOTIC SUBSTRATE by Wayne S. Muller Steve Arcidiacono Adam Liebowitz Ken Racicot... PROBIOTIC BACTERIA ON SHORT CHAIN GLUCOMANNAN, A POTENTIAL PREBIOTIC SUBSTRATE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER PE...commercial prebiotic substrates. All three substrates had similar degree of polymerization (DP) of 2-9. Five probiotic bacteria were evaluated for

  18. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.

  19. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-01

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  20. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography.

    PubMed

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-08

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  1. Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O'Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C.

    2003-09-01

    Flexible displays fabricated using plastic substrates have a potential for being very thin, light weight, highly rugged with greatly minimized propensity for breakage, roll-to-roll manufacturing and lower cost. The emerging OLED display media offers the advantage of being a solid state and rugged structure for flexible displays in addition to the many potential advantages of an AM OLED over the currently dominant AM LCD. The current high level of interest in flexible displays is facilitating the development of the required enabling technologies which include development of plastic substrates, low temperature active matrix device and backplane fabrication, and display packaging. In the following we will first discuss our development efforts in the PEN based plastic substrates, active matrix backplane technology, low temperature (150°C) a-Si TFT devices and an AM OLED test chip used for evaluating various candidate designs. We will then describe the design, fabrication and successful evaluation and demonstration of a 64x64 pixel AM OLED test display using a-Si TFT backplane fabricated at 150°C on the flexible plastic substrate.

  2. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  3. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yang; He, Qiming; Zhang, Fan

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  4. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE PAGES

    Zhou, Yang; He, Qiming; Zhang, Fan; ...

    2017-08-14

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  5. Printed electronic on flexible and glass substrates

    NASA Astrophysics Data System (ADS)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  6. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in the ECR and these TFTs also show reasonable device characteristics. TFTs processed using this high-density plasma based approach show great potential for use in applications such as driver circuitry integration on low temperature substrates.

  7. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM SUBSTRATES. PART I: CHARACTERIZATION OF FILMS AND FILM/SUBSTRATE INTERFACES

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 Å in thickness) were deposited onto aluminum substrates (6111-T4 alloy) in radio frequency (RF) and microwave (MW) powered reactors to be used as primers for structural adhesive bonding. Processing variables such as sub...

  8. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization

    NASA Astrophysics Data System (ADS)

    Kessler, Felipe; Muñoz, Pablo A. R.; Phelan, Ciaran; Romani, Eric C.; Larrudé, Dunieskys R. G.; Freire, Fernando L.; Thoroh de Souza, Eunézio A.; de Matos, Christiano J. S.; Fechine, Guilhermino J. M.

    2018-05-01

    Here, we report on a method that allows graphene produced by chemical vapor deposition (CVD) to be directly transferred to an optically transparent photo resin, by in situ photo-polymerization of the latter, with high efficiency and low contamination. Two photocurable resins, A and B, with different viscosities but essentially the same chemical structure, were used. Raman spectroscopy and surface energy results show that large continuous areas of graphene were transferred with minimal defects to the lower viscosity resin (B), due to the better contact between the resin and graphene. As a proof-of-principle optical experiment, graphene on the polymeric substrate was subjected to high-intensity femtosecond infrared pulses and third-harmonic generation was observed with no noticeable degradation of the sample. A sheet third-order susceptibility χ (3) = 0.71 ×10-28m3V-2 was obtained, matching that of graphene on a glass substrate. These results indicate the suitability of the proposed transfer method, and of the photo resin, for the production of nonlinear photonic components and devices.

  9. Fabrication of all-carbon nanotube electronic devices on flexible substrates through CVD and transfer methods.

    PubMed

    Zou, Yuan; Li, Qunqing; Liu, Junku; Jin, Yuanhao; Qian, Qingkai; Jiang, Kaili; Fan, Shoushan

    2013-11-13

    SWNT thin films with different nanotube densities are fabricated by CVD while controlling the concentration of catalyst and growth time. Three layers of SWNT films are transferred to flexible substrates serving as electrodes and channel materials, respectively. All-carbon nanotube TFTs with an on/off ratio as high as 10(5) are obtained. Inverters are fabricated on top of the flexible substrates with symmetric input/output behavior. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanism of papain-catalyzed synthesis of oligo-tyrosine peptides.

    PubMed

    Mitsuhashi, Jun; Nakayama, Tsutomu; Narai-Kanayama, Asako

    2015-01-01

    Di-, tri-, and tetra-tyrosine peptides with angiotensin I-converting enzyme inhibitory activity were synthesized by papain-catalyzed polymerization of L-tyrosine ethyl ester in aqueous media at 30 °C. Varying the reaction pH from 6.0 to 7.5 and the initial concentration of the ester substrate from 25 to 100 mM, the highest yield of oligo-tyrosine peptides (79% on a substrate basis) was produced at pH 6.5 and 75 mM, respectively. In the reaction initiated with 100 mM of the substrate, approx. 50% yield of insoluble, highly polymerized peptides accumulated. At less than 15 mM, the reaction proceeded poorly; however, from 30 mM to 120 mM a dose-dependent increase in the consumption rate of the substrate was observed with a sigmoidal curve. Meanwhile, each of the tri- and tetra-tyrosine peptides, even at approx. 5mM, was consumed effectively by papain but was not elongated to insoluble polymers. For deacylation of the acyl-papain intermediate through which a new peptide bond is made, L-tyrosine ethyl ester, even at 5mM, showed higher nucleophilic activity than di- and tri-tyrosine. These results indicate that the mechanism through which papain polymerizes L-tyrosine ethyl ester is as follows: the first interaction between papain and the ester substrate is a rate-limiting step; oligo-tyrosine peptides produced early in the reaction period are preferentially used as acyl donors, while the initial ester substrate strongly contributes as a nucleophile to the elongation of the peptide product; and the balance between hydrolytic fragmentation and further elongation of oligo-tyrosine peptides is dependent on the surrounding concentration of the ester substrate. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Catechol chemistry inspired approach to construct self-cross-linked polymer nanolayers as versatile biointerfaces.

    PubMed

    Liu, Xinyue; Deng, Jie; Ma, Lang; Cheng, Chong; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2014-12-16

    In this study, we proposed a catechol chemistry inspired approach to construct surface self-cross-linked polymer nanolayers for the design of versatile biointerfaces. Several representative biofunctional polymers, P(SS-co-AA), P(SBMA-co-AA), P(EGMA-co-AA), P(VP-co-AA), and P(MTAC-co-AA), were first synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the catecholic molecules (dopamine, DA) were conjugated to the acrylic acid (AA) units by the facile carbodiimide chemistry. Then, the catechol (Cat) group conjugated biofunctional polymers, named PSS-Cat, PSBMA-Cat, PEGMA-Cat, PVP-Cat, and PMTAC-Cat, were applied for the construction of self-cross-linked nanolayers on polymeric substrates via the pH induced catechol cross-linking and immobilization. The XPS spectra, surface morphology, and wettability gave robust evidence that the catechol conjugated polymers were successfully coated, and the coated substrates possessed increased surface roughness and hydrophilicity. Furthermore, the systematic in vitro investigation of protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), thrombin time (TT), cell viability, and antibacterial ability confirmed that the coated nanolayers conferred the substrates with versatile biological performances. The PSS-Cat coated substrate had low blood component activation and excellent anticoagulant activity; while the PEGMA-Cat and PSBMA-Cat showed ideal resistance to protein fouling and inhibition of platelet activation. The PSS-Cat and PVP-Cat coated substrates exhibited promoted endothelial cell proliferation and viability. The PMTAC-Cat coated substrate showed an outstanding activity on bacterial inhibition. In conclusion, the catechol chemistry inspired approach allows the self-cross-linked nanolayers to be easily immobilized on polymeric substrates with the stable conformation and multiple biofunctionalities. It is expected that this low-cost and facile bioinspired coating system will present great potential in creating novel and versatile biointerfaces.

  12. Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications

    DTIC Science & Technology

    2012-02-07

    circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic

  13. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    NASA Astrophysics Data System (ADS)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  14. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  15. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  16. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    NASA Astrophysics Data System (ADS)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  17. Flexible substrate-based devices for point-of-care diagnostics

    PubMed Central

    Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark; Inci, Fatih; Demirci, Utkan

    2016-01-01

    Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to their affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications at the POC. PMID:27344425

  18. Flexible Substrate-Based Devices for Point-of-Care Diagnostics.

    PubMed

    Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark A; Inci, Fatih; Demirci, Utkan

    2016-11-01

    Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nanoencapsulated aerogels produced by monomer vapor deposition and polymerization

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2011-01-01

    Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating. In an embodiment, the polymer coated aerogel is comprised of a porosity and has a compressive modulus greater than the compressive modulus of the aerogel substrate.

  20. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    PubMed

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effect of Interfacial characteristics of metal clad polymeric substrates on electrical high frequency interconnection performance

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.

    1984-01-01

    Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.

  2. Preparation of dielectric coating of variable dielectric constant by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T. (Inventor)

    1979-01-01

    A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.

  3. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  4. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  5. Universal Surface-initiated Polymerization of Antifouling Zwitterionic Brushes Using A Mussel-Mimetic Peptide Initiator

    PubMed Central

    Kuang, Jinghao; Messersmith, Phillip B.

    2012-01-01

    We report a universal method for the surface-initated polymerization (SIP) of a antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) which combines an atom transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. Simple dip-coating of substrates with variable wetting properties and compositions, including Teflon®, in a BrYKY solution at pH 8.5 led to formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA) on all substrates, resulting in high density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface grafted polymer brush modifications for biomedical and other applications. PMID:22506651

  6. Plasma jet printing for flexible substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and foundmore » to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.« less

  7. Flexible organic TFT bio-signal amplifier using reliable chip component assembly process with conductive adhesive.

    PubMed

    Yoshimoto, Shusuke; Uemura, Takafumi; Akiyama, Mihoko; Ihara, Yoshihiro; Otake, Satoshi; Fujii, Tomoharu; Araki, Teppei; Sekitani, Tsuyoshi

    2017-07-01

    This paper presents a flexible organic thin-film transistor (OTFT) amplifier for bio-signal monitoring and presents the chip component assembly process. Using a conductive adhesive and a chip mounter, the chip components are mounted on a flexible film substrate, which has OTFT circuits. This study first investigates the assembly technique reliability for chip components on the flexible substrate. This study also specifically examines heart pulse wave monitoring conducted using the proposed flexible amplifier circuit and a flexible piezoelectric film. We connected the amplifier to a bluetooth device for a wearable device demonstration.

  8. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  9. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase.

    PubMed

    Li, Liyuan; Pan, Guohui; Zhu, Xifen; Fan, Keqiang; Gao, Wubin; Ai, Guomin; Ren, Jinwei; Shi, Mingxin; Olano, Carlos; Salas, José A; Yang, Keqian

    2017-07-01

    Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.

