Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors.
Zhang, Mingchao; Wang, Chunya; Wang, Qi; Jian, Muqiang; Zhang, Yingying
2016-08-17
Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.
Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith
2014-01-06
Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ~5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ~50 and ~120 times greater than those of conventional metallic strain sensors.
Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith
2014-01-01
Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ∼50 and ∼120 times greater than those of conventional metallic strain sensors. PMID:24399158
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping
2017-09-01
Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (˜60 ms), temperature independence, and superior stability and reproducibility during ˜1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.
Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien
2018-02-18
In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.
Liao, Xinqin; Zhang, Zheng; Liang, Qijie; Liao, Qingliang; Zhang, Yue
2017-02-01
Rapid advances in functional sensing electronics place tremendous demands on innovation toward creative uses of versatile advanced materials and effective designs of device structures. Here, we first report a feasible and effective fabrication strategy to integrate commercial abrasive papers with microcracked gold (Au) nanofilms to construct cuttable and self-waterproof crack-based resistive bending strain sensors. Via introducing surface microstructures, the sensitivities of the bending strain sensors are greatly enhanced by 27 times than that of the sensors without surface microstructures, putting forward an alternative suggestion for other flexible electronics to improve their performances. Besides, the bending strain sensors also endow rapid response and relaxation time of 20 ms and ultrahigh stability of >18 000 strain loading-unloading cycles in conjunction with flexibility and robustness. In addition, the concepts of cuttability and self-waterproofness (attain and even surpass IPX-7) of the bending strain sensors have been demonstrated. Because of the distinctive sensing properties, flexibility, cuttability, and self-waterproofness, the bending strain sensors are attractive and promising for wearable electronic devices and smart health monitoring system.
Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes.
Nie, Bangbang; Li, Xiangming; Shao, Jinyou; Li, Xin; Tian, Hongmiao; Wang, Duorui; Zhang, Qiang; Lu, Bingheng
2017-11-22
Strain sensors combining high sensitivity with good transparency and flexibility would be of great usefulness in smart wearable/flexible electronics. However, the fabrication of such strain sensors is still challenging. In this study, new strain sensors with embedded multiwalled carbon nanotubes (MWCNTs) meshes in polydimethylsiloxane (PDMS) films were designed and tested. The strain sensors showed elevated optical transparency of up to 87% and high sensitivity with a gauge factor of 1140 at a small strain of 8.75%. The gauge factors of the sensors were also found relatively stable since they did not obviously change after 2000 stretching/releasing cycles. The sensors were tested to detect motion in the human body, such as wrist bending, eye blinking, mouth phonation, and pulse, and the results were shown to be satisfactory. Furthermore, the fabrication of the strain sensor consisting of mechanically blading MWCNTs aqueous dispersions into microtrenches of prestructured PDMS films was straightforward, was low cost, and resulted in high yield. All these features testify to the great potential of these sensors in future real applications.
Flexible strain sensor based on carbon nanotube rubber composites
NASA Astrophysics Data System (ADS)
Kim, Jin-Ho; Kim, Young-Ju; Baek, Woon Kyung; Lim, Kwon Taek; Kang, Inpil
2010-04-01
Electrically conducting rubber composites (CRC) with carbon nanotubes (CNTs) filler have received much attention as potential materials for sensors. In this work, Ethylene propylene diene M-class rubber (EPDM)/CNT composites as a novel nano sensory material were prepared to develop flexible strain sensors that can measure large deformation of flexible structures. The EPDM/CNT composites were prepared by using a Brabender mixer with multi-walled CNTs and organo-clay. A strain sensor made of EPDM/CNT composite was attached to the surface of a flexible beam and change of resistance of the strain sensor was measured with respect to the beam deflection. Resistance of the sensor was change quite linearly under the bending and compressive large beam deflection. Upon external forces, CRC deformation takes place with the micro scale change of inter-electrical condition in rubber matrix due to the change of contact resistance, and CRC reveals macro scale piezoresistivity. It is anticipated that the CNT/EPDM fibrous strain sensor can be eligible to develop a biomimetic artificial neuron that can continuously sense deformation, pressure and shear force.
Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui
2018-02-01
A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.
Flexible heartbeat sensor for wearable device.
Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu
2017-08-15
We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Flexible Carbon Nanotube Films for High Performance Strain Sensors
Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda
2014-01-01
Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183
Graphene based strain sensor with LCP substrate
NASA Astrophysics Data System (ADS)
Nie, M.; Yang, H. S.; Xia, Y. H.
2018-02-01
A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.
Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon
2018-06-13
Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.
Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres.
Cao, Siyang; Pyatt, Simon; Anthony, Carl J; Kubba, Ammar I; Kubba, Ali E; Olatunbosun, Oluremi
2016-06-21
The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology.
Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres
Cao, Siyang; Pyatt, Simon; Anthony, Carl J.; Kubba, Ammar I.; Kubba, Ali E.; Olatunbosun, Oluremi
2016-01-01
The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402
NASA Astrophysics Data System (ADS)
Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing
2018-07-01
Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.
Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing
2018-04-18
Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.
DOT National Transportation Integrated Search
2006-01-01
In this study, a flexible pavement system was instrumented using fiber-optic strain sensors (FOSS). The purpose of this study was to demonstrate the feasibility of a FOSS installation, monitor the long-term strains under repeated traffic loading, and...
Recent progress of flexible and wearable strain sensors for human-motion monitoring
NASA Astrophysics Data System (ADS)
Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen
2018-01-01
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).
Sleep monitoring sensor using flexible metal strain gauge
NASA Astrophysics Data System (ADS)
Kwak, Yeon Hwa; Kim, Jinyong; Kim, Kunnyun
2018-05-01
This paper presents a sleep monitoring sensor based on a flexible metal strain gauge. As quality of life has improved, interest in sleep quality, and related products, has increased. In this study, unlike a conventional single sensor based on a piezoelectric material, a metal strain gauge-based array sensor based on polyimide and nickel chromium (NiCr) is applied to provide movement direction, respiration, and heartbeat data as well as contact-free use by the user during sleeping. Thin-film-type resistive strain gage sensors are fabricated through the conventional flexible printed circuit board (FPCB) process, which is very useful for commercialization. The measurement of movement direction and respiratory rate during sleep were evaluated, and the heart rate data were compared with concurrent electrocardiogram (ECG) data. An algorithm for analyzing sleep data was developed using MATLAB, and the error rate was 4.2% when compared with ECG for heart rate.
Liu, Kewei; Sakurai, Makoto; Aono, Masakazu
2012-12-07
The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Cox, D. E.; Lindner, D. K.
1991-01-01
An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.
NASA Astrophysics Data System (ADS)
Khalili, N.; Asif, H.; Naguib, H. E.
2018-05-01
Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.
Trung, Tran Quang; Lee, Nae-Eung
2016-06-01
Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.
1993-01-01
Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.
Flexible and transparent strain sensors based on super-aligned carbon nanotube films.
Yu, Yang; Luo, Yufeng; Guo, Alexander; Yan, Lingjia; Wu, Yang; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Wang, Jiaping
2017-05-25
Highly flexible and transparent strain sensors are fabricated by directly coating super-aligned carbon nanotube (SACNT) films on polydimethylsiloxane (PDMS) substrates. The fabrication process is simple, low cost, and favorable for industrial scalability. The SACNT/PDMS strain sensors present a high sensing range of 400%, a fast response of less than 98 ms, and a low creep of 4% at 400% strain. The SACNT/PDMS strain sensors can withstand 5000 stretching-releasing cycles at 400% strain. Moreover, the SACNT/PDMS strain sensors are transparent with 80% transmittance at 550 nm. In situ microscopic observation clarifies that the surface morphology of the SACNT film exhibits a reversible change during the stretching and releasing processes and thus its electrical conductance is able to fully recover to the original value after the loading-unloading cycles. The SACNT/PDMS strain sensors have the advantages of a wide sensing range, fast response, low creep, transparency, and excellent durability, and thus show great potential in wearable devices to monitor fast and large-scale movements without affecting the appearance of the devices.
NASA Astrophysics Data System (ADS)
Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang
2018-03-01
Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.
Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2014-12-23
A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.
Li, Yuan-Qing; Huang, Pei; Zhu, Wei-Bin; Fu, Shao-Yun; Hu, Ning; Liao, Kin
2017-03-21
In this work, a wire-shaped flexible strain sensor was fabricated by encapsulating conductive carbon thread (CT) with polydimethylsiloxane (PDMS) elastomer. The key strain sensitive material, CT, was prepared by pyrolysing cotton thread in N 2 atmosphere. The CT/PDMS composite wire shows a typical piezo-resistive behavior with high strain sensitivity. The gauge factors (GF) calculated at low strain of 0-4% and high strain of 8-10% are 8.7 and 18.5, respectively, which are much higher than that of the traditional metallic strain sensor (GF around 2). The wire-shaped CT/PDMS composite sensor shows excellent response to cyclic tensile loading within the strain range of 0-10%, the frequency range of 0.01-10 Hz, to up to 2000 cycles. The potential of the wire senor as wearable strain sensor is demonstrated by the finger motion and blood pulse monitoring. Featured by the low costs of cotton wire and PDMS resin, the simple structure and fabrication technique, as well as high performance with miniaturized size, the wire-shaped sensor based on CT/PDMS composite is believed to have a great potential for application in wearable electronics for human health and motion monitoring.
3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites
NASA Astrophysics Data System (ADS)
Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra
2017-04-01
As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.
Bioinspired Flexible and Highly Responsive Dual-Mode Strain/Magnetism Composite Sensor.
Huang, Pei; Li, Yuan-Qing; Yu, Xiao-Guang; Zhu, Wei-Bin; Nie, Shu-Yan; Zhang, Hao; Liu, Jin-Rui; Hu, Ning; Fu, Shao-Yun
2018-04-04
The mimicry of human skin to detect both oncoming and physical-contacting object is of great importance in the fields of manufacturing, artificial robots and vehicles, etc. Herein, a novel bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor, which works via both contact and contactless modes, is first fabricated by incorporating Fe 3 O 4 /silicone system into a carbon fiber aerogel (CFA). The distance dependence of magnetic field endorses the CFA/Fe 3 O 4 /silicone composite possible for spatial sensing due to the introduction of Fe 3 O 4 magnetic nanoparticles. As a result, the as-prepared flexible sensor exhibits precise and real-time response not only to direct-contact compression as usual but also to contactless magnetic field in a wide frequency range from 0.1 to 10 Hz, achieving the maximum variance of 68% and 86% in relative electrical resistance, respectively. The contact and contactless sensing modes of the strain/magnetism sensor are clearly demonstrated by recording the speeds of bicycle riding and walking, respectively. Interestingly, this dual-mode composite sensor exhibits the capacity of identifying the contact and contactless state, which is the first report for flexible sensors. The current protocol is eco-friendly, facile, and thought-provoking for the fabrication of multifunctional sensors.
NASA Astrophysics Data System (ADS)
Xing, Lindong; Zhu, Ruijian; Wang, Zengmei; Wang, Fengxia; Kimura, Hideo
2017-09-01
Here, we report our study results of a flexible piezoelectric tensile strain sensor which is fabricated by synthesizing 0.5Ba (Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 (0.5BZT-0.5BCT) nanofibers via an electrospinning process. Our nanofibers show an ultrahigh d33 of 275 pm V-1. 0.5BZT-0.5BCT nanofibers and MW-CNTs are dispersed in polydimethylsiloxane (PDMS) to fabricate a highly stretchable and flexible tensile sensor, and the multiple roles of the MW-CNTs are probed and demonstrated. This nanofiber-based piezoelectric tensile strain sensor shows great resolution and sensitivity under external mechanical deformation. It is suitable for applications in complex environments.
NASA Astrophysics Data System (ADS)
Sahatiya, Parikshit; Badhulika, Sushmee
2017-03-01
This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa-1.To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.
Sahatiya, Parikshit; Badhulika, Sushmee
2017-03-03
This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.
Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling
2018-06-12
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.
Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring
Khan, Hassan; Kottapalli, Ajay; Asadnia, Mohsen
2018-01-01
Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand. PMID:29389851
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors
Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.
2015-03-11
In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less
NASA Astrophysics Data System (ADS)
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-01
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-08
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Highly stretchable miniature strain sensor for large dynamic strain measurement
Song, Bo; Yao, Shurong; Nie, Xu; ...
2016-01-01
In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less
A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
NASA Astrophysics Data System (ADS)
Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu
2014-09-01
Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03295k
Flexible piezotronic strain sensor.
Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin
2008-09-01
Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.
NASA Astrophysics Data System (ADS)
Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze
2018-03-01
Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Yao, Shurong; Nie, Xu
In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less
NASA Astrophysics Data System (ADS)
Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei
2018-04-01
Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.
Yin, Feng; Ye, Dong; Zhu, Chen; Qiu, Lei; Huang, YongAn
2017-01-01
Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretchable strain sensors. The nanocomposite has excellent electrical and mechanical properties by intensively optimizing the weight percentage of conducting fillers as well as the ratio of PDMS pre-polymer and curing agent. It was found that the nanocomposite with homogeneous hybrid filler of 1.75 wt % CB and 3 wt % MWCNTs exhibits a highly strain sensitive characteristics of good linearity, high gauge factor (GF ~ 12.25) and excellent durability over 105 stretching-releasing cycles under a tensile strain up to 25% when the PDMS was prepared at the ratio of 12.5:1. A strain measurement of crack detection for the aerostats surface was also employed, demonstrating a great potential of such ternary nanocomposite used as stretchable strain sensor in SHM. PMID:29156620
Strengthening of back muscles using a module of flexible strain sensors.
Chuang, Wan-Chun; Lin, Hwai-Ting; Chen, Wei-Long
2015-02-09
This research aims at developing a flexible strain module applied to the strengthening of back muscles. Silver films were sputtered onto flexible substrates to produce a flexible sensor. Assuming that back muscle elongation is positively correlated with the variations in skin surface length, real-time resistance changes exhibited by the sensor during simulated training sessions were measured. The results were used to identify the relationship between resistance change of sensors and skin surface stretch. In addition, muscle length changes from ultrasound images were used to determine the feasibility of a proof of concept sensor. Furthermore, this module is capable of detecting large muscle contractions, some of which may be undesirable for the prescribed training strategy. Therefore, the developed module can facilitate real-time assessments of the movement accuracy of users during training, and the results are instantly displayed on a screen. People using the developed training system can immediately adjust their posture to the appropriate position. Thus, the training mechanism can be constructed to help user improve the efficiency of back muscle strengthening.
NASA Astrophysics Data System (ADS)
Ren, Liang; Li, Hong-Nan; Sun, Li; Li, Dong-Sheng
2005-05-01
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability of explosion proof, immunity to electromagnetic interference and high accuracy, especially fitting for measurement applications in harsh environment. In this paper, a novel FBG (fiber Bragg grating) strain sensor, which was packaged in a 1.2mm stainless steel tube by epoxy resin, was developed. Experiments were conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and demonstrates promising potentials. Ten of tube-packaged strain FBG sensors were applied in the vibration experiment of submarine pipeline model. The strain measured by FBG sensor agrees well with the electric resistance strain sensor.
NASA Astrophysics Data System (ADS)
Ren, Liang; Li, Hong-Nan; Sun, Li; Li, Dong-Sheng
2005-02-01
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability of explosion proof, immunity to electromagnetic interference and high accuracy, especially fitting for measurement applications in harsh environment. In this paper, a novel FBG (fiber Bragg grating) strain sensor, which was packaged in a 1.2mm stainless steel tube by epoxy resin, was developed. Experiments were conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and demonstrates promising potentials. Ten of tube-packaged strain FBG sensors were applied in the vibration experiment of submarine pipeline model. The strain measured by FBG sensor agrees well with the electric resistance strain sensor.
Sensing human physiological response using wearable carbon nanotube-based fabrics
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Koo, Helen S.
2016-04-01
Flexible and wearable sensors for human monitoring have received increased attention. Besides detecting motion and physical activity, measuring human vital signals (e.g., respiration rate and body temperature) provide rich data for assessing subjects' physiological or psychological condition. Instead of using conventional, bulky, sensing transducers, the objective of this study was to design and test a wearable, fabric-like sensing system. In particular, multi-walled carbon nanotube (MWCNT)-latex thin films of different MWCNT concentrations were first fabricated using spray coating. Freestanding MWCNT-latex films were then sandwiched between two layers of flexible fabric using iron-on adhesive to form the wearable sensor. Second, to characterize its strain sensing properties, the fabric sensors were subjected to uniaxial and cyclic tensile load tests, and they exhibited relatively stable electromechanical responses. Finally, the wearable sensors were placed on a human subject for monitoring simple motions and for validating their practical strain sensing performance. Overall, the wearable fabric sensor design exhibited advances such as flexibility, ease of fabrication, light weight, low cost, noninvasiveness, and user comfort.
Material approaches to stretchable strain sensors.
Park, Jaeyoon; You, Insang; Shin, Sangbaie; Jeong, Unyong
2015-04-27
With the recent progress made in wearable electronics, devices now require high flexibility and stretchability up to large strain levels (typically larger than 30 % strain). Wearable strain sensors or deformable strain sensors have been gaining increasing research interest because of the rapid development of electronic skins and robotics and because of their biomedical applications. Conventional brittle strain sensors made of metals and piezoresistors are not applicable for such stretchable sensors. This Review summarizes recent advances in stretchable sensors and focuses on material aspects for high stretchability and sensitivity. It begins with a brief introduction to the Wheatstone bridge circuit of conventional resistive strain sensors. Then, studies on the manipulation of materials are reviewed, including waved structural approaches for making metals and semiconductors stretchable, the use of liquid metals, and conductive filler/elastomer composites by using percolation among the fillers. For capacitive strain sensors, the constant conductivity of the electrode is a key factor in obtaining reliable sensors. Possible approaches to developing capacitive strain sensors are presented. This Review concludes with a discussion on the major challenges and perspectives related to stretchable strain sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.
Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin
2016-03-02
There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.
Experiments on active isolation using distributed PVDF error sensors
NASA Technical Reports Server (NTRS)
Lefebvre, S.; Guigou, C.; Fuller, C. R.
1992-01-01
A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.
NASA Astrophysics Data System (ADS)
Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze
2016-01-01
A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08618c
Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok
2017-01-01
This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363
Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu
2017-12-06
Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
NASA Technical Reports Server (NTRS)
Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.
1991-01-01
Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.
Scalable fabrication of nanomaterials based piezoresistivity sensors with enhanced performance
NASA Astrophysics Data System (ADS)
Hoang, Phong Tran
Nanomaterials are small structures that have at least one dimension less than 100 nanometers. Depending on the number of dimensions that are not confined to the nanoscale range, nanomaterials can be classified into 0D, 1D and 2D types. Due to their small sizes, nanoparticles possess exceptional physical and chemical properties which opens a unique possibility for the next generation of strain sensors that are cheap, multifunctional, high sensitivity and reliability. Over the years, thanks to the development of new nanomaterials and the printing technologies, a number of printing techniques have been developed to fabricate a wide range of electronic devices on diverse substrates. Nanomaterials based thin film devices can be readily patterned and fabricated in a variety of ways, including printing, spraying and laser direct writing. In this work, we review the piezoresistivity of nanomaterials of different categories and study various printing approaches to utilize their excellent properties in the fabrication of scalable and printable thin film strain gauges. CNT-AgNP composite thin films were fabricated using a solution based screen printing process. By controlling the concentration ratio of CNTs to AgNPs in the nanocomposites and the supporting substrates, we were able to engineer the crack formation to achieve stable and high sensitivity sensors. The crack formation in the composite films lead to piezoresistive sensors with high GFs up to 221.2. Also, with a simple, low cost, and easy to scale up fabrication process they may find use as an alternative to traditional strain sensors. By using computer controlled spray coating system, we can achieve uniform and high quality CNTs thin films for the fabrication of strain sensors and transparent / flexible electrodes. A simple diazonium salt treatment of the pristine SWCNT thin film has been identified to be efficient in greatly enhancing the piezoresistive sensitivity of SWCNT thin film based piezoresistive sensors. The coupled mechanical stretching and Raman band shift characterization provides strong evidence to support this point of view. The same approach should be applicable to other types of carbon based strain sensors for improving their sensitivity. The direct laser writing (DLW) method has been used for producing flexible piezoresistive sensor and sensor arrays on polyimide film substrates. The effect of CO2 laser irradiation conditions on the morphology, chemical composition and piezoresistivity of the formed graphitic line features were systematically studied to establish the related processing-structure-property relationship. The DLW generated sensors have been demonstrated for their use as strain gauges for structural health monitoring of polymeric composites, and as flexible and wearable sensors of gesture recognition for human-machine interactions. The versatility of the DLW technique demonstrated in this work can be highly valuable in different industrial sectors for developing customized flexible electronics.
An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature-Pressure Detection.
Wang, Chunya; Xia, Kailun; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying
2017-11-15
Flexible skin-mimicking electronics are highly desired for development of smart human-machine interfaces and wearable human-health monitors. Human skins are able to simultaneously detect different information, such as touch, friction, temperature, and humidity. However, due to the mutual interferences of sensors with different functions, it is still a big challenge to fabricate multifunctional electronic skins (E-skins). Herein, a combo temperature-pressure E-skin is reported through assembling a temperature sensor and a strain sensor in both of which flexible and transparent silk-nanofiber-derived carbon fiber membranes (SilkCFM) are used as the active material. The temperature sensor presents high temperature sensitivity of 0.81% per centigrade. The strain sensor shows an extremely high sensitivity with a gauge factor of ∼8350 at 50% strain, enabling the detection of subtle pressure stimuli that induce local strain. Importantly, the structure of the SilkCFM in each sensor is designed to be passive to other stimuli, enabling the integrated E-skin to precisely detect temperature and pressure at the same time. It is demonstrated that the E-skin can detect and distinguish exhaling, finger pressing, and spatial distribution of temperature and pressure, which cannot be realized using single mode sensors. The remarkable performance of the silk-based combo temperature-pressure sensor, together with its green and large-scalable fabrication process, promising its applications in human-machine interfaces and soft electronics.
