Semiconductor films on flexible iridium substrates
Goyal, Amit
2005-03-29
A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.
Cellulose Nanofiber Composite Substrates for Flexible Electronics
Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma
2012-01-01
Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...
Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics
Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma
2013-01-01
Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun
2017-01-01
Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175
Sensor Technologies on Flexible Substrates
NASA Technical Reports Server (NTRS)
Koehne, Jessica
2016-01-01
NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.
Thin film with oriented cracks on a flexible substrate
Feng, Bao; McGilvray, Andrew; Shi, Bo
2010-07-27
A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.
Direct transfer of graphene onto flexible substrates.
Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T
2013-10-29
In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.
2009-01-01
coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch
Carbon nanotube network thin-film transistors on flexible/stretchable substrates
Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali
2016-03-29
This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.
Adhesive flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John Donald; Weidner, William Kenneth
2013-02-05
An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.
Development of Flexible Multilayer Circuits and Cables
NASA Technical Reports Server (NTRS)
Barnes, Kevin N.; Bryant, Robert; Holloway, Nancy; Draughon, Fred
2005-01-01
A continuing program addresses the development of flexible multilayer electronic circuits and associated flexible cables. This development is undertaken to help satisfy aerospace-system-engineering requirements for efficient, lightweight electrical and electronic subsystems that can fit within confined spaces, adhere to complexly shaped surfaces, and can be embedded within composite materials. Heretofore, substrate layers for commercial flexible circuitry have been made from sheets of Kapton (or equivalent) polyimide and have been bonded to copper conductors and to other substrate layers by means of adhesives. The substrates for the present developmental flexible circuitry are made from thin films of a polyimide known as LaRC(TM)-SI. This polyimide is thermoplastic and, therefore, offers the potential to eliminate delamination and the need for adhesives. The development work undertaken thus far includes experiments in the use of several techniques of design and fabrication (including computer-aided design and fabrication) of representative flexible circuits. Anticipated future efforts would focus on multilayer bonding, fabrication of prototypes, and overcoming limitations.
Direct transfer of graphene onto flexible substrates
Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.
2013-01-01
In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582
Flexible substrate-based devices for point-of-care diagnostics
Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark; Inci, Fatih; Demirci, Utkan
2016-01-01
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to their affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications at the POC. PMID:27344425
Flexible Substrate-Based Devices for Point-of-Care Diagnostics.
Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark A; Inci, Fatih; Demirci, Utkan
2016-11-01
Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mueller matrix characterization of flexible plastic substrates
NASA Astrophysics Data System (ADS)
Hong, Nina; Synowicki, Ron A.; Hilfiker, James N.
2017-11-01
This work reports on Mueller matrix spectroscopic ellipsometry characterization of various flexible plastic substrates that are optically anisotropic with varying degrees of birefringence. The samples are divided into three groups according to the suggested characterization strategy: low birefringence, high birefringence, and twisted birefringence. The first group includes poly(methyl methacrylate) and cyclic olefin copolymer substrates. These are modeled with biaxial anisotropy for the real part of the refractive index while the imaginary part is approximated as isotropic due to small light absorption. The second group includes polyethylene terephthalate and polyethylene naphthalate substrates, which are modeled with biaxial anisotropy for both real and imaginary refractive indices. Lastly, a polyimide substrate is described as two birefringent layers with twisted in-plane orientation.
Flexible top-emitting OLEDs for lighting: bending limits
NASA Astrophysics Data System (ADS)
Schwamb, Philipp; Reusch, Thilo C.; Brabec, Christoph J.
2013-09-01
Flexible OLED light sources have great appeal due to new design options, being unbreakable and their low weight. Top-emitting OLED device architectures offer the broadest choice of substrate materials including metals which are robust, impermeable to humidity, and good thermal conductors making them promising candidates for flexible OLED device substrates. In this study, we investigate the bending limits of flexible top-emitting OLED lighting devices with transparent metal electrode and thin film encapsulation on a variety of both metal and plastic foils. The samples were subjected to concave and convex bending and inspected by different testing methods for the onset of breakdown for example visible defects and encapsulation failures. The critical failure modes were identified as rupture of the transparent thin metal top electrode and encapsulation for convex bending and buckling of the transparent metal top electrode for concave bending. We investigated influences from substrate material and thickness and top coating thickness. The substrate thickness is found to dominate bending limits as expected by neutral layer modeling. Coating shows strong improvements for all substrates. Bending radii <15mm are achieved for both convex and concave testing without damage to devices including their encapsulation.
Flexible Substrates Comparison for Pled Technology
NASA Astrophysics Data System (ADS)
Nenna, G.; Miscioscia, R.; Tassini, P.; Minarini, C.; Vacca, P.; Valentino, O.
2008-08-01
Flexible substrate displays are critical to organic electronics, e-paper's and e-ink's development. Many different types of materials are under investigation, including glass, polymer films and metallic foils. In this work we report a comparison study of polymer films as flexible substrates for polymer light emitting diodes (PLEDs) technology. The selected polymer substrates are two thermoplastic semi-crystalline polymers (PET and PEN) and a high Tg material that cannot be melt processed (PAR). Firstly, the chosen films were characterized in morphology and optical properties with the aim to confirm their suitability for optoelectronic applications. Transmittance was analysed by UV-Vis spectrophotometry and roughness by a surface profilometer. Finally, the surface energy of substrates (untreated and after UV-ozone treatment) was estimated by contact angle measurements in order to evaluate their wettability for active materials deposition.
Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O'Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C.
2003-09-01
Flexible displays fabricated using plastic substrates have a potential for being very thin, light weight, highly rugged with greatly minimized propensity for breakage, roll-to-roll manufacturing and lower cost. The emerging OLED display media offers the advantage of being a solid state and rugged structure for flexible displays in addition to the many potential advantages of an AM OLED over the currently dominant AM LCD. The current high level of interest in flexible displays is facilitating the development of the required enabling technologies which include development of plastic substrates, low temperature active matrix device and backplane fabrication, and display packaging. In the following we will first discuss our development efforts in the PEN based plastic substrates, active matrix backplane technology, low temperature (150°C) a-Si TFT devices and an AM OLED test chip used for evaluating various candidate designs. We will then describe the design, fabrication and successful evaluation and demonstration of a 64x64 pixel AM OLED test display using a-Si TFT backplane fabricated at 150°C on the flexible plastic substrate.
Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors
Marrs, Michael A.; Raupp, Gregory B.
2016-01-01
Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329
Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.
Marrs, Michael A; Raupp, Gregory B
2016-07-26
Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.
NASA Astrophysics Data System (ADS)
Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David
2013-05-01
Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.
Multilayer heterostructures and their manufacture
Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S
2015-11-04
A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C
High volume method of making low-cost, lightweight solar materials
Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.
2014-07-15
A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.
NASA Astrophysics Data System (ADS)
Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai
2016-12-01
Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
Flexible and mechanical strain resistant large area SERS active substrates
NASA Astrophysics Data System (ADS)
Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping
2012-05-01
We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.
Mechanically flexible organic electroluminescent device with directional light emission
Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc
2005-05-10
A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.
Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film
NASA Technical Reports Server (NTRS)
Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.
Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines
Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX
2012-06-19
A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui
2011-09-01
Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.
Sensor system for web inspection
Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.
2002-01-01
A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
NASA Astrophysics Data System (ADS)
Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi
2017-12-01
Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.
Conductive inks for metalization in integrated polymer microsystems
Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX
2006-02-28
A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
Electrodynamic Arrays Having Nanomaterial Electrodes
NASA Technical Reports Server (NTRS)
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
Light-Emitting GaAs Nanowires on a Flexible Substrate.
Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun
2018-06-18
Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.
Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon
2015-01-01
Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284
Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon
2015-10-29
Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.
Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
NASA Technical Reports Server (NTRS)
Wang, H. B.; Dembo, M.; Wang, Y. L.
2000-01-01
One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.
Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate
NASA Astrophysics Data System (ADS)
Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan
2015-10-01
Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.
NASA Astrophysics Data System (ADS)
Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki
2010-11-01
We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.
Thumbnail Sketches: The Chemistry of Printed Circuit Substrates: Some of the Latest Developments.
ERIC Educational Resources Information Center
Freeman, James H.
1984-01-01
Discusses some of the latest developments in the chemistry of printed circuit substrates. Topics considered include soldering, dicy (a catalyst), Kevlar (an aramid polymer fiber), maleimide copolymers, and flexible circuits. (JN)
2015-09-24
kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their
Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices
Comini, Elisabetta
2013-01-01
Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436
NASA Astrophysics Data System (ADS)
Zhang, Yang; Kang, Zhixin
2018-01-01
We reported an approach of preparing highly conductive, anticorrosion, flexible Ag hybrid films enhanced by multi-walled carbon nanotubes (CNTs) and nanodaimonds (NDs) on molecular-grafted PET substrate by spin-spray for flexible electronics. we studied in this paper and found that even an outstanding enhancement on conductivity of Ag films, CNTs have a negative effect on anticorrosion property. Meanwhile, NDs decreased the conductivity of Ag/CNTs hybrids, but it remained a relatively high conductivity property and even was affirmed a distinctly boost improvement on anticorrosion, microhardness and tensile strength, which meant a better mechanical chemical stabilization and practicability in real flexible electronics. To obtain the strong adhesive strength of films/substrate, molecular-grafting technology was applied, which was affirmed by XPS and cross-cut test. What's more, we evaluated anticorrosion property by electrochemistry test, including Tafel measurements and electrochemical impedance spectroscopy measurements, proving the positive effect of NDs on Ag/CNTs hybrid films. For practical application, a flexible light-emitting diode (LED) circuit was successfully structured and remained steady under bending, folding and twisting. Besides, after 1000000 cycles inner/outer bending deformation, the hybrid films showed a mechanical compliance, fatigue stability and practicability in real flexible electronics.