  10. Emergent behavior of cells on microfabricated soft polymeric substrates

    NASA Astrophysics Data System (ADS)

    Anand, Sandeep Venkit

    In recent years, cell based bio-actuators like cardiomyocytes and skeletal muscle cells have emerged as popular choices for powering biological machines consisting of soft polymeric scaffolds at the micro and macro scales. This is owing to their unique ability to generate spontaneous, synchronous contractions either autonomously or under externally applied fields. Most of the biological machine designs reported in literature use single cells or cell clusters conjugated with biocompatible soft polymers like polydimethylsiloxane (PDMS) and hydrogels to produce some form of locomotion by converting chemical energy of the cells to mechanical energy. The mode of locomotion may vary, but the fundamental mechanism that these biological machines exploit to achieve locomotion stems from cell substrate interactions leading to large deformations of the substrates (relative to the cell size). However, the effect of such large scale, dynamic deformation of the substrates on the cellular and cluster level organization of the cells remains elusive. This dissertation tries to explore the emergent behavior of cells on different types of micro-scale deformable, soft polymeric substrates. In the first part of the dissertation, contractile dynamics of primary cardiomyocyte clusters is studied by culturing them on deformable thin polymeric films. The cell clusters beat and generate sufficient forces to deform the substrates out of plane. Over time, the clusters reorient their force dipoles along the direction of maximum compliance. This suggests that the cells are capable of sensing substrate deformations through a mechanosensitive feedback mechanism and dynamically reorganizing themselves. Results are further validated through finite element analysis. The development, characterization and quantification of a novel 1D/2D like polymeric platform for cell culture is presented in the second part. The platform consists of a 2D surface anchoring a long (few millimeters) narrow filament (1D) with a single cell scale (micro scale) cross section. We plate C2C12 cells on the platform and characterize their migration, proliferation, and differentiation patterns in contrast to 2D culture. We find that the cells land on the 2D surface, and then migrate to the filament only when the 2D surface has become nearly confluent. Individual and isolated cells randomly approaching the filament always retract away towards the 2D surface. Once on the filament, their differentiation to myotubes is expedited compared to that on 2D substrate. The myotubes generate periodic twitching forces that deform the filament producing more than 17 um displacement at the tip. Such flagellar motion can be used to develop autonomous micro scale bio-bots. Finally, the design and fabrication of a polymeric micro-pillar based force sensor capable of measuring cellular focal-adhesion forces under externally applied stretch is discussed. The force sensor consists of arrays of uniformly spaced PDMS micro-pillars of 1-2 um diameter and 2-3 um spacing on a macroscale PDMS substrate. The tips of the micro-pillars are selectively patterned with fluorescently labeled ECM proteins using micro-contact printing to promote cell adhesion while simultaneously acting as markers for strain measurements. Cells adhere and spread on top of the pillars causing them to deform. When stretched, the cells reorganize their internal structure and modulate their traction forces in response to the applied stretch. The dynamically varying cellular forces in response to the stretch are computed by measuring the cell induced displacements estimated by isolating the displacements caused by the applied stretch from the net displacements of the tips.

  11. Flexible, Carbon-Based Ohmic Contacts for Organic Transistors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik

    2005-01-01

    A low-temperature process for fabricating flexible, ohmic contacts for use in organic thin-film transistors (OTFTs) has been developed. Typical drainsource contact materials used previously for OTFTs include (1) vacuum-deposited noble-metal contacts and (2) solution-deposited intrinsically conducting molecular or polymeric contacts. Both of these approaches, however, have serious drawbacks.

  12. Oxide Heteroepitaxy for Flexible Optoelectronics.

    PubMed

    Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao

    2016-11-30

    The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.

  13. Metal Oxide Thin Film Transistors on Paper Substrate: Fabrication, Characterization, and Printing Process

    NASA Astrophysics Data System (ADS)

    Choi, Nack-Bong

    Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution printing plate is investigated and the most favorable condition to transfer ink from a blanket to a cliche is studied. Consequently, a high resolution cliche is demonstrated and the printed patterns of 10mum width and 6mum line spacing are presented. In addition, the top gate a-IGZO TFTs with channel width/length of 12/6mum is successfully demonstrated by printing etch-resists. This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.

  14. Fabrication and Characterization of Flexible Organic Light Emitting Diodes Based on Transparent Flexible Clay Substrates

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi

    2013-03-01

    In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.

  15. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  16. Flexible Substrates Comparison for Pled Technology

    NASA Astrophysics Data System (ADS)

    Nenna, G.; Miscioscia, R.; Tassini, P.; Minarini, C.; Vacca, P.; Valentino, O.

    2008-08-01

    Flexible substrate displays are critical to organic electronics, e-paper's and e-ink's development. Many different types of materials are under investigation, including glass, polymer films and metallic foils. In this work we report a comparison study of polymer films as flexible substrates for polymer light emitting diodes (PLEDs) technology. The selected polymer substrates are two thermoplastic semi-crystalline polymers (PET and PEN) and a high Tg material that cannot be melt processed (PAR). Firstly, the chosen films were characterized in morphology and optical properties with the aim to confirm their suitability for optoelectronic applications. Transmittance was analysed by UV-Vis spectrophotometry and roughness by a surface profilometer. Finally, the surface energy of substrates (untreated and after UV-ozone treatment) was estimated by contact angle measurements in order to evaluate their wettability for active materials deposition.

  17. Direct transfer of graphene onto flexible substrates.

    PubMed

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  18. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  19. Nanocrystal-based complementary inverters constructed on flexible plastic substrates.

    PubMed

    Jang, Jaewon; Cho, Kyoungah; Yun, Junggwon; Kim, Sangsig

    2013-05-01

    We demonstrate a nanocrystal (NC)-based complementary inverter constructed on a flexible plastic substrate. The NC-based complementary inverter consists of n-type HgSe NC- and p-type HgTe NC-based thin-film transistors (TFTs). Solid films on a plastic substrate obtained from HgSe and HgTe nanocrystals by thermal transformation are utilized as the n- and p-channel layers in these TFTs, respectively. The electrical properties of these component TFTs on unstrained and strained substrates are characterized and the performance of the inverter on the flexible substrate is investigated. The inverter on the unstrained substrate exhibits a logic gain of about 8, a logic swing of 90%, and a noise margin of 2.0 V. The characteristics of the inverter are changed under tensile and compressive strains, but not very significantly. Moreover, a comparison of the electrical characteristics of the n- and p-channel TFTs and the inverter is made in this paper.

  20. Hydrogenated amorphous silicon solar cells fabricated at low substrate temperature 110°C on flexible PET substrate

    NASA Astrophysics Data System (ADS)

    Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima

    2018-05-01

    In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of <ɛ2> peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.

  1. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    PubMed

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  2. Flexible microstrip antenna based on carbon nanotubes/(ethylene-octene copolymer) thin composite layer deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Matyas, J.; Olejnik, R.; Slobodian, P.

    2017-12-01

    A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).

  3. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  4. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  5. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    PubMed Central

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-01-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor–memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes. PMID:28155871

  6. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates

    NASA Astrophysics Data System (ADS)

    Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun

    2018-01-01

    A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.

  7. Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.

    PubMed

    Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik

    2010-01-01

    We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.

  8. Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan

    USDA-ARS?s Scientific Manuscript database

    Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...

  9. Recent progress in flexible OLED displays

    NASA Astrophysics Data System (ADS)

    Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.

    2001-09-01

    Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.

  10. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film.

    PubMed

    Gao, Pingqi; Zhang, Qing

    2014-02-14

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  11. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  12. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  13. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...

    2017-03-15

    In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less

  14. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  15. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuyu; Yu, Shifeng; Lu, Ming

    In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less

  16. Infrared analysis of vapor phase deposited tricresylphosphate (TCP)

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Hanyaloglu, Bengi; Graham, Earl E.

    1994-01-01

    Infrared transmission was employed to study the formation of a lubricating film deposited on two different substrates at 700 C. The deposit was formed from tricresylphosphate vapors and collected onto a NaCl substrate and on an iron coated NaCl substrate. Analysis of the infrared data suggests that a metal phosphate is formed initially, followed by the formation of organophosphorus polymeric compounds.

  17. Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan

    2014-07-01

    We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.

  18. Direct transfer of graphene onto flexible substrates

    PubMed Central

    Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.

    2013-01-01

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582

  19. The use of FT-IR reflection-absorbance spectroscopy to study photochemical degradation of polymeric coatings on mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J.D.; Chughtai, A.R.; Czanderna, A.W.

    1981-10-01

    A technique is presented for in situ study of degradative changes in polymeric coatings on metallic substrates. The technique uses a controlled environment chamber in conjunction with a Fourier-transform infrared (FT-IR) spectrophotometer. The chamber design permits collection of IR reflection-absorbance spectra from a sample undergoing exposure to controlled ultraviolet (UV) radiation, gas mixtures, and temperatures. Initial data presented confirm the ability of the technique to provide information regarding the bulk photochemistry of bisphenol-A polycarbonate coatings on gold and aluminum substrates. Refinements of this technique should allow a detailed kinetic study of degradative reactions at the polymer/metal interface.

  20. Use of FT-IR reflection-absorbance spectroscopy to study photochemical degradation of polymeric coatings on mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J D; Schissel, P; Czanderna, A W

    1981-01-01

    A technique is presented for in situ study of degradative changes in polymeric coatings on metallic substrates. The technique uses a controlled environment chamber in conjunction with a Fourier-transform infrared (FT-IR) spectrophotometer. The chamber design permits collection of IR reflection-absorbance spectra from a sample undergoing exposure to controlled ultraviolet (uv) radiation, gas mixtures, and temperatures. Initial data presented confirm the ability of the technique to provide information regarding the bulk photochemistry of bisphenol-A polycarbonate coatings on gold and aluminum substrates. Refinements of this technique should allow a detailed kinetic study of degradative reactions at the polymer/metal interface.

  1. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers.

    PubMed

    Wang, Jun; Bonnesen, Peter V; Rangel, E; Vallejo, E; Sanchez-Castillo, Ariadna; James Cleaves Ii, H; Baddorf, Arthur P; Sumpter, Bobby G; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-04

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N(9)-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.

  2. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  3. Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates

    PubMed Central

    Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi

    2013-01-01

    The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289

  4. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  5. Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue

    2017-10-01

    The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.

  6. Strong thin membrane structure. [solar sails

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1979-01-01

    A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.

  7. Process development and monitoring in stripping of a highly transparent polymeric paint with ns-pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Jasim, Halah A.; Demir, Ali Gökhan; Previtali, Barbara; Taha, Ziad A.

    2017-08-01

    Laser paint removal was studied with ns-pulsed fiber laser on the combination of 20 μm-thick, white polymeric paint and Al alloy substrate. The response of paint to single pulse ablation was evaluated to measure the ablated zone dimensions. With this information, the effect of overlap, number of passes and pulse repetition rate was evaluated to investigate machining depth. Optical emission spectroscopy was used to investigate the machining behaviour as well as to propose monitoring strategies. The results showed that despite the high transparency of the paint, complete paint removal can be achieved with reduced substrate damage (Sa = 1.3 μm). The emission spectroscopy can be used to identify removal completion as well as the reach of substrate material. The observations were also used to explain a paint removal mechanism based on thermal expansion of the paint and mechanical action provided by the plasma expansion from the substrate material.

  8. Development of Flexible Multilayer Circuits and Cables

    NASA Technical Reports Server (NTRS)

    Barnes, Kevin N.; Bryant, Robert; Holloway, Nancy; Draughon, Fred

    2005-01-01

    A continuing program addresses the development of flexible multilayer electronic circuits and associated flexible cables. This development is undertaken to help satisfy aerospace-system-engineering requirements for efficient, lightweight electrical and electronic subsystems that can fit within confined spaces, adhere to complexly shaped surfaces, and can be embedded within composite materials. Heretofore, substrate layers for commercial flexible circuitry have been made from sheets of Kapton (or equivalent) polyimide and have been bonded to copper conductors and to other substrate layers by means of adhesives. The substrates for the present developmental flexible circuitry are made from thin films of a polyimide known as LaRC(TM)-SI. This polyimide is thermoplastic and, therefore, offers the potential to eliminate delamination and the need for adhesives. The development work undertaken thus far includes experiments in the use of several techniques of design and fabrication (including computer-aided design and fabrication) of representative flexible circuits. Anticipated future efforts would focus on multilayer bonding, fabrication of prototypes, and overcoming limitations.