Split-Ring Resonator-Based Strain Sensor on Flexible Substrates for Glaucoma Detection
NASA Astrophysics Data System (ADS)
Ekinci, Gizem; Deniz Yalcinkaya, Arda; Dundar, Gunhan; Torun, Hamdi
2016-10-01
This paper presents split-ring resonator-based strain sensors designed and characterized for glaucoma detection application. The geometry of the sensor is optimized such that it can be embedded in a contact lens. Silver conductive paint is to form the sensors realized on flexible substrates made of cellulose acetate and latex rubber. The devices are excited and interrogated using a pair of monopole antennas and the characteristics of devices with different curvature profiles are obtained. The sensitivity of the device, i.e. the change in resonant frequency for a unit change in radius of curvature, on acetate film is calculated as -4.73 MHz/mm and the sensitivity of the device on latex is 33.2 MHz/mm. The results indicate that the demonstrated device is suitable for glaucoma diagnosis.
High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure
NASA Astrophysics Data System (ADS)
Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu
We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.
Strain Sensing Characteristics of Rubbery Carbon Nanotube Composite for Flexible Sensors.
Choi, Gyong Rak; Park, Hyung-ki; Huh, Hoon; Kim, Young-Ju; Ham, Heon; Kim, Hyoun Woo; Lim, Kwon Taek; Kim, Sung Yong; Kang, Inpil
2016-02-01
In this study, the piezoresistive properties of CNT (Carbon Nanotube)/EPDM composite are characterized for the applications of a flexible sensor. The CNT/EPDM composites were prepared by using a Brabender mixer with MWCNT (Multi-walled Carbon Nanotube) and organoclay. The static and quasi-dynamic voltage output responses of the composite sensor were also experimentally studied and were compared with those of a conventional foil strain gage. The voltage output by using a signal processing system was fairly stable and it shows somehow linear responses at both of loading and unloading cases with hysteresis. The voltage output was distorted under a quasi-dynamic test due to its unsymmetrical piezoresistive characteristics. The CNT/EPDM sensor showed quite tardy response to its settling time test under static deflections and that would be a hurdle for its real time applications. Furthermore, since the CNT/EPDM sensor does not have directional voltage output to tension and compression, it only could be utilized as a mono-directional force sensor such as a compressive touch sensor.
Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze
2016-02-07
A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10,000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
Flexible Sensing Arrays Fabricated with Carbon Nanofiber Composite Thin Films for Posture Monitoring
NASA Astrophysics Data System (ADS)
Chang, Fuh-Yu; Wang, Ruoh-Huey; Lin, Yu-Hsien; Chen, Tse-Min; Lee, Yueh-Feng; Huang, Shu-Jiuan; Liu, Chia-Ming
2011-06-01
Faulty posture increases joint stress and causes postural pain syndrome. In this paper, we present a portable strain sensing system with flexible sensor arrays to warn patients to correct inappropriate posture. A 3×3 flexible strain sensing array system was fabricated using patterned surface treatment and the tilted-drop process with carbon nanofiber composite solutions on polyimide substrates. Atmospheric plasma was used to enhance or reduce the surface energy in specific areas for patterned surface treatment. A scanning circuit was also developed to capture the signal from the flexible sensing array. The developed system has been used to measure the bent angle of the human neck from 15 to 60°. The results indicate that human posture can be successfully captured by analyzing the measured strains from a flexible strain sensing array.
Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system
NASA Astrophysics Data System (ADS)
Kang, Daeshik; Pikhitsa, Peter V.; Choi, Yong Whan; Lee, Chanseok; Shin, Sung Soo; Piao, Linfeng; Park, Byeonghak; Suh, Kahp-Yang; Kim, Tae-Il; Choi, Mansoo
2014-12-01
Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.
Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system.
Kang, Daeshik; Pikhitsa, Peter V; Choi, Yong Whan; Lee, Chanseok; Shin, Sung Soo; Piao, Linfeng; Park, Byeonghak; Suh, Kahp-Yang; Kim, Tae-il; Choi, Mansoo
2014-12-11
Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.
Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling
2016-10-03
A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.
Piezoresistive Strain Sensors and Multiplexed Arrays for Transportation Infrastructures
DOT National Transportation Integrated Search
2012-10-01
During Year 5 of SAFETEA-LU, ITI researcher Professor Yonggang Huang, an expert in : the science of stretchable and flexible electronics, collaborated with researchers at : University of Illinois to engineer stretchable and flexible piezoresistive st...
Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin
2015-09-22
The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.
Stretchable Platinum Network-Based Transparent Electrodes for Highly Sensitive Wearable Electronics.
Wang, Yuting; Cheng, Jing; Xing, Yan; Shahid, Muhammad; Nishijima, Hiroki; Pan, Wei
2017-07-01
A platinum network-based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq -1 ) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors.
Sun, Jingyao; Zhao, Yanan; Yang, Zhaogang; Shen, Jingjing; Cabrera, Eusebio; Lertola, Matthew J; Yang, Willie; Zhang, Dan; Benatar, Avi; Castro, Jose M; Wu, Daming; Lee, L James
2018-08-31
Multifunctional electronics are attracting great interest with the increasing demand and fast development of wearable electronic devices. Here, we describe an epidermal strain sensor based on an all-carbon conductive network made from multi-walled carbon nanotubes (MWCNTs) impregnated with poly(dimethyl siloxane) (PDMS) matrix through a vacuum filtration process. An ultrasonication treatment was performed to complete the penetration of PDMS resin in seconds. The entangled and overlapped MWCNT network largely enhances the electrical conductivity (1430 S m -1 ), uniformity (remaining stable on different layers), reliable sensing range (up to 80% strain), and cyclic stability of the strain sensor. The homogeneous dispersion of MWCNTs within the PDMS matrix leads to a strong interaction between the two phases and greatly improves the mechanical stability (ca. 160% strain at fracture). The flexible, reversible and ultrathin (<100 μm) film can be directly attached on human skin as epidermal strain sensors for high accuracy and real-time human motion detection.
NASA Astrophysics Data System (ADS)
Peng, Te; Yang, Yangyang; Ma, Lina; Yang, Huayong
2016-10-01
A sensor system based on fiber Bragg grating (FBG) is presented which is to estimate the deflection of a lightweight flexible beam, including the tip position and the tip rotation angle. In this paper, the classical problem of the deflection of a lightweight flexible beam of linear elastic material is analysed. We present the differential equation governing the behavior of a physical system and show that this equation although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. We used epoxy glue to attach the FBG sensors to specific locations upper and lower surface of the beam in order to measure local strain measurements. A quasi-distributed FBG static strain sensor network is designed and established. The estimation results from FBG sensors are also compared to reference displacements from the ANSYS simulation results and the experimental results obtained in the laboratory in the static case. The errors of the estimation by FBG sensors are analysed for further error-correction and option-design. When the load weight is 20g, the precision is the highest, the position errors ex and ex are 0.19%, 0.14% respectively, the rotation error eθ, is 1.23%.
Soft Sensors and Actuators based on Nanomaterials
NASA Astrophysics Data System (ADS)
Yao, Shanshan
The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible AgNW based heaters, which exhibited a fast heating rate of 18°C/s and stable heating performance under large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm-1) at a very low actuation voltage (0.2 V sq-1 or 4.5 V) among all types of bimorph actuators that have been reported. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects. In another application towards wearable drug delivery, a wearable, tensile strain-triggered drug delivery device consisting of a stretchable elastomer and microgel depots containing drug loaded nanoparticles is described. By applying a tensile strain to the elastomer film, the release of drug from the micro-depot is promoted. Correspondingly, both sustained drug release by daily body motions and pulsatile release by intentional administration can be conveniently achieved. The work demonstrated that the tensile strain, applied to the stretchable device, facilitated release of therapeutics from micro-depots for anticancer and antibacterial treatments, respectively. Moreover, polymeric microneedles were further integrated with the stretch-responsive device for transcutaneous delivery of insulin and regulation of blood glucose levels of chemically-induced type 1 diabetic mice.
A comparison of force sensing techniques for planetary manipulation
NASA Technical Reports Server (NTRS)
Helmick, Daniel; Okon, Avi; DiCicco, Matt
2006-01-01
Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.
Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor
NASA Astrophysics Data System (ADS)
Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg
2018-03-01
A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.
Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won
2015-10-27
Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics.
Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors
NASA Technical Reports Server (NTRS)
Kirkham, Harold
1996-01-01
Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.
Amorphous silicon and organic thin film transistors for electronic applications
NASA Astrophysics Data System (ADS)
Zhou, Lisong
Recently, flexible thin film electronics has attracted huge research interest, and as now, many prototypes are being developed and demonstrated by companies around the world, including displays, logic circuit, and solar cells. Flexible electronics offers many potential advantages: it can not only generate new functions like flexible displays or solar cells, also allow very low cost manufacturing through the use of cheap polymeric substrates and roll-to-roll fabrication. a-Si:H TFT fabrications are compatible with flexible polyimide substrate materials. With the interests in the space environment, for the first time, we tested the performance changes of flexible a-Si:H TFTs, on polyimide substrates, due to irradiation and mechanical stress. Significant changes were found on TFTs after irradiation with fast electrons, which, however, was essentially removed by post-irradiation thermal annealing. On the other hand, few changes were found in TFTs by mechanical stress. These preliminary results indicate that it can be readily engineered for space applications. Furthermore, for the first time, we designed and fabricated ungated n+ muC-Si and gated a-Si:H strain sensors on flexible polyimide substrates. Compared with commercial metallic foil strain sensors, ungated muC-Si sensors and gated a-Si:H sensors are two orders of magnitude smaller in area and consume two orders or magnitude less power. Integration with a-Si:H TFTs can also allow large arrays of strain sensors to be fabricated. To take advantage of lower glass-transition-temperature polymeric substrate materials, reduced processing temperature is desired. The 150°C low-temperature deposition process is achieved by using hydrogen dilution in the PECVD process. The TFT performance and bias stability property are tested similar to that of a 250°C process. These results suggest its viability for practical applications. For even lower process temperature, we have considered organic TFTs. As a practical demonstration, we integrated pentacene TFTs with OLEDs in a simple display. Pentacene TFT passivation techniques were researched, and a PVA and parylene bilayer structure was used. We designed and demonstrated 48 x 48-pixel active matrix OTFTOLED displays, and to our best knowledge, they are the largest on glass substrates and the first on flexible PET substrates. Device performance, uniformity and stability are also compared. These results demonstrate that pentacene TFTs are viable candidates for active-matrix OLED displays and other flexible electronics applications.
Hinson, Brian T; Morgansen, Kristi A
2015-10-06
The wings of the hawkmoth Manduca sexta are lined with mechanoreceptors called campaniform sensilla that encode wing deformations. During flight, the wings deform in response to a variety of stimuli, including inertial-elastic loads due to the wing flapping motion, aerodynamic loads, and exogenous inertial loads transmitted by disturbances. Because the wings are actuated, flexible structures, the strain-sensitive campaniform sensilla are capable of detecting inertial rotations and accelerations, allowing the wings to serve not only as a primary actuator, but also as a gyroscopic sensor for flight control. We study the gyroscopic sensing of the hawkmoth wings from a control theoretic perspective. Through the development of a low-order model of flexible wing flapping dynamics, and the use of nonlinear observability analysis, we show that the rotational acceleration inherent in wing flapping enables the wings to serve as gyroscopic sensors. We compute a measure of sensor fitness as a function of sensor location and directional sensitivity by using the simulation-based empirical observability Gramian. Our results indicate that gyroscopic information is encoded primarily through shear strain due to wing twisting, where inertial rotations cause detectable changes in pronation and supination timing and magnitude. We solve an observability-based optimal sensor placement problem to find the optimal configuration of strain sensor locations and directional sensitivities for detecting inertial rotations. The optimal sensor configuration shows parallels to the campaniform sensilla found on hawkmoth wings, with clusters of sensors near the wing root and wing tip. The optimal spatial distribution of strain directional sensitivity provides a hypothesis for how heterogeneity of campaniform sensilla may be distributed.
Park, Heun; Kim, Dong Sik; Hong, Soo Yeong; Kim, Chulmin; Yun, Jun Yeong; Oh, Seung Yun; Jin, Sang Woo; Jeong, Yu Ra; Kim, Gyu Tae; Ha, Jeong Sook
2017-06-08
In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency. An electrochromic device (ECD) made of electrochemically synthesized polyaniline nanofibers and V 2 O 5 on an indium-tin-oxide-coated polyethylene terephthalate film experiences a change in color from yellow to dark blue on application of voltage. The strain sensor and ECD are integrated on skin via an Arduino circuit for an interactive color change with the variation of the applied strain, which enables a real-time visual display of body motion. This integrated system demonstrates high potential for use in interactive wearable devices, military applications, and smart robots.
High-performance flexible strain sensor with bio-inspired crack arrays.
Han, Zhiwu; Liu, Linpeng; Zhang, Junqiu; Han, Qigang; Wang, Kejun; Song, Honglie; Wang, Ze; Jiao, Zhibin; Niu, Shichao; Ren, Luquan
2018-06-12
Biomimetic sensor technology is always superior to existing human technologies. The scorpion, especially the forest scorpion, has a unique ability to detect subtle vibrations, which is attributed to the microcrack-shaped slit sensillum on its legs. Here, the biological sensing mechanism of the typical scorpion (Heterometrus petersii) was intensively studied in order to newly design and significantly improve the flexible strain sensors. Benefiting from the easy-crack property of polystyrene (PS) and using the solvent-induced swelling as well as double template transferring method, regular and controllable microcrack arrays were successfully fabricated on top of polydimethylsiloxane (PDMS). Using this method, any physical damage to PDMS could be effectively avoided. More fortunately, this bio-inspired crack arrays fabricated in this work also had a radial-like pattern similar to the slit sensillum of the scorpion, which was another unexpected imitation. The gauge factor (GF) of the sensor was conservatively evaluated at 5888.89 upon 2% strain and the response time was 297 ms. Afterward, it was demonstrated that the bio-inspired regular microcrack arrays could also significantly enhance the performance of traditional strain sensors, especially in terms of the sensitivity and response time. The practical applications, such as the detection of human motions and surface folding, were also tested in this work, with the results showing significant potential applications in numerous fields. This work changes the traditional waste cracks on some damaged products into valuable things for ultrasensitive mechanical sensors. Moreover, with this manufacturing technique, we could easily realize the simple, low cost and large-scale fabrication of advanced bioinpired sensors.
Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition
NASA Astrophysics Data System (ADS)
Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.
2017-03-01
Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.
Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2017-11-23
Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.
Spatially distributed modal signals of free shallow membrane shell structronic system
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
2008-11-01
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
NASA Astrophysics Data System (ADS)
Yao, Shanshan; Zhu, Yong
2014-01-01
Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05496a
Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges
NASA Astrophysics Data System (ADS)
Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.
2017-09-01
Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.
Fully Printed Flexible and Stretchable Electronics
NASA Astrophysics Data System (ADS)
Zhang, Suoming
Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit good reliability under bending conditions owing to the ultrathin polyimide substrate as well as the superior mechanical flexibility of the gate dielectric and carbon nanotube network. Furthermore, we have demonstrated that by using two types of SWCNT samples with different optical absorption characteristics, the photoresponse exhibits unique wavelength selectivity, as manifested by the good correlation between the responsive wavelengths of the devices with the absorption peaks of the corresponding carbon nanotubes. All the proposed materials above together with the unique direct printing process may offer an entry into more sophisticated flexible or stretchable electronic systems with monolithically integrated sensors, actuators, and displays for real life applications.
Fusion of sensor geometry into additive strain fields measured with sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Sadoughi, Mohammadkazem; Laflamme, Simon; Hu, Chao
2018-07-01
Recently, numerous studies have been conducted on flexible skin-like membranes for the cost effective monitoring of large-scale structures. The authors have proposed a large-area electronic consisting of a soft elastomeric capacitor (SEC) that transduces a structure’s strain into a measurable change in capacitance. Arranged in a network configuration, SECs deployed onto the surface of a structure could be used to reconstruct strain maps. Several regression methods have been recently developed with the purpose of reconstructing such maps, but all these algorithms assumed that each SEC-measured strain located at its geometric center. This assumption may not be realistic since an SEC measures the average strain value of the whole area covered by the sensor. One solution is to reduce the size of each SEC, but this would also increase the number of required sensors needed to cover the large-scale structure, therefore increasing the need for the power and data acquisition capabilities. Instead, this study proposes an algorithm that accounts for the sensor’s strain averaging feature by adjusting the strain measurements and constructing a full-field strain map using the kriging interpolation method. The proposed algorithm fuses the geometry of an SEC sensor into the strain map reconstruction in order to adaptively adjust the average kriging-estimated strain of the area monitored by the sensor to the signal. Results show that by considering the sensor geometry, in addition to the sensor signal and location, the proposed strain map adjustment algorithm is capable of producing more accurate full-field strain maps than the traditional spatial interpolation method that considered only signal and location.
MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement
Sheng, Jun; Desai, Jaydev P.
2016-01-01
Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation. PMID:28190945
Cochrane, Cédric; Lewandowski, Maryline; Koncar, Vladan
2010-01-01
A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response. When submitted to repeated tensile cycles, the CPC sensor is able to detect accurately fabric deformations over each whole cycle, taking into account the mechanical behaviour of the textile substrate. Complementary information is given concerning the non-effect of aging on the global resistivity of the CPC sensor. Finally, our sensor was tested on a parachute canopy during a real drop test: the canopy fabric deformation during the critical inflation phase was successfully measured, and was found to be less than 9%.
Cochrane, Cédric; Lewandowski, Maryline; Koncar, Vladan
2010-01-01
A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response. When submitted to repeated tensile cycles, the CPC sensor is able to detect accurately fabric deformations over each whole cycle, taking into account the mechanical behaviour of the textile substrate. Complementary information is given concerning the non-effect of aging on the global resistivity of the CPC sensor. Finally, our sensor was tested on a parachute canopy during a real drop test: the canopy fabric deformation during the critical inflation phase was successfully measured, and was found to be less than 9%. PMID:22163654
Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-01-01
This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g. PMID:23698262
Flexible PZT thin film tactile sensor for biomedical monitoring.
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-04-25
This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.
Challenges and the state of the technology for printed sensor arrays for structural monitoring
NASA Astrophysics Data System (ADS)
Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory
2017-04-01
Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.
Bio-inspired sensor skins for structural health monitoring
NASA Astrophysics Data System (ADS)
Tata, Uday; Deshmukh, S.; Chiao, J. C.; Carter, Ronald; Huang, H.
2009-10-01
This paper presents the simulation and experimental work that proved the feasibility of using a patch antenna for strain measurement. A patch antenna, besides serving as a data transmitting device, can function as a transducer that directly encodes the strain experienced into its resonant frequency. Printed on a flexible substrate, the antenna sensor is small in size, has a low profile and can be conformal to any attached surface. The technique for interrogating the antenna sensor using a wireless non-contact method is also demonstrated. Without needing electric wiring for power supply and data transmitting, the antenna sensor has a great potential for the realization of engineered sensor skins that imitate the sense of pain for structural health monitoring purposes.
Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.
2018-01-01
Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510
Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.
2008-01-01
Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.
Intrinsic polymer optical fiber sensors for high-strain applications
NASA Astrophysics Data System (ADS)
Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn
2006-03-01
This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.
Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin
2017-04-25
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Flexible organic transistors and circuits with extreme bending stability
NASA Astrophysics Data System (ADS)
Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao
2010-12-01
Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.
Flexible strain sensors with high performance based on metallic glass thin film
NASA Astrophysics Data System (ADS)
Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.
2017-09-01
Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.
Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Huang, Jie
2018-04-24
We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.
Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator
Chen, Yizheng; Zhuang, Yiyang
2018-01-01
We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments. PMID:29695063
Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe
2018-04-25
Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm 2 ) in compression mode, coupled with a large working range (i.e., up to 60% for strain-6 mm in displacement-and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm 3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm 3 , for which a maximum change of the material resistivity (e.g., ρ 0 /ρ 50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm 3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm 2 ), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams pave the way toward breakthrough applications for personalized health care, though not limited to these, which have not been fully addressed to date with flexible strain/stress sensors.
Three-axis force sensor with fiber Bragg grating.
Hyundo Choi; Yoan Lim; Junhyung Kim
2017-07-01
Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.
Low-voltage organic strain sensor on plastic using polymer/high- K inorganic hybrid gate dielectrics
NASA Astrophysics Data System (ADS)
Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.
2007-12-01
In this paper, gate-induced pentacene semiconductor strain sensors based on hybrid-gate dielectrics using poly-vinylphenol (PVP) and high-K inorganic, Ta IIO 5 are fabricated on flexible substrates, polyethylene naphthalate (PEN). The Ta IIO 5 gate dielectric layer is combined with a thin PVP layer to obtain very smooth and hydrophobic surfaces which improve the molecular structures of pentacene films. The PVP-Ta IIO 5 hybrid-gate dielectric films exhibit a high dielectric capacitance and low leakage current. The sensors adopting thin film transistor (TFT)-like structures show a significantly reduced operating voltage (~6V), and good device characteristics with a field-effect mobility of 1.89 cm2/V•s, a threshold voltage of -0.5 V, and an on/off ratio of 10 3. The strain sensor, one of the practical applications in large-area organic electronics, was characterized with different bending radii of 50, 40, 30, and 20 mm. The sensor output signals were significantly improved with low-operating voltages.
Static characterization of a soft elastomeric capacitor for non destructive evaluation applications
NASA Astrophysics Data System (ADS)
Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna
2014-02-01
A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.
Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao
2018-05-09
Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.
Ground/Flight Correlation of Aerodynamic Loads with Structural Response
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Davis, Mark C.
2009-01-01
United States Air Force Research Laboratory (AFRL) ground tests at the NASA Transonic Dynamics Tunnel (TDT) and NASA flight tests provide a basis and methodology for in-flight characterization of the aeroelastic performance through the monitoring of the fluid-structure interaction using surface flow sensors. NASA NF-15B flight tests provided a unique opportunity to test the correlation of aerodynamic loads with sectional flow attachment/detachment points, also known as flow bifurcation points (FBPs), as observed in previous wind tunnel tests. The NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. These data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in root-bending strains and hot-film sensor signals near the stagnation region that were highly correlated. For the TDT tests, a flexible wing section developed under the AFRL SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at multiple span stations. The TDT tests provided data showing a gradual phase change between the FBP and the structural mode occurred during a resonant condition as the wings structural modes were excited by the tunnel-generated gusts.