Roll-to-roll light directed electrophoretic deposition system and method
Pascall, Andrew J.; Kuntz, Joshua
2017-06-06
A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.
Transparent flexible nanogenerator as self-powered sensor for transportation monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhong Lin; Hu, Youfan; Lin, Long
2016-06-14
A traffic sensor includes a flexible substrate having a top surface. A piezoelectric structure extends from the first electrode layer. The piezoelectric structure has a top end. An insulating layer is infused into the piezoelectric structure. A first electrode layer is disposed on top of the insulating layer. A second electrode layer is disposed below the flexible substrate. A packaging layer is disposed around the substrate, the first electrode layer, the piezoelectric structure, the insulating layer and the second electrode layer. In a method of sensing a traffic parameter, a piezoelectric nanostructure-based traffic sensor is applied to a roadway. Anmore » electrical event generated by the piezoelectric nanostructure-based traffic sensor in response to a vehicle interacting with the piezoelectric nanostructure-based traffic sensor is detected. The electrical event is correlated with the traffic parameter.« less
Ciszek, Theodore F.
1994-01-01
An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.
NASA Astrophysics Data System (ADS)
Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah
2017-08-01
Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.
Ciszek, T.F.
1994-04-19
An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.
Direct printing and reduction of graphite oxide for flexible supercapacitors
NASA Astrophysics Data System (ADS)
Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon
2014-08-01
We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.
Optical connections on flexible substrates
NASA Astrophysics Data System (ADS)
Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter
2006-04-01
Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.
NASA Astrophysics Data System (ADS)
Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki
2017-02-01
We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.
Towards flexible solid-state supercapacitors for smart and wearable electronics.
Dubal, Deepak P; Chodankar, Nilesh R; Kim, Do-Heyoung; Gomez-Romero, Pedro
2018-03-21
Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.
Amorphous silicon and organic thin film transistors for electronic applications
NASA Astrophysics Data System (ADS)
Zhou, Lisong
Recently, flexible thin film electronics has attracted huge research interest, and as now, many prototypes are being developed and demonstrated by companies around the world, including displays, logic circuit, and solar cells. Flexible electronics offers many potential advantages: it can not only generate new functions like flexible displays or solar cells, also allow very low cost manufacturing through the use of cheap polymeric substrates and roll-to-roll fabrication. a-Si:H TFT fabrications are compatible with flexible polyimide substrate materials. With the interests in the space environment, for the first time, we tested the performance changes of flexible a-Si:H TFTs, on polyimide substrates, due to irradiation and mechanical stress. Significant changes were found on TFTs after irradiation with fast electrons, which, however, was essentially removed by post-irradiation thermal annealing. On the other hand, few changes were found in TFTs by mechanical stress. These preliminary results indicate that it can be readily engineered for space applications. Furthermore, for the first time, we designed and fabricated ungated n+ muC-Si and gated a-Si:H strain sensors on flexible polyimide substrates. Compared with commercial metallic foil strain sensors, ungated muC-Si sensors and gated a-Si:H sensors are two orders of magnitude smaller in area and consume two orders or magnitude less power. Integration with a-Si:H TFTs can also allow large arrays of strain sensors to be fabricated. To take advantage of lower glass-transition-temperature polymeric substrate materials, reduced processing temperature is desired. The 150°C low-temperature deposition process is achieved by using hydrogen dilution in the PECVD process. The TFT performance and bias stability property are tested similar to that of a 250°C process. These results suggest its viability for practical applications. For even lower process temperature, we have considered organic TFTs. As a practical demonstration, we integrated pentacene TFTs with OLEDs in a simple display. Pentacene TFT passivation techniques were researched, and a PVA and parylene bilayer structure was used. We designed and demonstrated 48 x 48-pixel active matrix OTFTOLED displays, and to our best knowledge, they are the largest on glass substrates and the first on flexible PET substrates. Device performance, uniformity and stability are also compared. These results demonstrate that pentacene TFTs are viable candidates for active-matrix OLED displays and other flexible electronics applications.
Mechanically Flexible and High-Performance CMOS Logic Circuits.
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-10-13
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.
Mechanically Flexible and High-Performance CMOS Logic Circuits
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-01-01
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882
Silicon thin-film transistor backplanes on flexible substrates
NASA Astrophysics Data System (ADS)
Kattamis, Alexis Z.
Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2008-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Sensor chip and apparatus for tactile and/or flow sensing
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2009-01-01
A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
"Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.
Tai, Yanlong; Lubineau, Gilles
2017-04-01
Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine
2007-01-01
Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.
High-performance carbon nanotube thin-film transistors on flexible paper substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong
Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.
Direct printing and reduction of graphite oxide for flexible supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo
2014-08-04
We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart powermore » applications.« less
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
New developments in flexible cholesteric liquid crystal displays
NASA Astrophysics Data System (ADS)
Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William
2007-02-01
Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.
Thin-film solar cell fabricated on a flexible metallic substrate
Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.
2006-05-30
A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).
Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate
Tuttle, J. R.; Noufi, R.; Hasoon, F. S.
2006-05-30
A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).
Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates.
Sung, Yilin; Malay, Robert E; Wen, Xin; Bezama, Christian N; Soman, Varun V; Huang, Ming-Huang; Garner, Sean M; Poliks, Mark D; Klotzkin, David
2018-03-20
Flexible glass has many applications including photovoltaics, organic light-emitting device (OLED) lighting, and displays. Its ability to be processed in a roll-to-roll facility enables high-throughput continuous manufacturing compared to conventional glass processing. For photovoltaic, OLED lighting, and display applications, transparent conductors are required with minimal optical reflection losses. Here, we demonstrate an anti-reflective coating (ARC) that incorporates a useful transparent conductor that is realizable on flexible substrates. This reduces the average reflectivity to less than 6% over the visible band from normal incidence to incident angles up to 60°. This ARC is designed by the average uniform algorithm method. The coating materials consist of a multilayer stack of an electrically functional conductive indium tin oxide with conductivity 2.95×10 5 Siemens/m (31 Ω/□), and AlSiO 2 . The coatings showed modest changes in reflectivity and no delamination after 10,000 bending cycles. This demonstrates that effective conductive layers can be integrated into ARCs and can be realized on flexible glass substrates with proper design and process control.
Flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John; Tonge, James Steven; Weidner, William Kenneth
2013-03-26
A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.
NASA Astrophysics Data System (ADS)
Sheraw, Christopher Duncan
2003-10-01
Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.
AM OLED using a-Si TFT backplane on flexible plastic substrate
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Schmidt, John; Roush, Jerry; Chanley, Charles; Dodd, Sonia R.
2004-09-01
Amorphous silicon TFT technology continues to show promise for fabricating large area high resolution flexible AM OLED displays. This paper describes the recent progress in the flexible AM OLED development efforts at Honeywell since our publication in this conference's proceedings in 2003, describing the feasibility of fabricating a 64x64 pixel AM OLED on a flexible plastic substrate. In this paper we describe the design, and fabrication of a 160x160(x3) pixel AM OLED on a flexible plastic substrate with an equivalent 80cgpi resolution. Flexibility characteristics of the fabricated displays are discussed. Further advances and improvements required for extending the size and resolution of flexible AM OLED displays are discussed.
Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Qin, Yong [Atlanta, GA; Yang, Rusen [Atlanta, GA
2011-07-19
A small scale electrical generator includes an elongated substrate and a first piezoelectric fine wire. The first piezoelectric fine wire is disposed along a surface of the substrate. The first piezoelectric fine wire has a first end and a spaced-apart second end. A first conductive contact secures the first end of the fine wire to a first portion of the substrate and a second conductive contact secures the second end of the fine wire to a second portion of the substrate. A fabric made of interwoven strands that includes fibers from which piezoelectric nanowires extend radially therefrom and conductive nanostructures extend therefrom is configured to generate electricity.
High-efficiency robust perovskite solar cells on ultrathin flexible substrates
Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang
2016-01-01
Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664
de Waal, Parker W.; Sunden, Kyle F.; Furge, Laura Lowe
2014-01-01
Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities. PMID:25286176
Pentacene Organic Thin-Film Transistors on Flexible Paper and Glass Substrates
2014-02-12
FEB 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Pentacene organic thin - film transistors on flexible...Nanotechnology 25 (2014) 094005 (7pp) doi:10.1088/0957-4484/25/9/094005 Pentacene organic thin - film transistors on flexible paper and glass substrates Adam T...organic thin - film transistors (OTFTs) were fabricated on several types of flexible substrate: commercial photo paper, ultra-smooth specialty paper and
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)
1995-01-01
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.
2012-01-01
Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong
2018-04-19
A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics
NASA Astrophysics Data System (ADS)
Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.
2007-06-01
The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.
Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B
2007-06-01
The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.
Stability of perovskite solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao
2018-02-01
Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.
NASA Astrophysics Data System (ADS)
Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur
2018-02-01
In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.
Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md
2016-05-11
In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
Development of flexible Ni80Fe20 magnetic nano-thin films
NASA Astrophysics Data System (ADS)
Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.
2017-11-01
Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.
Methods of manipulating stressed epistructures
Wanlass, Mark W
2014-04-08
A method of processing an epistructure or processing a semiconductor device including associating a conformal and flexible handle with the epistructure and removing the epistructure and handle as a unit from the parent substrate. The method further includes causing the epistructure and handle unit to conform to a shape that differs from the shape the epistructure otherwise inherently assumes upon removal from the parent substrate. A device prepared according to the disclosed methods.
Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures
NASA Astrophysics Data System (ADS)
Komsky, Igor N.
2004-07-01
Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.
Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting
2015-01-06
There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting
2013-02-19
There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
Flexible thin-film transistors on plastic substrate at room temperature.
Han, Dedong; Wang, Wei; Cai, Jian; Wang, Liangliang; Ren, Yicheng; Wang, Yi; Zhang, Shengdong
2013-07-01
We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.
Deshmukh, Rupali; Calvo, Micha; Schreck, Murielle; Tervoort, Elena; Sologubenko, Alla S; Niederberger, Markus
2018-06-20
We report a solution-phase approach to the synthesis of crystalline copper nanowires (Cu NWs) with an aspect ratio >1000 via a new catalytic mechanism comprising copper ions. The synthesis involves the reaction between copper(II) chloride and copper(II) acetylacetonate in a mixture of oleylamine and octadecene. Reaction parameters such as the molar ratio of precursors as well as the volume ratio of solvents offer the possibility to tune the morphology of the final product. A simple low-cost spray deposition method was used to fabricate Cu NW films on a glass substrate. Post-treatment under reducing gas (5% H 2 + 95% N 2 ) atmosphere resulted in Cu NW films with a low sheet resistance of 24.5 Ω/sq, a transmittance of T = 71% at 550 nm (including the glass substrate), and a high oxidation resistance. Moreover, the conducting Cu NW networks on a glass substrate can easily be transferred onto a polycarbonate substrate using a simple hot-press transfer method without compromising on the electrical performance. The resulting flexible transparent electrodes show excellent flexibility ( R/ R o < 1.28) upon bending to curvatures of 1 mm radius.
Appendage mountable electronic devices conformable to surfaces
Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu
2017-01-24
Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui
2013-09-01
A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.
Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics
Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu
2016-01-01
Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....
Biaxially oriented film on flexible polymeric substrate
Finkikoglu, Alp T [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM
2009-10-13
A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.
2008-12-01
TFTs ) arrays for high information content active matrix flexible displays for Army applications. For all flexible substrates a manufacturable...impermeable flexible substrate systems “display-ready” materials and handling protocols, (ii) high performance TFT devices and circuits fabricated...processes for integration with the flexible TFT arrays. Approaches and solution to address each of these major challenges are described in the
Micromachined peristaltic pumps
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1999-01-01
Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.
Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors
NASA Astrophysics Data System (ADS)
Marrs, Michael
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
Kim, Hyungsoo; Bong, Jihye; Mikael, Solomon; Kim, Tong June; Williams, Justin C.; Ma, Zhenqiang
2016-01-01
Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a Ion/Ioff ratio of 533.5 cm2/V s, 58.1 μS, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics. PMID:27795570
Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke
2015-01-13
Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.
Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T
2010-09-13
This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.
Flexible thermochromic window based on hybridized VO2/graphene.
Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok
2013-07-23
Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.
Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md.
2016-01-01
In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4–9.2 GHz. PMID:28773479
Oxide-based thin film transistors for flexible electronics
NASA Astrophysics Data System (ADS)
He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing
2018-01-01
The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).
Nanoscale platinum printing on insulating substrates.
O'Connell, C D; Higgins, M J; Sullivan, R P; Jamali, S S; Moulton, S E; Wallace, G G
2013-12-20
The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).
Aerosol jet printed silver nanowire transparent electrode for flexible electronic application
NASA Astrophysics Data System (ADS)
Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong
2018-05-01
Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.
Integration of Indium Phosphide Based Devices with Flexible Substrates
NASA Astrophysics Data System (ADS)
Chen, Wayne Huai
2011-12-01
Flexible substrates have many advantages in applications where bendability, space, or weight play important roles or where rigid circuits are undesirable. However, conventional flexible thin film transistors are typically characterized as having low carrier mobility as compared to devices used in the electronics industry. This is in part due to the limited temperature tolerance of plastic flexible substrates, which commonly reduces the highest processing temperature to below 200°C. Common approaches of implementation include low temperature deposition of organic, amorphous, or polycrystalline semiconductors, all of which result in carrier mobility well below 100 cm2V -1s-1. High quality, single crystalline III-V semiconductors such as indium phosphide (InP), on the other hand, have carrier mobility well over 1000 cm 2V-1s-1 at room temperature, depending on carrier concentration. Recently, the ion-cut process has been used in conjunction with wafer bonding to integrate thin layers of III-V material onto silicon for optoelectronic applications. This approach has the advantage of high scalability, reusability of the initial III-V substrate, and the ability to tailor the location (depth) of the layer splitting. However, the transferred substrate usually suffers from hydrogen implantation damage. This dissertation demonstrates a new approach to enable integration of InP with various substrates, called the double-flip transfer process. The process combines ion-cutting with adhesive bonding. The problem of hydrogen implantation was overcome by patterned ion-cut transfer. In this type of transfer, areas of interest are shielded from implantation but still transferred by surrounding implanted regions. We found that patterned ion-cut transfer is strongly dependent upon crystal orientation and that using cleavage-plane oriented donors can be beneficial in transferring large areas of high quality semiconductor material. InP-based devices were fabricated to demonstrate the transfer process and test functionality following transfer. Passive devices (photodetectors) as well as active transistors were transferred and fabricated on various substrates. The transferred device layers were either implanted through with a blanket implant or protected with an ion-mask during implantation. Results demonstrate the viability of the double-flip ion-cut process in achieving very high electron mobility (˜2800 cm2V-1s-1) transistors on plastic flexible substrates.
Plasma jet printing of electronic materials on flexible and nonconformal objects.
Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M
2014-12-10
We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.
NASA Astrophysics Data System (ADS)
Chung, Daehan; Gray, Bonnie L.
2017-11-01
We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.
Portable receiver for radar detection
Lopes, Christopher D.; Kotter, Dale K.
2008-10-14
Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.
Analytical study on web deformation by tension in roll-to-roll printing process
NASA Astrophysics Data System (ADS)
Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.
2017-08-01
Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.
Microwave flexible transistors on cellulose nanofibrillated fiber substrates
Jung-Hun Seo; Tzu-Hsuan Chang; Jaeseong Lee; Ronald Sabo; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma
2015-01-01
In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly...
Flexible MEMS: A novel technology to fabricate flexible sensors and electronics
NASA Astrophysics Data System (ADS)
Tu, Hongen
This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.
NASA Astrophysics Data System (ADS)
Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen
2016-01-01
Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.
Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen
2016-01-08
Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.
Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.
Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin
2015-05-01
For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.
Printed electronic on flexible and glass substrates
NASA Astrophysics Data System (ADS)
Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna
2010-09-01
Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.
Zou, Yuan; Li, Qunqing; Liu, Junku; Jin, Yuanhao; Qian, Qingkai; Jiang, Kaili; Fan, Shoushan
2013-11-13
SWNT thin films with different nanotube densities are fabricated by CVD while controlling the concentration of catalyst and growth time. Three layers of SWNT films are transferred to flexible substrates serving as electrodes and channel materials, respectively. All-carbon nanotube TFTs with an on/off ratio as high as 10(5) are obtained. Inverters are fabricated on top of the flexible substrates with symmetric input/output behavior. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yuan, Hao-Chih
This research focuses on developing high-performance single-crystal Si-based nanomembranes and high-frequency thin-film transistors (TFTs) using these nanomembranes on flexible plastic substrates. Unstrained Si or SiGe nanomembranes with thickness of several tens to a couple of hundred nanometers are derived from silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) and are subsequently transferred and integrated with flexible plastic host substrates via a one-step dry printing technique. Biaxial tensile-strained Si membranes that utilize elastic strain-sharing between Si and additionally grown SiGe thin films are also successfully integrated with plastic host substrates and exhibit predicted strain status and negligible density of dislocations. Biaxial tensile strain enhances electron mobility and lowers Schottky contact resistance. As a result, flexible TFTs built on the strained Si-membranes demonstrate much higher electron effective mobility and higher drive current than the unstrained counterpart. The dependence of drive current and transconductance on uniaxial tensile strain introducing by mechanical bending is also discussed. A novel combined "hot-and-cold" TFT fabrication process is developed specifically for realizing a wide spectrum of micro-electronics that can exhibit RF performance and can be integrated on low-temperature plastic substrate. The "hot" process that consists of ion implant and high-temperature annealing for desired doping type, profile, and concentration is realized on the bulk SOI/SGOI substrates followed by the "cold" process that includes room-temperature silicon-monoxide (SiO) deposition as gate dielectric layer to ensure the process compatibility with low-temperature, low-cost plastics. With these developments flexible Si-membrane n-type RF TFTs for analog applications and complementary TFTs for digital applications are demonstrated for the first time. RF TFTs with 1.5-mum channel length have demonstrated record-high f T and fmax values of 2.04 and 7.8 GHz, respectively. A small-signal equivalent circuit model study on the RF TFTs reveals the physics of how device layout affects fT and f max, which paves the way for further performance optimization and realization of integrated circuit on flexible substrate in the future.