  9. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  10. Nano Particle Control of Void Formation and Expansion in Polymeric and Composite Systems

    DTIC Science & Technology

    2009-05-01

    ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Glocal Network Corporation 3131 Western Avenue Ste M-526 Seattle, WA 98121...Scientific Research Arlington, VA 22203-1954 Principal Investigator Dr. James C. Seferis Polymeric Composites Laboratory GloCal Network...F.R.E.E.D.O.M., with the flexibility of a profit research and development organization, GloCal Network Corporation, with both entities doing business as the

  11. Tailoring metal oxide nanoparticle dispersions for inkjet printing.

    PubMed

    Gebauer, J S; Mackert, V; Ognjanović, S; Winterer, M

    2018-05-04

    There is a growing interest in science and industry for printed electronics. Printed electronics enable the production of large quantities of electronic components at low cost. Even though organic semiconductors are already widely used for printed components, inorganic materials may be advantageous due to their higher durability and superior device performance. Nevertheless, inorganic materials still remain difficult to print making the development of printable and functional inks a necessity. In this work we present the formulation, inkjet printing and processing of newly developed inks based on ethylene glycol as dispersion medium. Different metal oxide nanoparticles (ZnO, TiO 2 , CuO, SnO 2 and In 2 O 3 ) with high crystallinity and narrow size distribution were produced by chemical vapor synthesis. The particles were stabilized and the colloidal stability was evaluated by a combination of DLVO simulations and dynamic light scattering measurements. Measurements of rheological and interfacial properties, like viscosity and surface tension, are used to determine the printability on the basis of the inverse Ohnesorge number. Inks, developed in this work, have adjustable rheological properties as well as long-term stabilities without particle sedimentation over a period of several months. They are suitable for printing on different substrate materials like silicon and flexible polymeric substrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode ofmore » the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.« less

  13. Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications.

    PubMed

    Vüllers, Felix; Gomard, Guillaume; Preinfalk, Jan B; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce; Hölscher, Hendrik; Kavalenka, Maryna N

    2016-11-01

    Inspired by the transparent hair layer on water plants Salvinia and Pistia, superhydrophobic flexible thin films, applicable as transparent coatings for optoelectronic devices, are introduced. Thin polymeric nanofur films are fabricated using a highly scalable hot pulling technique, in which heated sandblasted steel plates are used to create a dense layer of nano- and microhairs surrounding microcavities on a polymer surface. The superhydrophobic nanofur surface exhibits water contact angles of 166 ± 6°, sliding angles below 6°, and is self-cleaning against various contaminants. Additionally, subjecting thin nanofur to argon plasma reverses its surface wettability to hydrophilic and underwater superoleophobic. Thin nanofur films are transparent and demonstrate reflection values of less than 4% for wavelengths ranging from 300 to 800 nm when attached to a polymer substrate. Moreover, used as translucent self-standing film, the nanofur exhibits transmission values above 85% and high forward scattering. The potential of thin nanofur films for extracting substrate modes from organic light emitting diodes is tested and a relative increase of the luminous efficacy of above 10% is observed. Finally, thin nanofur is optically coupled to a multicrystalline silicon solar cell, resulting in a relative gain of 5.8% in photogenerated current compared to a bare photovoltaic device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases

    PubMed Central

    2015-01-01

    The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis. PMID:24716482

  15. Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.

    PubMed

    Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus

    2013-08-27

    Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polyimides containing oxyethylene units. Part 4: Polymerization of dianhydrides containing ether linkages

    NASA Technical Reports Server (NTRS)

    Harris, F. W.; Karnavas, A. J.; Das, S.; Cucuras, C. N.; Hergenrother, P. M.

    1986-01-01

    The development of new composite resins for various aerospace applications is attempted. Although it is highly desirable that these polymers be soluble in order to facilitate processing, they must display considerable solvent-resistance in use. A recent approach has involved the synthesis of a new series of polyimides containing flexible linkages. The polymers were prepared by the polymerization of aromatic dianhydrides with diamines containing oxyethylene linkages. For example, the polymerization of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) with 1,2-bis(4-aminophenoxy)ethane (1a) and bis2-(4-aminophenoxy)ethylether (lb), afforded highly crystalline polyimides that were completely insoluble. However, a polyimide that was amorphous and soluble was obtained from the polymerization of BTDA and an isomer of lb, i.e., bis2-(3-aminophenoxy)ethyl ether (4b). In an attempt to obtain a soluble, amorphous polyimide that could be annealed into a crysalline state, block copolymers of 1b and 4b and BTDA were prepared. Copolymers containing less than 20 weight % 1b were soluble in organic solvents. However, these polymers did not crystallize when heated above their Tg's. Copolymers containing higher levels of 1b were semicrystalline and insoluble. The polymerization of the diamines containing oxyethylene linkages with 4,4'-oxydiphthalic anhydride (ODPA) and a new dianhydride, i.e., 4,4'-oxyethyleneoxyethyleneoxydiphthalic anhydride (OEDA) was investigated. It was postulated that the use of these more flexible dianhydrides would result in more processable polyimides.

  17. Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism

    PubMed Central

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins. PMID:24752318

  18. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE PAGES

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...

    2017-05-22

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  19. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  20. Flexible radio-frequency single-crystal germanium switch on plastic substrates

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Cai, Tianhao; Yuan, Hao-Chih; Seo, Jung-Hun; Ma, Jianguo; Ma, Zhenqiang

    2014-04-01

    This Letter presents the realization and characterizations of the flexible radio-frequency (RF)/microwave switches on plastic substrates employing single-crystal germanium (Ge) nanomembranes. The fabricated flexible Ge single-pole, single-throw (SPST) switches display high frequency responses (e.g., insertion loss of <1.3 dB at up to 30 GHz and isolation >10 dB at up to ˜13 GHz). RF performance tradeoff exists for the flexible Ge switches and the major affecting parameters are determined. The flexible Ge SPST switch shows better RF property to that of the flexible Si SPST switch. Underlying mechanism is investigated by theoretical analysis and modeling of switches with different structures.

  1. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  2. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    PubMed

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  3. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  4. Flexible anodized aluminum oxide membranes with customizable back contact materials

    NASA Astrophysics Data System (ADS)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  5. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  6. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  7. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  8. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  9. Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions.

    PubMed

    Limpoco, F Ted; Bailey, Ryan C

    2011-09-28

    We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.

  10. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  11. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate.

    PubMed

    Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua

    2014-07-09

    High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.

  12. Investigations on effect of laser-induced self-assembled patterning on optical properties of flexible polyimide substrates for solar cell applications

    NASA Astrophysics Data System (ADS)

    Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu

    2018-01-01

    Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.

  13. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  14. Improved polymeric surface for adhesion through electron stimulated chemical modification of polymeric surface

    DOEpatents

    Kelber, J.A.

    1987-04-08

    Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 A, with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10 /sup /minus/6/ Torr, to enhance the ability of the surface to be adhered to a variety of substrates.

  15. Multiple wavelength photolithography for preparing multilayer microstructures

    DOEpatents

    Dentinger, Paul Michael; Krafcik, Karen Lee

    2003-06-24

    The invention relates to a multilayer microstructure and a method for preparing thereof. The method involves first applying a first photodefinable composition having a first exposure wavelength on a substrate to form a first polymeric layer. A portion of the first photodefinable composition is then exposed to electromagnetic radiation of the first exposure wavelength to form a first pattern in the first polymeric layer. After exposing the first polymeric layer, a second photodefinable composition having a second exposure wavelength is applied on the first polymeric layer to form a second polymeric layer. A portion of the second photodefinable composition is then exposed to electromagnetic radiation of the second exposure wavelength to form a second pattern in the second polymeric layer. In addition, a portion of each layer is removed according to the patterns to form a multilayer microstructure having a cavity having a shape that corresponds to the portions removed.

  16. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Honda, Yuji; Taniguchi, Hajime; Hatano, Naoya; Hamada, Tatsuro

    2012-03-01

    A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates.

  18. A flexible optically re-writable color liquid crystal display

    NASA Astrophysics Data System (ADS)

    Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing

    2018-03-01

    It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.

  19. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai

    2016-12-01

    Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  20. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    PubMed

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  1. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  3. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  4. Surface Modification of Poly(ethylene naphthalate) Substrate and Its Effect on SiNx Film Deposition by Atomic Hydrogen Annealing

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2007-07-01

    The surface modification of a plastic substrate by atomic hydrogen annealing (AHA) was investigated for flexible displays. In this method, the plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. Both surface roughness and contact angle of water droplet on poly(ethylene naphthalate) (PEN) substrates were increased by AHA. The surface of a PEN substrate was reduced by atomic hydrogen without optical transmittance degradation. In addition, the properties of a silicon nitride (SiNx) film deposited on a PEN substrate were changed by AHA, and the adhesion between the SiNx film and the PEN substrate was excellent for application to flexible displays.

  5. Improved Fiber Optics Final Report CRADA No. TSB-957-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Glenn; Wilford, Sandy

    The existing chemistry of Lumenyte® (an illumination fiber optic developed by LIC) was such that the component monomers inherently polymerized to a very hard mass if exposed to environmental IR, UV, or a combination of these frequencies. Lumenyte optic also would cure to a hard mass by exposure to the UV & IR generated by the illuminating lamps-although this could occur at a much slower rate, and the hardening could occur even when the adverse frequencies were filtered. The resultant product did not have the flexibility for the required applications. LIC's objective was to include other monomeric components in themore » formulation to impart permanent flexibility. LIC sought the expertise and the use of the facilities in the Polymeric Materials Section at LLNL to achieve this objective.« less

  6. Modular "Click" Preparation of Bifunctional Polymeric Heterometallic Catalysts.

    PubMed

    Wang, Wenlong; Zhao, Liyuan; Lv, Hui; Zhang, Guodong; Xia, Chungu; Hahn, F Ekkehardt; Li, Fuwei

    2016-06-27

    Heterobimetallic molecular complexes or strictly alternating metallated polymers are obtained by a click reaction between mononuclear metal complexes (secondary building units, SBUs) bearing NHCs functionalized with either p-azidophenyl or p-ethynylphenyl wingtips. With a copper-NHC complex as SBU the formation of molecular or polymeric compounds did not require any additives as the copper complex catalyzes the click reaction. Transmetallation from heterobimetallic Cu/Ag derivatives to Cu/Pd derivatives was achieved. The linker between the SBUs (flexible or rigid) influences the catalytic activity of the heterobimetallic compounds. The polymer with alternating copper-NHC and silver-NHC units and a flexible methylene-triazole bridge between them shows the highest activity in the catalytic alkynylation of trifluoromethyl ketones to give fluorinated propargylic alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Transparent and flexible heaters based on Al:ZnO degenerate semiconductor

    NASA Astrophysics Data System (ADS)

    Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.

    2017-10-01

    We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (<10 V) voltages. This study also examined identical AZO thin films on glass substrates that showed highly reproducible heating effects due to the Joule heating effect. The potential applications are foldable and wearable electronics, pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.