Integrated fiber optic structural health sensors for inflatable space habitats
NASA Astrophysics Data System (ADS)
Ohanian, Osgar John; Garg, Naman; Castellucci, Matthew A.
2017-04-01
Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor's measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures.
A Wearable Hydration Sensor with Conformal Nanowire Electrodes.
Yao, Shanshan; Myers, Amanda; Malhotra, Abhishek; Lin, Feiyan; Bozkurt, Alper; Muth, John F; Zhu, Yong
2017-03-01
A wearable skin hydration sensor in the form of a capacitor is demonstrated based on skin impedance measurement. The capacitor consists of two interdigitated or parallel electrodes that are made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix. The flexible and stretchable nature of the AgNW/PDMS electrode allows conformal contact to the skin. The hydration sensor is insensitive to the external humidity change and is calibrated against a commercial skin hydration system on an artificial skin over a wide hydration range. The hydration sensor is packaged into a flexible wristband, together with a network analyzer chip, a button cell battery, and an ultralow power microprocessor with Bluetooth. In addition, a chest patch consisting of a strain sensor, three electrocardiography electrodes, and a skin hydration sensor is developed for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless, and continuous monitoring of skin hydration and other health parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stretchable silicon nanoribbon electronics for skin prosthesis.
Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Ghaffari, Roozbeh; Cho, Hye Rim; Son, Donghee; Jung, Yei Hwan; Soh, Min; Choi, Changsoon; Jung, Sungmook; Chu, Kon; Jeon, Daejong; Lee, Soon-Tae; Kim, Ji Hoon; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-12-09
Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.
NASA Astrophysics Data System (ADS)
Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming
2017-10-01
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.
Package analysis of 3D-printed piezoresistive strain gauge sensors
NASA Astrophysics Data System (ADS)
Das, Sumit Kumar; Baptist, Joshua R.; Sahasrabuddhe, Ritvij; Lee, Woo H.; Popa, Dan O.
2016-05-01
Poly(3,4-ethyle- nedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS is a flexible polymer which exhibits piezo-resistive properties when subjected to structural deformation. PEDOT:PSS has a high conductivity and thermal stability which makes it an ideal candidate for use as a pressure sensor. Applications of this technology includes whole body robot skin that can increase the safety and physical collaboration of robots in close proximity to humans. In this paper, we present a finite element model of strain gauge touch sensors which have been 3D-printed onto Kapton and silicone substrates using Electro-Hydro-Dynamic ink-jetting. Simulations of the piezoresistive and structural model for the entire packaged sensor was carried out using COMSOLR , and compared with experimental results for validation. The model will be useful in designing future robot skin with predictable performances.
All-Printed Flexible and Stretchable Electronics.
Mohammed, Mohammed G; Kramer, Rebecca
2017-05-01
A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra Small Integrated Optical Fiber Sensing System
Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert
2012-01-01
This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.
Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.
2014-01-01
The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774
Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics
Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco
2017-01-01
The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040
Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film
NASA Astrophysics Data System (ADS)
Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin
2018-03-01
A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.
Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film.
Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin
2018-03-14
A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
NASA Astrophysics Data System (ADS)
Wang, Huaping; Xiang, Ping
2016-07-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.
NASA Astrophysics Data System (ADS)
Konka, Hari P.; Wahab, M. A.; Lian, K.
2012-01-01
Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors seem to have low compatibility with composites when compared to PFCSs.
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
Souri, Hamid; Bhattacharyya, Debes
2018-06-05
The demand for stretchable, flexible, and wearable multifunctional devices based on conductive nanomaterials is rapidly increasing considering their interesting applications including human motion detection, robotics, and human-machine interface. There still exists a great challenge to manufacture stretchable, flexible, and wearable devices through a scalable and cost-effective fabrication method. Herein, we report a simple method for the mass production of electrically conductive textiles, made of cotton and wool, by hybridization of graphene nanoplatelets and carbon black particles. Conductive textiles incorporated into a highly elastic elastomer are utilized as highly stretchable and wearable strain sensors and heaters. The electromechanical characterizations of our multifunctional devices establish their excellent performance as wearable strain sensors to monitor various human motions, such as finger, wrist, and knee joint movements, and to recognize sound with high durability. Furthermore, the electrothermal behavior of our devices shows their potential application as stretchable and wearable heaters working at a maximum temperature of 103 °C powered with 20 V.
Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.
Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui
2017-07-12
Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.
Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.
2017-05-01
A target application of wearable sensors is to detect human motion and to monitor physical activity for improving athletic performance and for delivering better physical therapy. In addition, measuring human vital signals (e.g., respiration rate and body temperature) provides rich information that can be used to assess a subject’s physiological or psychological condition. This study aims to design a multifunctional, wearable, fabric-based sensing system. First, carbon nanotube (CNT)-based thin films were fabricated by spraying. Second, the thin films were integrated with stretchable fabrics to form the fabric sensors. Third, the strain and temperature sensing properties of sensors fabricated using different CNT concentrations were characterized. Furthermore, the sensors were demonstrated to detect human finger bending motions, so as to validate their practical strain sensing performance. Finally, to monitor human respiration, the fabric sensors were integrated with a chest band, which was directly worn by a human subject. Quantification of respiration rates were successfully achieved. Overall, the fabric sensors were characterized by advantages such as flexibility, ease of fabrication, lightweight, low-cost, noninvasiveness, and user comfort.
NASA Astrophysics Data System (ADS)
Sebastian, Tutu; Lusiola, Tony; Clemens, Frank
2017-04-01
Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1-3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0-3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.
Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics
Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.
2013-01-01
A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.
Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings
NASA Astrophysics Data System (ADS)
Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2016-03-01
A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.
Optical fiber sensors and signal processing for intelligent structure monitoring
NASA Technical Reports Server (NTRS)
Thomas, Daniel; Cox, Dave; Lindner, D. K.; Claus, R. O.
1989-01-01
Few mode optical fibers have been shown to produce predictable interference patterns when placed under strain. The use is described of a modal domain sensor in a vibration control experiment. An optical fiber is bonded along the length of a flexible beam. Output from the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed. This model is combined with the beam and actuator dynamics to produce a system suitable for control design. Computer simulations predict open and closed loop dynamic responses. An experimental apparatus is described and experimental results are presented.
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
Yao, Yao; Glisic, Branko
2015-01-01
Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407
Fabric strain sensor integrated with CNPECs for repeated large deformation
NASA Astrophysics Data System (ADS)
Yi, Weijing
Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of the packaged fabric strain sensor was less than 1 MPa; the strain gauge factor was 4.76 within the strain range of 0-40% and the hysteresis was 5.5%; the resistance relaxation was 5.56% with a constant strain of 40%; the fatigue life of the sensor was more than 100,000 cycles.
Recent advances of conductive nanocomposites in printed and flexible electronics
NASA Astrophysics Data System (ADS)
Khan, Saleem; Lorenzelli, Leandro
2017-08-01
Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2010-01-01
The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.
Sensing sheets based on large area electronics for fatigue crack detection
NASA Astrophysics Data System (ADS)
Yao, Yao; Glisic, Branko
2015-03-01
Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.
Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor.
Kim, Jong-Woo; Porte, Yoann; Ko, Kyung Yong; Kim, Hyungjun; Myoung, Jae-Min
2017-09-27
Micropatternable double-faced (DF) zinc oxide (ZnO) nanoflowers (NFs) for flexible gas sensors have been successfully fabricated on a polyimide (PI) substrate with single-walled carbon nanotubes (SWCNTs) as electrode. The fabricated sensor comprises ZnO nanoshells laid out on a PI substrate at regular intervals, on which ZnO nanorods (NRs) were grown in- and outside the shells to maximize the surface area and form a connected network. This three-dimensional network structure possesses multiple gas diffusion channels and the micropatterned island structure allows the stability of the flexible devices to be enhanced by dispersing the strain into the empty spaces of the substrate. Moreover, the micropatterning technique on a flexible substrate enables highly integrated nanodevices to be fabricated. The SWCNTs were chosen as the electrode for their flexibility and the Schottky barrier they form with ZnO, improving the sensing performance. The devices exhibited high selectivity toward NO 2 as well as outstanding sensing characteristics with a stable response of 218.1, fast rising and decay times of 25.0 and 14.1 s, respectively, and percent recovery greater than 98% upon NO 2 exposure. The superior sensing properties arose from a combination of high surface area, numerous active junction points, donor point defects in the ZnO NRs, and the use of the SWCNT electrode. Furthermore, the DF-ZnO NF gas sensor showed sustainable mechanical stability. Despite the physical degradation observed, the devices still demonstrated outstanding sensing characteristics after 10 000 bending cycles at a curvature radius of 5 mm.
NASA Astrophysics Data System (ADS)
Lee, Graham C. B.; Van Hoe, Bram; Yan, Zhijun; Maskery, Oliver; Sugden, Kate; Webb, David; Van Steenberge, Geert
2012-03-01
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 μm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components.
Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors.
Cai, Yichen; Shen, Jie; Dai, Ziyang; Zang, Xiaoxian; Dong, Qiuchun; Guan, Guofeng; Li, Lain-Jong; Huang, Wei; Dong, Xiaochen
2017-08-01
Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal-to-noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all-carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two-step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real-time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all-carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for Real-Time Structure Shape-Sensing
NASA Technical Reports Server (NTRS)
Ko, William L. (Inventor); Richards, William Lance (Inventor)
2009-01-01
The invention is a method for obtaining the displacement of a flexible structure by using strain measurements obtained by stain sensor,. By obtaining the displacement of structures in this manner, one may construct the deformed shape of the structure and display said deformed shape in real-time, enabling active control of the structure shape if desired.
Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2017-07-01
A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.
Producing smart sensing films by means of organic field effect transistors.
Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa
2006-01-01
We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.
Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials
NASA Technical Reports Server (NTRS)
Heath, D. M. (Technical Monitor); Smits, Jan M., VI
2005-01-01
Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.
The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers
NASA Astrophysics Data System (ADS)
Hsu, Yu-Jen
Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by using a UV-Ozone treatment to shift the threshold voltage and increase the current of the transistor under both compressive and tensile strain. An array of strain sensors which maps the strain field on a PVDF film surface is demonstrated in this work. The strain sensor experience inspires a tone analyzer built using distributed resonator architecture on a tensioned piezoelectric PVDF sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers monolithically with the PVDF sheet to convert the piezoelectric charge signal into a current signal for future applications such as sound field imaging. The PVDF sheet material is instrumented along its length and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant frequency component of an incoming sound is demonstrated using linear system decomposition of the time-averaged response of the sheet using no time domain detection. Our design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain electronic signal processing of the incoming signal. The concepts of the PVDF strain sensor and the tone analyzer trigger the idea of an active matrix microphone through the integration of organic thin film transistors with a freestanding piezoelectric polymer sheet. Localized acoustic pressure detection is enabled by switch transistors and local transimpedance amplification built into the active matrix architecture. The frequency of detection ranges from DC to 15KHz; the bandwidth is extended using an architecture that provides for virtually zero gate/source and gate/drain capacitance at the sensing transistors and low overlap capacitance at the switch transistors. A series of measurements are taken to demonstrate localized acoustic wave detection, high pitch sound diffraction pattern mapping, and directional listening. This system permits the direct visualization of a two dimensional sound field in a format that was previously inaccessible. In addition to the piezoelectric property, pyroelectricity is also exhibited by PVDF and is essential in the world of sensors. An integration of PVDF and OFET for the IR heat sensing is demonstrated to prove the concept of converting pyroelectric charge signal to a electric current signal. The basic pyroelectricity of PVDF sheet is first examined before making a organic transistor integrated IR sensor. Then, two types of architectures are designed and tested. The first one uses the structure similar to the PVDF strain sensor, and the second one uses a PVDF capacitor to gate the integrated OFETs. The conversion from pyroelectric signal to transistor current signal is observed and characterized. This design provides a flexible and gain-tunable version for IR heat sensors.
Ultrathin flexible piezoelectric sensors for monitoring eye fatigue
NASA Astrophysics Data System (ADS)
Lü, Chaofeng; Wu, Shuang; Lu, Bingwei; Zhang, Yangyang; Du, Yangkun; Feng, Xue
2018-02-01
Eye fatigue is a symptom induced by long-term work of both eyes and brains. Without proper treatment, eye fatigue may incur serious problems. Current studies on detecting eye fatigue mainly focus on computer vision detect technology which can be very unreliable due to occasional bad visual conditions. As a solution, we proposed a wearable conformal in vivo eye fatigue monitoring sensor that contains an array of piezoelectric nanoribbons integrated on an ultrathin flexible substrate. By detecting strains on the skin of eyelid, the sensors may collect information about eye blinking, and, therefore, reveal human’s fatigue state. We first report the design and fabrication of the piezoelectric sensor and experimental characterization of voltage responses of the piezoelectric sensors. Under bending stress, the output voltage curves yield key information about the motion of human eyelid. We also develop a theoretical model to reveal the underlying mechanism of detecting eyelid motion. Both mechanical load test and in vivo test are conducted to convince the working performance of the sensors. With satisfied durability and high sensitivity, this sensor may efficiently detect abnormal eyelid motions, such as overlong closure, high blinking frequency, low closing speed and weak gazing strength, and may hopefully provide feedback for assessing eye fatigue in time so that unexpected situations can be prevented.
Biomimetic approaches for engineered organ chips and skin electronics for in vitro diagnostics
NASA Astrophysics Data System (ADS)
Suh, Kahp-Yang; Pang, Changhyun; Jang, Kyung-Jin; Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do-Hyun; Kim, Deok-Ho
2012-10-01
Two kinds of biomimetic systems including engineered organ chip and flexible electronic sensor are presented. First, in vivo, renal tubular epithelial cells are exposed to luminal fluid shear stress (FSS) and a transepithelial osmotic gradient. In this study, we used a simple collecting-duct-on-a-chip to investigate the role of an altered luminal microenvironment in the translocation of aquaporin-2 (AQP2) and the reorganization of actin cytoskeleton (F-actin) in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We demonstrate that several factors (i.e., luminal FSS, hormonal stimulation, transepithelial osmotic gradient) collectively exert a profound effect on the AQP2 trafficking in the collecting ducts, which is associated with actin cytoskeletal reorganization. Furthermore, with this kidney-mimicking chip, renal toxicity of cisplatin was tested under static and fluidic conditions, suggesting the physiological relevancy of fluidic environment compared to static culture. Second, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
A flexible touch-pressure sensor array with wireless transmission system for robotic skin
NASA Astrophysics Data System (ADS)
Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping
2016-06-01
Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.
A flexible touch-pressure sensor array with wireless transmission system for robotic skin.
Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping
2016-06-01
Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.
Paper-based supercapacitors for self-powered nanosystems.
Yuan, Longyan; Xiao, Xu; Ding, Tianpeng; Zhong, Junwen; Zhang, Xianghui; Shen, Yue; Hu, Bin; Huang, Yunhui; Zhou, Jun; Wang, Zhong Lin
2012-05-14
Energy storage on paper: paper-based, all-solid-state, and flexible supercapacitors were fabricated, which can be charged by a piezoelectric generator or solar cells and then discharged to power a strain sensor or a blue-light-emitting diode, demonstrating its efficient energy management in self-powered nanosystems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rinaldi, Andrea; Tamburrano, Alessio; Fortunato, Marco; Sarto, Maria Sabrina
2016-01-01
The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges. PMID:27999251
Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin
2017-05-23
The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.
Ground/Flight Correlation of Aerodynamic Loads with Structural Response
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Davis, Mark C.
2009-01-01
Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids
Rossiter, Jonathan
2018-01-01
Abstract Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance–strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles. PMID:29211627
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids.
Helps, Tim; Rossiter, Jonathan
2018-04-01
Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance-strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles.
Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo
2017-08-02
Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.
Wearable kinesthetic systems for capturing and classifying body posture and gesture.
Tognetti, Alessandro; Lorussi, Federico; Tesconi, Mario; Bartalesi, Raphael; Zupone, Giuseppe; De Rossi, Danilo
2005-01-01
Monitoring body kinematics has fundamental relevance in several biological and technical disciplines. In particular the possibility to know the posture exactly may furnish a main aid in rehabilitation topics. This paper deals with the design, the development and the realization of sensing garments, from the characterization of innovative comfortable and spreadable sensors to the methodologies employed to gather information on posture and movement. In the present work an upper limb kinesthetic garment (ULKG), which allows to reconstruct shoulder, elbow and wrist movements and a kinesthetic glove able to detect posture an gesture of the hand are presented. Sensors are directly integrated in Lycra fabrics by using conductive elastomer (CE) sensors. CE sensors show piezoresistive properties when a deformation is applied and they can be integrated onto fabric or other flexible substrate to be employed as strain sensors.
Comparison of Piezoresistive Monofilament Polymer Sensors
Melnykowycz, Mark; Koll, Birgit; Scharf, Dagobert; Clemens, Frank
2014-01-01
The development of flexible polymer monofilament fiber strain sensors have many applications in both wearable computing (clothing, gloves, etc.) and robotics design (large deformation control). For example, a high-stretch monofilament sensor could be integrated into robotic arm design, easily stretching over joints or along curved surfaces. As a monofilament, the sensor can be woven into or integrated with textiles for position or physiological monitoring, computer interface control, etc. Commercially available conductive polymer monofilament sensors were tested alongside monofilaments produced from carbon black (CB) mixed with a thermo-plastic elastomer (TPE) and extruded in different diameters. It was found that signal strength, drift, and precision characteristics were better with a 0.3 mm diameter CB/TPE monofilament than thick (∼2 mm diameter) based on the same material or commercial monofilaments based on natural rubber or silicone elastomer (SE) matrices. PMID:24419161
Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics.
Noh, Yohan; Bimbo, Joao; Sareh, Sina; Wurdemann, Helge; Fraś, Jan; Chathuranga, Damith Suresh; Liu, Hongbin; Housden, James; Althoefer, Kaspar; Rhode, Kawal
2016-11-17
This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor's main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human-robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests.
Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators
NASA Technical Reports Server (NTRS)
Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin
2012-01-01
Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.
Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon
2018-01-22
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
Imperceptible magnetoelectronics
Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
2015-01-01
Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices. PMID:25607534
Imperceptible magnetoelectronics
NASA Astrophysics Data System (ADS)
Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
2015-01-01
Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m-2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.
Printable elastic conductors with a high conductivity for electronic textile applications
Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki; Jinno, Hiroaki; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao
2015-01-01
The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm−1 and a record high conductivity of 182 S cm−1 when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment. PMID:26109453
Shape sensing for torsionally compliant concentric-tube robots
NASA Astrophysics Data System (ADS)
Xu, Ran; Yurkewich, Aaron; Patel, Rajni V.
2016-03-01
Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.
Carbon Nanotube-Based Structural Health Monitoring Sensors
NASA Technical Reports Server (NTRS)
Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip
2011-01-01
Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.
Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed
NASA Technical Reports Server (NTRS)
Lekki, John D.
2002-01-01
Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.
Microfiber Optical Sensors: A Review
Lou, Jingyi; Wang, Yipei; Tong, Limin
2014-01-01
With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720
Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics
Noh, Yohan; Bimbo, Joao; Sareh, Sina; Wurdemann, Helge; Fraś, Jan; Chathuranga, Damith Suresh; Liu, Hongbin; Housden, James; Althoefer, Kaspar; Rhode, Kawal
2016-01-01
This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor’s main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human–robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests. PMID:27869689
Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V A L
2013-03-07
The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al(2)O(3)) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al(2)O(3) dielectric layer) could be potentially integrated with large area flexible electronics.
NASA Astrophysics Data System (ADS)
Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.
2011-07-01
Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.
Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Sarwar, Tuba; Dinh, Toan; Foisal, A. R. M.; Phan, Hoang-Phuong; Viet Dao, Dzung
2017-04-01
A cost effective and easy to fabricate stress sensor based on pseudo-Hall effect in Graphite on Paper (GOP) has been presented in this article. The four terminal devices were developed by pencil drawing with hand on to the paper substrate. The stress was applied to the paper containing four terminal devices with the input current applied at two terminals and the offset voltage observed at other two terminals called pseudo-Hall effect. The GOP stress sensor showed significant response to the applied stress which was smooth and linear. These results showed that the pseudo-Hall effect in GOP based four terminal devices can be used for cost effective, flexible and easy to make stress, strain or force sensors.
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.
2013-02-01
The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.
O'Connor, Timothy F; Fach, Matthew E; Miller, Rachel; Root, Samuel E; Mercier, Patrick P; Lipomi, Darren J
2017-01-01
This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics
O’Connor, Timothy F.; Fach, Matthew E.; Miller, Rachel; Root, Samuel E.; Mercier, Patrick P.
2017-01-01
This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics. PMID:28700603
Characterization of large-area pressure sensitive robot skin
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Baptist, Joshua R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
Sensorized robot skin has considerable promise to enhance robots' tactile perception of surrounding environments. For physical human-robot interaction (pHRI) or autonomous manipulation, a high spatial sensor density is required, typically driven by the skin location on the robot. In our previous study, a 4x4 flexible array of strain sensors were printed and packaged onto Kapton sheets and silicone encapsulants. In this paper, we are extending the surface area of the patch to larger arrays with up to 128 tactel elements. To address scalability, sensitivity, and calibration challenges, a novel electronic module, free of the traditional signal conditioning circuitry was created. The electronic design relies on a software-based calibration scheme using high-resolution analog-to-digital converters with internal programmable gain amplifiers. In this paper, we first show the efficacy of the proposed method with a 4x4 skin array using controlled pressure tests, and then perform procedures to evaluate each sensor's characteristics such as dynamic force-to-strain property, repeatability, and signal-to-noise-ratio. In order to handle larger sensor surfaces, an automated force-controlled test cycle was carried out. Results demonstrate that our approach leads to reliable and efficient methods for extracting tactile models for use in future interaction with collaborative robots.
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires.