2012-02-07
circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic
Recent advances in flexible and wearable organic optoelectronic devices
NASA Astrophysics Data System (ADS)
Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin
2018-01-01
Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, Whitney
OLED lighting has immense potential as aesthetically pleasing, energy-efficient general illumination. Unlike other light sources, such as incandescents, fluorescents, and inorganic LEDs, OLEDs naturally emit over a large-area surface. They are glare free, do not need to be shaded, and are cool to the touch, requiring no heatsink. The best efficiencies and lifetimes reported are on par with or better than current forms of illumination. However, the cost for OLED lighting remains high – so much so that these products are not market competitive and there is very low consumer demand. We believe that flexible, plastic-based devices will highlight themore » advantages of aesthetically-pleasing OLED lighting systems while paving the way for lowering both materials and manufacturing costs. These flexible devices require new development in substrate and support technology, which was the focus of the work reported here. The project team, led by Sinovia Technologies, has developed integrated plastic substrates to serve as supports for flexible OLED lighting. The substrates created in this project would enable large-area, flexible devices and are specified to perform three functions. They include a barrier to protect the OLED from moisture and oxygen-related degradation, a smooth, highly conductive transparent electrode to enable large-area device operation, and a light scattering layer to improve emission efficiency. Through the course of this project, integrated substrates were fabricated, characterized, evaluated for manufacturing feasibility and cost, and used in white OLED demonstrations to test their impact on flexible OLED lighting. Our integrated substrates meet or exceed the DOE specifications for barrier performance in water vapor and oxygen transport rates, as well as the transparency and conductivity of the anode film. We find that these integrated substrates can be manufactured in a completely roll-to-roll, high throughput process and have developed and demonstrated manufacturing methods that can produce thousands of feet of material without defects. We have evaluated the materials and manufacturing costs of these films at scale and find that they meet the current and future cost targets for bringing down the cost of OLED lighting while enabling future roll-to-roll manufacturing of the complete device. And finally, we have demonstrated that the inherent light-scattering properties of our films enhance white OLED emission efficiency from 20% to 50% depending on the metric. This work has shown that these substrates can be created, manufactured, and will perform as needed to enable flexible OLED lighting to enter the marketplace.« less
The Neural Underpinnings of Cognitive Flexibility and their Disruption in Psychotic Illness
Waltz, James A.
2016-01-01
Schizophrenia has long been associated with a variety of cognitive deficits, including reduced cognitive flexibility. More recent findings, however, point to tremendous inter-individual variability among patients on measures of cognitive flexibility/set-shifting. With an eye toward shedding light on potential sources of variability in set-shifting abilities among schizophrenia patients, I examine the neural substrates of underlying probabilistic reversal learning (PRL) – a paradigmatic measure of cognitive flexibility – as well as neuromodulatory influences upon these systems. Finally, I report on behavioral and neuroimaging studies of PRL in schizophrenia patients, discussing the potentially influences of illness profile and antipsychotic medications on cognitive flexibility in schizophrenia. PMID:27282085
Fully Printed Flexible and Stretchable Electronics
NASA Astrophysics Data System (ADS)
Zhang, Suoming
Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit good reliability under bending conditions owing to the ultrathin polyimide substrate as well as the superior mechanical flexibility of the gate dielectric and carbon nanotube network. Furthermore, we have demonstrated that by using two types of SWCNT samples with different optical absorption characteristics, the photoresponse exhibits unique wavelength selectivity, as manifested by the good correlation between the responsive wavelengths of the devices with the absorption peaks of the corresponding carbon nanotubes. All the proposed materials above together with the unique direct printing process may offer an entry into more sophisticated flexible or stretchable electronic systems with monolithically integrated sensors, actuators, and displays for real life applications.
Plasma jet printing for flexible substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.
2016-03-21
Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and foundmore » to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.« less
Yoshimoto, Shusuke; Uemura, Takafumi; Akiyama, Mihoko; Ihara, Yoshihiro; Otake, Satoshi; Fujii, Tomoharu; Araki, Teppei; Sekitani, Tsuyoshi
2017-07-01
This paper presents a flexible organic thin-film transistor (OTFT) amplifier for bio-signal monitoring and presents the chip component assembly process. Using a conductive adhesive and a chip mounter, the chip components are mounted on a flexible film substrate, which has OTFT circuits. This study first investigates the assembly technique reliability for chip components on the flexible substrate. This study also specifically examines heart pulse wave monitoring conducted using the proposed flexible amplifier circuit and a flexible piezoelectric film. We connected the amplifier to a bluetooth device for a wearable device demonstration.
Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming
2016-09-21
We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.
Li, Liyuan; Pan, Guohui; Zhu, Xifen; Fan, Keqiang; Gao, Wubin; Ai, Guomin; Ren, Jinwei; Shi, Mingxin; Olano, Carlos; Salas, José A; Yang, Keqian
2017-07-01
Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.
Laser-Material Interactions for Flexible Applications.
Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae
2017-07-01
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
Improvement of organic solar cells by flexible substrate and ITO surface treatments
NASA Astrophysics Data System (ADS)
Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.
2010-10-01
In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density ( Jsc) and 92.7% enhancement in conversion efficiency ( η) over the untreated solar cell are obtained.
NASA Astrophysics Data System (ADS)
Choi, Nack-Bong
Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution printing plate is investigated and the most favorable condition to transfer ink from a blanket to a cliche is studied. Consequently, a high resolution cliche is demonstrated and the printed patterns of 10mum width and 6mum line spacing are presented. In addition, the top gate a-IGZO TFTs with channel width/length of 12/6mum is successfully demonstrated by printing etch-resists. This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.
Device and method for redirecting electromagnetic signals
Garcia, Ernest J.
1999-01-01
A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.
NASA Astrophysics Data System (ADS)
Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi
2013-03-01
In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.
Khan, Arshad; Lee, Sangeon; Jang, Taehee; Xiong, Ze; Zhang, Cuiping; Tang, Jinyao; Guo, L Jay; Li, Wen-Di
2016-06-01
A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.
Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee
2017-10-24
Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.
NASA Astrophysics Data System (ADS)
Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei
2017-09-01
More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.
Nanocrystal-based complementary inverters constructed on flexible plastic substrates.
Jang, Jaewon; Cho, Kyoungah; Yun, Junggwon; Kim, Sangsig
2013-05-01
We demonstrate a nanocrystal (NC)-based complementary inverter constructed on a flexible plastic substrate. The NC-based complementary inverter consists of n-type HgSe NC- and p-type HgTe NC-based thin-film transistors (TFTs). Solid films on a plastic substrate obtained from HgSe and HgTe nanocrystals by thermal transformation are utilized as the n- and p-channel layers in these TFTs, respectively. The electrical properties of these component TFTs on unstrained and strained substrates are characterized and the performance of the inverter on the flexible substrate is investigated. The inverter on the unstrained substrate exhibits a logic gain of about 8, a logic swing of 90%, and a noise margin of 2.0 V. The characteristics of the inverter are changed under tensile and compressive strains, but not very significantly. Moreover, a comparison of the electrical characteristics of the n- and p-channel TFTs and the inverter is made in this paper.
NASA Astrophysics Data System (ADS)
Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima
2018-05-01
In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of <ɛ2> peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.
Niu, Xiaogang; Brüschweiler-Li, Lei; Davulcu, Omar; Skalicky, Jack J.; Brüschweiler, Rafael; Chapman, Michael S.
2010-01-01
The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a “high energy” phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and –bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection. PMID:21075117
Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.
Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N
2011-09-18
Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.
NASA Astrophysics Data System (ADS)
Matyas, J.; Olejnik, R.; Slobodian, P.
2017-12-01
A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).
Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology
NASA Technical Reports Server (NTRS)
Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah
2013-01-01
Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of different conductors may improve electrical pathways through alignment of the conductors and band gap optimization. One feature of this innovation is that flexible conductive traces could be accomplished with a conductive ink having a surface resistivity of less than 10 ohms/square. Another result was that a composite material comprising a mixture of carbon nanotubes and metallic nanoparticles could be applied by inkjet printing to flexible substrates, and the resulting applied material was one to two orders of magnitude more conductive than a material made by printing inks containing carbon nanotubes alone.
Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2018-01-01
A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.
Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.
Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik
2010-01-01
We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.
Gao, Pingqi; Zhang, Qing
2014-02-14
Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.
Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis
Ramanathan, Arvind; Agarwal, Pratul K.
2011-01-01
Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme–substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design. PMID:22087074
Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis.
Ramanathan, Arvind; Agarwal, Pratul K
2011-11-01
Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme-substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme-substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.
Zacharatos, Filimon; Karvounis, Panagiotis; Theodorakos, Ioannis; Hatziapostolou, Antonios; Zergioti, Ioanna
2018-06-19
Ag nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates. This process relies on the selective laser heating of the Ag NWs induced by the laser pulse energy and the subsequent localized melting of the polymeric substrate. We demonstrate that a single laser pulse can induce both transfer and curing of the Ag NW network. The feasibility of the process is confirmed experimentally and validated by Finite Element Analysis simulations, which indicate that selective heating is carried out within a submicron-sized heat affected zone. The resulting structures can be utilized as fully functional flexible transparent electrodes with figures of merit even higher than 100. Low sheet resistance (<50 Ohm/sq) and high visible light transparency (>90%) make the reported process highly desirable for a variety of applications, including selective heating or annealing of nanocomposite materials and laser processing of nanostructured materials on a large variety of optically transparent substrates, such as Polydimethylsiloxane (PDMS).
Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong
2018-05-09
Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.
Photoconductive ZnO Films Printed on Flexible Substrates by Inkjet and Aerosol Jet Techniques
NASA Astrophysics Data System (ADS)
Winarski, D. J.; Kreit, E.; Heckman, E. M.; Flesburg, E.; Haseman, M.; Aga, R. S.; Selim, F. A.