  8. Scalable fabrication of nanomaterials based piezoresistivity sensors with enhanced performance

    NASA Astrophysics Data System (ADS)

    Hoang, Phong Tran

    Nanomaterials are small structures that have at least one dimension less than 100 nanometers. Depending on the number of dimensions that are not confined to the nanoscale range, nanomaterials can be classified into 0D, 1D and 2D types. Due to their small sizes, nanoparticles possess exceptional physical and chemical properties which opens a unique possibility for the next generation of strain sensors that are cheap, multifunctional, high sensitivity and reliability. Over the years, thanks to the development of new nanomaterials and the printing technologies, a number of printing techniques have been developed to fabricate a wide range of electronic devices on diverse substrates. Nanomaterials based thin film devices can be readily patterned and fabricated in a variety of ways, including printing, spraying and laser direct writing. In this work, we review the piezoresistivity of nanomaterials of different categories and study various printing approaches to utilize their excellent properties in the fabrication of scalable and printable thin film strain gauges. CNT-AgNP composite thin films were fabricated using a solution based screen printing process. By controlling the concentration ratio of CNTs to AgNPs in the nanocomposites and the supporting substrates, we were able to engineer the crack formation to achieve stable and high sensitivity sensors. The crack formation in the composite films lead to piezoresistive sensors with high GFs up to 221.2. Also, with a simple, low cost, and easy to scale up fabrication process they may find use as an alternative to traditional strain sensors. By using computer controlled spray coating system, we can achieve uniform and high quality CNTs thin films for the fabrication of strain sensors and transparent / flexible electrodes. A simple diazonium salt treatment of the pristine SWCNT thin film has been identified to be efficient in greatly enhancing the piezoresistive sensitivity of SWCNT thin film based piezoresistive sensors. The coupled mechanical stretching and Raman band shift characterization provides strong evidence to support this point of view. The same approach should be applicable to other types of carbon based strain sensors for improving their sensitivity. The direct laser writing (DLW) method has been used for producing flexible piezoresistive sensor and sensor arrays on polyimide film substrates. The effect of CO2 laser irradiation conditions on the morphology, chemical composition and piezoresistivity of the formed graphitic line features were systematically studied to establish the related processing-structure-property relationship. The DLW generated sensors have been demonstrated for their use as strain gauges for structural health monitoring of polymeric composites, and as flexible and wearable sensors of gesture recognition for human-machine interactions. The versatility of the DLW technique demonstrated in this work can be highly valuable in different industrial sectors for developing customized flexible electronics.

  9. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.

    PubMed

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.

  10. Functional electrospun membranes

    NASA Astrophysics Data System (ADS)

    Ognibene, G.; Fragalà, M. E.; Cristaldi, D. A.; Blanco, I.; Cicala, G.

    2016-05-01

    In this study we combined electrospun PES nanofibers with ZnO nanostructures in order to obtain a hierarchical nanostructured hybrid material to be use for active water filtration membranes. It benefits of flexibility and high surface area of the polymeric nanofibers as well as of additional functionalities of ZnOnanostructures. First, randomly oriented nanofibers with diameters of 716nm ±365 nm were electrospun on a glass fibers substrate from a solution of PES and DMF-TOL(1:1). ZnO nanorods were grown onto the surface of electrospun PES fibers by a Chemical Bath Deposition (CBD) process. It was preceed by a seeding process necessary to form nucleation sites for the subsequent radially aligned growth of ZnO nanowires. The morfology of the fibers and the effect of the seeding time have been analysed by SEM. The amount of ZnO nanowires grown over electrospun nanofibers was determined as 45% by weight. The high purity and crystallinity of the asobtained products are confirmed by XRD since all reflection peaks can be indexed to hexagonal wurtzite ZnO.

  11. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  12. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip

    PubMed Central

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. PMID:26678700

  13. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  14. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  15. An integrated optical oxygen sensor fabricated using rapid-prototyping techniques.

    PubMed

    Chang-Yen, David A; Gale, Bruce K

    2003-11-01

    This paper details the design and fabrication of an integrated optical biochemical sensor using a select oxygen-sensitive fluorescent dye, tris(2,2'-bipyridyl) dichlororuthenium(ii) hexahydrate, combined with polymeric waveguides that are fabricated on a glass substrate. The sensor uses evanescent interaction of light confined within the waveguide with the dye that is immobilized on an SU-8 waveguide surface. Adhesion of the dye to the integrated waveguide surface is accomplished using a unique process of spin-coating/electrostatic layer-by-layer formation. The SU-8 waveguide was chemically modified to allow the deposition process. Exposure of the dye molecules to the analyte and subsequent chemical interaction is achieved by directly coupling the fluid channel to the integrated waveguide. The completed sensor was linear in the dissolved oxygen across a wide range of interest and had a sensitivity of 0.6 ppm. A unique fabrication aspect of this sensor is the inherent simplicity of the design, and the resulting rapidity of fabrication, while maintaining a high degree of functionality and flexibility.

  16. Method of forming metallic coatings on polymeric substrates

    DOEpatents

    Liepins, Raimond

    1984-01-01

    Very smooth polymeric coatings or films graded in atomic number and density an readily be formed by first preparing the coating or film from the desired monomeric material and then contacting it with a fluid containing a metal or a mixture of metals for a time sufficient for such metal or metals to sorb and diffuse into the coating or film. Metal resinate solutions are particularly advantageous for this purpose. A metallic coating can in turn be produced on the metal-loaded film or coating by exposing it to a low pressure plasma of air, oxygen, or nitrous oxide. The process permits a metallic coating to be formed on a heat sensitive substrate without the use of elevated temperatures.

  17. Ultraviolet-assisted direct patterning and low-temperature formation of flexible ZrO2 resistive switching arrays on PET/ITO substrates

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Chen, Yuanqing; Yin, Xiaoru; Song, Yang; Li, Na; Niu, Jinfen; Wu, Huimin; Qu, Wenwen

    2017-12-01

    We demonstrate a low-cost and facile photochemical solution method to prepare the ZrO2 resistive switching arrays as memristive units on flexible PET/ITO substrates. ZrO2 solution sensitive to UV light of 337 nm was synthesized using zirconium n-butyl alcohol as the precursor, and benzoylacetone as the complexing agent. After the dip-coated ZrO2 gel films were irradiated through a mask under the UV lamp (with wavelength of 325-365 nm) at room temperature and rinsed in ethanol, the ZrO2 gel arrays were obtained on PET/ITO substrates. Subsequently, the ZrO2 gel arrays were irradiated by deep UV light of 254 and 185 nm at 150 °C, resulting in the amorphous ZrO2 memristive micro-arrays. The ZrO2 units on flexible PET/ITO substrates exhibited excellent memristive properties. A high ratio of 104 of on-state and off-state resistance was obtained. The resistive switching behavior of the flexible device remained stable after being bent for 103 times. The device showed stable flexibility up to a minimum bending diameter of 1.25 cm.

  18. Snakes on a plane: modeling flexible active nematics

    NASA Astrophysics Data System (ADS)

    Selinger, Robin

    Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.

  19. In situ diazonium-modified flexible ITO-coated PEN substrates for the deposition of adherent silver-polypyrrole nanocomposite films.

    PubMed

    Samanta, Soumen; Bakas, Idriss; Singh, Ajay; Aswal, Dinesh K; Chehimi, Mohamed M

    2014-08-12

    In this paper, we report a simple and versatile process of electrografting the aryl multilayers onto indium tin oxide (ITO)-coated flexible poly(ethylene naphthalate) (PEN) substrates using a diazonium salt (4-pyrrolylphenyldiazonium) solution, which was generated in situ from a reaction between the 4-(1H-pyrrol-1-yl)aniline precursor and sodium nitrite in an acidic medium. The first aryl layer bonds with the ITO surface through In-O-C and Sn-O-C bonds which facilitate the formation of a uniform aryl multilayer that is ∼8 nm thick. The presence of the aryl multilayer has been confirmed by impedance spectroscopy as well as by electron-transfer blocking measurements. These in situ diazonium-modified ITO-coated PEN substrates may find applications in flexible organic electronics and sensor industries. Here we demonstrate the application of diazonium-modified flexible substrates for the growth of adherent silver/polpyrrole nanocomposite films using surface-confined UV photopolymerization. These nanocomposite films have platelet morphology owing to the template effect of the pyrrole-terminated aryl multilayers. In addition, the films are highly doped (32%). This work opens new areas in the design of flexible ITO-conductive polymer hybrids.

  20. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-12-08

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  1. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-09-15

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  2. Coatings Would Protect Polymers Against Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1995-01-01

    Proposed interposition of layers of silver oxide tens to hundreds of angstroms thick between polymeric substrates and overlying films helps protect substrates against chemical attack by monatomic oxygen. In original application, polymer substrate would be, sheet of polyimide supporting array of solar photovoltaic cells on spacecraft in low orbit around Earth. Concept also applicable to protection of equipment in terrestrial laboratory and industrial vacuum and plasma chambers in which monatomic oxygen present.

  3. Flexible top-emitting OLEDs for lighting: bending limits

    NASA Astrophysics Data System (ADS)

    Schwamb, Philipp; Reusch, Thilo C.; Brabec, Christoph J.

    2013-09-01

    Flexible OLED light sources have great appeal due to new design options, being unbreakable and their low weight. Top-emitting OLED device architectures offer the broadest choice of substrate materials including metals which are robust, impermeable to humidity, and good thermal conductors making them promising candidates for flexible OLED device substrates. In this study, we investigate the bending limits of flexible top-emitting OLED lighting devices with transparent metal electrode and thin film encapsulation on a variety of both metal and plastic foils. The samples were subjected to concave and convex bending and inspected by different testing methods for the onset of breakdown for example visible defects and encapsulation failures. The critical failure modes were identified as rupture of the transparent thin metal top electrode and encapsulation for convex bending and buckling of the transparent metal top electrode for concave bending. We investigated influences from substrate material and thickness and top coating thickness. The substrate thickness is found to dominate bending limits as expected by neutral layer modeling. Coating shows strong improvements for all substrates. Bending radii <15mm are achieved for both convex and concave testing without damage to devices including their encapsulation.

  4. Controllable strain-induced uniaxial anisotropy of Fe{sub 81}Ga{sub 19} films deposited on flexible bowed-substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Guohong; Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Science, Nanchang University, Nanchang 330031

    2013-11-07

    We propose a convenient method to induce a uniaxial anisotropy in magnetostrictive Fe{sub 81}Ga{sub 19} films grown on flexible polyethylene terephthalate (PET) substrates by bending the substrate prior to deposition. A tensile/compressive stress is induced in the Fe{sub 81}Ga{sub 19} films when PET substrates are shaped from concave/convex to flat after deposition. The stressed Fe{sub 81}Ga{sub 19} films exhibit a significant uniaxial magnetic anisotropy due to the internal stress arising from changes in shape of PET substrates. The easy axis is along the tensile stress direction and the coercive field along easy axis is increased with increasing the internal tensilemore » stress. The remanence of hard axis is decreased with increasing the compressive stress, while the coercive field is almost unchanged. A modified Stoner-Wohlfarth model with considering the distribution of easy axes in polycrystalline films is used to account for the magnetic properties tuned by the strain-controlled magnetoelastic anisotropy in flexible Fe{sub 81}Ga{sub 19} films. Our investigations provide a convenient way to induce uniaxial magnetic anisotropy, which is particularly important for fabricating flexible magnetoelectronic devices.« less

  5. Strong thin membrane structure for use as solar sail comprising substrate with reflective coating on one surface and an infra red emissivity increasing coating on the other surface

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E. (Inventor)

    1982-01-01

    Production of strong lightweight membrane structure by applying a thin reflective coating such as aluminum to a rotating cylinder, applying a mesh material such as nylon over the aluminum coating, coating the mesh overlying the aluminum with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum, and applying an emissivity increasing material such as chromium and silicon monoxide to the polymer film to disperse such material colloidally into the growing polymer film, or applying such material to the final polymer film, and removing the resulting membrane structure from the cylinder. Alternatively, such membrane structure can be formed by etching a substrate in the form of an organic film such as a polyimide, or a metal foil, to remove material from the substrate and reduce its thickness, applying a thin reflective coating such as aluminum on one side of the substrate and applying an emissivity increasing coating such as chromium and silicon monoxide on the reverse side of the substrate.