Cao, Zherui; Wang, Ranran; He, Tengyu; Xu, Fangfang; Sun, Jing
2018-04-25
As an important subfield of flexible electronics, conductive fibers have been an active area of research. The interfacial interaction between nanostructured conductive materials with elastic substrates plays a vital role in the electromechanical performance of conductive fibers. However, the underlying mechanism has seldom been investigated. Here, we propose a fabricating strategy for a silver nanowire (Ag NW)/polyurethane composite fiber with a sheath-core architecture. The interfacial bonding layer is regulated, and its influence on the performance of conductive fibers is investigated, based on which an interfacial interaction model is proposed. The model underlines the significance of the embedding depth of the Ag NW network. Both supersensitive (gauge factor up to 9557) and ultrastable (negligible conductance degradation below the strain of 150%) conductive fibers are obtained via interface regulating, exhibiting great potential in the applications of wearable sensors and stretchable conducting connections.
Capillary assisted deposition of carbon nanotube film for strain sensing
NASA Astrophysics Data System (ADS)
Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping
2017-10-01
Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.
Strain engineering on electronic structure and carrier mobility in monolayer GeP3
NASA Astrophysics Data System (ADS)
Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming
2018-06-01
Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.
Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes
NASA Astrophysics Data System (ADS)
Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok
2017-11-01
Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.
Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.
Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok
2017-09-11
Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.
Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures
NASA Astrophysics Data System (ADS)
Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.
2014-04-01
The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.
Integrating soft sensor systems using conductive thread
NASA Astrophysics Data System (ADS)
Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.
2018-05-01
We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable technologies like virtual reality, or in soft-medical devices such as exoskeletal rehabilitation robots.
Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph
2009-01-01
The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861
Flexible phosphor sensors: a digital supplement or option to rigid sensors.
Glazer, Howard S
2014-01-01
An increasing number of dental practices are upgrading from film radiography to digital radiography, for reasons that include faster image processing, easier image access, better patient education, enhanced data storage, and improved office productivity. Most practices that have converted to digital technology use rigid, or direct, sensors. Another digital option is flexible phosphor sensors, also called indirect sensors or phosphor storage plates (PSPs). Flexible phosphor sensors can be advantageous for use with certain patients who may be averse to direct sensors, and they can deliver a larger image area. Additionally, sensor cost for replacement PSPs is considerably lower than for hard sensors. As such, flexible phosphor sensors appear to be a viable supplement or option to direct sensors.
Flexible Transparent Electronic Gas Sensors.
Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming
2016-07-01
Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Piezoresistive pressure sensor array for robotic skin
NASA Astrophysics Data System (ADS)
Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.
2016-05-01
Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.
Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric
2016-01-01
The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors. PMID:27924853
Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric
2016-12-07
The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors.
Stretchable interconnections for flexible electronic systems.
Jianhui, Lin; Bing, Yan; Xiaoming, Wu; Tianling, Ren; Litian, Liu
2009-01-01
Sensors, actuators and integrated circuits (IC) can be encapsulated together on an elastic substrate, which makes a flexible electronic system. In this system, electrical interconnections that can sustain large and reversible stretching are in great need. This paper is devoted to the fabrication of highly stretchable metal interconnections. Transfer printing technology is utilized, which mainly involves the transfer of 100-nm-thick gold ribbons from silicon wafers to pre-stretched elastic substrates. After the elastic substrates relax from the pre-strain, the gold ribbons buckle and form wavy geometries. These wavy geometries change in shapes to accommodate the applied strain and can be reversely stretched without cracks or fractures occurring, which will greatly raise the stretchability of the gold ribbons. As an application example, some of these wavy ribbons can accommodate high levels of stretching (up to 100%) and bending (with curvature radius down to 1.20 mm). Moreover, the efficiency and reliability of the transfer, especially for slender ribbons, have been increased due to the improvement of the technology. All the characteristics above will permit making stretchable gold conductors as interconnections for flexible electronic systems such as implantable medical systems and smart clothes.
Dielectric elastomer for stretchable sensors: influence of the design and material properties
NASA Astrophysics Data System (ADS)
Jean-Mistral, C.; Iglesias, S.; Pruvost, S.; Duchet-Rumeau, J.; Chesné, S.
2016-04-01
Dielectric elastomers exhibit extended capabilities as flexible sensors for the detection of load distributions, pressure or huge deformations. Tracking the human movements of the fingers or the arms could be useful for the reconstruction of sporting gesture, or to control a human-like robot. Proposing new measurements methods are addressed in a number of publications leading to improving the sensitivity and accuracy of the sensing method. Generally, the associated modelling remains simple (RC or RC transmission line). The material parameters are considered constant or having a negligible effect which can lead to serious reduction of accuracy. Comparisons between measurements and modelling require care and skill, and could be tricky. Thus, we propose here a comprehensive modelling, taking into account the influence of the material properties on the performances of the dielectric elastomer sensor (DES). Various parameters influencing the characteristics of the sensors have been identified: dielectric constant, hyper-elasticity. The variations of these parameters as a function of the strain impact the linearity and sensitivity of the sensor of few percent. The sensitivity of the DES is also evaluated changing geometrical parameters (initial thickness) and its design (rectangular and dog-bone shapes). We discuss the impact of the shape regarding stress. Finally, DES including a silicone elastomer sandwiched between two high conductive stretchable electrodes, were manufactured and investigated. Classic and reliable LCR measurements are detailed. Experimental results validate our numerical model of large strain sensor (>50%).
Sensor system for web inspection
Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.
2002-01-01
A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.
NASA Astrophysics Data System (ADS)
Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.
2018-01-01
Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.
Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.
Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming
2015-04-15
Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.
Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.
2017-02-01
In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.
Soft Smart Garments for Lower Limb Joint Position Analysis.
Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia
2017-10-12
Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.
An Overview of the Development of Flexible Sensors.
Han, Su-Ting; Peng, Haiyan; Sun, Qijun; Venkatesh, Shishir; Chung, Kam-Sing; Lau, Siu Chuen; Zhou, Ye; Roy, V A L
2017-09-01
Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct transfer of wafer-scale graphene films
NASA Astrophysics Data System (ADS)
Kim, Maria; Shah, Ali; Li, Changfeng; Mustonen, Petri; Susoma, Jannatul; Manoocheri, Farshid; Riikonen, Juha; Lipsanen, Harri
2017-09-01
Flexible electronics serve as the ubiquitous platform for the next-generation life science, environmental monitoring, display, and energy conversion applications. Outstanding multi-functional mechanical, thermal, electrical, and chemical properties of graphene combined with transparency and flexibility solidifies it as ideal for these applications. Although chemical vapor deposition (CVD) enables cost-effective fabrication of high-quality large-area graphene films, one critical bottleneck is an efficient and reproducible transfer of graphene to flexible substrates. We explore and describe a direct transfer method of 6-inch monolayer CVD graphene onto transparent and flexible substrate based on direct vapor phase deposition of conformal parylene on as-grown graphene/copper (Cu) film. The method is straightforward, scalable, cost-effective and reproducible. The transferred film showed high uniformity, lack of mechanical defects and sheet resistance for doped graphene as low as 18 Ω/sq and 96.5% transparency at 550 nm while withstanding high strain. To underline that the introduced technique is capable of delivering graphene films for next-generation flexible applications we demonstrate a wearable capacitive controller, a heater, and a self-powered triboelectric sensor.
Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan
2016-01-01
Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023
Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen
2015-01-01
Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process. PMID:26640124
Development of a Spoke Type Torque Sensor Using Painting Carbon Nanotube Strain Sensors.
Kim, Sung Yong; Park, Se Hoon; Choi, Baek Gyu; Kang, In Hyuk; Park, Sang Wook; Shin, Jeong Woo; Kim, Jin Ho; Baek, Woon Kyung; Lim, Kwon Taek; Kim, Young-Ju; Song, Jae-Bok; Kang, Inpil
2018-03-01
This study reports a hub-spoke type joint torque sensor involving strain gauges made of multiwalled carbon nanotubes (MWCNT). We developed the novel joint torque sensor for robots by means of MWCNT/epoxy strain sensors (0.8 wt%, gauge factor 2) to overcome the limits of conventional foil strain gauges. Solution mixing process was hired to fabricate a liquid strain sensor that can easily be installed on any complicated surfaces. We painted the MWCNT/epoxy mixing liquid on the hub-spoke type joint torque sensor to form the piezoresistive strain gauges. The painted sensor converted its strain into torque by mean of the installed hub-spoke structure after signal processing. We acquired sufficient torque voltage responses from the painted MWCNT/epoxy strain sensor.
Fabrication of strain gauge based sensors for tactile skins
NASA Astrophysics Data System (ADS)
Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.
2017-05-01
Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.
Sensor Technologies on Flexible Substrates
NASA Technical Reports Server (NTRS)
Koehne, Jessica
2016-01-01
NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.
Zinc phthalocyanine nanowires based flexible sensor for room temperature Cl2 detection
NASA Astrophysics Data System (ADS)
Devi, Pooja; Saini, Rajan; Singh, Rajinder; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Debnath, A. K.
2018-04-01
We have fabricated highly sensitive and Cl2 selective flexible sensor by depositing solution processed zinc phthalocyanine nanowires onto the flexible PET substrate and studied its Cl2 sensing characteristics in Cl2 concentration range 5-1500 ppb. The flexible sensor has a minimum detection limit as low as 5 ppb of Cl2 and response as high as 550% within 10 seconds. Interestingly, the sensor exhibited enhanced and faster response kinetics under bending conditions. The gas sensing mechanism of sensor has been discussed on the basis of XPS and Raman spectroscopic studies which revealed that zinc ions were the preferred sites for Cl2 interactions.
Monitoring of Vital Signs with Flexible and Wearable Medical Devices.
Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C
2016-06-01
Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensitivity Enhancement of FBG-Based Strain Sensor.
Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian
2018-05-17
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.
Sensitivity Enhancement of FBG-Based Strain Sensor
Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian
2018-01-01
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826
Scalable Production of Graphene-Based Wearable E-Textiles.
Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S
2017-12-26
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.
NASA Astrophysics Data System (ADS)
Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo
2014-06-01
Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.
Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors.
Jeon, Jun-Young; Ha, Tae-Jun
2016-02-03
We demonstrate high-performance wearable electronic-bandage (E-bandage) based on carbon nanotube (CNT)/silver nanoparticle (AgNP) composites covered with flexible media of fluoropolymer-coated polydimethylsiloxane (PDMS) films. The E-bandage can be used for motion-related sensors by directly attaching them to human skin, which achieves a fast and accurate electric response with high sensitivity according to the bending and stretching movements that induce changes in the conductivity. This advance in the E-bandage is realized as a result of the sensitivity that can be achieved by controlling the concentration of AgNPs in CNT pastes and by modifying the device architecture. The fluoropolymer encapsulation with hydrophobic surface characteristics allows for the E-bandage to operate in water and protects it from physical and chemical contact with the daily life conditions of the human skin. The reliability and scalability of the E-bandage as well as the compatibility with conventional microfabrication allow new possibilities to integrate flexible human-interactive nanoelectronics into mobile health-care monitoring systems combined with Internet of things (IoTs).
Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip
2014-06-11
Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.
Human-computer interface glove using flexible piezoelectric sensors
NASA Astrophysics Data System (ADS)
Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min
2017-05-01
In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.
Large strain detection of SRM composite shell based on fiber Bragg grating sensor
NASA Astrophysics Data System (ADS)
Zhang, Lei; Chang, Xinlong; Zhang, Youhong; Yang, Fan
2017-12-01
There may be more than 2% strain of carbon fiber composite material on solid rocket motor (SRM) in some extreme cases. A surface-bonded silica fiber Bragg grating (FBG) strain sensor coated by polymer is designed to detect the large strain of composite material. The strain transfer relation of the FBG large strain sensor is deduced, and the strain transfer mechanism is verified by finite element simulation. To calibrate the sensors, the tensile test is done by using the carbon fiber composite plate specimen attached to the designed strain sensor. The results show that the designed sensor can detect the strain more than 3%, the strain sensitivity is 0.0762 pm/μɛ, the resolution is 13.13μɛ, and the fitting degree of the wavelength-strain curve fitting function is 0.9988. The accuracy and linearity of the sensor can meet the engineering requirements.
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transport properties through graphene grain boundaries: strain effects versus lattice symmetry
NASA Astrophysics Data System (ADS)
Hung Nguyen, V.; Hoang, Trinh X.; Dollfus, P.; Charlier, J.-C.
2016-06-01
As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of transport properties with respect to the strain and lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can be used to open a finite transport gap in all graphene systems where the two domains are arranged in different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain sensors, flexible electronic devices and p-n junctions with non-linear I-V characteristics.
Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.
Cao, Xuan; Cao, Yu; Zhou, Chongwu
2016-01-26
Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.
Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai
2015-12-16
We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.
Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu
2015-09-18
Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.
Wearable and flexible electronics for continuous molecular monitoring.
Yang, Yiran; Gao, Wei
2018-04-03
Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.
High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.
Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu
2018-04-18
High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.
Field-effect enhanced triboelectric colloidal quantum dot flexible sensor
NASA Astrophysics Data System (ADS)
Meng, Lingju; Xu, Qiwei; Fan, Shicheng; Dick, Carson R.; Wang, Xihua
2017-10-01
Flexible electronics, which is of great importance as fundamental sensor and communication technologies for many internet-of-things applications, has established a huge market encroaching into the trillion-dollar market of solid state electronics. For the capability of being processed by printing or spraying, colloidal quantum dots (CQDs) play an increasingly important role in flexible electronics. Although the electrical properties of CQD thin-films are expected to be stable on flexible substrates, their electrical performance could be tuned for applications in flexible touch sensors. Here, we report CQD touch sensors employing polydimethylsiloxane (PDMS) triboelectric films. The electrical response of touching activity is enhanced by incorporating CQD field-effect transistors into the device architecture. Thanks to the use of the CQD thin film as a current amplifier, the field-effect CQD touch sensor shows a fast response to various touching materials, even being bent to a large curvature. It also shows a much higher output current density compared to a PDMS triboelectric touch sensor.
IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses
Han, Jeong In
2013-01-01
IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV) were developed using a flexible liquid crystal (FLC) lens. The FLC lens was made on a polycarbonate (PC) substrate using conventional liquid crystal display (LCD) processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.
Cylindrical Piezoelectric Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
Flexible micro flow sensor for micro aerial vehicles
NASA Astrophysics Data System (ADS)
Zhu, Rong; Que, Ruiyi; Liu, Peng
2017-12-01
This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.
Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.
Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling
2017-06-22
Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.
Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-03-24
Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang
2011-10-01
This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.
Mimosa-inspired design of a flexible pressure sensor with touch sensitivity.
Su, Bin; Gong, Shu; Ma, Zheng; Yap, Lim Wei; Cheng, Wenlong
2015-04-24
A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible and mechanical strain resistant large area SERS active substrates
NASA Astrophysics Data System (ADS)
Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping
2012-05-01
We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.
High performance flexible pH sensor based on polyaniline nanopillar array electrode.
Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill
2017-03-15
Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Design of sensor node platform for wireless biomedical sensor networks.
Xijun, Chen; -H Meng, Max; Hongliang, Ren
2005-01-01
Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.
Analysis, compensation, and correction of temperature effects on FBG strain sensors
NASA Astrophysics Data System (ADS)
Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis
2013-05-01
One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.
Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong
2017-11-08
Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.
Modeling of a Surface Acoustic Wave Strain Sensor
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors
NASA Astrophysics Data System (ADS)
Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In
2012-10-01
In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.
A Self-Referencing Intensity-Based Fiber Optic Sensor with Multipoint Sensing Characteristics
Choi, Sang-Jin; Kim, Young-Chon; Song, Minho; Pan, Jae-Kyung
2014-01-01
A self-referencing, intensity-based fiber optic sensor (FOS) is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, Hm,n, of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured Hm,n2 and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs) with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP) coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure. PMID:25046010
Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain.
Gaiser, Patrick; Binz, Jonas; Gompf, Bruno; Berrier, Audrey; Dressel, Martin
2015-03-14
Tunable metal/dielectric composites are promising candidates for a large number of potential applications in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS). As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor of the composite can be tuned by application of strain. In this way the effective static permittivity εeff of the composite can be varied over a very large range. Once the Poisson's ratio of the composite is known, the strain dependent dielectric constant can be accurately described by effective medium theory without any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demonstrated that, starting above the percolation threshold in the metallic phase, applying strain provides the possibility to cross the percolation threshold into the insulating region. The change of regime from conductive phase down to insulating follows the description given by percolation theory and can be actively controlled.
Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review
Wang, Xiaomei; Sun, Fazhe; Yin, Guangchao; Wang, Yuting; Liu, Bo
2018-01-01
The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sensors. Polymer nanomaterials, representing the most promising materials, especially polyvinylidene fluoride (PVDF), PVDF co-polymer and their nanocomposites with ultra-sensitivity, high deformability, outstanding chemical resistance, high thermal stability and low permittivity, can meet the flexibility requirements for dynamic tactile sensing in wearable electronics. Electrospinning has been recognized as an excellent straightforward and versatile technique for preparing nanofiber materials. This review will present a brief overview of the recent advances in PVDF nanofibers by electrospinning for flexible tactile sensor applications. PVDF, PVDF co-polymers and their nanocomposites have been successfully formed as ultrafine nanofibers, even as randomly oriented PVDF nanofibers by electrospinning. These nanofibers used as the functional layers in flexible tactile sensors have been reviewed briefly in this paper. The β-phase content, which is the strongest polar moment contributing to piezoelectric properties among all the crystalline phases of PVDF, can be improved by adjusting the technical parameters in electrospun PVDF process. The piezoelectric properties and the sensibility for the pressure sensor are improved greatly when the PVDF fibers become more oriented. The tactile performance of PVDF composite nanofibers can be further promoted by doping with nanofillers and nanoclay. Electrospun P(VDF-TrFE) nanofiber mats used for the 3D pressure sensor achieved excellent sensitivity, even at 0.1 Pa. The most significant enhancement is that the aligned electrospun core-shell P(VDF-TrFE) nanofibers exhibited almost 40 times higher sensitivity than that of pressure sensor based on thin-film PVDF. PMID:29364175
NASA Astrophysics Data System (ADS)
Pachikara, Abraham James
Next generational aircraft are becoming very flexible due to efforts to reduce weight and increase aerodynamic efficiency. As a result, flight control systems and trajectories that were designed with traditional rigid body assumptions may no longer become valid. When an aircraft becomes more flexible, the shape of the aircraft can deform significantly due to the aeroservoelastic dynamics. No longer are few sensors located at the CG and elsewhere will be enough to maximize performance. Instead, a full suite of sensors will be needed all throughout the aircraft to accurately measure the complete aerodynamic distribution and dynamics. First, a parametric study will be conducted to understand how flexibility impacts both the open-loop and closed-loop dynamics of a generic micro air vehicle (MAV). Once the impact of flexibility on the MAV's aeroservoelastic dynamics is well understood, an aeroservoelastic flight controller will be designed that leverages a "Fly-By-Feel" sensor architecture. A sensor architecture will be developed that uses several sensors to estimate the MAV's full aerodynamic and inertial distribution along with inertial sensors at the CG. A modal filtering approach will be used for the relevant sensor management and to extract useful modal characteristics from the sensor data. Once that is done, a controller will be designed for maneuver tracking. Once a flight controller has been designed, a set of representative motion primitives for the MAV can be developed that model how the aircraft moves for trajectory generation. Then trajectories can be developed for the flexible vehicle. Analysis will then be conducted to understand how flexibility impacts the creation of trajectories and MAV performance metrics.
Micro-patterned graphene-based sensing skins for human physiological monitoring
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik
2018-03-01
Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.
Distributed-effect optical fiber sensors for trusses and plates
NASA Technical Reports Server (NTRS)
Reichard, Karl; Lindner, Douglas K.
1991-01-01
Modal domain optical fiber sensors, or distributed effect sensors, for active vibration suppression in flexible structures are considered. Preliminary modeling results indicate that these sensors can be used to sense vibrations in a flexible beam and the signal can be used to damp vibrations in the beam. Weighted distributed-effect sensors can be used to implement high order compensators with low order functional observers.
Scalable Production of Graphene-Based Wearable E-Textiles
2017-01-01
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706
High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film
NASA Astrophysics Data System (ADS)
Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.
2016-05-01
We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.
A flexible surface wetness sensor using a RFID technique.
Yang, Cheng-Hao; Chien, Jui-Hung; Wang, Bo-Yan; Chen, Ping-Hei; Lee, Da-Sheng
2008-02-01
This paper presents a flexible wetness sensor whose detection signal, converted to a binary code, is transmitted through radio-frequency (RF) waves from a radio-frequency identification integrated circuit (RFID IC) to a remote reader. The flexible sensor, with a fixed operating frequency of 13.56 MHz, contains a RFID IC and a sensor circuit that is fabricated on a flexible printed circuit board (FPCB) using a Micro-Electro-Mechanical-System (MEMS) process. The sensor circuit contains a comb-shaped sensing area surrounded by an octagonal antenna with a width of 2.7 cm. The binary code transmitted from the RFIC to the reader changes if the surface conditions of the detector surface changes from dry to wet. This variation in the binary code can be observed on a digital oscilloscope connected to the reader.
Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.
Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon
2017-07-18
FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.
Thick film wireless and powerless strain sensor
NASA Astrophysics Data System (ADS)
Jia, Yi; Sun, Ke
2006-03-01
The development of an innovative wireless strain sensing technology has a great potential to extend its applications in manufacturing, civil engineering and aerospace industry. This paper presents a novel wireless and powerless strain sensor with a multi-layer thick film structure. The sensor employs a planar inductor (L) and capacitive transducer (C) resonant tank sensing circuit, and a strain sensitive material of a polarized polyvinylidene fluoride (PVDF) piezoelectric thick film to realize the wireless strain sensing by strain to frequency conversion and to receive radio frequency electromagnetic energy for powering the sensor. The prototype sensor was designed and fabricated. The results of calibration on a strain constant cantilever beam show a great linearity and sensitivity about 0.0013 in a strain range of 0-0.018.