2018-02-01
Zinc oxide (ZnO) thin films have remarkable versatility in sensor applications. Here, we report simple ink synthesis and printing methods to deposit ZnO photodetectors on a variety of flexible and transparent substrates, including polyimide (Kapton), polyethylene terephthalate, cyclic olefin copolymer (TOPAS), and quartz. X-ray diffraction analysis revealed the dependence of the film orientation on the substrate type and sintering method, and ultraviolet-visible (UV-Vis) absorption measurements revealed a band edge near 380 nm. van der Pauw technique was used to measure the resistivity of undoped ZnO and indium/gallium-codoped ZnO (IGZO) films. IGZO films showed lower resistivity and larger average grain size compared with undoped ZnO films due to addition of In3+ and Ga3+, which act as donors. A 365-nm light-emitting diode was used to photoirradiate the films to study their photoconductive response as a function of light intensity at 300 K. The results revealed that ZnO films printed by aerosol jet and inkjet techniques exhibited five orders of magnitude photoconductivity, indicating that such films are viable options for use in flexible photodetectors.
Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...
2017-03-15
In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less
NASA Astrophysics Data System (ADS)
Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki
2011-03-01
In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuyu; Yu, Shifeng; Lu, Ming
In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less
Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode
NASA Astrophysics Data System (ADS)
Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan
2014-07-01
We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.
Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics
NASA Astrophysics Data System (ADS)
Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet
2015-03-01
Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.
Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi
2013-01-01
The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289
NASA Astrophysics Data System (ADS)
Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue
2017-10-01
The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2013-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth. PMID:23527883
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2014-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure-function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca(2+) removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca(2+) removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein-ligand binding, including the concept of the free energy landscape (FEL) of the protein-solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.
Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.
Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus
2013-08-27
Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of accurate thickness measurement of boron carbide coating on copper foil
Lacy, Jeffrey L.; Regmi, Murari
2017-11-07
A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.
Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...
2017-05-22
Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo
Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less
Flexible radio-frequency single-crystal germanium switch on plastic substrates
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Cai, Tianhao; Yuan, Hao-Chih; Seo, Jung-Hun; Ma, Jianguo; Ma, Zhenqiang
2014-04-01
This Letter presents the realization and characterizations of the flexible radio-frequency (RF)/microwave switches on plastic substrates employing single-crystal germanium (Ge) nanomembranes. The fabricated flexible Ge single-pole, single-throw (SPST) switches display high frequency responses (e.g., insertion loss of <1.3 dB at up to 30 GHz and isolation >10 dB at up to ˜13 GHz). RF performance tradeoff exists for the flexible Ge switches and the major affecting parameters are determined. The flexible Ge SPST switch shows better RF property to that of the flexible Si SPST switch. Underlying mechanism is investigated by theoretical analysis and modeling of switches with different structures.
NASA Astrophysics Data System (ADS)
Yoon, Dai Geon; Chin, Byung Doo; Bail, Robert
2017-03-01
A convenient process for fabricating a transparent conducting electrode on a flexible substrate is essential for numerous low-cost optoelectronic devices, including organic solar cells (OSCs), touch sensors, and free-form lighting applications. Solution-processed metal-nanowire arrays are attractive due to their low sheet resistance and optical clarity. However, the limited conductance at wire junctions and the rough surface topology still need improvement. Here, we present a facile process of electrohydrodynamic spinning using a silver (Ag) - polymer composite paste with high viscosity. Unlike the metal-nanofiber web formed by conventional electrospinning, a relatively thick, but still invisible-to-naked eye, Ag-web random pattern was formed on a glass substrate. The process parameters such as the nozzle diameter, voltage, flow rate, standoff height, and nozzle-scanning speed, were systematically engineered. The formed random texture Ag webs were embedded in a flexible substrate by in-situ photo-polymerization, release from the glass substrate, and post-annealing. OSCs with a donor-acceptor polymeric heterojunction photoactive layer were prepared on the Ag-web-embedded flexible films with various Ag-web densities. The short-circuit current and the power conversion efficiency of an OSC with a Ag-web-embedded electrode were not as high as those of the control sample with an indium-tin-oxide electrode. However, the Ag-web textures embedded in the OSC served well as electrodes when bent (6-mm radius), showing a power conversion efficiency of 2.06% (2.72% for the flat OSC), and the electrical stability of the Ag-web-textured patterns was maintained for up to 1,000 cycles of bending.
NASA Astrophysics Data System (ADS)
Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei
2015-04-01
Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.
Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo
2017-07-19
Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.
Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles weremore » significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.« less
Flexible Microsensor Array for the Monitoring and Control of Plant Growth System
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for maintenance, as well as reduce volume, mass, and power consumption by eliminating bulky diagnosis systems including calibrant (fluid and gas) reservoir and flow system hardware.
Yu, You; Yan, Casey; Zheng, Zijian
2014-08-20
Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Throughput Printing Process for Flexible Electronics
NASA Astrophysics Data System (ADS)
Hyun, Woo Jin
Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.
Flexible anodized aluminum oxide membranes with customizable back contact materials
NASA Astrophysics Data System (ADS)
Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.
2016-12-01
Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.
Thin film photovoltaic device and process of manufacture
Albright, S.P.; Chamberlin, R.
1997-10-07
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.
Thin film photovoltaic device and process of manufacture
Albright, Scot P.; Chamberlin, Rhodes
1999-02-09
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
Thin film photovoltaic device and process of manufacture
Albright, S.P.; Chamberlin, R.
1999-02-09
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.
Thin film photovoltaic device and process of manufacture
Albright, Scot P.; Chamberlin, Rhodes
1997-10-07
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
NASA Astrophysics Data System (ADS)
Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing
2017-10-01
The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
NASA Astrophysics Data System (ADS)
Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu
2018-01-01
Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.
A flexible optically re-writable color liquid crystal display
NASA Astrophysics Data System (ADS)
Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing
2018-03-01
It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.
NASA Astrophysics Data System (ADS)
Sun, Yinghui; Wang, Rongming; Liu, Kai
2017-03-01
Substrate has great influences on materials syntheses, properties, and applications. The influences are particularly crucial for atomically thin 2-dimensional (2D) semiconductors. Their thicknesses are less than 1 nm; however, the lateral sizes can reach up to several inches or more. Therefore, these materials must be placed onto a variety of substrates before subsequent post-processing techniques for final electronic or optoelectronic devices. Recent studies reveal that substrates have been employed as ways to modulate the optical, electrical, mechanical, and chemical properties of 2D semiconductors. In this review, we summarize recent progress upon the effects of substrates on properties of 2D semiconductors, mostly focused on 2D transition metal dichalcogenides, through viewpoints of both fundamental physics and device applications. First, we discuss various effects of substrates, including interface strain, charge transfer, dielectric screening, and optical interference. Second, we show the modulation of 2D semiconductors by substrate engineering, including novel substrates (patterned substrates, 2D-material substrates, etc.) and active substrates (phase transition materials, ferroelectric materials, flexible substrates, etc.). Last, we present prospectives and challenges in this research field. This review provides a comprehensive understanding of the substrate effects, and may inspire new ideas of novel 2D devices based on substrate engineering.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2007-07-01
The surface modification of a plastic substrate by atomic hydrogen annealing (AHA) was investigated for flexible displays. In this method, the plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. Both surface roughness and contact angle of water droplet on poly(ethylene naphthalate) (PEN) substrates were increased by AHA. The surface of a PEN substrate was reduced by atomic hydrogen without optical transmittance degradation. In addition, the properties of a silicon nitride (SiNx) film deposited on a PEN substrate were changed by AHA, and the adhesion between the SiNx film and the PEN substrate was excellent for application to flexible displays.
Transparent and flexible heaters based on Al:ZnO degenerate semiconductor
NASA Astrophysics Data System (ADS)
Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.
2017-10-01
We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (<10 V) voltages. This study also examined identical AZO thin films on glass substrates that showed highly reproducible heating effects due to the Joule heating effect. The potential applications are foldable and wearable electronics, pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.
NASA Astrophysics Data System (ADS)
Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong
2018-01-01
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.
Maru, Biniam T; Munasinghe, Pradeep C; Gilary, Hadar; Jones, Shawn W; Tracy, Bryan P
2018-04-01
Biological CO2 fixation is an important technology that can assist in combating climate change. Here, we show an approach called anaerobic, non-photosynthetic mixotrophy can result in net CO2 fixation when using a reduced feedstock. This approach uses microbes called acetogens that are capable of concurrent utilization of both organic and inorganic substrates. In this study, we investigated the substrate utilization of 17 different acetogens, both mesophilic and thermophilic, on a variety of different carbohydrates and gases. Compared to most model acetogen strains, several non-model mesophilic strains displayed greater substrate flexibility, including the ability to utilize disaccharides, glycerol and an oligosaccharide, and growth rates. Three of these non-model strains (Blautia producta, Clostridium scatologenes and Thermoanaerobacter kivui) were chosen for further characterization, under a variety of conditions including H2- or syngas-fed sugar fermentations and a CO2-fed glycerol fermentation. In all cases, CO2 was fixed and carbon yields approached 100%. Finally, the model acetogen C. ljungdahlii was engineered to utilize glucose, a non-preferred sugar, while maintaining mixotrophic behavior. This work demonstrates the flexibility and robustness of anaerobic, non-photosynthetic mixotrophy as a technology to help reduce CO2 emissions.
Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.
Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet
2011-02-01
We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.