  6. Transformation of halogen-, alkyl-, and alkoxy-substituted anilines by a lactase of Trametes versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, T.; Liu, S.Y.; Bollag, J.M.

    1985-05-01

    The lactase of the fungus Trametes versicolor was able to polymerize various halogen-, alkyl-, and alkoxy-substituted anilines, showing substrate specificity similar to that of horseradish peroxidase, whereas the lactase of Rhizoctonia praticola was active only with p-methoxyaniline. The substrate specificities of the enzymes were determined by using gas chromatography to measure the decrease in substrate concentration during incubation. With p-chloroaniline as the substrate, the peroxidase and the Trametes lactase showed maximum activity near pH 4.2. The transformation of this substrate gave rise to a number of oligomers, ranging from dimers to pentamers, as determined by mass spectrometry. The product profilesmore » obtained by high-pressure liquid chromatography were similar for the two enzymes. A chemical reaction was observed between p-chloroaniline and an enzymatically formed dimer, resulting in the formation of a trimer. All three enzymes oxidized p-methoxyaniline to 2-amino-5-p-anisidinobenzoquinone di-p-methoxyphenylimine, but only the T. versicolor lactase and the peroxidase caused the formation of a pentamer (2,5-di-p-anisidinobenzoquinone di-p-methoxyphenylimine). These results demonstrate that in addition to horseradish peroxidase, a T. versicolor lactase can also polymerize aniline derivatives.« less

  7. Graphene-based stretchable and transparent moisture barrier

    NASA Astrophysics Data System (ADS)

    Won, Sejeong; Van Lam, Do; Lee, Jin Young; Jung, Hyun-June; Hur, Min; Kim, Kwang-Seop; Lee, Hak-Joo; Kim, Jae-Hyun

    2018-03-01

    We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.

  8. All-polymeric sensing platform based on packaged self-assembled bottle microresonator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Grimaldi, Immacolata A.; Persichetti, Gianluca; Testa, Genni

    2017-02-01

    In recent years, microbottle resonators that support non-degenerate whispering gallery modes (WGMs), propagating by successive total internal reflections close to the resonator surface and all along its axis, have been widely investigated due to their potential applications in optical sensing, microlasers and nonlinear optics. To overcome some drawbacks of the standard silica microbottle resonators, we focused our attention on polymers such as SU-8 resist and NOA resins. A drop of polymeric material is dispensed onto a fiber stem, providing a mechanical support for the bottle resonator, and is photo-polymerized by an UV lamp. The interrogation system, usually constituted by a tapered silica fiber evanescently coupled with the microresonator, is substituted by a more stable planar waveguide realized in SU-8 by means of standard photolithography technique. Moreover, for guarantying the stability to surrounding disturbance of the coupling between the microbottle resonator and the planar waveguide, the fiber stem is glued to substrate. Two drilled holes in the substrate allow the rise of the glue at the ends of the fiber stem and the fixing of sensor on PMMA substrate. In the present work, we presented an integrated full polymeric platform with self-assembled bottle microresonators packaged in a stable structure. SU-8 and NOA based microbottles are realized and morphologically characterized. The low autofluorescence emission and long term stability make the NOA based bottles suitable to be employed in a great variety of conditions. Bulk sensing measurements are performed by using water:ethanol solutions and a bulk sensitivity of 120 nm/RIU is estimated.

  9. Vacuum-deposited, nonpolymeric flexible organic light-emitting devices.

    PubMed

    Gu, G; Burrows, P E; Venkatesh, S; Forrest, S R; Thompson, M E

    1997-02-01

    We demonstrate mechanically flexible, organic light-emitting devices (OLED's) based on the nonpolymetric thin-film materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and N, N(?) -diphenyl- N, N(?) -bis(3-methylphenyl)1- 1(?) biphenyl-4, 4(?) diamine (TPD). The single heterostructure is vacuum deposited upon a transparent, lightweight, thin plastic substrate precoated with a transparent, conducting indium tin oxide thin film. The flexible OLED performance is comparable with that of conventional OLED's deposited upon glass substrates and does not deteriorate after repeated bending. The large-area (~1 - cm>(2)) devices can be bent without failure even after a permanent fold occurs if they are on the convex substrate surface or over a bend radius of ~0.5>cm if they are on the concave surface. Such devices are useful for ultralightweight, flexible, and comfortable full-color flat panel displays.

  10. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE PAGES

    Wang, Jun; Bonnesen, Peter V; Rangel, E.; ...

    2016-01-04

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  11. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Bonnesen, Peter V; Rangel, E.

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  12. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.

    PubMed

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-04-13

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  13. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording

    PubMed Central

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-01-01

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode–skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring. PMID:29652835

  14. The Mechanical Robustness of Atomic-Layer- and Molecular-Layer-Deposited Coatings on Polymer Substrates

    DTIC Science & Technology

    2009-01-01

    coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch

  15. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate.

    PubMed

    Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2018-07-01

    Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 40 CFR 60.741 - Definitions, symbols, and cross-reference tables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prepolymers to a supporting web other than paper, plastic film, metallic foil, or metal coil. Substrate means... (i) entering the emission control device, in dry standard cubic meters per hour when Method 18 or 25... coats a continuous web to produce a substrate with a polymeric coating. Should the coating process not...

  17. A silicon-on-insulator complementary-metal-oxide-semiconductor compatible flexible electronics technology

    NASA Astrophysics Data System (ADS)

    Tu, Hongen; Xu, Yong

    2012-07-01

    This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.

  18. Influence of bending strains on radio frequency characteristics of flexible microwave switches using single-crystal silicon nanomembranes on plastic substrate

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang

    2011-10-01

    This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.

  19. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    PubMed Central

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  20. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    PubMed

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  1. Flexible, polymer gated, AC-driven organic electroluminescence devices

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.

    2017-08-01

    Comparing rigid inorganic layer, polymeric semiconducting gate layer exhibits superior flexibility as well as efficient carrier manipulation in high frequency AC cycles. Mechanism of the carrier manipulation at the gate in forward and reversed bias of AC cycle is studied. The flexible PET-based AC-OEL device with poly[(9,9-bis(3'-((N,N-dimethyl)-Nethylammonium)- propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br) gate shows a stable electroluminescent performance in frequency sweep with a color rendering index (CRI) over 81 at 2800K color temperature.

  2. Residual stress analysis for oxide thin film deposition on flexible substrate using finite element method

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui

    2011-09-01

    Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.

  3. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C. Jeffrey; Reed, Scott T.

    1984-01-01

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  4. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C.J.; Reed, S.T.

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  5. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  6. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  7. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  8. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  9. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability.

    PubMed

    Welsch, Nicole; Lyon, L Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.

  10. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability

    PubMed Central

    Lyon, L. Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648

  11. Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method.

    PubMed

    Jiang, Dongyue; Park, Sung-Yong

    2016-05-21

    Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.

  12. A general description of detachment for multidimensional modelling of biofilms.

    PubMed

    Xavier, Joao de Bivar; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2005-09-20

    A general method for describing biomass detachment in multidimensional biofilm modelling is introduced. Biomass losses from processes acting on the entire surface of the biofilm, such as erosion, are modelled using a continuous detachment speed function F(det). Discrete detachment events, i.e. sloughing, are implicitly derived from simulations. The method is flexible to allow F(det) to take several forms, including expressions dependent on any state variables such as the local biofilm density. This methodology for biomass detachment was integrated with multidimensional (2D and 3D) particle-based multispecies biofilm models by using a novel application of the level set method. Application of the method is illustrated by trends in the dynamics of biofilms structure and activity derived from simulations performed on a simple model considering uniform biomass (case study I) and a model discriminating biomass composition in heterotrophic active mass, extracellular polymeric substances (EPS) and inert mass (case study II). Results from case study I demonstrate the effect of applied detachment forces as a fundamental factor influencing steady-state biofilm activity and structure. Trends from experimental observations reported in literature were correctly described. For example, simulation results indicated that biomass sloughing is reduced when erosion forces are increased. Case study II illustrates the application of the detachment methodology to systems with non-uniform biomass composition. Simulations carried out at different bulk concentrations of substrate show changes in biofilm structure (in terms of shape, density and spatial distribution of biomass components) and activity (in terms of oxygen and substrate consumption) as a consequence of either oxygen-limited or substrate-limited growth. (c) 2005 Wiley Periodicals, Inc.

  13. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    PubMed

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  14. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  15. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less

  16. Using graphene/styrene-isoprene-styrene copolymer composite thin film as a flexible microstrip antenna for the detection of heptane vapors

    NASA Astrophysics Data System (ADS)

    Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel

    2018-03-01

    Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.

  17. Mueller matrix characterization of flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Hong, Nina; Synowicki, Ron A.; Hilfiker, James N.

    2017-11-01

    This work reports on Mueller matrix spectroscopic ellipsometry characterization of various flexible plastic substrates that are optically anisotropic with varying degrees of birefringence. The samples are divided into three groups according to the suggested characterization strategy: low birefringence, high birefringence, and twisted birefringence. The first group includes poly(methyl methacrylate) and cyclic olefin copolymer substrates. These are modeled with biaxial anisotropy for the real part of the refractive index while the imaginary part is approximated as isotropic due to small light absorption. The second group includes polyethylene terephthalate and polyethylene naphthalate substrates, which are modeled with biaxial anisotropy for both real and imaginary refractive indices. Lastly, a polyimide substrate is described as two birefringent layers with twisted in-plane orientation.

  18. Cellobiose Dehydrogenase Inhibition of Polymerization of Phenolic Compounds and Enhancing Lignin Degradation by Lignina.

    PubMed

    Fang, Jing; Liu, Wen; Gao, Pei-Ji

    1999-01-01

    The kinetic behavior of cellobiose dehydrogenase (CDH) was investigated by steady-state initial velocity studies. Variation in the concentration of one substrate led to changes in K(m) and V(max) of the other substrate. The results were consistent with a ping-pong mechanism. In the presence of cellobiose, CDH could reduce many oxidized products catalyzed by soybean hull peroxidase (SHP). The oxidation product of 1-hydroxybenzotriazole (HBT) catalyzed by SHP inactivated the enzyme itself however, CDH could prevent SHP from inactivation by reducing the oxidation product of HBT. CDH could also inhibit the polymerization of phenolic compounds catalyzed by SHP. It was found that the addition of CDH could enhance kraft pulp lignin degradation by ligninases.

  19. Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications

    PubMed Central

    Gerardo, Carlos D.; Cretu, Edmond; Rohling, Robert

    2017-01-01

    This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω/☐. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μm. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates. PMID:28629134

  20. Exploration of CIGAS Alloy System for Thin-Film Photovoltaics on Novel Lightweight and Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine

    2007-01-01

    Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.

  1. Highly Luminescent Dual Mode Polymeric Nanofiber-Based Flexible Mat for White Security Paper and Encrypted Nanotaggant Applications.

    PubMed

    Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar

    2018-05-23

    Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fundamental Degradation Mechanisms of Multi-Functional Nanoengineered Surfaces

    DTIC Science & Technology

    2018-04-08

    surface tension fluids with widely used lubricants for designing LIS. We considered a wide range of low surface tension fluids (12 to 48 mN/m) and...selection in designing stable LIS for the low surface tension fluids. Lastly, using steady state condensation experiments, we show that polymeric...polymeric coating to the high surface energy substrate and mechanical delamination of the coating. This finding will be key to future design

  3. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching

    PubMed Central

    Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang

    1998-01-01

    Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862

  4. In Vitro Analysis of d-Lactyl-CoA-Polymerizing Polyhydroxyalkanoate Synthase in Polylactate and Poly(lactate- co-3-hydroxybutyrate) Syntheses.