Strain monitoring of bismaleimide composites using embedded microcavity sensor
NASA Astrophysics Data System (ADS)
Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam
2016-03-01
A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.
2011-09-01
strain data provided by in-situ strain sensors. The application focus is on the stain data obtained from FBG (Fiber Bragg Grating) sensor arrays...sparsely distributed lines to simulate strain data from FBG (Fiber Bragg Grating) arrays that provide either single-core (axial) or rosette (tri...when the measured strain data are sparse, as it is often the case when FBG sensors are used. For an inverse element without strain-sensor data, the
2013-04-01
Identification (RFID), Large Area Flexible Displays, Electronic Paper, Bio - Sensors , Large Area Conformal and Flexible Antennas, Smart and Interactive Textiles...Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator ...Ubiquitous Sensor Networks (USN), Vehicle Clickers Readers, Real Time Locating Systems, Lighting, Photovoltaics etc. FA9550-11-C-0014 STTR Phase II
Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices
Comini, Elisabetta
2013-01-01
Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436
Use of Nanocomposites for Flexible Pressure Sensors =
NASA Astrophysics Data System (ADS)
Sepulveda, Alexandra Conceicao Teixeira
Polymer nanocomposites (PNCs) are defined as polymers bonded with nanoparticles to create materiais with improved properties. The development of this type of material is rapidly emerging as a multidisciplinary research activity, since their final properties can benefit many different fields of application, namely in the development of electrical devices as studied herein. A fabrication technique to produce conductive PNCs was developed in this work and used to fabricate flexible capacitive pressure sensors. The process is based on vertically aligned-carbon nanotubes (A-CNTs) embedded in a flexible and biocompatible matrix of polydimethylsiloxane (PDMS). Thin A-CNTs/PDMS nanocomposite films ( 400 mum) were produced using wetting of as-grown A-CNTs with uncured PDMS and the resulting nanocomposites were used to fabricate flexible pressure sensors. The sensing capability of this A-CNTs/PDMS nanocomposite is attributed to the distinctive combination of mechanical flexibility and electrical properties. The fabricated nanocomposites were characterized and mechanical and electrical properties evaluated. The PDMS is significantly modified by the reinforcing A-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties ali different than the PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNTs/PDMS nanocomposites over PDMS by more than 900 % and 100 %, in the CNTs longitudinal and transverse directions, respectively. Regarding the electrical measurements, A-CNTs/PDMS nanocomposites presented an electrical conductivity of 0.35 Sim. The rather low conductivity does not compromise the developed capacitive sensor, but since passive telemetry is required to measure and power the sensor, solutions to overcome this problem were also studied. The configuration of the developed flexible sensor is similar to typical silicon-based capacitive pressure sensors. It is composed of three thin films, where two of them are A-CNTs/PDMS nanocomposites (defining the diaphragm type electrodes) separated by a film made of neat PDMS (defining the dielectric) and its operating principie is based on the change of the deflection of the nanocomposite layers due to the change of an external pressure. The developed flexible pressure sensors tested for pressures between 0 kPa and 100 kPa (operation required to measure the blood pressure in the aneurysm sac) showed good linearity, mainly in the region near to the atmospheric pressure (pressure inside of dielectric ). To demonstrate feasibility for practical applications, the flexible sensor technology was used in a biomedical application, more specifically in the context of abdominal aortic aneurysms. The proposed implantable flexible pressure sensing system (capacitive sensor plus inductor) consists of a mixed technology that uses A-CNTs/nanocomposites to build the capacitar electrodes and flexible printed circuit board (PCB) technology to build an inductor. The complete system was assessed by applying pressures varying from 0 kPa to 100 kPa. The results showed that the flexible sensors responded to pressure variations with a well-defined characteristic curve and oscillation frequencies centered around 5.3 MHz (the sensor receives energy and reflects back its oscillation frequency by means of inductive coupling). Finally, the developed technology to fabricate flexible pressure sensors based on A-CNTs/PDMS nanocomposites proved successful in sensing applications and due to its biocompatibility and versatility, can be used in other fields of application such as portable medical devices and e-textiles (to monitor the vital signs of an individual, such as heart rate and temperature, by using textile substrates with integrated electronics). (Abstract shortened by ProQuest.).
Flexible Skins Containing Integrated Sensors and Circuitry
NASA Technical Reports Server (NTRS)
Liu, Chang
2007-01-01
Artificial sensor skins modeled partly in imitation of biological sensor skins are undergoing development. These sensor skins comprise flexible polymer substrates that contain and/or support dense one- and two-dimensional arrays of microscopic sensors and associated microelectronic circuits. They afford multiple tactile sensing modalities for measuring physical phenomena that can include contact forces; hardnesses, temperatures, and thermal conductivities of objects with which they are in contact; and pressures, shear stresses, and flow velocities in fluids. The sensor skins are mechanically robust, and, because of their flexibility, they can be readily attached to curved and possibly moving and flexing surfaces of robots, wind-tunnel models, and other objects that one might seek to equip for tactile sensing. Because of the diversity of actual and potential sensor-skin design criteria and designs and the complexity of the fabrication processes needed to realize the designs, it is not possible to describe the sensor-skin concept in detail within this article.
A wireless strain sensor consumes less than 10 mW
NASA Astrophysics Data System (ADS)
Hew, Y.; Deshmukh, S.; Huang, H.
2011-10-01
This paper presents a wireless strain sensor that consumes about 9 mW. To achieve such an ultra-low power operation, a voltage-controlled oscillator (VCO) is utilized to convert the direct-current (DC) strain signal to a high frequency oscillatory signal. This oscillatory signal is then transmitted using an unpowered wireless transponder (Huang et al 2011 Smart Mater. Struct. 20 015017). A photocell-based energy harvester was developed to power the wireless strain sensor. The energy harvested from a flash light placed at 65 cm away is sufficient to power the wireless strain sensor continuously. The implementation of the wireless strain sensor and its characterization are presented.
A flexible dual mode tactile and proximity sensor using carbon microcoils
NASA Astrophysics Data System (ADS)
Han, Hyo Seung; Park, Junwoo; Nguyen, Tien Dat; Kim, Uikyum; Jeong, Soon Cheol; Kang, Doo In; Choi, Hyouk Ryeol
2016-04-01
This paper proposes a flexible dual mode tactile and proximity sensor using Carbon Microcoils (CMCs). The sensor consists of a Flexible Printed Circuit Board (FPCB) electrode layer and a dielectric layer of CMCs composite. In order to avoid damage from frequent contacts, the sensor has all electrodes on the same plane and a polymer covering is placed on the top of the sensor. CMCs can be modeled as complex LCR circuit and the sensitivity of the sensor highly depends on the CMC content. Proper CMC content is experimentally investigated and applied to make the CMCs composite for the dielectric layer. The CMC sensor measures the capacitance for tactile stimulus and inductance for proximity stimulus. A prototype with a size of 30 × 30 × 0.6 𝑚𝑚3, is manufactured and its feasibility is experimentally validated.
A screen-printed flexible flow sensor
NASA Astrophysics Data System (ADS)
Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.
2017-04-01
A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.
Direct measurement of skin friction with a new instrument
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.
1986-01-01
The design and performance of a small belt-type skin-friction gage to measure wall shear-stress coefficients in wind-tunnel testing are described, summarizing the report of Vakili and Wu (1982). The sensor employs a flexible belt of variable surface characteristics; this belt, wrapped tightly around two cylinders mounted on frictionless flexures, is equipped with strain gages to estimate the deflection of the belt by the flow. An alternative approach uses IR illumination, optical fibers, and a photosensitive transistor, permitting direct measurement of the belt deflection. Drawings, diagrams, and graphs of sample data are provided.
Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets
NASA Technical Reports Server (NTRS)
Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.
2016-01-01
In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.
Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-09-01
Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Zhenglin; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; You, Zewei; Huang, Xiaodi
2017-01-01
The precision of the encapsulated fiber optic sensor embedded into a host suffers from the influences of encapsulating materials. Furthermore, an interface transfer effect of strain sensing exists. This study uses an embedded basalt fiber-encapsulated fiber Bragg grating (FBG) sensor as the research object to derive an expression in a multilayer interface strain transfer coefficient by considering the mechanical properties of the host material. The direct impact of the host material on the strain transfer at an embedded multipoint continuous FBG (i.e., multiple gratings written on a single optical fiber) monitoring strain sensor, which was self-developed and encapsulated with basalt fiber, is studied to present the strain transfer coefficients corresponding to the positions of various gratings. The strain transfer coefficients of the sensor are analyzed based on the experiments designed for this study. The error of the experimental results is ˜2 μɛ when the strain is at 60 μɛ and below. Moreover, the measured curves almost completely coincide with the theoretical curves. The changes in the internal strain field inside the embedded structure of the basalt fiber-encapsulated FBG strain sensor could be easily monitored. Hence, important references are provided to measure the internal stress strain of the sensor.
Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene.
Xu, Rongqing; Wang, Di; Zhang, Hongchao; Xie, Na; Lu, Shan; Qu, Ke
2017-05-08
A flexible acoustic pressure sensor was developed based on the change in electrical resistance of three-dimensional (3D) graphene change under the acoustic waves action. The sensor was constructed by 3D graphene foam (GF) wrapped in flexible polydimethylsiloxane (PDMS). Tuning forks and human physiological tests indicated that the acoustic pressure sensor can sensitively detect the deformation and the acoustic pressure in real time. The results are of significance to the development of graphene-based applications in the field of health monitoring, in vitro diagnostics, advanced therapies, and transient pressure detection.
Fractal serpentine-shaped design for stretchable wireless strain sensors
NASA Astrophysics Data System (ADS)
Dong, Wentao; Cheng, Xiao; Wang, Xiaoming; Zhang, Hailiang
2018-07-01
Stretchable sensors have been widely applied to biological fields due to their unique capacity to integrate with soft materials and curvilinear surfaces. The article presents the fractal serpentine-shaped design for stretchable wireless strain sensor which is operating around 1.6 GHz. The wireless passive LC sensor is formed by a fractal serpentine-shaped inductor coil and a concentric coplanar capacitor. The inductance of the fractal serpentine-shaped coil varies with the deformation of the wireless sensor, and the resonance frequency also varies with the applied strain of the wireless sensor embedded in soft substrate. The 40% stretchability of wireless sensor is verified by finite element analysis (FEA). Strain response of the stretchable wireless sensor has been characterized by experiments and demonstrates high strain responsivity about 6.74 MHz/1%. The stretchable wireless sensor has the potential to be used in biological and wearable applications.
Printed strain sensors for early damage detection in engineering structures
NASA Astrophysics Data System (ADS)
Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi
2018-05-01
In this paper, we demonstrate the analysis of strain measurements recorded using a screen-printed sensors array bonded to a metal plate and subjected to high strains. The analysis was intended to evaluate the capabilities of the printed strain sensors to detect abnormal strain distribution before actual defects (cracks) in the analyzed structures appear. The results demonstrate that the developed device can accurately localize the enhanced strains at the very early stage of crack formation. The promising performance and low fabrication cost confirm the potential suitability of the printed strain sensors for applications within the framework of structural health monitoring (SHM).
NASA Astrophysics Data System (ADS)
Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding
2013-10-01
We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.
Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon
2018-05-22
Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.
Lim, Su Hui; Radha, Boya; Chan, Jie Yong; Saifullah, Mohammad S M; Kulkarni, Giridhar U; Ho, Ghim Wei
2013-08-14
Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.
NASA Astrophysics Data System (ADS)
Hu, Qingli; Wang, Chuan; Ou, Jinping
2010-04-01
Stiffness of asphalt concrete is very low, so ordinary FRP or steel packaged sensors are not suitable for measuring its strain accurately. In view of the problem, one innovative kind of optical fiber Bragg grating sensor packaged with polypropylene, a thermoplastic resin, was proposed in this article. Firstly, a conveniently assembled and dissembled steel die was designed and fabricated. Then, after characteristics study of polypropylene during heating and cooling repeatedly, the reliable grouting technique was formed. After this, real-time monitor of the entire sensor packaging process including die apartness was performed, and then, the sensor mechanics performance, the microscopic structure and other properties were studied thoroughly. Results of SEM indicate that interface of optical fiber and polypropylene is considerable tight. Measured strain during sensor making is reasonable. The FBG sensor was also embedded into a concrete column to measure its strain during continuously 7 day-long early-age solidification and compressive strain. Additionally, the FBG was also used to measure strain of asphalt concrete beam. Linearity and repeatability of the sensors are quit well and measured strains are quite believable. So, we can say that due to deformation compatibility between packaged material and FBG, FBG sensor and be measured material, especially low modulus of packaging materials, the strain of asphalt pavement can be monitored reliably by the sensor.
Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands
Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi
2017-01-01
FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands. PMID:28718826
Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.
Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang
2018-06-22
Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.
Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles
NASA Astrophysics Data System (ADS)
Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang
2018-06-01
Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-04-27
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
Gust alleviation of highly flexible UAVs with artificial hair sensors
NASA Astrophysics Data System (ADS)
Su, Weihua; Reich, Gregory W.
2015-04-01
Artificial hair sensors (AHS) have been recently developed in Air Force Research Laboratory (AFRL) using carbon nanotube (CNT). The deformation of CNT in air flow causes voltage and current changes in the circuit, which can be used to quantify the dynamic pressure and aerodynamic load along the wing surface. AFRL has done a lot of essential work in design, manufacturing, and measurement of AHSs. The work in this paper is to bridge the current AFRL's work on AHSs and their feasible applications in flight dynamics and control (e.g., the gust alleviation) of highly flexible aircraft. A highly flexible vehicle is modeled using a strain-based geometrically nonlinear beam formulation, coupled with finite-state inflow aerodynamics. A feedback control algorithm for the rejection of gust perturbations will be developed. A simplified Linear Quadratic Regulator (LQR) controller will be implemented based on the state-space representation of the linearized system. All AHS measurements will be used as the control input, i.e., wing sectional aerodynamic loads will be defined as the control output for designing the feedback gain. Once the controller is designed, closed-loop aeroelastic simulations will be performed to evaluate the performance of different controllers with the force feedback and be compared to traditional controller designs with the state feedback. From the study, the feasibility of AHSs in flight control will be assessed. The whole study will facilitate in building a fly-by-feel simulation environment for autonomous vehicles.
Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor
NASA Technical Reports Server (NTRS)
Piazza, Anthony
2008-01-01
In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.
Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok
2014-08-27
We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.
Soft Smart Garments for Lower Limb Joint Position Analysis
Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia
2017-01-01
Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors’ responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case. PMID:29023365
Theory and Practice of Shear/Stress Strain Gage Hygrometry
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Fenner, Ralph L.
2006-01-01
Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.
Pan, Hui; Chen, Bin
2014-01-01
Two-dimensional materials have attracted increasing attention because of their particular properties and potential applications in next-generation nanodevices. In this work, we investigate the physical and chemical properties of waved graphenes/nanoribbons based on first-principles calculations. We show that waved graphenes are compressible up to a strain of 50% and ultra-flexible because of the vanishing in-plane stiffness. The conductivity of waved graphenes is reduced due to charge decoupling under high compression. Our analysis of pyramidalization angles predicts that the chemistry of waved graphenes can be easily controlled by modulating local curvatures. We further demonstrate that band gaps of armchair waved graphene nanoribbons decrease with the increase of compression if they are asymmetrical in geometry, while increase if symmetrical. For waved zigzag nanoribbons, their anti-ferromagnetic states are strongly enhanced by increasing compression. The versatile functions of waved graphenes enable their applications in multi-functional nanodevices and sensors. PMID:24569444
Flexible Tactile Sensing Based on Piezoresistive Composites: A Review
Stassi, Stefano; Cauda, Valentina; Canavese, Giancarlo; Pirri, Candido Fabrizio
2014-01-01
The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications. PMID:24638126
Flexible wearable sensor nodes with solar energy harvesting.
Taiyang Wu; Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit
2017-07-01
Wearable sensor nodes have gained a lot of attention during the past few years as they can monitor and record people's physical parameters in real time. Wearable sensor nodes can promote healthy lifestyles and prevent the occurrence of potential illness or injuries. This paper presents a flexible wearable sensor system powered by an efficient solar energy harvesting technique. It can measure the subject's heartbeats using a photoplethysmography (PPG) sensor and perform activity monitoring using an accelerometer. The solar energy harvester adopts an output current based maximum power point tracking (MPPT) algorithm, which controls the solar panel to operate within its high output power range. The power consumption of the flexible sensor nodes has been investigated under different operation conditions. Experimental results demonstrate that wearable sensor nodes can work for more than 12 hours when they are powered by the solar energy harvester for 3 hours in the bright sunlight.
Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors
Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong
2016-01-01
Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728
Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H
2016-09-21
Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.
Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration
Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.
2018-01-01
Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745
High-Temperature Strain Sensing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.
2008-01-01
Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.
Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring
NASA Technical Reports Server (NTRS)
Wang, A.
2002-01-01
The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.
Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian
2018-06-01
The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2016-01-01
We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249
Li, Jinhui; Liu, Qiang; Ho, Derek; Zhao, Songfang; Wu, Shuwen; Ling, Lei; Han, Fei; Wu, Xinxiu; Zhang, Guoping; Sun, Rong; Wong, Ching-Ping
2018-03-21
Wearable electronics with excellent stretchability and sensitivity have emerged as a very promising field with wide applications such as e-skin and human motion detection. Although three-dimensional (3D) graphene structures (GS) have been reported for high-performance strain sensors, challenges still remain such as the high cost of GS preparation, low stretchability, and the lack of ability to heal itself. In this paper, we reported a novel self-healing flexible electronics with 3D GS based on Diels-Alder (DA) chemistry. Furfurylamine (FA) was employed as a reducing as well as a modifying agent, forming GS by FA (FAGS)/DA bonds contained polyurethane with the "infiltrate-gel-dry" process. The as-prepared composite exhibited excellent stretchability (200%) and intrinsic conductivity with low incorporation of graphene (about 2 wt %), which could be directly employed for flexible electronics to detect human motions. Besides, the FAGS/DAPU composite exhibited lower temperature retro-DA response for the continuous graphene networks. Highly effective healing of the composites by heat and microwave has been demonstrated successfully.
Development of a fiber optic high temperature strain sensor
NASA Technical Reports Server (NTRS)
Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.
1992-01-01
From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.
NASA Astrophysics Data System (ADS)
Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.
2013-01-01
The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.
High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay
Yang, Ning; Su, Jun; Fan, Zhiqiang; Qiu, Qi
2017-01-01
A fiber-optic delay based strain sensor with high precision and temperature insensitivity was reported, which works on detecting the delay induced by strain instead of spectrum. In order to analyze the working principle of this sensor, the elastic property of fiber-optic delay was theoretically researched and the elastic coefficient was measured as 3.78 ps/km·με. In this sensor, an extra reference path was introduced to simplify the measurement of delay and resist the cross-effect of environmental temperature. Utilizing an optical fiber stretcher driven by piezoelectric ceramics, the performance of this strain sensor was tested. The experimental results demonstrate that temperature fluctuations contribute little to the strain error and that the calculated strain sensitivity is as high as 4.75 με in the range of 350 με. As a result, this strain sensor is proved to be feasible and practical, which is appropriate for strain measurement in a simple and economical way. Furthermore, on basis of this sensor, the quasi-distributed measurement could be also easily realized by wavelength division multiplexing and wavelength addressing for long-distance structure health and security monitoring. PMID:28468323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Denys, E-mail: d.makarov@hzdr.de, E-mail: m.melzer@ifw-dresden.de; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden; Melzer, Michael, E-mail: d.makarov@hzdr.de, E-mail: m.melzer@ifw-dresden.de
Inorganic nanomembranes are shapeable (flexible, printable, and even stretchable) and transferrable to virtually any substrate. These properties build the core concept for new technologies, which transform otherwise rigid high-speed devices into their shapeable counterparts. This research is motivated by the eagerness of consumer electronics towards being thin, lightweight, flexible, and even wearable. The realization of this concept requires all building blocks as we know them from rigid electronics (e.g., active elements, optoelectronics, magnetoelectronics, and energy storage) to be replicated in the form of (multi)functional nanomembranes, which can be reshaped on demand after fabrication. There are already a variety of shapeablemore » devices commercially available, i.e., electronic displays, energy storage elements, and integrated circuitry, to name a few. From the beginning, the main focus was on the fabrication of shapeable high-speed electronics and optoelectronics. Only very recently, a new member featuring magnetic functionalities was added to the family of shapeable electronics. With their unique mechanical properties, the shapeable magnetic field sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of shapeable magnetoelectronics are proposed. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking, and touchless control capabilities. A variety of novel technologies, such as smart textiles, soft robotics and actuators, active medical implants, and soft consumer electronics, will benefit from these new magnetic functionalities. This review reflects the establishment of shapeable magnetic sensorics, describing the entire development from the first attempts to verify the functional concept to the realization of ready-to-use highly compliant and strain invariant sensor devices with remarkable robustness.« less
NASA Astrophysics Data System (ADS)
Makarov, Denys; Melzer, Michael; Karnaushenko, Daniil; Schmidt, Oliver G.
2016-03-01
Inorganic nanomembranes are shapeable (flexible, printable, and even stretchable) and transferrable to virtually any substrate. These properties build the core concept for new technologies, which transform otherwise rigid high-speed devices into their shapeable counterparts. This research is motivated by the eagerness of consumer electronics towards being thin, lightweight, flexible, and even wearable. The realization of this concept requires all building blocks as we know them from rigid electronics (e.g., active elements, optoelectronics, magnetoelectronics, and energy storage) to be replicated in the form of (multi)functional nanomembranes, which can be reshaped on demand after fabrication. There are already a variety of shapeable devices commercially available, i.e., electronic displays, energy storage elements, and integrated circuitry, to name a few. From the beginning, the main focus was on the fabrication of shapeable high-speed electronics and optoelectronics. Only very recently, a new member featuring magnetic functionalities was added to the family of shapeable electronics. With their unique mechanical properties, the shapeable magnetic field sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of shapeable magnetoelectronics are proposed. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking, and touchless control capabilities. A variety of novel technologies, such as smart textiles, soft robotics and actuators, active medical implants, and soft consumer electronics, will benefit from these new magnetic functionalities. This review reflects the establishment of shapeable magnetic sensorics, describing the entire development from the first attempts to verify the functional concept to the realization of ready-to-use highly compliant and strain invariant sensor devices with remarkable robustness.
Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.
Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang
2018-02-07
There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis <12%) responses at the mechanical strain of up to 100%. A strain sensor in this format can be scalably manufactured and implemented as wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong
2018-03-01
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.
2017-06-01
A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.
Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping
2011-01-01
In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.
Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping
2011-01-01
In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361
Jiang, Peng; Zhao, Shuai; Zhu, Rong
2015-01-01
This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401
A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate
Jeranče, Nikola; Vasiljević, Dragana; Samardžić, Nataša; Stojanović, Goran
2012-01-01
This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film) using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor) related to the external one (stator), the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications. PMID:22438710
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications
Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan
2016-01-01
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335
Electroactive polymers for sensing
2016-01-01
Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.
Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan
2016-07-26
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.
Study of a high-precision SAW-MOEMS strain sensor with laser optics
NASA Astrophysics Data System (ADS)
Liu, Xinwei; Chen, Shufen; Li, Honglang; Zou, Zhengfeng; Fu, Lei; Meng, Yanbin
2015-02-01
A novel structure design of a surface acoustic wave (SAW) micro-optic-electro-mechanical-system (MOEMS) strain sensor with a light readout unit is presented in this paper. By measuring the polarization intensity ratio of the TE/TM mode outputted from the waveguide, the strain produced from an object can be measured precisely. The basic working principle of the SAW MOEMS strain sensor is introduced and the mathematical model of the strain sensor system is established. The SAW characteristics effected by the strain sensor are mathematically deduced. The coupling coefficient between the SAW modes and light modes can be calculated based on the theory of coupling modes. The conversion coefficient of polarized light modes is obtained. Due to the restrictions of the specific parameters of the device, the level of technology and the material characteristics, the sensitivity of the strain sensor system is calculated through simulation as 0.1 μɛ, with a dynamic range of 0 ~ ±50 μɛ.
Structural health monitoring of inflatable structures for MMOD impacts
NASA Astrophysics Data System (ADS)
Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish
2017-04-01
Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.
Implantable Sensors for Regenerative Medicine
Klosterhoff, Brett S.; Tsang, Melissa; She, Didi; Ong, Keat Ghee; Allen, Mark G.; Willett, Nick J.; Guldberg, Robert E.
2017-01-01
The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields. PMID:27987300
Real time health monitoring and control system methodology for flexible space structures
NASA Astrophysics Data System (ADS)
Jayaram, Sanjay
This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.
NASA Astrophysics Data System (ADS)
Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui
2017-10-01
Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.
Flexible Graphene-Based Wearable Gas and Chemical Sensors.
Singh, Eric; Meyyappan, M; Nalwa, Hari Singh
2017-10-11
Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO 2 ), ammonia (NH 3 ), hydrogen (H 2 ), hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.
Piezoelectric devices for vibration suppression: Modeling and application to a truss structure
NASA Technical Reports Server (NTRS)
Won, Chin C.; Sparks, Dean W., Jr.; Belvin, W. Keith; Sulla, Jeff L.
1993-01-01
For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph
Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J.
Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less
Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung
2017-01-01
Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H2)-loaded boron–germanium (B–Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging. PMID:28241465
Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung
2017-02-23
Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H₂)-loaded boron-germanium (B-Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H₂-loaded B-Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H₂-loaded B-Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.
Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes
NASA Technical Reports Server (NTRS)
Dehart, D. W.; Doederlein, T.; Koury, J.; Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.
1989-01-01
Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.
A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.
Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao
2014-12-19
To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.
Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks
NASA Astrophysics Data System (ADS)
Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji
2003-08-01
Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).
Flexible pressure sensors for burnt skin patient monitoring
NASA Astrophysics Data System (ADS)
Hong, Gwang-Wook; Kim, Se-Hoon; Kim, Joo-Hyung
2015-04-01
To monitor hypertrophic scars in burnt skin we proposed and demonstrated a hybrid polymer/carbon tube-based flexible pressure sensor. To monitor the pressure on skin by measurement, we were focusing on the fabrication of a well-defined hybrid polydimethylsiloxsane/functionalized multi-walled carbon tube array formed on the patterned interdigital transducer in a controllable way for the application of flexible pressure sensing devices. As a result, the detection at the pressure of 20 mmHg is achieved, which is a suggested optimal value of resistance for sensing pressure. It should be noted that the achieved value of resistance at the pressure of 20 mmHg is highly desirable for the further development of sensitive flexible pressure sensors. In addition we demonstrate a feasibility of a wearable pressure sensor which can be in real-time detection of local pressure by wireless communication module. Keywords:
Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2018-07-01
Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopal Madhav Annamdas, Venu; Kiong Soh, Chee
2017-04-01
The last decade has seen the use of various wired-wireless and contact-contactless sensors in several structural health monitoring (SHM) techniques. Most SHM sensors that are predominantly used for strain measurements may be ineffective for damage detection and vice versa, indicating the uniapplicability of these sensors. However, piezoelectric (PE)-based macro fiber composite (MFC) and lead zirconium titanate (PZT) sensors have been on the rise in SHM, vibration and damping control, etc, due to their superior actuation and sensing abilities. These PE sensors have created much interest for their multi-applicability in various technologies such as electromechanical impedance (EMI)-based SHM. This research employs piezo diaphragms, a cheaper alternative to several expensive types of PZT/MFC sensors for the EMI technique. These piezo diaphragms were validated last year for their applicability in damage detection using the frequency domain. Here we further validate their applicability in strain monitoring using the real time domain. Hence, these piezo diaphragms can now be classified as PE sensors and used with PZT and MFC sensors in the EMI technique for monitoring damage and loading. However, no single technique or single type of sensor will be sufficient for large SHM, thus requiring the necessary deployment of more than one technique with different types of sensors such as a piezoresistive strain gauge based wireless sensor network for strain measurements to complement the EMI technique. Furthermore, we present a novel procedure of converting a regular PE sensor in the ‘frequency domain’ to ‘real time domain’ for strain applications.
Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob
2016-09-01
Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.
Do, Thanh Nho; Visell, Yon
2017-05-11
Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.
A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane
NASA Astrophysics Data System (ADS)
Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin
2013-02-01
A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.
A ph sensor based on a flexible substrate
NASA Astrophysics Data System (ADS)
Huang, Wen-Ding
pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor implanted inside the esophagus. Our pH electrode can monitor the pH changes of gastric juice in real time when the reflux happening in the esophagus. Our micro flexible pH sensor performed clear responses in each distinct pH reflux episode quickly and accurately comparing with the other commercial pH monitoring system. For the food freshness monitoring applications, we used the flexible pH sensor as a freshness indicator to monitor the pH changing profile during the food spoilage procedure. The sensor was then embedded with radio frequency identification (RFID) based passive telemetry enabling remote monitoring of food freshness. In the result, our pH-wireless RFID system presented 633Hz/pH of the sensitivity in the frequency calibration. The calibration of stability and dynamical response of the RFID system were also demonstrated before the test on food freshness monitoring. Finally, a white fish meat for long term spoilage procedure monitoring was applied and tested by using our wireless IrOx pH sensing system. Our RFID pH sensing module is able to monitor, collect and transmit the pH information continuously for 18 hours during the food spoilage procedure. In this dissertation, a micro size of IrOx/AgCl pH sensor was fabricated on a flexible substrate. The physical properties of the IrO x thin film was verified in the work. The different sensing capability such as the sensitivity, stability, reversibility, response time, repeatability, selectivity, and temperature dependence was then demonstrated in this work. After the different in-vitro tests, the pH sensor were embedded with our passive RFID circuitry for the in-vivo GERD diagnosis and food freshness monitoring application. Our wireless pH sensing system was able to deliver the accurate and quick pH sensing data wirelessly. In conclusion, our deformable IrOx pH electrodes have been demonstrated with the advantages of accommodating and conforming sensors in small spaces or curved surfaces. This miniature IrOx pH sensor can respond to distinct potentials of the various pH levels as traditional glass electrodes, however, the miniature, bio-compatible and flexible substrate and the ability to be integrated in batterryless telemetry enable the pH sensor to be applied on many new medical, bio-chemical and biological field.
Development of an embedded Fabry Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS)
NASA Technical Reports Server (NTRS)
Carman, Gregory P.; Lesko, John J.; Case, Scott W.; Fogg, Brian; Claus, Richard O.
1992-01-01
We investigate the feasibility of utilizing a Fabry-Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS) for the evaluation of the internal strain state of a material system. We briefly describe the manufacturing process for this sensor and point out some potential problem areas. Results of an embedded FP-FOSRS in an epoxy matrix with external resistance strain gauges applied for comparative purposes are presented. We show that the internal and external strain measurements are in close agreement. This work lays the foundation for embedding this sensor in actual composite laminas.
Flexible MEMS: A novel technology to fabricate flexible sensors and electronics
NASA Astrophysics Data System (ADS)
Tu, Hongen
This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.
Liu, Guanyu; Tan, Qiulin; Kou, Hairong; Zhang, Lei; Wang, Jinqi; Lv, Wen; Dong, Helei; Xiong, Jijun
2018-05-02
Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT), robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.
Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung
2018-01-10
Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.
Flexible Structural-Health-Monitoring Sheets
NASA Technical Reports Server (NTRS)
Qing, Xinlin; Kuo, Fuo
2008-01-01
A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.
Wireless implantable passive strain sensor: design, fabrication and characterization
NASA Astrophysics Data System (ADS)
Umbrecht, F.; Wägli, P.; Dechand, S.; Gattiker, F.; Neuenschwander, J.; Sennhauser, U.; Hierold, Ch
2010-08-01
This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10-5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1-5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.
Yu, Xiao-Guang; Li, Yuan-Qing; Zhu, Wei-Bin; Huang, Pei; Wang, Tong-Tong; Hu, Ning; Fu, Shao-Yun
2017-05-25
Melamine sponge, also known as nano-sponge, is widely used as an abrasive cleaner in our daily life. In this work, the fabrication of a wearable strain sensor for human motion detection is first demonstrated with a commercially available nano-sponge as a starting material. The key resistance sensitive material in the wearable strain sensor is obtained by the encapsulation of a carbonized nano-sponge (CNS) with silicone resin. The as-fabricated CNS/silicone sensor is highly sensitive to strain with a maximum gauge factor of 18.42. In addition, the CNS/silicone sensor exhibits a fast and reliable response to various cyclic loading within a strain range of 0-15% and a loading frequency range of 0.01-1 Hz. Finally, the CNS/silicone sensor as a wearable device for human motion detection including joint motion, eye blinking, blood pulse and breathing is demonstrated by attaching the sensor to the corresponding parts of the human body. In consideration of the simple fabrication technique, low material cost and excellent strain sensing performance, the CNS/silicone sensor is believed to have great potential in the next-generation of wearable devices for human motion detection.
Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin.
Guo, Huayang; Lan, Changyong; Zhou, Zhifei; Sun, Peihua; Wei, Dapeng; Li, Chun
2017-05-18
Skin-mountable chemical sensors using flexible chemically sensitive nanomaterials are of great interest for electronic skin (e-skin) application. To build these sensors, the emerging atomically thin two-dimensional (2D) layered semiconductors could be a good material candidate. Herein, we show that a large-area WS 2 film synthesized by sulfurization of a tungsten film exhibits high humidity sensing performance both in natural flat and high mechanical flexible states (bending curvature down to 5 mm). The conductivity of as-synthesized WS 2 increases sensitively over a wide relative humidity range (up to 90%) with fast response and recovery times in a few seconds. By using graphene as electrodes and thin polydimethylsiloxane (PDMS) as substrate, a transparent, flexible, and stretchable humidity sensor was fabricated. This senor can be well laminated onto skin and shows stable water moisture sensing behaviors in the undeformed relaxed state as well as under compressive and tensile loadings. Furthermore, its high sensing performance enables real-time monitoring of human breath, indicating a potential mask-free breath monitoring for healthcare application. We believe that such a skin-activity compatible WS 2 humidity sensor may shed light on developing low power consumption wearable chemical sensors based on 2D semiconductors.
NASA Astrophysics Data System (ADS)
Tetsu, Yuma; Yamagishi, Kento; Kato, Akira; Matsumoto, Yuya; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G.; Takeoka, Shinji; Fujie, Toshinori
2017-08-01
To minimize the interference that skin-contact strain sensors cause natural skin deformation, physical conformability to the epidermal structure is critical. Here, we developed an ultrathin strain sensor made from poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inkjet-printed on a polystyrene-polybutadiene-polystyrene (SBS) nanosheet. The sensor, whose total thickness and gauge factor were ˜1 µm and 0.73 ± 0.10, respectively, deeply conformed to the epidermal structure and successfully detected the small skin strain (˜2%) while interfering minimally with the natural deformation of the skin. Such an epidermal strain sensor will open a new avenue for precisely detecting the motion of human skin and artificial soft-robotic skin.
An investigation of interface transferring mechanism of surface-bonded fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Wu, Rujun; Fu, Kunkun; Chen, Tian
2017-08-01
Surface-bonded fiber Bragg grating sensor has been widely used in measuring strain in materials. The existence of fiber Bragg grating sensor affects strain distribution of the host material, which may result in a decrease in strain measurement accuracy. To improve the measurement accuracy, a theoretical model of strain transfer from the host material to optical fiber was developed, incorporating the influence of the fiber Bragg grating sensor. Subsequently, theoretical predictions were validated by comparing with data from finite element analysis and the existing experiment [F. Ansari and Y. Libo, J. Eng. Mech. 124(4), 385-394 (1998)]. Finally, the effect of parameters of fiber Bragg grating sensors on the average strain transfer rate was discussed.
NASA Astrophysics Data System (ADS)
Shen, Yu; Wang, Ziyuan; Wen, Huaihai; Zhou, Zhi
2014-11-01
Fiber optic sensor (FOS) has received much attention in the field of Structure Health Monitoring (SHM) due to its advantages of low weight, small size, high sensitivity multiplexing ability, free of electromagnetic interference and long durability. However, in harsh environments, structures often undergo large strain where few traditional fiber optic sensors could survive. This paper report a novel material with features of light-transparent, chemically inert, thermally stable material Polydimethylsiloxane(PDMS) fabricated large axial/shearing strain sensor. The sensor was fabricated by directly coupling a conventional signal mode fiber into half cured PDMS material using a translation stage under the inspection of a microscope. Meanwhile, a laser diode and a photo detector were used in the fabrication process to make sure the sensor achieved minimum light loss. An experiment was conducted later to investigate the sensor's transmission characteristic in 1310nm infrared laser relating with the applied axial/shearing strain. The results show that the proposed sensor survived an axial strain of 6 7.79 x 106 μɛ ; a shear of 4 6.49 x 104 μɛ with good linearity and repetition. The experiment indicates that the proposed sensor can potentially be used as strain sensing elements in Structure Health Monitoring systems under earthquake or explosion.
Dai, Hongbo; Thostenson, Erik T.; Schumacher, Thomas
2015-01-01
This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity. PMID:26197323
NASA Astrophysics Data System (ADS)
Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.
2011-03-01
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.
Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode
NASA Astrophysics Data System (ADS)
Luo, Shi; Yang, Jun; Song, Xuefen; Zhou, Xi; Yu, Leyong; Sun, Tai; Yu, Chongsheng; Huang, Deping; Du, Chunlei; Wei, Dapeng
2018-07-01
Tunable-sensitivity and flexibility are considered as two crucial characteristics for future pressure sensors or electronic skins. By the theoretical calculation model, we simulated the relationship curve between the sensitivity and PDMS pyramids with different spacings, and found that the spacing of pyramids is a main factor to affect the sensitivity of the capacitance pressure sensor. Furthermore, we fabricated the capacitance pressure sensors using graphene electrodes and the PDMS pyramid dielectric layers with different spacings. The measurement data were consistent with the simulation results that the sensitivity increases with the spacing of pyramids. In addition, graphene electrode exhibits prefect flexibility and reliability, while the ITO electrode would be destroyed rapidly after bending. These graphene pressure sensors exhibit the potential in the application in the wearable products for monitoring breath, pulse, and other physiological signals.
Transparent flexible nanogenerator as self-powered sensor for transportation monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhong Lin; Hu, Youfan; Lin, Long
2016-06-14
A traffic sensor includes a flexible substrate having a top surface. A piezoelectric structure extends from the first electrode layer. The piezoelectric structure has a top end. An insulating layer is infused into the piezoelectric structure. A first electrode layer is disposed on top of the insulating layer. A second electrode layer is disposed below the flexible substrate. A packaging layer is disposed around the substrate, the first electrode layer, the piezoelectric structure, the insulating layer and the second electrode layer. In a method of sensing a traffic parameter, a piezoelectric nanostructure-based traffic sensor is applied to a roadway. Anmore » electrical event generated by the piezoelectric nanostructure-based traffic sensor in response to a vehicle interacting with the piezoelectric nanostructure-based traffic sensor is detected. The electrical event is correlated with the traffic parameter.« less
A flexible slip sensor using triboelectric nanogenerator approach
NASA Astrophysics Data System (ADS)
Wang, Xudong; Liang, Jiaming; Xiao, Yuxiang; Wu, Yichuan; Deng, Yang; Wang, Xiaohao; Zhang, Min
2018-03-01
With the rapid development of robotic technology, tactile sensors for robots have gained great attention from academic and industry researchers. Tactile sensors for slip detection are essential for human-like steady control in dexterous robot hand. In this paper, we propose and demonstrate a flexible slip sensor based on triboelectric nanogenerator with a seesaw structure. The sensor is composed of two porous PDMS layers separated by an inverted trapezoid structure with a height of 500 μm. In order to customize the sensitivity of the sensor, porous PDMS was fabricated by mixing PDMS with deionized water thoroughly and then removing water with heat. Laser-induced porous graphene and aluminium are served as the pair of contact materials. To detect slip from different directions, two sets of the electrode pair were used. Experimental results show a distinct difference between static state and the moment when a slip happens was detected. In addition, the output voltage of the sensors increased as the increase of slip velocity from 0.25 mm/s to 2.5 mm/s. The flexible slip sensor proposed here shows the potential applications in smart robotics and prosthesis.
He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun
2018-04-18
Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.
Optical fiber sensors embedded in flexible polymer foils
NASA Astrophysics Data System (ADS)
van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter
2010-04-01
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures
NASA Astrophysics Data System (ADS)
Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.
2015-04-01
In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.
Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots
Cabanes, Itziar; Mancisidor, Aitziber; Pinto, Charles
2017-01-01
The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software. PMID:28832510
Monitoring elbow isometric contraction by novel wearable fabric sensing device
NASA Astrophysics Data System (ADS)
Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying
2016-12-01
Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.
NASA Astrophysics Data System (ADS)
Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben
2012-11-01
Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.
Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.
You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong
2017-07-29
A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.
Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.
Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo
2017-03-22
We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.
Macro Fiber Piezocomposite Actuator Poling Study
NASA Technical Reports Server (NTRS)
Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis
2002-01-01
The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.
Flexible Packaging by Film-Assisted Molding for Microintegration of Inertia Sensors
Hera, Daniel; Berndt, Armin; Günther, Thomas; Schmiel, Stephan; Harendt, Christine; Zimmermann, André
2017-01-01
Packaging represents an important part in the microintegration of sensors based on microelectromechanical system (MEMS). Besides miniaturization and integration density, functionality and reliability in combination with flexibility in packaging design at moderate costs and consequently high-mix, low-volume production are the main requirements for future solutions in packaging. This study investigates possibilities employing printed circuit board (PCB-)based assemblies to provide high flexibility for circuit designs together with film-assisted transfer molding (FAM) to package sensors. The feasibility of FAM in combination with PCB and MEMS as a packaging technology for highly sensitive inertia sensors is being demonstrated. The results prove the technology to be a viable method for damage-free packaging of stress- and pressure-sensitive MEMS. PMID:28653992
Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok
2015-03-25
Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing.
Fiber Bragg Grating vibration sensor with DFB laser diode
NASA Astrophysics Data System (ADS)
Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir
2012-01-01
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs
NASA Astrophysics Data System (ADS)
Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao
2016-11-01
The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.
Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jian; Wang, Xiaowei; Paiella, Roberto
2016-06-13
Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.
Modal domain fiber optic sensor for closed loop vibration control of a flexible beam
NASA Technical Reports Server (NTRS)
Cox, D.; Thomas, D.; Reichard, K.; Lindner, D.; Claus, R. O.
1990-01-01
The use of a modal domain sensor in a vibration control experiment is described. An optical fiber is bonded along the length of a flexible beam. A control signal derived from the output of the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed and combined with models of the beam and actuator dynamics to produce a system suitable for control design.
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro
2018-05-01
Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.
Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard
2018-01-26
We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.
2012-01-01
Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096
Bierer, Benedikt; Takabayashi, Alain; Ortiz Perez, Alvaro; Wöllenstein, Jürgen
2018-01-01
We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits. PMID:29373524
NASA Astrophysics Data System (ADS)
Tung, S.-T.; Glisic, B.
2016-12-01
Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.
Fiber-Optic Strain Sensors With Linear Characteristics
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.
Disposable chemical sensors and biosensors made on cellulose paper.
Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan
2014-03-07
Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.
Flexible Piezoresistive Sensors Embedded in 3D Printed Tires
Emon, Md Omar Faruk; Choi, Jae-Won
2017-01-01
In this article, we report the development of a flexible, 3D printable piezoresistive pressure sensor capable of measuring force and detecting the location of the force. The multilayer sensor comprises of an ionic liquid-based piezoresistive intermediate layer in between carbon nanotube (CNT)-based stretchable electrodes. A sensor containing an array of different sensing units was embedded on the inner liner surface of a 3D printed tire to provide with force information at different points of contact between the tire and road. Four scaled tires, as well as wheels, were 3D printed using a flexible and a rigid material, respectively, which were later assembled with a 3D-printed chassis. Only one tire was equipped with a sensor and the chassis was driven through a motorized linear stage at different speeds and load conditions to evaluate the sensor performance. The sensor was fabricated via molding and screen printing processes using a commercially available 3D-printable photopolymer as 3D printing is our target manufacturing technique to fabricate the entire tire assembly with the sensor. Results show that the proposed sensors, inserted in the 3D printed tire assembly, could detect forces, as well as their locations, properly. PMID:28327533
Flexible Piezoresistive Sensors Embedded in 3D Printed Tires.