NASA Astrophysics Data System (ADS)
Li, Lingwei; Chen, Yuanqing; Yin, Xiaoru; Song, Yang; Li, Na; Niu, Jinfen; Wu, Huimin; Qu, Wenwen
2017-12-01
We demonstrate a low-cost and facile photochemical solution method to prepare the ZrO2 resistive switching arrays as memristive units on flexible PET/ITO substrates. ZrO2 solution sensitive to UV light of 337 nm was synthesized using zirconium n-butyl alcohol as the precursor, and benzoylacetone as the complexing agent. After the dip-coated ZrO2 gel films were irradiated through a mask under the UV lamp (with wavelength of 325-365 nm) at room temperature and rinsed in ethanol, the ZrO2 gel arrays were obtained on PET/ITO substrates. Subsequently, the ZrO2 gel arrays were irradiated by deep UV light of 254 and 185 nm at 150 °C, resulting in the amorphous ZrO2 memristive micro-arrays. The ZrO2 units on flexible PET/ITO substrates exhibited excellent memristive properties. A high ratio of 104 of on-state and off-state resistance was obtained. The resistive switching behavior of the flexible device remained stable after being bent for 103 times. The device showed stable flexibility up to a minimum bending diameter of 1.25 cm.
Snakes on a plane: modeling flexible active nematics
NASA Astrophysics Data System (ADS)
Selinger, Robin
Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.
Samanta, Soumen; Bakas, Idriss; Singh, Ajay; Aswal, Dinesh K; Chehimi, Mohamed M
2014-08-12
In this paper, we report a simple and versatile process of electrografting the aryl multilayers onto indium tin oxide (ITO)-coated flexible poly(ethylene naphthalate) (PEN) substrates using a diazonium salt (4-pyrrolylphenyldiazonium) solution, which was generated in situ from a reaction between the 4-(1H-pyrrol-1-yl)aniline precursor and sodium nitrite in an acidic medium. The first aryl layer bonds with the ITO surface through In-O-C and Sn-O-C bonds which facilitate the formation of a uniform aryl multilayer that is ∼8 nm thick. The presence of the aryl multilayer has been confirmed by impedance spectroscopy as well as by electron-transfer blocking measurements. These in situ diazonium-modified ITO-coated PEN substrates may find applications in flexible organic electronics and sensor industries. Here we demonstrate the application of diazonium-modified flexible substrates for the growth of adherent silver/polpyrrole nanocomposite films using surface-confined UV photopolymerization. These nanocomposite films have platelet morphology owing to the template effect of the pyrrole-terminated aryl multilayers. In addition, the films are highly doped (32%). This work opens new areas in the design of flexible ITO-conductive polymer hybrids.
Wu, Shuwen; Li, Jinhui; Zhang, Guoping; Yao, Yimin; Li, Gang; Sun, Rong; Wong, Chingping
2017-01-25
The continuous evolution toward flexible electronics with mechanical robust property and restoring structure simultaneously places high demand on a set of polymeric material substrate. Herein, we describe a composite material composed of a polyurethane based on Diels-Alder chemistry (PU-DA) covalently linked with functionalized graphene nanosheets (FGNS), which shows mechanical robust and infrared (IR) laser self-healing properties at ambient conditions and is therefore suitable for flexible substrate applications. The mechanical strength can be tuned by varying the amount of FGNS and breaking strength can reach as high as 36 MPa with only 0.5 wt % FGNS loading. On rupture, the initial mechanical properties are restored with more than 96% healing efficiency after 1 min irradiation time by 980 nm IR laser. Especially, this is the highest value of healing efficiency reported in the self-healable materials based on DA chemistry systems until now, and the composite exhibits a high volume resistivity up to 5.6 × 10 11 Ω·cm even the loading of FGNS increased to 1.0 wt %. Moreover, the conductivity of the broken electric circuit which was fabricated by silver paste drop-cast on the healable composite substrate was completely recovered via IR laser irradiating bottom substrate mimicking human skin. These results demonstrate that the FGNS-PU-DA nanocomposite can be used as self-healing flexible substrate for the next generation of intelligent flexible electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Guohong; Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; School of Science, Nanchang University, Nanchang 330031
2013-11-07
We propose a convenient method to induce a uniaxial anisotropy in magnetostrictive Fe{sub 81}Ga{sub 19} films grown on flexible polyethylene terephthalate (PET) substrates by bending the substrate prior to deposition. A tensile/compressive stress is induced in the Fe{sub 81}Ga{sub 19} films when PET substrates are shaped from concave/convex to flat after deposition. The stressed Fe{sub 81}Ga{sub 19} films exhibit a significant uniaxial magnetic anisotropy due to the internal stress arising from changes in shape of PET substrates. The easy axis is along the tensile stress direction and the coercive field along easy axis is increased with increasing the internal tensilemore » stress. The remanence of hard axis is decreased with increasing the compressive stress, while the coercive field is almost unchanged. A modified Stoner-Wohlfarth model with considering the distribution of easy axes in polycrystalline films is used to account for the magnetic properties tuned by the strain-controlled magnetoelastic anisotropy in flexible Fe{sub 81}Ga{sub 19} films. Our investigations provide a convenient way to induce uniaxial magnetic anisotropy, which is particularly important for fabricating flexible magnetoelectronic devices.« less
Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A
2016-12-14
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers
Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino
2014-01-01
Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials. PMID:25153326
NASA Technical Reports Server (NTRS)
Hambourger, Paul D.
2003-01-01
To investigate the applicability of co-deposited indium tin oxide and magnesium fluoride as a transparent arcproof coating on the exterior of PowerSphere microsatellites. This included testing coating performance after deposition on flexible polymeric substrates, determining whether ultraviolet (UV) radiation present during deposition might affect the UV-curing resin contained in the substrate, and preparation of coated polymeric samples for radiation damage studies by the PowerSphere team.
Improving yield of PZT piezoelectric devices on glass substrates
NASA Astrophysics Data System (ADS)
Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan
2012-10-01
The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be < 90%. For this work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Agarwal, Pratul K
Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function.more » Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.« less
Cell movement is guided by the rigidity of the substrate
NASA Technical Reports Server (NTRS)
Lo, C. M.; Wang, H. B.; Dembo, M.; Wang, Y. L.
2000-01-01
Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.
Vacuum-deposited, nonpolymeric flexible organic light-emitting devices.
Gu, G; Burrows, P E; Venkatesh, S; Forrest, S R; Thompson, M E
1997-02-01
We demonstrate mechanically flexible, organic light-emitting devices (OLED's) based on the nonpolymetric thin-film materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and N, N(?) -diphenyl- N, N(?) -bis(3-methylphenyl)1- 1(?) biphenyl-4, 4(?) diamine (TPD). The single heterostructure is vacuum deposited upon a transparent, lightweight, thin plastic substrate precoated with a transparent, conducting indium tin oxide thin film. The flexible OLED performance is comparable with that of conventional OLED's deposited upon glass substrates and does not deteriorate after repeated bending. The large-area (~1 - cm>(2)) devices can be bent without failure even after a permanent fold occurs if they are on the convex substrate surface or over a bend radius of ~0.5>cm if they are on the concave surface. Such devices are useful for ultralightweight, flexible, and comfortable full-color flat panel displays.
Khadempour, Lily; Burnum-Johnson, Kristin E; Baker, Erin S; Nicora, Carrie D; Webb-Robertson, Bobbie-Jo M; White, Richard A; Monroe, Matthew E; Huang, Eric L; Smith, Richard D; Currie, Cameron R
2016-11-01
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. © 2016 John Wiley & Sons Ltd.
Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.; Nicora, Carrie D.; Webb-Robertson, Bobbie-Jo M.; White, Richard A.; Monroe, Matthew E.; Huang, Eric L.; Smith, Richard D.; Currie, Cameron R.
2016-01-01
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants’ fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats, or a mixture of all three. Across all treatments, our analysis identified and quantified 1,766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of sub-colonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase, and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. PMID:27696597
Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.
Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun
2018-04-13
Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.
Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording
Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun
2018-01-01
Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode–skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring. PMID:29652835
Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2018-07-01
Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tu, Hongen; Xu, Yong
2012-07-01
This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang
2011-10-01
This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
Fabricating nanowire devices on diverse substrates by simple transfer-printing methods.
Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2010-06-01
The fabrication of nanowire (NW) devices on diverse substrates is necessary for applications such as flexible electronics, conformable sensors, and transparent solar cells. Although NWs have been fabricated on plastic and glass by lithographic methods, the choice of device substrates is severely limited by the lithographic process temperature and substrate properties. Here we report three new transfer-printing methods for fabricating NW devices on diverse substrates including polydimethylsiloxane, Petri dishes, Kapton tapes, thermal release tapes, and many types of adhesive tapes. These transfer-printing methods rely on the differences in adhesion to transfer NWs, metal films, and devices from weakly adhesive donor substrates to more strongly adhesive receiver substrates. Electrical characterization of fabricated NW devices shows that reliable ohmic contacts are formed between NWs and electrodes. Moreover, we demonstrated that Si NW devices fabricated by the transfer-printing methods are robust piezoresistive stress sensors and temperature sensors with reliable performance.
Toward flexible and wearable human-interactive health-monitoring devices.
Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji
2015-03-11
This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstrip Antenna Arrays on Multilayer LCP Substrates
NASA Technical Reports Server (NTRS)
Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin
2007-01-01
A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the thicknesses on cross-polarization levels, bandwidth, and efficiency at each frequency.