    PubMed

    Matsumoto, Ken'ichiro; Iijima, Midori; Hori, Chiaki; Utsunomia, Camila; Ooi, Toshihiko; Taguchi, Seiichi

    2018-05-15

    Engineered d-lactyl-coenzyme A (LA-CoA)-polymerizing polyhydroxyalkanoate synthase (PhaC1 Ps STQK) efficiently produces poly(lactate- co-3-hydroxybutyrate) [P(LA- co-3HB]) copolymer in recombinant Escherichia coli, while synthesizing tiny amounts of poly(lactate) (PLA)-like polymers in recombinant Corynebacterium glutamicum. To elucidate the mechanisms underlying the interesting phenomena, in vitro analysis of PhaC1 Ps STQK was performed using homo- and copolymerization conditions of LA-CoA and 3-hydroxybutyryl-CoA. PhaC1 Ps STQK polymerized LA-CoA as a sole substrate. However, the extension of PLA chains completely stalled at a molecular weight of ∼3000, presumably due to the low mobility of the generated polymer. The copolymerization of these substrates only proceeded with a low concentration of LA-CoA. In fact, the intracellular LA-CoA concentration in P(LA- co-3HB)-producing E. coli was below the detection limit, while that in C. glutamicum was as high as acetyl-CoA levels. Therefore, it was concluded that the mobility of polymerized products and LA-CoA concentration are dominant factors characterizing PLA and P(LA- co-3HB) biosynthetic systems.

  5. Studies on modification of ZnO sol-gel spin coated on flexible substrate at low temperature: Effect of time exposure

    NASA Astrophysics Data System (ADS)

    Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati

    2017-04-01

    Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.

  6. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    PubMed

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  7. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    NASA Astrophysics Data System (ADS)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  8. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  9. Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor); Subbaraman, Harish (Inventor)

    2017-01-01

    A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.

  10. Self-organized internal architectures of chiral micro-particles

    NASA Astrophysics Data System (ADS)

    Provenzano, Clementina; Mazzulla, Alfredo; Pagliusi, Pasquale; De Santo, Maria P.; Desiderio, Giovanni; Perrotta, Ida; Cipparrone, Gabriella

    2014-02-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials.

  11. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  12. A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit

    NASA Astrophysics Data System (ADS)

    Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei

    2017-07-01

    In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.

  13. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    PubMed

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  14. Nanowire–quantum-dot lasers on flexible membranes

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.

  15. Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang

    2009-12-01

    This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.

  16. Highly conductive and anticorrosion Ag/CNTs/NDs hybrid films on molecular-grafted PET substrate for flexible electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Kang, Zhixin

    2018-01-01

    We reported an approach of preparing highly conductive, anticorrosion, flexible Ag hybrid films enhanced by multi-walled carbon nanotubes (CNTs) and nanodaimonds (NDs) on molecular-grafted PET substrate by spin-spray for flexible electronics. we studied in this paper and found that even an outstanding enhancement on conductivity of Ag films, CNTs have a negative effect on anticorrosion property. Meanwhile, NDs decreased the conductivity of Ag/CNTs hybrids, but it remained a relatively high conductivity property and even was affirmed a distinctly boost improvement on anticorrosion, microhardness and tensile strength, which meant a better mechanical chemical stabilization and practicability in real flexible electronics. To obtain the strong adhesive strength of films/substrate, molecular-grafting technology was applied, which was affirmed by XPS and cross-cut test. What's more, we evaluated anticorrosion property by electrochemistry test, including Tafel measurements and electrochemical impedance spectroscopy measurements, proving the positive effect of NDs on Ag/CNTs hybrid films. For practical application, a flexible light-emitting diode (LED) circuit was successfully structured and remained steady under bending, folding and twisting. Besides, after 1000000 cycles inner/outer bending deformation, the hybrid films showed a mechanical compliance, fatigue stability and practicability in real flexible electronics.

  17. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckel, E. R.; Berchtold, K. A.; Nie, J.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less

  18. Silicon thin-film transistor backplanes on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  19. Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

    PubMed Central

    Muniyappa, Kalappa; Yan, Jie

    2013-01-01

    The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559

  20. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  1. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.

    PubMed

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y

    2016-06-16

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.

  2. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  3. Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes.

    PubMed

    Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan

    2015-09-29

    The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath the membrane.

  4. The electrodeposition of multilayers on a polymeric substrate in Flexible Organic Light Emitting Diode (OLED)

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Tartari, Simone; Cunha, Idaulo Jose

    2016-09-01

    The development of Organic Light Emitting Diode (OLED), using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly(3,4-ethylenedioxythiophene), PEDOT, Poly(p-phenylenevinylene), PPV, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis), Optical Parameters (OP) and Scanning Electron Microscopy (SEM). In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the PET/ITO/PEDOT/PPV/PANI-X1/Al layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED), has indicated that the OLED has higher irradiance. After 1200 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  5. Surface initiated atom transfer radical polymerization grafting of sodium styrene sulfonate from titanium and silicon substrates.

    PubMed

    Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G

    2013-11-01

    This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.

  6. Surface initiated atom transfer radical polymerization grafting of sodium styrene sulfonate from titanium and silicon substrates

    PubMed Central

    Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.

    2013-01-01

    This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558

  7. Photoinduced Bioorthogonal 1,3-Dipolar Poly-cycloaddition Promoted by Oxyanionic Substrates for Spatiotemporal Operation of Molecular Glues.

    PubMed

    Hatano, Junichi; Okuro, Kou; Aida, Takuzo

    2016-01-04

    PGlue(PZ), a pyrazoline (PZ)-based fluorescent adhesive which can be generated spatiotemporally in living systems, was developed. Since PGlue(PZ) carries many guanidinium ion (Gu(+)) pendants, it strongly adheres to various oxyanionic substrates through a multivalent salt-bridge interaction. PGlue(PZ) is given by bioorthogonal photopolymerization of a Gu(+)-appended monomer (Glue(TZ)), bearing tetrazole (TZ) and olefinic termini. Upon exposure to UV light, Glue(TZ) transforms into a nitrileimine (NI) intermediate (Glue(NI)), which is eligible for 1,3-dipolar polycycloaddition. However, Glue(NI) in aqueous media can concomitantly be deactivated into Glue(WA) by the addition of water, and the polymerization hardly occurs unless Glue(NI) is concentrated. We found that, even under high dilution, Glue(NI) is concentrated on oxyanionic substrates to a sufficient level for the polymerization, so that their surfaces can be point-specifically functionalized with PGlue(PZ) by the use of a focused beam of UV light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.

    PubMed

    Ko, Jae-Jung; Shimizu, Yoshihisa; Ikeda, Kazuhiro; Kim, Seog-Ku; Park, Chul-Hwi; Matsui, Saburo

    2009-02-01

    This study is designed to investigate the biodegradation of high molecular weight (HMW) lignin under sulfate reducing conditions. With a continuously mesophilic operated reactor in the presence of co-substrates of cellulose, the changes in HMW lignin concentration and chemical structure were analyzed. The acid precipitable polymeric lignin (APPL) and lignin monomers, which are known as degradation by-products, were isolated and detected. The results showed that HMW lignin decreased and showed a maximum degradation capacity of 3.49 mg/l/day. APPL was confirmed as a polymeric degradation by-product and was accumulated in accordance with HMW lignin reduction. We also observed non-linear accumulation of aromatic lignin monomers such as hydrocinnamic acid. Through our experimental results, it was determined that HMW lignin, when provided with a co-substrate of cellulose, is biodegraded through production of APPL and aromatic monomers under anaerobic sulfate reducing conditions with a co-substrate of cellulose.

  9. Optimization of Semitransparent Anode Electrode for Flexible Green and Red Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-03-01

    In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.

  10. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    PubMed

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qibing

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  12. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    NASA Astrophysics Data System (ADS)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  13. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  14. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  15. Fabrication of Nanoscaled Systems

    DTIC Science & Technology

    2007-05-01

    corresponds to an effective dose as low as a few ýC/cm2 for sputtering of a 50 rum resist film. Comparison to observed sputtering rates in other polymeric ...materials (e.g. polystyrene and AZ and SU8 resists), coupled with time of flight SIMS measurements indicate that the relevant mechanism is indeed ion...approximately unity between GMR substrate and resist (for both electron and ion exposed HSQ), which we would not expect to be attainable using polymeric

  16. Reverse osmosis membrane of high urea rejection properties. [water purification

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  17. Lightweight bladder lined pressure vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    1998-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  18. Method for forming a bladder for fluid storage vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    2000-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang

    In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CHmore » species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.« less

  20. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids

    DOE PAGES

    Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei; ...

    2017-11-28

    Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less

  1. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei

    Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less

  2. Nanofabricated Collagen-Inspired Synthetic Elastomers for Primary Rat Hepatocyte Culture

    PubMed Central

    Bettinger, Christopher J.; Kulig, Katherine M.; Vacanti, Joseph P.

    2009-01-01

    Synthetic substrates that mimic the properties of extracellular matrix proteins hold significant promise for use in systems designed for tissue engineering applications. In this report, we designed a synthetic polymeric substrate that is intended to mimic chemical, mechanical, and topological characteristics of collagen. We found that elastomeric poly(ester amide) substrates modified with replica-molded nanotopographic features enhanced initial attachment, spreading, and adhesion of primary rat hepatocytes. Further, hepatocytes cultured on nanotopographic substrates also demonstrated reduced albumin secretion and urea synthesis, which is indicative of strongly adherent hepatocytes. These results suggest that these engineered substrates can function as synthetic collagen analogs for in vitro cell culture. PMID:18847357

  3. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge transport properties. Among this class of materials, various polymers can show well balanced electrons and holes mobility, therefore being indicated as ambipolar semiconductors, good environmental stability, and a small band-gap, which simplifies the tuning of charge injection. This opened up the possibility of taking advantage of the superior performances offered by complementary "CMOS-like" logic for the design of digital ICs, easing the scaling down of critical geometrical features, and achieving higher complexity from robust single gates (e.g., inverters) and test circuits (e.g., ring oscillators) to more complete circuits. Here, we review the recent progress in the development of printed ICs based on polymeric semiconductors suitable for large-volume micro- and nano-electronics applications. Particular attention is paid to the strategies proposed in the literature to design and synthesize high mobility polymers and to develop suitable printing tools and techniques to allow for improved patterning capability required for the down-scaling of devices in order to achieve the operation frequencies needed for applications, such as flexible radio-frequency identification (RFID) tags, near-field communication (NFC) devices, ambient electronics, and portable flexible displays. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor implanted inside the esophagus. Our pH electrode can monitor the pH changes of gastric juice in real time when the reflux happening in the esophagus. Our micro flexible pH sensor performed clear responses in each distinct pH reflux episode quickly and accurately comparing with the other commercial pH monitoring system. For the food freshness monitoring applications, we used the flexible pH sensor as a freshness indicator to monitor the pH changing profile during the food spoilage procedure. The sensor was then embedded with radio frequency identification (RFID) based passive telemetry enabling remote monitoring of food freshness. In the result, our pH-wireless RFID system presented 633Hz/pH of the sensitivity in the frequency calibration. The calibration of stability and dynamical response of the RFID system were also demonstrated before the test on food freshness monitoring. Finally, a white fish meat for long term spoilage procedure monitoring was applied and tested by using our wireless IrOx pH sensing system. Our RFID pH sensing module is able to monitor, collect and transmit the pH information continuously for 18 hours during the food spoilage procedure. In this dissertation, a micro size of IrOx/AgCl pH sensor was fabricated on a flexible substrate. The physical properties of the IrO x thin film was verified in the work. The different sensing capability such as the sensitivity, stability, reversibility, response time, repeatability, selectivity, and temperature dependence was then demonstrated in this work. After the different in-vitro tests, the pH sensor were embedded with our passive RFID circuitry for the in-vivo GERD diagnosis and food freshness monitoring application. Our wireless pH sensing system was able to deliver the accurate and quick pH sensing data wirelessly. In conclusion, our deformable IrOx pH electrodes have been demonstrated with the advantages of accommodating and conforming sensors in small spaces or curved surfaces. This miniature IrOx pH sensor can respond to distinct potentials of the various pH levels as traditional glass electrodes, however, the miniature, bio-compatible and flexible substrate and the ability to be integrated in batterryless telemetry enable the pH sensor to be applied on many new medical, bio-chemical and biological field.