Emon, Md Omar Faruk; Choi, Jae-Won
2017-03-22
In this article, we report the development of a flexible, 3D printable piezoresistive pressure sensor capable of measuring force and detecting the location of the force. The multilayer sensor comprises of an ionic liquid-based piezoresistive intermediate layer in between carbon nanotube (CNT)-based stretchable electrodes. A sensor containing an array of different sensing units was embedded on the inner liner surface of a 3D printed tire to provide with force information at different points of contact between the tire and road. Four scaled tires, as well as wheels, were 3D printed using a flexible and a rigid material, respectively, which were later assembled with a 3D-printed chassis. Only one tire was equipped with a sensor and the chassis was driven through a motorized linear stage at different speeds and load conditions to evaluate the sensor performance. The sensor was fabricated via molding and screen printing processes using a commercially available 3D-printable photopolymer as 3D printing is our target manufacturing technique to fabricate the entire tire assembly with the sensor. Results show that the proposed sensors, inserted in the 3D printed tire assembly, could detect forces, as well as their locations, properly.
Chen, Tao; He, Yuting; Du, Jinqiang
2018-06-01
This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalingam, Rajinikumar
2010-04-09
Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magneticmore » field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.« less
Masoudi, Ali; Newson, Trevor P
2017-01-15
A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.
Thermal strain measurement of EAST tungsten divertor component with bare fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Wang, Xingli; Wang, Wanjing; Wang, Jichao; Wei, Ran; Sun, Zhaoxuan; Li, Qiang; Xie, Chunyi; Luo, Guang-Nan
2017-12-01
Fiber Bragg Gratings (FBGs) have been widely used in the sensor field to monitor temperature and strain. However, the weak mechanical property of optical fibers and insufficient heat-resistant property of general optic-fiber sensors have prevented it from being widely used, such as in some extreme engineering situations. In this work, a bare FBG sensor system had been introduced to measure thermal strain of an Experimental Advanced Superconducting Tokamak tungsten divertor component under baking condition. This strain measurement system had withstood as high temperature as 210 °C and finished the measurement experiment successfully. Meaningful measurement results had been obtained and analyzed, which showed the applicability of such a bare fiber grating sensor system and as well contributed to studying on tungsten divertor's thermal strain conditions.
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
High sensitivity knitted fabric strain sensors
NASA Astrophysics Data System (ADS)
Xie, Juan; Long, Hairu; Miao, Menghe
2016-10-01
Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.
Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E
2011-06-01
The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.
NASA Astrophysics Data System (ADS)
Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo
2003-12-01
For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named 'hybrid sensor' and 'laminate sensor', respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic. Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glued to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion, both strain and temperature can be measured. The latter sensor is a laminate of two 90° plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors was experimentally confirmed.
Temperature-compensated strain measurement using FBG sensors embedded in composite laminates
NASA Astrophysics Data System (ADS)
Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo
2002-07-01
For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named hybrid sensor and laminate sensor, respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP). Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glue to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion (CTEs), both strain and temperature can be measured. The latter sensor is a laminate of two 90 degree(s) plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors were experimentally confirmed.
Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity
NASA Astrophysics Data System (ADS)
Wang, Yi-Ping; Xiao, Limin; Wang, D. N.; Jin, Wei
2006-12-01
A long-period fiber-grating sensor with a high strain sensitivity of -7.6 pm/μɛ and a low temperature sensitivity of 3.91 pm/°C is fabricated by use of focused CO2 laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5 μɛ/°C without using temperature compensation.
Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.
2015-01-01
In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices. PMID:26076705
Zheng, Z Q; Yao, J D; Wang, B; Yang, G W
2015-06-16
In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.
Zhan, Shuang; Li, Dongmei; Liang, Shengfa; Chen, Xin; Li, Xia
2013-04-02
A novel flexible room temperature ethanol gas sensor was fabricated and demonstrated in this paper. The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes. PDDAC acted both as the binder, promoting the adhesion between SnO2 and the flexible PI substrate, and the dopant. We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance. The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving. The microstructures of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectra (FT-IR), and the sensing mechanism is also discussed in detail.
NASA Astrophysics Data System (ADS)
Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.
2013-08-01
This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.
Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo
2017-01-01
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071
NASA Astrophysics Data System (ADS)
Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling
2017-03-01
In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.
NASA Astrophysics Data System (ADS)
Shanmugam, Nandhinee Radha; Muthukumar, Sriram; Prasad, Shalini
2016-09-01
We demonstrate a flexible, mechanically stable, and disposable electrochemical sensor platform for monitoring cardiac troponins through the detection and quantification of cardiac Troponin-T (cTnT). We designed and fabricated nanostructured zinc oxide (ZnO) sensing electrodes on flexible porous polyimide substrates. We demonstrate ultrasensitive detection is capable at very low sample volumes due to the confinement phenomenon of target species within the ZnO nanostructures leading to enhancement of biomolecular binding on the sensor electrode surface. The performance of the ZnO nanostructured sensor electrode was evaluated against gold and nanotextured ZnO electrodes. The electrochemical sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for cTnT were immobilized on the sensor electrodes using thiol based chemistry. Detection of cTnT in phosphate buffered saline (PBS) and human serum (HS) buffers was achieved at low sample volumes of 20 μL using non-faradaic electrochemical impedance spectroscopy (EIS). Limit of detection (LOD) of 1E-4 ng/mL (i.e. 1 pg/mL) at 7% CV (coefficient of variation) for cTnT in HS was demonstrated on nanostructured ZnO electrodes. The mechanical integrity of the flexible biosensor platform was demonstrated with cyclic bending tests. The sensor performed within 12% CV after 100 bending cycles demonstrating the robustness of the nanostructured ZnO electrochemical sensor platform.
Development of flexible SAW sensors for non-destructive testing of structure
NASA Astrophysics Data System (ADS)
Takpara, R.; Duquennoy, M.; Courtois, C.; Gonon, M.; Ouaftouh, M.; Martic, G.; Rguiti, M.; Jenot, F.; Seronveaux, L.; Pelegris, C.
2016-02-01
In order to accurately examine structures surfaces, it is interesting to use surface SAW (Surface Acoustic Wave). Such waves are well suited for example to detect early emerging cracks or to test the quality of a coating. In addition, when coatings are thin or when emergent cracks are precocious, it is necessary to excite surface waves beyond 10MHz. Finally, when structures are not flat, it makes sense to have flexible or conformable sensors for their characterization. To address this problem, we propose to develop SAW type of interdigital sensors (or IDT for InterDigital Transducer), based on flexible piezoelectric plates. Initially, in order to optimize these sensors, we modeled the behavior of these sensors and identified the optimum characteristic sizes. In particular, the thickness of the piezoelectric plate and the width of the interdigital electrodes have been studied. Secondly, we made composites based on barium titanate foams in order to have flexible piezoelectric plates and to carry out thereafter sensors. Then, we studied several techniques in order to optimize the interdigitated electrodes deposition on this type of material. One of the difficulties concerns the fineness of these electrodes because the ratio between the length (typically several millimeters) and the width (a few tens of micrometers) of electrodes is very high. Finally, mechanical, electrical and acoustical characterizations of the sensors deposited on aluminum substrates were able to show the quality of our achievement.
A flexible tactile sensitive sheet using a hetero-core fiber optic sensor
NASA Astrophysics Data System (ADS)
Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.
2014-05-01
In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.
Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi
2016-01-01
Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications. PMID:27529244
Calculations of flexibility module in measurements instruments
NASA Astrophysics Data System (ADS)
Wróbel, A.; Płaczek, M.; Baier, A.
2017-08-01
Piezoelectricity has found a lot of applications since it were discovered in 1880 by Pierre and Jacques Curie. There are many applications of the direct piezoelectric effect - the production of an electric potential when stress is applied to the piezoelectric material, as well as the reverse piezoelectric effect - the production of strain when an electric field is applied. This work presents a mathematical model of a new model of vibration sensor. The principle of operation of currently used sensors is based on the idea: changes in thickness of the piezoelectric plates cause the vibration of the mechanical element, so-called “fork”. If the “forks” are not buried by the material deformation of the full tiles broadcasting is transmitted to receiver piezoelectric plate. As a result of vibration of receiver plates the cladding is formed on the potential difference proportional to the force. The value of this voltage is processed by an electronic circuit. In the case of backfilling “forks” the electric signal is lower. At the same time is not generated the potential for cladding tiles. Such construction have a lot of drawbacks, for example: need to use several piezoelectric plates, with the increase in number of components is increased failure of sensors, sensors have now produced two forks resonance, using these sensors in moist materials is often the case that the material remains between the forks and at the same time causes a measurement error. Mentioned disadvantages do not appear in the new proposed sensor design. The Galerkin method of the analysis of considered systems will be presented started from development of the mathematical model, to determine the graphs of flexibility and confirm two methods: exact and approximate. Analyzed beam is a part of the vibration level sensor and the results will be used to identify the electrical parameters of the generator. Designing of technical systems containing piezoelectric transducers is a complex process, due to the phenomena occurring in them. A correct description of the given device in the form of a mathematical model, already in its design phase, is a fundamental condition for its proper functioning. The presented analyzes may be used in the study of any mechanism by piezoelectric sensor, including for the steering column examination.
Fan, Shicheng; Dan, Li; Meng, Lingju; Zheng, Wei; Elias, Anastasia; Wang, Xihua
2017-11-09
Flexible force/pressure sensors are of interest for academia and industry and have applications in wearable technologies. Most of such sensors on the market or reported in journal publications are based on the operation mechanism of probing capacitance or resistance changes of the materials under pressure. Recently, we reported the microelectromechanical (MEM) sensors based on a different mechanism: mechanical switches. Multiples of such MEM sensors can be integrated to achieve the same function of regular force/pressure sensors while having the advantages of ease of fabrication and long-term stability in operation. Herein, we report the dramatically improved response time (more than one order of magnitude) of these MEM sensors by employing eco-friendly nanomaterials-cellulose nanocrystals. For instance, the incorporation of polydimethysiloxane filled with cellulose nanocrystals shortened the response time of MEM sensors from sub-seconds to several milliseconds, leading to the detection of both diastolic and systolic pressures in the radial arterial blood pressure measurement. Comprehensive mechanical and electrical characterization of the materials and the devices reveal that greatly enhanced storage modulus and loss modulus play key roles in this improved response time. The demonstrated fast-response flexible sensors enabled continuous monitoring of heart rate and complex cardiovascular signals using pressure sensors for future wearable sensing platforms.
Nano-enabled sensors, electronics and energy source on polymer, paper and thread substrates
NASA Astrophysics Data System (ADS)
Mostafalu, Pooria
Over the past decades, design and development of portable devices for monitoring of biomarkers especially for at risk patients is receiving considerable attention. These devices are either single use diagnostic platforms, wearable on body or on fabric, or they are implanted close to the tissue and organ that it monitors and cures. Sensors, energy sources, and data acquisition devices are the main components of a such monitoring platform. Sensors collect the information using bio-recognition tools such as enzymes and antibodies. Then, the transducers (electrodes, fluorophore, etc) convert it to the appropriate format, for instance electrical and optical signals. After that, data acquisition system amplifies and digitizes the signal and transfers the data to the recording instruments for further processing. Moreover, energy sources are necessary for powering the sensors and electronics. In wearable and implantable applications, these devices need to be flexible, light weight and biocompatible, and their performance should be similar to their rigid counterparts. In this dissertation we address these requirement for wearable and implantable devices. We showed integrated sensors, electronics, and energy sources on flexible polymers, paper, and thread. These devices provide many advantages for monitoring of the physiological condition of a patient and treatment accordingly. Real-time capability of the platform was enabled using wireless telemetry. One of the major innovations of this dissertation is the use of thread as a substrate for making medical diagnostic devices. While conventional substrates (glass, silicon, polyimide, PDMS etc) hold great promise for making wearable and implantable devices, their overall structure and form has remained essentially two dimensional, limiting their function to tissue surfaces such as skin. However, the ability to integrate functional components such as sensors, actuators, and electronics in a way that they penetrate multiple layers of tissues in a 3D topology would be a significant surgical advance. We have devised an integrated thread-based diagnostic (TDD) system with the ability to measure physical (strain and temperature) and chemical (pH and glucose) markers in the body in vivo. Such device was made from threads, which have been widely used in the apparel industry and is readily available as a low-cost biocompatible material.
Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman
2017-07-13
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.
NASA Astrophysics Data System (ADS)
Schwartz, Gregor; Tee, Benjamin C.-K.; Mei, Jianguo; Appleton, Anthony L.; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan
2013-05-01
Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa-1, a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.
Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman
2017-01-01
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744
Schwartz, Gregor; Tee, Benjamin C-K; Mei, Jianguo; Appleton, Anthony L; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan
2013-01-01
Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa(-1), a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.
Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.
Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie
2017-09-29
By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.
Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor
Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie
2017-01-01
By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments. PMID:28961209
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
Chiang, Chia-Chin; Li, Chein-Hsing
2014-06-02
In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.
Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying
2015-12-21
The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array
Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying
2015-01-01
The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J.; Chang, J.; Zumstein, J.
Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array ofmore » sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang
2018-01-01
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408
Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang
2018-02-22
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Fiber Optic Strain Sensor for Planetary Gear Diagnostics
NASA Technical Reports Server (NTRS)
Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented
Priority design parameters of industrialized optical fiber sensors in civil engineering
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-03-01
Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.
2013-05-10
13. SUPPLEMENTARY NOTES 14. ABSTRACT In this research, fiber Bragg grating ( FBG ) optical temperature sensors are used for structural health...surface of a composite structure. FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite...features. First, a three-dimensional array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in
Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum
2014-06-10
In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.
Flexible force sensors for e-textiles
NASA Astrophysics Data System (ADS)
Carvalho, H.; Yao, Y.; Gonçalves, L. M.
2017-10-01
This paper presents the development of inexpensive, lightweight, flexible polymer-based piezoresistive sensors appropriate for integration in e-textiles. The transducing element used is a volume-conductive carbon impregnated black polypropylene/polyethylene film with commercial names Velostat (from 3M) or Linqstat (from Caplinq). The objective is to investigate on the influence of different sensor constructions, varying film thicknesses, electrode materials and encapsulations on sensor performance. Furthermore, ways of integrating the sensors into textile products, as well as potential applications are also studied. In this paper, the behaviour of the sensors under different cyclic compression loads, applied at different speeds, is presented. Sensors using three different electrode materials are tested. The results show significant influence of sensor construction and electrode material on the static and dynamic performance of the devices.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-01
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film.
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-11
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS 2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS 2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS 2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS 2 . Furthermore, two kinds of MoS 2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS 2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS 2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun
2012-03-01
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.
A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures.
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun
2012-04-21
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ∼1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.
Wireless Zigbee strain gage sensor system for structural health monitoring
NASA Astrophysics Data System (ADS)
Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce
2009-05-01
A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.
NASA Technical Reports Server (NTRS)
Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn;
2013-01-01
Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.
Choosing Sensor Configuration for a Flexible Structure Using Full Control Synthesis
NASA Technical Reports Server (NTRS)
Lind, Rick; Nalbantoglu, Volkan; Balas, Gary
1997-01-01
Optimal locations and types for feedback sensors which meet design constraints and control requirements are difficult to determine. This paper introduces an approach to choosing a sensor configuration based on Full Control synthesis. A globally optimal Full Control compensator is computed for each member of a set of sensor configurations which are feasible for the plant. The sensor configuration associated with the Full Control system achieving the best closed-loop performance is chosen for feedback measurements to an output feedback controller. A flexible structure is used as an example to demonstrate this procedure. Experimental results show sensor configurations chosen to optimize the Full Control performance are effective for output feedback controllers.
Zhao, Rui; Sun, Ying
2018-02-03
In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10 -7 nm -1 , respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.
Sun, Ying
2018-01-01
In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10−7 nm−1, respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances. PMID:29401669
Distributed pressure sensors for a urethral catheter.
Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A S
2015-01-01
A flexible strip that incorporates multiple pressure sensors and is capable of being fixed to a urethral catheter is developed. The urethral catheter thus instrumented will be useful for measurement of pressure in a human urethra during urodynamic testing in a clinic. This would help diagnose the causes of urinary incontinence in patients. Capacitive pressure sensors are fabricated on a flexible polyimide-copper substrate using surface micromachining processes and alignment/assembly of the top and bottom portions of the sensor strip. The developed sensor strip is experimentally evaluated in an in vitro test rig using a pressure chamber. The sensor strip is shown to have adequate sensitivity and repeatability. While the calibration factors for the sensors on the strip vary from one sensor to another, even the least sensitive sensor has a resolution better than 0.1 psi.
Parylene C-Based Flexible Electronics for pH Monitoring Applications
Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M.; Toumazou, Christofer; Prodromakis, Themistoklis
2014-01-01
Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H+ sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26–0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues. PMID:24988379
Parylene C-based flexible electronics for pH monitoring applications.
Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M; Toumazou, Christofer; Prodromakis, Themistoklis
2014-07-01
Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H(+) sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26-0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues.
3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.
Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong
2018-05-17
Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervin, Shahab; Asadirad, Mojtaba; Materials Science and Engineering Program, University of Houston, Houston, Texas 77204
This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strainmore » in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.« less
NASA Technical Reports Server (NTRS)
Ifju, Peter
2002-01-01
Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).
Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field
NASA Astrophysics Data System (ADS)
Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng
2017-12-01
A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
Ju, Jinyong; Li, Wei; Wang, Yuqiao; Fan, Mengbao; Yang, Xuefeng
2016-01-01
Effective feedback control requires all state variable information of the system. However, in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible coupling between the global motion of the rigid base and the elastic vibration of the flexible-link manipulator considered, a two-time scale virtual sensor, which includes the speed observer and the vibration observer, is designed to achieve the estimation for the vibration signals and their time derivative of the TFM, as well as the speed observer and the vibration observer are separately designed for the slow and fast subsystems, which are decomposed from the dynamic model of the TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games, the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the estimation error while keeping the observer stable. Finally, the numerical calculation and experiment verify the efficiency of the designed two-time scale virtual sensor. PMID:27801840
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-01-01
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-03-06
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions ( in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.
Silicon strain gages bonded on stainless steel using glass frit for strain sensor applications
NASA Astrophysics Data System (ADS)
Zhang, Zongyang; Cheng, Xingguo; Leng, Yi; Cao, Gang; Liu, Sheng
2014-05-01
In this paper, a steel pressure sensor using strain gages bonded on a 17-4 PH stainless steel (SS) diaphragm based on glass frit technology is proposed. The strain gages with uniform resistance are obtained by growing an epi-silicon layer on a single crystal silicon wafer using epitaxial deposition technique. The inorganic glass frits are used as the bonding material between the strain gages and the 17-4 PH SS diaphragm. Our results show that the output performances of sensors at a high temperature of 125 °C are almost equal those at room temperature, which indicates that the glass frit bonding is a good method and may lead to a significant advance in the high temperature applicability of silicon strain gage sensors. Finally, the microstructure of the cured organic adhesive and the fired glass frit are compared. It may be concluded that the defects of the cured organic adhesive deteriorate the hysteresis and repeatability errors of the sensors.
Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques
2011-01-01
This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.
Self-sensing concrete-filled FRP tubes using FBG strain sensors
NASA Astrophysics Data System (ADS)
Yan, Xin; Li, Hui
2007-07-01
Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.
NASA Astrophysics Data System (ADS)
Namgung, Gitae; Ta, Qui Thanh Hoai; Noh, Jin-Seo
2018-07-01
Stretchable hydrogen sensors were fabricated from Pd nanosheets that were transferred onto a PDMS substrate. To prepare the Pd nanosheets, a Pd thin film on PDMS was first biaxially stretched and then PDMS substrate was etched off. The size of Pd nanosheets decreased as the applied strain increased and the film thickness decreased. A transfer technique was utilized to implement the stretchable hydrogen sensors. The stretchable sensors exhibited negative response behaviors upon the exposure to hydrogen gas. Interestingly, the sensors worked even under large strains up to 30%, demonstrating a potential as a high-strain-tolerable hydrogen sensor for the first time.
NASA Astrophysics Data System (ADS)
Mokhtar, M. R.; Sun, T.; Grattan, K. T. V.; Owens, K.; Kwasny, J.; Taylor, S. E.; Basheer, P. A. M.; Cleland, D.; Bai, Y.; Sonebi, M.; Davis, G.; Gupta, A.; Hogg, I.; Bell, B.; Doherty, W.; McKeague, S.; Moore, D.; Greeves, K.
2011-08-01
This paper presents a novel sensor design and packaging, specifically developed to allow fibre grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement, with full temperature compensation. After these sensors are carefully packaged and calibrated in the laboratory, they are installed onto the paragrid of a set of flat-packed concrete units, created specifically for forming a small-scale, lightweight and inexpensive flexi-arch bridge. During the arch-bridge lifting process, the sensors are used for real-time strain measurements to ensure the quality of the construction. During the work done, the sensors have demonstrated enhanced resilience when embedded in concrete structures, providing accurate and consistent strain measurements during the whole installation process and beyond into monitoring the integrity and use of the structure.
Improving the durability of the optical fiber sensor based on strain transfer analysis
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-05-01
To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.
3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots.