  5. Transferable and flexible thin film devices for engineering applications

    NASA Astrophysics Data System (ADS)

    Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun

    2014-05-01

    Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.

  6. Nanowire surface fastener fabrication on flexible substrate.

    PubMed

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-27

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm -2 ) and low contact resistivity (2.2 × 10 -4 Ω cm 2 ).

  7. Microfluidics on compliant substrates: recent developments in foldable and bendable devices and system packaging

    NASA Astrophysics Data System (ADS)

    Gray, Bonnie L.

    2012-04-01

    Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.

  8. Nanowire surface fastener fabrication on flexible substrate

    NASA Astrophysics Data System (ADS)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  9. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release.

    PubMed

    Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P

    2015-11-25

    We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.

  10. Strippable containment and decontamination coating composition and method of use

    DOEpatents

    Moore, Robert C [Edgewood, NM; Tucker, Mark D [Albuquerque, NM; Jones, Joseph A [Albuquerque, NM

    2009-04-07

    A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.

  11. Removal of DLC film on polymeric materials by low temperature atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daichi; Tanaka, Fumiyuki; Kasai, Yoshiyuki; Sahara, Junki; Asai, Tomohiko; Hiratsuka, Masanori; Takatsu, Mikio; Koguchi, Haruhisa

    2017-10-01

    Diamond-like carbon (DLC) thin film has various excellent functions. For example, high hardness, abrasion resistance, biocompatibility, etc. Because of these functionalities, DLC has been applied in various fields. Removal method of DLC has also been developed for purpose of microfabrication, recycling the substrate and so on. Oxygen plasma etching and shot-blast are most common method to remove DLC. However, the residual carbon, high cost, and damage onto the substrate are problems to be solved for further application. In order to solve these problems, removal method using low temperature atmospheric pressure plasma jet has been developed in this work. The removal effect of this method has been demonstrated for DLC on the SUS304 substrate. The principle of this method is considered that oxygen radical generated by plasma oxidize carbon constituting the DLC film and then the film is removed. In this study, in order to widen application range of this method and to understand the mechanism of film removal, plasma irradiation experiment has been attempted on DLC on the substrate with low heat resistance. The DLC was removed successfully without any significant thermal damage on the surface of polymeric material.

  12. Method for forming a nano-textured substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sangmoo; Hu, Liangbing; Cui, Yi

    A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale,more » roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.« less

  13. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.

    PubMed

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-07-20

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.

  14. Critical Issues for Cu(InGa)Se2 Solar Cells on Flexible Polymer Web

    NASA Technical Reports Server (NTRS)

    Eser, Erten; Fields, Shannon; Shafarman, William; Birkmire, Robert

    2007-01-01

    Elemental in-line evaporation on glass substrates has been a viable process for the large-area manufacture of CuInSe2-based photovoltaics, with module efficiencies as high as 12.7% [1]. However, lightweight, flexible CuInSe2-based modules are attractive in a number of applications, such as space power sources. In addition, flexible substrates have an inherent advantage in manufacturability in that they can be deposited in a roll-to-roll configuration allowing continuous, high yield, and ultimately lower cost production. As a result, high-temperature polymers have been used as substrates in depositing CuInSe2 films [2]. Recently, efficiency of 14.1% has been reported for a Cu(InGa)Se2-based solar cell on a polyimide substrate [3]. Both metal foil and polymer webs have been used as substrates for Cu(InGa)Se2-based photovoltaics in a roll-to-roll configuration with reasonable success [4,5]. Both of these substrates do not allow, readily, the incorporation of Na into the Cu(InGa)Se2 film which is necessary for high efficiency devices [3]. In addition, polymer substrates, can not be used at temperatures that are optimum for Cu(InGa)Se2 deposition. However, unlike metal foils, they are electrically insulating, simplifying monolithically-integrated module fabrication and are not a source of impurities diffusing into the growing film. The Institute of Energy Conversion (IEC) has modified its in-line evaporation system [6] from deposition onto glass substrates to roll-to-roll deposition onto polyimide (PI) film in order to investigate key issues in the deposition of large-area Cu(InGa)Se2 films on flexible polymer substrates. This transition presented unexpected challenges that had to be resolved. In this paper, two major problems, spitting from the Cu source and the cracking of Mo back contact film, will be discussed and the solution to each will be presented.

  15. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface

    PubMed Central

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon

    2015-01-01

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284

  16. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface.

    PubMed

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon

    2015-10-29

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

  17. Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.

    2017-04-01

    Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.

  18. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  19. Ductile film delamination from compliant substrates using hard overlayers

    PubMed Central

    Cordill, M.J.; Marx, V.M.; Kirchlechner, C.

    2014-01-01

    Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. PMID:25641995

  20. Ductile film delamination from compliant substrates using hard overlayers.

    PubMed

    Cordill, M J; Marx, V M; Kirchlechner, C

    2014-11-28

    Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.

  1. A comparative study of graphene and graphite-based field effect transistor on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bhatt, Kapil; Rani, Cheenu; Vaid, Monika; Kapoor, Ankit; Kumar, Pramod; Kumar, Sandeep; Shriwastawa, Shilpi; Sharma, Sandeep; Singh, Randhir; Tripathi, C. C.

    2018-06-01

    In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be 83 cm2/V s (holes) and 33 cm2/V s (electrons) for graphite FET and 100 cm2/V s (holes) and 52 cm2/V s (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.

  2. Flexible TFTs based on solution-processed ZnO nanoparticles.

    PubMed

    Jun, Jin Hyung; Park, Byoungjun; Cho, Kyoungah; Kim, Sangsig

    2009-12-16

    Flexible electronic devices which are lightweight, thin and bendable have attracted increasing attention in recent years. In particular, solution processes have been spotlighted in the field of flexible electronics, since they provide the opportunity to fabricate flexible electronics using low-temperature processes at low-cost with high throughput. However, there are few reports which describe the characteristics of electronic devices on flexible substrates. In this study, we fabricated flexible thin-film transistors (TFTs) on plastic substrates with channel layers formed by the spin-coating of ZnO nanoparticles and investigated their electrical properties in the flat and bent states. To the best of our knowledge, this study is the first attempt to fabricate fully functional ZnO TFTs on flexible substrates through the solution process. The ZnO TFTs showed n-channel device characteristics and operated in enhancement mode. In the flat state, a representative ZnO TFT presented a very low field-effect mobility of 1.2 x 10(-5) cm(2) V(-1) s(-1), while its on/off ratio was as high as 1.5 x 10(3). When the TFT was in the bent state, some of the device parameters changed. The changes of the device parameters and the possible reasons for these changes will be described. The recovery characteristics of the TFTs after being subjected to cyclic bending will be discussed as well.

  3. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjib, Das; Yang, Bin; Gu, Gong

    Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was usedmore » to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.« less

  4. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing

    PubMed Central

    Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok

    2018-01-01

    The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144

  5. Ferrocene pixels by laser-induced forward transfer: towards flexible microelectrode printing

    NASA Astrophysics Data System (ADS)

    Mitu, B.; Matei, A.; Filipescu, M.; Palla Papavlu, A.; Bercea, A.; Lippert, T.; Dinescu, M.

    2017-03-01

    The aim of this work is to demonstrate the potential of laser-induced forward transfer (LIFT) as a printing technology, alternative to standard microfabrication techniques, in the area of flexible micro-electrode fabrication. First, ferrocene thin films are deposited onto fused silica and fused silica substrates previously coated with a photodegradable polymer film (triazene polymer) by matrix assisted pulsed laser evaporation (MAPLE). The morphology and chemical structure of the ferrocene thin films deposited by MAPLE has been investigated by atomic force microscopy and Fourier transformed infrared spectroscopy, and no structural damage occurs as a result of the laser deposition. Second, LIFT is applied to print for the first time ferrocene pixels and lines onto flexible polydimethylsiloxane (PDMS) substrates. The ferrocene pixels and lines are flawlessly transferred onto the PDMS substrates in air at room temperature, without the need of additional conventional photolithography processes. We believe that these results are very promising for a variety of applications ranging from flexible electronics to lab-on-a-chip devices, MEMS, and medical implants.

  6. A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate

    PubMed Central

    Jeranče, Nikola; Vasiljević, Dragana; Samardžić, Nataša; Stojanović, Goran

    2012-01-01

    This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film) using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor) related to the external one (stator), the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications. PMID:22438710

  7. Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Daugherty, Robin

    This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.

  8. Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.

    2017-10-01

    Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.

  9. "Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.

    PubMed

    Tai, Yanlong; Lubineau, Gilles

    2017-04-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  10. Advances in maskless and mask-based optical lithography on plastic flexible substrates

    NASA Astrophysics Data System (ADS)

    Barbu, Ionut; Ivan, Marius G.; Giesen, Peter; Van de Moosdijk, Michel; Meinders, Erwin R.

    2009-12-01

    Organic flexible electronics is an emerging technology with huge potential growth in the future which is likely to open up a complete new series of potential applications such as flexible OLED-based displays, urban commercial signage, and flexible electronic paper. The transistor is the fundamental building block of all these applications. A key challenge in patterning transistors on flexible plastic substrates stems from the in-plane nonlinear deformations as a consequence of foil expansion/shrinkage, moisture uptake, baking etc. during various processing steps. Optical maskless lithography is one of the potential candidates for compensating for these foil distortions by in-situ adjustment prior to exposure of the new layer image with respect to the already patterned layers. Maskless lithography also brings the added value of reducing the cost-of-ownership related to traditional mask-based tools by eliminating the need for expensive masks. For the purpose of this paper, single-layer maskless exposures at 355 nm were performed on gold-coated poly(ethylenenaphthalate) (PEN) flexible substrates temporarily attached to rigid carriers to ensure dimensional stability during processing. Two positive photoresists were employed for this study and the results on plastic foils were benchmarked against maskless as well as mask-based (ASML PAS 5500/100D stepper) exposures on silicon wafers.

  11. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  12. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  13. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates

    PubMed Central

    2015-01-01

    We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be modulated by mechanical stretching. Next we fabricate stretchable arrays of gold pyramids and demonstrate a modulation of the wavelength of light resonantly scattered from the tip of the pyramid by stretching the underlying PDMS film. The use of a flexible transfer layer also enables template stripping using a cylindrical roller as a substrate. As an example, we demonstrate roller template stripping of metallic nanoholes, nanodisks, wires, and pyramids onto the cylindrical surface of a glass rod lens. These nonplanar metallic structures produced via template stripping with flexible and stretchable films can facilitate many applications in sensing, display, plasmonics, metasurfaces, and roll-to-roll fabrication. PMID:26402066

  14. Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates

    NASA Astrophysics Data System (ADS)

    Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah

    2017-08-01

    Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.

  15. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, T.F.

    1994-04-19

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.

  16. Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs)

    DTIC Science & Technology

    2006-08-01

    preceramic polymers that convert by pyrolysis to SiC , SiOC or C. Potential polymeric precursors to ZrB2 and ZrC were not selected, because they were not...limited extent, C/ SiC composite substrates using preceramic and precarbon polymers combined with inert fillers and/or reactive metals. The evolved... SiC is an obvious example for powder mixed with a preceramic polymer binder to achieve the desired low-temperature processing. The polymeric

  17. Better Back Contacts for Solar Cells on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Ribelin, Rosine M.

    2006-01-01

    Improved low-resistance, semitransparent back contacts, and a method of fabricating them, have been developed for solar photovoltaic cells that are made from thin films of I-III-VI2 semiconductor materials on flexible, high-temperatureresistant polyimide substrates or superstrates. The innovative aspect of the present development lies in the extension, to polyimide substrates or superstrates, of a similar prior development of improved low-resistance, semitransparent back contacts for I-III-VI2 solar cells on glass substrates or superstrates. A cell incorporating this innovation can be used either as a stand-alone photovoltaic device or as part of a monolithic stack containing another photovoltaic device that utilizes light of longer wavelengths.

  18. A Comprehensive Surface Mount Technology Solution for Integrated Circuits onto Flexible Screen Printed Electrical Interconnects

    DTIC Science & Technology

    2014-05-19

    their acceptable thermal stability, Polyimides have established as a conventional substrate material for flexible interconnects, which can be...of the silver flake ink for the screen-printed interconnects, the assembled unit fulfills biocompatibility requirements in a limited manner ([29...30]). Even though biocompatibility of substrate [31] is fulfilled, toxicity of the insulating mask [32] and encapsulation need to be considered

  19. Direct observation of single flexible polymers using single stranded DNA†

    PubMed Central

    Brockman, Christopher; Kim, Sun Ju

    2012-01-01

    Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981

  20. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    PubMed

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  1. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  2. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  3. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE PAGES

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...

    2017-07-18

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  4. Direct laser writing of microstructures on optically opaque and reflective surfaces

    NASA Astrophysics Data System (ADS)

    Rekštytė, S.; Jonavičius, T.; Malinauskas, M.

    2014-02-01

    Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.

  5. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok

    2013-09-07

    A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.

  6. Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaodi; Zhang, Yaohui; Engelhard, Mark H.

    Spatial and morphology control over lithium (Li) metal nucleation/growth, as well as improving Li Coulombic efficiency (CE) are of the most challenging issues for rechargeable Li metal batteries. Here, we report that LiAsF6 and vinylene carbonate (VC) can work synergistically to address these challenges. It is revealed that AsF6- can be reduced to Li3As and LiF, which can act as seeds for Li growth and form a robust solid electrolyte interphase (SEI) layer, respectively. The addition of VC is critical because it not only enables uniform AsF6- reduction by passivating the defect sites on Cu substrate, but also improves themore » SEI layer flexibility during the reductive polymerization process. As a result, highly compact, uniform and dendrite-free Li film with vertically aligned columns structure can be obtained with greatly increased Li CE, and the Li metal batteries using the electrolyte with both LiAsF6 and VC additives can have much improved cycle life.« less

  7. Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities.

    PubMed

    Chen, Ming Wei; Tan, Yaw Bia; Zheng, Jie; Zhao, Yongqian; Lim, Bee Ting; Cornvik, Tobias; Lescar, Julien; Ng, Lisa Fong Poh; Luo, Dahai

    2017-07-01

    Chikungunya virus (CHIKV) is an important arboviral infectious agent in tropical and subtropical regions, often causing persistent and debilitating disease. The viral enzyme non-structural protein 4 (nsP4), as RNA-dependent RNA polymerase (RdRP), catalyzes the formation of negative-sense, genomic and subgenomic viral RNAs. Here we report a truncated nsP4 construct that is soluble, stable and purified recombinantly from Escherichia coli. Sequence analyses and homology modelling indicate that all necessary RdRP elements are included. Hydrogen/deuterium exchange with mass spectrometry was used to analyze solvent accessibility and flexibility of subdomains. Fluorophore-conjugated RNA ligands were designed and screened by using fluorescence anisotropy to select a suitable substrate for RdRP assays. Assay trials revealed that nsP4 core domain is conditionally active upon choice of detergent species, and carries out both primed extension and terminal adenylyltransferase activities. The polymerization assay can be further developed to screen for antiviral compounds in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Additively Manufactured Pneumatically Driven Skin Electrodes.

    PubMed

    Schubert, Martin; Schmidt, Martin; Wolter, Paul; Malberg, Hagen; Zaunseder, Sebastian; Bock, Karlheinz

    2017-12-23

    Telemedicine focuses on improving the quality of health care, particularly in out-of-hospital settings. One of the most important applications is the continuous remote monitoring of vital parameters. Long-term monitoring of biopotentials requires skin-electrodes. State-of-the-art electrodes such as Ag/AgCl wet electrodes lead, especially during long-term application, to complications, e.g., skin irritations. This paper presents a low-cost, on-demand electrode approach for future long-term applications. The fully printed module comprises a polymeric substrate with electrodes on a flexible membrane, which establishes skin contact only for short time in case of measurement. The membranes that produce airtight seals for pressure chambers can be pneumatically dilated and pressed onto the skin to ensure good contact, and subsequently retracted. The dilatation depends on the pressure and membrane thickness, which has been tested up to 150 kPa. The electrodes were fabricated in screen and inkjet printing technology, and compared during exemplary electrodermal activity measurement (EDA). The results show less amplitude compared to conventional EDA electrodes but similar behavior. Because of the manufacturing process the module enables high individuality for future applications.

  9. Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.

    2018-05-01

    This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption

  10. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film.

    PubMed

    Su, W; Xu, J; Ding, Xianting

    2016-12-01

    Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.

  11. Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology.

    PubMed

    Courtois, Josiane

    2009-06-01

    Since the past decades, oligosaccharides are considered for their potential biological activities. To exploit them, it was essential to obtain pure molecules in large amounts. Several strategies were developed to produce specific sugar sequences with specific substitution patterns from land plants and algae polysaccharides. Then, pure oligosaccharides were analyzed for their potential biological activities and relations between oligomers structure and function were tackled. First they can be health beneficial molecules when they are added to the diet to enhance the growth of probiotic bacteria, in that case, oligomers that resist to the digestive process are used as specific substrate for the growth of health beneficial bacteria. In other cases, oligomers have to interact with receptors on cells. In this instance, a specific conformation is needed to allow the sugar sequence to establish specific linkages with the receptor. So, to be adapted to the receptor, the oligosaccharides have to present specific groups to the receptor, there, the polymerization degree of oligosaccharides as well as the flexibility of the glycosidic linkages has to be considered.

  12. Organic transistor memory with a charge storage molecular double-floating-gate monolayer.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2015-05-13

    A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.

  13. Flexible Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)

    2017-01-01

    A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.

  14. Cell-micropatterning by micromolding in capillary technique based on UV polymerization

    NASA Astrophysics Data System (ADS)

    Park, Min J.; Choi, Won M.; Park, O. O.

    2006-01-01

    Although optical lithography or photolithography is one of the most well-established techniques for micro, nano-fabrication, its usage with proteins and cells is restricted by steps that must be carried out in harsh organic solvents. Here, we present simple methods for cell-micropatterning using poly(dimethylsiloxane) (PDMS) as a mold. Cell non-adhesive surface or nonfouling surface providing a physico-chemical barrier to cell attachment was introduced for biomaterial pattering, where cells fail to interact with the surface over desired periods of time determined by each application. Poly(ethylene glycol) (PEG) was selected as nonfouling material to inhibit protein adsorption from biological media. The fouling resistance of PEG polymer is often explained by a steric repulsion interaction, resulting from the compression of PEG chains as proteins approach the surface. We also chose fibronectin to direct cell attachment because it is an extracellular matrix protein that is involved in the adhesion and spreading of anchorage-dependent cells. In our experiment, we propose two methods by application of micromolding in capillary (MIMIC) method based on UV polymerization to obtain a surface of alternating PEG and fibronectin. First to fabricate PEG microstructure via MIMIC method, a pre-patterned PDMS mold is placed on a desired substrate, and then the relief structure in the mold forms a network of empty channels. A drop of ethylene glycol monomer solution containing initiator for UV polymerization is placed at the open ends of the network of channels, which is then polymerized by exposure to UV light at room temperature. Once PEG microstructure is fabricated, incubation of the patterned surface in a fibronectin-containing solution allows back-filling of only the bare regions with fibronectin via adsorption. In the alternative method, a substrate is first incubated in a fibronectin-containing solution, leading to the adsorption of fibronectin over the entire surface, and the fibronectin-adsorbed substrate is then micropatterned with the PEG by MIMIC based on UV polymerization. Both methods create reproducible alternating PEG and fibronectin patterns applicable to cell-surface interactions on the microscale.

  15. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-10-13

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.

  16. Mechanically Flexible and High-Performance CMOS Logic Circuits

    PubMed Central

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  17. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  18. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  19. Flexible amorphous oxide thin-film transistors on polyimide substrate for AMOLED

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Li, Min; Xu, Miao; Zou, Jianhua; Gao, Zhuo; Pang, Jiawei; Guo, Ying; Zhou, Lei; Wang, Chunfu; Fu, Dong; Peng, Junbiao; Wang, Lei; Cao, Yong

    2014-10-01

    We report a flexible amorphous Lanthanide doped In-Zn-O (IZO) thin-film transistor (TFT) backplane on polyimide (PI) substrate. In order to de-bond the PI film from the glass carrier easily after the flexible AMOLED process, a special inorganic film is deposited on the glass before the PI film is coated. The TFT exhibited a field-effect mobility of 6.97 cm2V-1 s-1, a subthreshold swing of 0.248 V dec-1, and an Ion/Ioff ratio of 5.19×107, which is sufficient to drive the OLEDs.

  20. Flexible fabrication and applications of polymer nanochannels and nanoslits

    PubMed Central

    Chantiwas, Rattikan; Kim, Byoung Choul; Sunkara, Vijaya; Hwang, Hyundoo

    2016-01-01

    Fluidic devices that employ nanoscale structures (<100 nm in one or two dimensions, slits or channels, respectively) are generating great interest due to the unique properties afforded by this size domain compared to their micro-scale counterparts. Examples of interesting nanoscale phenomena include the ability to preconcentrate ionic species at extremely high levels due to ion selective migration, unique molecular separation modalities, confined environments to allow biopolymer stretching and elongation and solid-phase bioreactions that are not constrained by mass transport artifacts. Indeed, many examples in the literature have demonstrated these unique opportunities, although predominately using glass, fused silica or silicon as the substrate material. Polymer microfluidics has established itself as an alternative to glass, fused silica, or silicon-based fluidic devices. The primary advantages arising from the use of polymers are the diverse fabrication protocols that can be used to produce the desired structures, the extensive array of physiochemical properties associated with different polymeric materials, and the simple and robust modification strategies that can be employed to alter the substrate's surface chemistry. However, while the strengths of polymer microfluidics is currently being realized, the evolution of polymer-based nanofluidics has only recently been reported. In this critical review, the opportunities afforded by polymer-based nanofluidics will be discussed using both elastomeric and thermoplastic materials. In particular, various fabrication modalities will be discussed along with the nanometre size domains that they can achieve for both elastomer and thermoplastic materials. Different polymer substrates that can be used for nanofluidics will be presented along with comparisons to inorganic nanodevices and the consequences of material differences on the fabrication and operation of nanofluidic devices (257 references). PMID:21442106

Top