Zhou, Luyu; Gao, Qing; Zhan, Jun-Fu; Xie, Chao-Qi; Fu, Jianzhong; He, Yong
2018-06-18
Liquid metal-based flexible sensors, which utilize advanced liquid conductive material to serve as sensitive element, is emerging as a promising solution to measure large deformations. Nowadays, one of the biggest challenges for precise control of soft robots is the detection of their real time positions. Existing fabrication methods are unable to fabricate flexible sensors that match the shape of soft robots. In this report, we firstly described a novel 3D printed multi-function inductance flexible and stretchable sensor with liquid metals (LMs), which is capable of measuring both axial tension and curvature. This sensor is fabricated with a developed coaxial liquid metal 3D printer by co-printing of silicone rubber and LMs. Due to the solenoid shape, this sensor can be easily installed on snakelike soft robots and can accurately distinguish different degrees of tensile and bending deformation. We determined the structural parameters of the sensor and proved its excellent stability and reliability. As a demonstration, we used this sensor to measure the curvature of a finger and feedback the position of endoscope, a typical snakelike structure. Because of its bending deformation form consistent with the actual working status of the soft robot and unique shape, this sensor has better practical application prospects in the pose detection.
Polymeric cantilever integrated with PDMS/graphene composite strain sensor.
Choi, Young-Soo; Gwak, Min-Joo; Lee, Dong-Weon
2016-10-01
This paper describes the mechanical and electrical characteristics of a polydimethylsiloxane (PDMS) cantilever integrated with a high-sensitivity strain sensor. The strain sensor is fabricated using PDMS and graphene flakes that are uniformly distributed in the PDMS. In order to prepare PDMS/graphene composite with uniform resistance, a tetrahydrofuran solution is used to decrease the viscosity of a PDMS base polymer solution. A horn-type sonicator is then used to mix the base polymer with graphene flakes. Low viscosity of the base polymer solution improves the reliability and reproducibility of the PDMS/graphene composite for strain sensor applications. After dicing the composite into the desired sensor shape, a tensile test is performed. The experimental results show that the composite with a concentration of 30 wt.% exhibits a linear response up to a strain rate of 9%. The graphene concentration of the prepared materials affects the gauge factor, which at 20% graphene concentration reaches about 50, and with increasing graphene concentration to 30% decreases to 9. Furthermore, photolithography, PDMS casting, and a stencil process are used to fabricate a PDMS cantilever with an integrated strain sensor. The change in resistance of the integrated PDMS/graphene sensor is characterized with respect to the displacement of the cantilever of within 500 μm. The experimental results confirmed that the prepared PDMS/graphene based sensor has the potential for high-sensitive biosensor applications.
Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties
Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood
2013-01-01
The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. PMID:23966199
Graphene devices based on laser scribing technology
NASA Astrophysics Data System (ADS)
Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling
2018-04-01
Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.
NASA Astrophysics Data System (ADS)
Saafi, M.; Piukovics, G.; Ye, J.
2016-10-01
In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.
NASA Astrophysics Data System (ADS)
Li, Qingbin; Li, Guang; Wang, Guanglun
2003-12-01
Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.
Compact Active Vibration Control System for a Flexible Panel
NASA Technical Reports Server (NTRS)
Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)
2014-01-01
A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.
Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Lopatin, Craig
2001-01-01
A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.
NASA Astrophysics Data System (ADS)
Cho, Ji Hwan; Ha, Sung-Hun; Kim, Jong-Man
2018-04-01
Optical transparency is increasingly considered as one of the most important characteristics required in advanced stretchable strain sensors for application in body-attachable systems. In this paper, we present an entirely solution-processed fabrication route to highly transparent and stretchable resistive strain sensors based on silver nanowire microgrids (AgNW-MGs). The AgNW-MG strain sensors are readily prepared by patterning the AgNWs on a stretchable substrate into a MG geometry via a mesh-template-assisted contact-transfer printing. The MG has a unique architecture comprising the AgNWs and can be stretched to ɛ = 35%, with high gauge factors of ˜6.9 for ɛ = 0%-30% and ˜41.1 for ɛ = 30%-35%. The sensor also shows a high optical transmittance of 77.1% ± 1.5% (at 550 nm) and stably maintains the remarkable optical performance even at high strains. In addition, the sensor responses are found to be highly reversible with negligible hysteresis and are reliable even under repetitive stretching-releasing cycles (1000 cycles at ɛ = 10%). The practicality of the AgNW-MG strain sensor is confirmed by successfully monitoring a wide range of human motions in real time after firmly laminating the device onto various body parts.
NASA Astrophysics Data System (ADS)
Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.
2012-04-01
In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.
Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung
2015-09-22
Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.
Spatial Compressive Sensing for Strain Data Reconstruction from Sparse Sensors
2014-10-01
optical fiber Bragg grating (or FBG ) sensors embedded in the plate. For the sake of simplicity, we assume that the FBGs are embedded in the radial...direction, as shown by the yellow lines in Fig. 10. The yellow lines are the direction along which strain is being measured. We considered FBGs here...however, strain gages emplaced along these lines can also be envisioned. FBGs are strain-measuring sensors that use the principle of low coherence
Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests
Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia
2010-01-01
We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621
NASA Astrophysics Data System (ADS)
Yoon, Hyuk-Jin; Costantini, Daniele M.; Michaud, Veronique; Limberger, Hans G.; Manson, Jan-Anders; Salathe, Rene P.; Kim, Chun-Gon; Hong, Chang-Sun
2005-05-01
An optical fiber sensor to simultaneously measure strain and temperature was designed and embedded into an adaptive composite laminate which exhibits a shape change upon thermal activation. The sensor is formed by two fiber Bragg gratings, which are written in optical fibers with different core dopants. The two gratings were spliced close to each other and a sensing element resulted with Bragg gratings of similar strain sensitivity but different response to temperature. This is due to the dependence of the fiber thermo-optic coefficient on core dopants and relative concentrations. The sensor was tested on an adaptive composite laminate made of unidirectional Kevlar-epoxy pre-preg plies. Several 150μm diameter pre-strained NiTiCu shape memory alloy wires were embedded in the composite laminate together with one fiber sensor. Simultaneous monitoring of strain and temperature during the curing process and activation in an oven was demonstrated.
Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.
Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton
2017-04-21
Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.
Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example
Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton
2017-01-01
Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf. PMID:28430147
Research on a Novel Low Modulus OFBG Strain Sensor for Pavement Monitoring
Wang, Chuan; Hu, Qingli; Lu, Qiyu
2012-01-01
Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures. PMID:23112584
NASA Astrophysics Data System (ADS)
Valis, Tomas; Tapanes, Edward; Liu, Kexing; Measures, Raymond M.
1991-04-01
A strain sensor embedded in composite materials that is intrinsic, all fiber, local, and phase demodulated is described. It is the combination of these necessary elements that represents an advance in the state of the art. Sensor localization is achieved by using a pair of mirror-ended optical fibers of different lengths that are mechanically coupled up until the desired gauge length for common-mode suppression has been reached. This fiber-optic sensor has been embedded in both thermoset (Kevlar/epoxy and graphite/epoxy) and thermoplastic (graphite/PEEK) composite materials in order to make local strain measurements at the lamina level. The all-fiber system uses a 3 x 3 coupler for phase demodulation. Parameters such as strain sensitivity, transverse strain sensitivity, failure strain, and frequency response are discussed, along with applications.
NASA Technical Reports Server (NTRS)
Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex
2013-01-01
Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.
Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen
2018-03-14
Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.
Patel, Jasbir N; Gray, Bonnie L; Kaminska, Bozena; Gates, Byron D
2011-09-01
Continuous glucose monitoring for patients with diabetes is of paramount importance to avoid severe health conditions resulting from hypoglycemia or hyperglycemia. Most available methods require an invasive setup and a health care professional. Handheld devices available on the market also require finger pricking for every measurement and do not provide continuous monitoring. Hence, continuous glucose monitoring from human tears using a glucose sensor embedded in a contact lens has been considered as a suitable option. However, the glucose concentration in human tears is very low in comparison with the blood glucose level (1/10-1/40 concentration). We propose a sensor that solves the sensitivity problem in a new way, is flexible, and is constructed onto the oxygen permeable contact lens material. To achieve such sensitivity while maintaining a small sensor footprint suitable for placement in a contact lens, we increased the active electrode area by using three-dimensional (3-D) electrode micropatterning. Fully flexible 3-D electrodes were realized utilizing ordered arrays of pillars with different shapes and heights. We successfully fabricated square and cylindrical pillars with different height (50, 100, and 200 μm) and uniform metal coverage to realize sensor electrodes. The increased surface area produces high amperometric current that increases sensor sensitivity up to 300% using 200 μm tall square pillars. The sensitivity improvement closely follows the improvement in the surface area of the electrode. The proposed flexible glucose sensors with 3-D microstructure electrodes are more sensitive to lower glucose concentrations and generate higher current signal than conventional glucose sensors. © 2011 Diabetes Technology Society.
A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications
Kim, Sung-Woo; Lee, Youngoh; Park, Jonghwa; Kim, Seungmok; Chae, Heeyoung; Ko, Hyunhyub
2017-01-01
This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device’s multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions—including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature—while their real-time sensed data are displayed on a smartphone. PMID:29286312
All-fiber, long-active-length Fabry-Perot strain sensor.
Pevec, Simon; Donlagic, Denis
2011-08-01
This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.
Development of an Onboard Strain Recorder
1990-01-01
Investigations ...................... .910 2-3 Strain Sensors of Previous Investigations ..................... 11 2-4 Signal Conditioning of Previous...the time the strain sensor is installed or calibrated. If a maximum stress or force is to be determined, careful structural analysis is required to...such as deckhouse edges have been instrumented as cracks appear. Extreme care concerning placement and orientation of sensor installation is required
A Passive and Wireless Sensor for Bone Plate Strain Monitoring.
Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di
2017-11-16
This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.
Quantitative method for gait pattern detection based on fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Ding, Lei; Tong, Xinglin; Yu, Lie
2017-03-01
This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.
A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces.
Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang
2016-06-23
A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB) technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.
NASA Astrophysics Data System (ADS)
Ke, Jun-Yi; Chu, Hsin-Jung; Hsu, Yu-Hsiang; Lee, Chih-Kung
2017-04-01
P(VDF-TrFE) is a ferroelectric material having a strong piezoelectric effect, a good chemical stability, chemical resistance and biocompatibility. Therefore, it is suitable for the development of flexible pressure sensors in biological applications. Using electrospinning method and a drum collector, P(VDF-TrFE) nanofibers are aligned and formed an ultrathin film sheet with a thickness of 15 to 30 μm. A 140 °C annealing process and a corona discharge poling process are conducted to increase the performance of β phase piezoelectricity. Based on this technology, a highly flexible piezoelectret pressure sensor is developed for measuring muscle movement on the surface of human body. The orientation of electrospun P(VDFTrFE) fibers and poling direction are studied to enhance the sensitivity of the piezoelectret-fiber pressure sensor. Preliminary study shows that the sensitivity of piezoelectret-fiber pressure sensor can be 110.37 pC/Pa with a high signal to noise ratio. Sensor design, experimental studies, and biological application are detailed in this paper.
Strain evaluation of strengthened concrete structures using FBG sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau Kintak; Zhou Limin; Ye Lin
1999-12-02
Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wavemore » (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.« less
Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A
2015-06-01
In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.
In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors
Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi
2011-01-01
Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735
Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi
2011-01-01
Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.
Yu, Yi-Hsin; Lu, Shao-Wei; Liao, Lun-De; Lin, Chin-Teng
2014-01-01
Many commercially available electroencephalography (EEG) sensors, including conventional wet and dry sensors, can cause skin irritation and user discomfort owing to the foreign material. The EEG products, especially sensors, highly prioritize the comfort level during devices wear. To overcome these drawbacks for EEG sensors, this paper designs Societe Generale de Surveillance S [Formula: see text] A [Formula: see text] (SGS)-certified, silicon-based dry-contact EEG sensors (SBDSs) for EEG signal measurements. According to the SGS testing report, SBDSs extract does not irritate skin or induce noncytotoxic effects on L929 cells according to ISO10993-5. The SBDS is also lightweight, flexible, and nonirritating to the skin, as well as capable of easily fitting to scalps without any skin preparation or use of a conductive gel. For forehead and hairy sites, EEG signals can be measured reliably with the designed SBDSs. In particular, for EEG signal measurements at hairy sites, the acicular and flexible design of SBDS can push the hair aside to achieve satisfactory scalp contact, as well as maintain low skin-electrode interface impedance. Results of this paper demonstrate that the proposed sensors perform well in the EEG measurements and are feasible for practical applications.
Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.
Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong
2018-05-30
Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.
A Piezoelectric Passive Wireless Sensor for Monitoring Strain
NASA Technical Reports Server (NTRS)
Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.
2017-01-01
Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.
Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.
Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei
2013-05-06
We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.
Masoudi, Ali; Belal, Mohammad; Newson, Trevor P
2013-09-01
A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.
Meoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; Rallini, Marco; Materazzi, A Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo
2018-03-09
The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.
Meoni, Andrea; D’Alessandro, Antonella; García-Macías, Enrique; Rallini, Marco; Materazzi, A. Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael
2018-01-01
The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications. PMID:29522498
3D printed high performance strain sensors for high temperature applications
NASA Astrophysics Data System (ADS)
Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul
2018-01-01
Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.
Experimental investigation of RC beams using BOTDA(R)-FRP-OF
NASA Astrophysics Data System (ADS)
Zhou, Zhi; He, Jianping; Huang, Ying; Ou, Jinping
2008-04-01
Brillouin based fiber optic sensing turns to be a promising technology for Structural Health Monitoring (SHM). However, the bare optical fiber is too fragile to act as a practical sensor, so high durability and large range (large strain) Brillouin distributed sensors are in great needs in field applications. For this reason, high durable and large range optical fiber Brillouin Optical Time Domain Analysis (Reflectometer) sensors packaged by Fiber Reinforcement Polymer (FRP), named BOTDA(R)-FRP-OF, have been studied and developed. Besides, in order to study the large strain, crack and slip between the rebar and concrete in reinforced concrete (RC) beams using BOTDR(A) technique, five RC Beams installed with BOTDA(R)-FRP-OF sensors have been set up. And the damage characteristics of the RC beams were investigated by comparing the strain measured by the BOTDA(R)-FRP-OF sensors and the strain from traditional electric strain gauges and Fiber Bragg Grating (FBG) sensors, respectively. The test results show that the BOTDA(R)-FRP-OF sensor can effectively detect the damage (including crack and slip) characteristic of RC beam, and it is suitable for the long-term structural health monitoring on concrete structures such as bridge, big dam and so on.
Kang, Dae Y; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P
2015-09-16
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach.
Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film
You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong
2017-01-01
A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency. PMID:28758933
Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome
NASA Astrophysics Data System (ADS)
Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal
2017-11-01
Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.
Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.
2015-01-01
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915
High Sensitivity MEMS Strain Sensor: Design and Simulation
Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond
2008-01-01
In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wu, Pei-Ming; Shutter, Lori A.; Narayan, Raj K.
2010-02-01
The dual-mode operation of a polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) piezoelectric polymer diaphragm, in a capacitive or resonant mode, is reported as a flexible intracranial pressure (ICP) sensor. The pressure sensor using a capacitive mode exhibits a higher linearity and less power consumption than resonant mode operated pressure sensor. In contrast, the latter provides better sensitivity and easier adaption for wireless application. The metrological properties of the dual-mode ICP sensor being described are satisfactory in vitro. We propose that the piezoelectric polymer diaphragm has a promising future in intracranial pressure monitoring.
A novel sensor for bite force determinations.
Fernandes, Cláudio P; Glantz, Per Olof J; Svensson, Stig A; Bergmark, Anders
2003-03-01
The clinical usefulness, accuracy and precision of a novel bite force sensor based on force sensing resistors were tested in six subjects wearing maxillary removable partial dentures retained by conical crowns. The surfaces of the sensor were manufactured in a silicone material that had mechanical properties similar to those of tough foodstuffs. In two separate series of standardized bite force tests, submaximum force levels were recorded with the sensor and with a strain gaged bite fork. Subjects were assisted in the loading tests with visual feedback instrumentation. Reliability estimates for the bite force sensor were calculated in order to show their reproducibility. Strain gages attached to the prostheses were used to determine the pattern of force distribution during loading tests. The bite force results obtained with the new bite force sensor and with the bite fork were analyzed with ANOVA and Scheffés tests. The strain patterns registered with strain gages were analyzed with F-test. The bite force sensor and the bite fork transducer showed no statistically significant differences in respect of intra-individual bite force levels (range 50-300N). The bite forces registered with the new sensor were dependent on the loading position (p<0.05), sex (p<0.05) and test subject (p<0.05). The reliability of the new sensor for submaximum bite forces was calculated to be 93%. Strain gage results showed that the new sensor generated strain patterns of less variance (p<0.05) than the bite fork and therefore allowed for higher precision during biting tests. The presented instrument has such clinical merits, as to favor its use in experimental clinical studies on the biomechanics of prosthetic appliances.
Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.
Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae
2018-04-12
This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.
Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs.
Zhang, Qiang; Liu, Lihua; Zhao, Dong; Duan, Qianqian; Ji, Jianlong; Jian, Aoqun; Zhang, Wendong; Sang, Shengbo
2017-12-04
Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials were demonstrated, the sensors composed of Polydimethylsiloxane (PDMS) and CNTs or Ag@CNTs were prepared via a simple template method. Then, the electronic properties and piezoresistive effects of the sensors were tested. Characterization results present excellent performance of the sensors for the highest gauge factor (GF) of the linear region between 0-17.3% of the sensor with Ag@CNTs1 was 137.6, the sensor with Ag@CNTs2 under the strain in the range of 0-54.8% exhibiting a perfect linearity and the GF of the sensor with Ag@CNTs2 was 14.9.
Dual-core optical fiber based strain sensor for remote sensing in hard-to-reach areas
NASA Astrophysics Data System (ADS)
MÄ kowska, Anna; Szostkiewicz, Łukasz; Kołakowska, Agnieszka; Budnicki, Dawid; Bieńkowska, Beata; Ostrowski, Łukasz; Murawski, Michał; Napierała, Marek; Mergo, Paweł; Nasiłowski, Tomasz
2017-10-01
We present research on optical fiber sensors based on microstructured multi-core fiber. Elaborated sensor can be advantageously used in hard-to-reach areas by taking advantage of the fact, that optical fibers can play both the role of sensing elements and they can realize signal delivery. By using the sensor, it is possible to increase the level of the safety in the explosive endangered areas, e.g. in mine-like objects. As a base for the strain remote sensor we use dual-core fibers. The multi-core fibers possess a characteristic parameter called crosstalk, which is a measure of the amount of signal which can pass to the adjacent core. The strain-sensitive area is made by creating the tapered section, in which the level of crosstalk is changed. Due to this fact, we present broadened conception of fiber optic sensor designing. Strain measurement is realized thanks to the fact, that depending on the strain applied, the power distribution between the cores of dual-core fibers changes. Principle of operation allows realization of measurements both in wavelength and power domain.
Spradling, Kyle; Uribe, Brittany; Okhunov, Zhamshid; Hofmann, Martin; Del Junco, Michael; Hwang, Christina; Gruber, Caden; Youssef, Ramy F; Landman, Jaime
2015-09-01
To evaluate the ignition and burn risk associated with contemporary fiberoptic and distal sensor endoscopic technologies. We used new and used SCB Xenon 300 light sources to illuminate a 4.8 mm fiberoptic cable, 10 mm laparoscope, 5 mm laparoscope, rigid cystoscope, semirigid ureteroscope, flexible cystoscope, flexible fiberoptic ureteroscope, distal sensor cystoscope, and a distal sensor ureteroscope (Karl Storz, Inc., Tuttlingen, Germany). We measured peak temperatures at the distal end of each device. We then evaluated each device on a flat and folded surgical drape to establish ignition risk. Finally, we evaluated the effects of all devices on human cadaver skin covered by surgical drape. Peak temperatures recorded for each device ranged from 26.9°C (flexible fiberoptic ureteroscope) to 194.5°C (fiberoptic cable). Drape ignition was noted when the fiberoptic cable was placed against a fold of drape. Contact with the fiberoptic cable, 10 mm laparoscope, 5 mm laparoscope, and distal sensor cystoscope resulted in cadaver skin damage. Cadaver skin damage occurred despite little or no visible change to the surgical drape. Rigid and flexible fiberoptic cystoscopes and flexible fiberoptic ureteroscopes had no effect on surgical drapes or cadaver skin. Fiberoptic light cables and some endoscopic devices have the potential to cause thermal injury and drape ignition. Thermal injury may occur without visible damage to drapes. Surgeons should remain vigilant regarding the risks associated with these devices and take necessary safety precautions to prevent patient injury.
Poole-frenkel piezoconductive element and sensor
Habermehl, Scott D.
2004-08-03
A new class of highly sensitive piezoconductive strain sensor elements and sensors has been invented. The new elements function under conditions such that electrical conductivity is dominated by Poole-Frenkel transport. A substantial piezoconductive effect appears in this regime, allowing the new sensors to exhibit sensitivity to applied strain as much as two orders of magnitude in excess of prior art sensors based on doped silicon.
Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers.
Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Jeiranikhameneh, Ali; Beirne, Stephen; Wallace, Gordon G
2015-09-30
A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2008-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2009-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities
Zhang, Shao-Hui; Wang, Feng-Xia; Li, Jia-Jia; Peng, Hong-Dan; Yan, Jing-Hui; Pan, Ge-Bo
2017-01-01
Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%), good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave. PMID:29135928
Developing Multilayer Thin Film Strain Sensors With High Thermal Stability
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III
2006-01-01
A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.
NASA Astrophysics Data System (ADS)
Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping
2018-04-01
In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-08-21
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-01-01
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672
An Approach to Automated Fusion System Design and Adaptation
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-01-01
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762
An Approach to Automated Fusion System Design and Adaptation.
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-03-16
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, M.; Lewis, M.; Gibson, T.; Medelius, P.; Lane, J.
2017-01-01
The damage detection sensory system is an intelligent damage detection ‘skin’ that can be embedded into rigid or flexible structures, providing a lightweight capability for in-situ health monitoring for applications such as spacecraft, expandable or inflatable structures, extravehicular activities (EVA) suits, smart wearables, and other applications where diagnostic impact damage monitoring might be critical. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The operation of the sensor detection system is currently based on the use of parallel conductive traces placed on a firm or flexible surface. Several detection layers can be implemented, where alternate layers are arranged in orthogonal direction with respect to the adjacent layers allowing for location and depth calculations. Increased flexibility of the damage detection sensor system designs will also be introduced.