Current progress and technical challenges of flexible liquid crystal displays
NASA Astrophysics Data System (ADS)
Fujikake, Hideo; Sato, Hiroto
2009-02-01
We focused on several technical approaches to flexible liquid crystal (LC) display in this report. We have been developing flexible displays using plastic film substrates based on polymer-dispersed LC technology with molecular alignment control. In our representative devices, molecular-aligned polymer walls keep plastic-substrate gap constant without LC alignment disorder, and aligned polymer networks create monostable switching of fast-response ferroelectric LC (FLC) for grayscale capability. In the fabrication process, a high-viscosity FLC/monomer solution was printed, sandwiched and pressed between plastic substrates. Then the polymer walls and networks were sequentially formed based on photo-polymerization-induced phase separation in the nematic phase by two exposure processes of patterned and uniform ultraviolet light. The two flexible backlight films of direct illumination and light-guide methods using small three-primary-color light-emitting diodes were fabricated to obtain high-visibility display images. The fabricated flexible FLC panels were driven by external transistor arrays, internal organic thin film transistor (TFT) arrays, and poly-Si TFT arrays. We achieved full-color moving-image displays using the flexible FLC panel and the flexible backlight film based on field-sequential-color driving technique. Otherwise, for backlight-free flexible LC displays, flexible reflective devices of twisted guest-host nematic LC and cholesteric LC were discussed with molecular-aligned polymer walls. Singlesubstrate device structure and fabrication method using self-standing polymer-stabilized nematic LC film and polymer ceiling layer were also proposed for obtaining LC devices with excellent flexibility.
Preparation of asymmetric porous materials
Coker, Eric N [Albuquerque, NM
2012-08-07
A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.
Jiang, Dongyue; Park, Sung-Yong
2016-05-21
Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.
Portable pathogen detection system
Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.
2005-06-14
A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.
NASA Astrophysics Data System (ADS)
Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon
2016-11-01
For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan
In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
NASA Astrophysics Data System (ADS)
Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel
2018-03-01
Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.
Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors
Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.
2015-03-11
In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less
Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications
Gerardo, Carlos D.; Cretu, Edmond; Rohling, Robert
2017-01-01
This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω/☐. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μm. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates. PMID:28629134
Zinc Oxide Thin-Film Transistors
NASA Astrophysics Data System (ADS)
Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R.
ZnO thin film transistors (ZnO-TFT) have been fabricated by rf magnetron sputtering at room temperature with a bottom-gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 21 V, a field effect mobility of 20 cm2/Vs, a gate voltage swing of 1.24 V/decade and an on/off ratio of 2×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80 % in the visible part of the spectrum. The combination of transparency, high channel mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics. Moreover, the processing technology used to fabricate this device is relatively simple and it is compatible with inexpensive plastic/flexible substrate technology.
Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.
Shahrjerdi, Davood; Bedell, Stephen W
2013-01-09
In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.
NASA Astrophysics Data System (ADS)
Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati
2017-04-01
Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.
Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat
2013-03-07
We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.
Polymer substrates for flexible photovoltaic cells application in personal electronic system
NASA Astrophysics Data System (ADS)
Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.
2016-01-01
The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.
Optically transparent frequency selective surfaces on flexible thin plastic substrates
NASA Astrophysics Data System (ADS)
Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir
2015-02-01
A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-05
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-01
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor); Subbaraman, Harish (Inventor)
2017-01-01
A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.
NASA Astrophysics Data System (ADS)
Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei
2017-07-01
In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G Ellis; P Cano; M Jadraque
Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.
Nanowire–quantum-dot lasers on flexible membranes
NASA Astrophysics Data System (ADS)
Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko
2018-06-01
We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang
2009-12-01
This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.
Flexible substrate for printed wiring
NASA Technical Reports Server (NTRS)
Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.
1982-01-01
A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.
Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.
Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y
2016-06-16
Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.
Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.
2017-04-01
Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.
Focal adhesion kinase is involved in mechanosensing during fibroblast migration
NASA Technical Reports Server (NTRS)
Wang, H. B.; Dembo, M.; Hanks, S. K.; Wang, Y.
2001-01-01
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.
Recent advances in flexible low power cholesteric LCDs
NASA Astrophysics Data System (ADS)
Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.
2006-05-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.
Printable Transparent Conductive Films for Flexible Electronics.
Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei
2018-03-01
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan
2015-03-01
In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.
Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits
NASA Astrophysics Data System (ADS)
Stinner, F. Scott
As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with <10 micros stage delays, and NAND and NOR logic gates. In order to produce higher performance and more consistent transistors, we develop a new hybrid procedure for processing the CdSe nanocrystals. This procedure produces transistors with repeatable performance exceeding 40 cm2/Vs when fabricated on silicon wafers and 16 cm 2/vs when fabricated as part of photopatterned integrated circuits on Kapton substrates. In order to demonstrate the full potential of these transistors, methods to create high-frequency oscillators were developed. These methods allow for transistors to operate at higher voltages as well as provide a means for wirebonding to the Kapton substrate, both of which are required for operating and probing high-frequency oscillators. Simulations of this system show the potential for operation at MHz frequencies. Demonstration of these transistors in this frequency range would open the door for development of CdSe integrated circuits for high-performance sensor, display, and audio applications. To develop further applications of electronics on flexible substrates, procedures are developed for the integration of polychromatic displays on polyethylene terephthalate (PET) substrates and a commercial near field communication (NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.
Interconnnect and bonding technologies for large flexible solar arrays
NASA Technical Reports Server (NTRS)
1976-01-01
Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping
2018-03-01
Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Qibing
2017-10-06
This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.
Maziz, Ali; Plesse, Cédric; Soyer, Caroline; Cattan, Eric; Vidal, Frédéric
2016-01-27
Recent progress in the field of microsystems on flexible substrates raises the need for alternatives to the stiffness of classical actuation technologies. This paper reports a top-down process to microfabricate soft conducting polymer actuators on substrates on which they ultimately operate. The bending microactuators were fabricated by sequentially stacking layers using a layer polymerization by layer polymerization of conducting polymer electrodes and a solid polymer electrolyte. Standalone microbeams thinner than 10 μm were fabricated on SU-8 substrates associated with a bottom gold electrical contact. The operation of microactuators was demonstrated in air and at low voltage (±4 V).
NASA Astrophysics Data System (ADS)
Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan
2017-12-01
Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.
Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method
NASA Astrophysics Data System (ADS)
Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon
2008-06-01
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.
Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng
2011-01-01
In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes.
Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng
2011-01-01
In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes. PMID:22163929
Parajuli, Prakash; Pandey, Ramesh Prasad; Nguyen, Thi Huyen Trang; Dhakal, Dipesh; Sohng, Jae Kyung
2018-04-01
Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.
Energetics and Application of Heterotrophy in Acetogenic Bacteria.
Schuchmann, Kai; Müller, Volker
2016-07-15
Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Energetics and Application of Heterotrophy in Acetogenic Bacteria
Schuchmann, Kai
2016-01-01
Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii. Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. PMID:27208103
Waste to wealth concept: Disposable RGO filter paper for flexible temperature sensor applications
NASA Astrophysics Data System (ADS)
Neella, Nagarjuna; Kedambaimoole, Vaishakh; Gaddam, Venkateswarlu; Nayak, M. M.; Rajanna, K.
2018-04-01
We have developed a flexible reduced graphene oxide (RGO) temperature sensor on filter paper based cellulose substrate using vacuum filtration method. One of the most commonly used synthesized methods for RGO thin films is vacuum filtration process. It has several advantages such as simple operation and good controllability. The structural analysis was carried out by FE-SEM, in which the surface morphology images confirm the formation of RGO nanostructures on the filter paper substrate. It was observed that the pores of the filter paper were completely filled with the RGO material during the filtration process, subsequently the formation of continuous RGO thin films. As a results, the RGO films exhibits a piezoresistive property. The resulted RGO based films on the filter paper reveals the semiconducting behavior having sensitivity of 0.278 Ω /°C and negative temperature coefficient (NTC) about -0.00254 Ω/ Ω / °C. Thus, we demonstrate a simplified way for the fabrication of RGO films on filter paper that possesses better and easier measurable macroscopic electrical properties. Our approach is for easy way of electronics, cost-effective and environment friendly fabrication route for flexible conducting graphene films on filter paper. This will enable for the potential applications in flexible electronics in various fields including biomedical, automobile and aerospace engineering.
Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.
Ye, Dong; Ding, Yajiang; Duan, Yongqing; Su, Jiangtao; Yin, Zhouping; Huang, Yong An
2018-05-01
Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F
2015-07-24
The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Transferable and flexible thin film devices for engineering applications
NASA Astrophysics Data System (ADS)
Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun
2014-05-01
Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.
Nanowire surface fastener fabrication on flexible substrate.
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-27
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm -2 ) and low contact resistivity (2.2 × 10 -4 Ω cm 2 ).
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2012-04-01
Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.
Nanowire surface fastener fabrication on flexible substrate
NASA Astrophysics Data System (ADS)
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-01
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).
Method for forming a nano-textured substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Sangmoo; Hu, Liangbing; Cui, Yi
A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale,more » roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.« less
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
Critical Issues for Cu(InGa)Se2 Solar Cells on Flexible Polymer Web
NASA Technical Reports Server (NTRS)
Eser, Erten; Fields, Shannon; Shafarman, William; Birkmire, Robert
2007-01-01
Elemental in-line evaporation on glass substrates has been a viable process for the large-area manufacture of CuInSe2-based photovoltaics, with module efficiencies as high as 12.7% [1]. However, lightweight, flexible CuInSe2-based modules are attractive in a number of applications, such as space power sources. In addition, flexible substrates have an inherent advantage in manufacturability in that they can be deposited in a roll-to-roll configuration allowing continuous, high yield, and ultimately lower cost production. As a result, high-temperature polymers have been used as substrates in depositing CuInSe2 films [2]. Recently, efficiency of 14.1% has been reported for a Cu(InGa)Se2-based solar cell on a polyimide substrate [3]. Both metal foil and polymer webs have been used as substrates for Cu(InGa)Se2-based photovoltaics in a roll-to-roll configuration with reasonable success [4,5]. Both of these substrates do not allow, readily, the incorporation of Na into the Cu(InGa)Se2 film which is necessary for high efficiency devices [3]. In addition, polymer substrates, can not be used at temperatures that are optimum for Cu(InGa)Se2 deposition. However, unlike metal foils, they are electrically insulating, simplifying monolithically-integrated module fabrication and are not a source of impurities diffusing into the growing film. The Institute of Energy Conversion (IEC) has modified its in-line evaporation system [6] from deposition onto glass substrates to roll-to-roll deposition onto polyimide (PI) film in order to investigate key issues in the deposition of large-area Cu(InGa)Se2 films on flexible polymer substrates. This transition presented unexpected challenges that had to be resolved. In this paper, two major problems, spitting from the Cu source and the cracking of Mo back contact film, will be discussed and the solution to each will be presented.
Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting
NASA Astrophysics Data System (ADS)
Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.
2017-04-01
Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.
Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming
2001-08-14
A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.
Ductile film delamination from compliant substrates using hard overlayers
Cordill, M.J.; Marx, V.M.; Kirchlechner, C.
2014-01-01
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. PMID:25641995
Ductile film delamination from compliant substrates using hard overlayers.
Cordill, M J; Marx, V M; Kirchlechner, C
2014-11-28
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.
Performance of Conformable Ablators in Aerothermal Environments
NASA Technical Reports Server (NTRS)
Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.
2012-01-01
Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.
A comparative study of graphene and graphite-based field effect transistor on flexible substrate
NASA Astrophysics Data System (ADS)
Bhatt, Kapil; Rani, Cheenu; Vaid, Monika; Kapoor, Ankit; Kumar, Pramod; Kumar, Sandeep; Shriwastawa, Shilpi; Sharma, Sandeep; Singh, Randhir; Tripathi, C. C.
2018-06-01
In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be 83 cm2/V s (holes) and 33 cm2/V s (electrons) for graphite FET and 100 cm2/V s (holes) and 52 cm2/V s (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine
2005-01-01
Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.
Flexible TFTs based on solution-processed ZnO nanoparticles.
Jun, Jin Hyung; Park, Byoungjun; Cho, Kyoungah; Kim, Sangsig
2009-12-16
Flexible electronic devices which are lightweight, thin and bendable have attracted increasing attention in recent years. In particular, solution processes have been spotlighted in the field of flexible electronics, since they provide the opportunity to fabricate flexible electronics using low-temperature processes at low-cost with high throughput. However, there are few reports which describe the characteristics of electronic devices on flexible substrates. In this study, we fabricated flexible thin-film transistors (TFTs) on plastic substrates with channel layers formed by the spin-coating of ZnO nanoparticles and investigated their electrical properties in the flat and bent states. To the best of our knowledge, this study is the first attempt to fabricate fully functional ZnO TFTs on flexible substrates through the solution process. The ZnO TFTs showed n-channel device characteristics and operated in enhancement mode. In the flat state, a representative ZnO TFT presented a very low field-effect mobility of 1.2 x 10(-5) cm(2) V(-1) s(-1), while its on/off ratio was as high as 1.5 x 10(3). When the TFT was in the bent state, some of the device parameters changed. The changes of the device parameters and the possible reasons for these changes will be described. The recovery characteristics of the TFTs after being subjected to cyclic bending will be discussed as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjib, Das; Yang, Bin; Gu, Gong
Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was usedmore » to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.« less
Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok
2018-01-01
The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144
Ferrocene pixels by laser-induced forward transfer: towards flexible microelectrode printing
NASA Astrophysics Data System (ADS)
Mitu, B.; Matei, A.; Filipescu, M.; Palla Papavlu, A.; Bercea, A.; Lippert, T.; Dinescu, M.
2017-03-01
The aim of this work is to demonstrate the potential of laser-induced forward transfer (LIFT) as a printing technology, alternative to standard microfabrication techniques, in the area of flexible micro-electrode fabrication. First, ferrocene thin films are deposited onto fused silica and fused silica substrates previously coated with a photodegradable polymer film (triazene polymer) by matrix assisted pulsed laser evaporation (MAPLE). The morphology and chemical structure of the ferrocene thin films deposited by MAPLE has been investigated by atomic force microscopy and Fourier transformed infrared spectroscopy, and no structural damage occurs as a result of the laser deposition. Second, LIFT is applied to print for the first time ferrocene pixels and lines onto flexible polydimethylsiloxane (PDMS) substrates. The ferrocene pixels and lines are flawlessly transferred onto the PDMS substrates in air at room temperature, without the need of additional conventional photolithography processes. We believe that these results are very promising for a variety of applications ranging from flexible electronics to lab-on-a-chip devices, MEMS, and medical implants.
A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate
Jeranče, Nikola; Vasiljević, Dragana; Samardžić, Nataša; Stojanović, Goran
2012-01-01
This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film) using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor) related to the external one (stator), the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications. PMID:22438710
Micro environmental sensing device
Polosky, Marc A.; Lukens, Laurance L.
2006-05-02
A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.
Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers
NASA Astrophysics Data System (ADS)
Daugherty, Robin
This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
Advances in maskless and mask-based optical lithography on plastic flexible substrates
NASA Astrophysics Data System (ADS)
Barbu, Ionut; Ivan, Marius G.; Giesen, Peter; Van de Moosdijk, Michel; Meinders, Erwin R.
2009-12-01
Organic flexible electronics is an emerging technology with huge potential growth in the future which is likely to open up a complete new series of potential applications such as flexible OLED-based displays, urban commercial signage, and flexible electronic paper. The transistor is the fundamental building block of all these applications. A key challenge in patterning transistors on flexible plastic substrates stems from the in-plane nonlinear deformations as a consequence of foil expansion/shrinkage, moisture uptake, baking etc. during various processing steps. Optical maskless lithography is one of the potential candidates for compensating for these foil distortions by in-situ adjustment prior to exposure of the new layer image with respect to the already patterned layers. Maskless lithography also brings the added value of reducing the cost-of-ownership related to traditional mask-based tools by eliminating the need for expensive masks. For the purpose of this paper, single-layer maskless exposures at 355 nm were performed on gold-coated poly(ethylenenaphthalate) (PEN) flexible substrates temporarily attached to rigid carriers to ensure dimensional stability during processing. Two positive photoresists were employed for this study and the results on plastic foils were benchmarked against maskless as well as mask-based (ASML PAS 5500/100D stepper) exposures on silicon wafers.
Micromachined peristaltic pump
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1998-01-01
A micromachined pump including a channel formed in a semiconductor substrate by conventional processes such as chemical etching. A number of insulating barriers are established in the substrate parallel to one another and transverse to the channel. The barriers separate a series of electrically conductive strips. An overlying flexible conductive membrane is applied over the channel and conductive strips with an insulating layer separating the conductive strips from the conductive membrane. Application of a sequential voltage to the series of strips pulls the membrane into the channel portion of each successive strip to achieve a pumping action. A particularly desirable arrangement employs a micromachined push-pull dual channel cavity employing two substrates with a single membrane sandwiched between them.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn
2013-03-12
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA
2011-10-18
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Printable semiconductor structures and related methods of making and assembling
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn
2010-09-21
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates
2015-01-01
We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be modulated by mechanical stretching. Next we fabricate stretchable arrays of gold pyramids and demonstrate a modulation of the wavelength of light resonantly scattered from the tip of the pyramid by stretching the underlying PDMS film. The use of a flexible transfer layer also enables template stripping using a cylindrical roller as a substrate. As an example, we demonstrate roller template stripping of metallic nanoholes, nanodisks, wires, and pyramids onto the cylindrical surface of a glass rod lens. These nonplanar metallic structures produced via template stripping with flexible and stretchable films can facilitate many applications in sensing, display, plasmonics, metasurfaces, and roll-to-roll fabrication. PMID:26402066
Better Back Contacts for Solar Cells on Flexible Substrates
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Ribelin, Rosine M.
2006-01-01
Improved low-resistance, semitransparent back contacts, and a method of fabricating them, have been developed for solar photovoltaic cells that are made from thin films of I-III-VI2 semiconductor materials on flexible, high-temperatureresistant polyimide substrates or superstrates. The innovative aspect of the present development lies in the extension, to polyimide substrates or superstrates, of a similar prior development of improved low-resistance, semitransparent back contacts for I-III-VI2 solar cells on glass substrates or superstrates. A cell incorporating this innovation can be used either as a stand-alone photovoltaic device or as part of a monolithic stack containing another photovoltaic device that utilizes light of longer wavelengths.
2014-05-19
their acceptable thermal stability, Polyimides have established as a conventional substrate material for flexible interconnects, which can be...of the silver flake ink for the screen-printed interconnects, the assembled unit fulfills biocompatibility requirements in a limited manner ([29...30]). Even though biocompatibility of substrate [31] is fulfilled, toxicity of the insulating mask [32] and encapsulation need to be considered
Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.
Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H
2018-04-24
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.
Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming
2017-05-31
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.
NASA Astrophysics Data System (ADS)
Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.
2015-11-01
This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...
2017-07-18
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)
2017-01-01
A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.
New separators for nickel-zinc batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1976-01-01
Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.
Flexible amorphous oxide thin-film transistors on polyimide substrate for AMOLED
NASA Astrophysics Data System (ADS)
Xu, Zhiping; Li, Min; Xu, Miao; Zou, Jianhua; Gao, Zhuo; Pang, Jiawei; Guo, Ying; Zhou, Lei; Wang, Chunfu; Fu, Dong; Peng, Junbiao; Wang, Lei; Cao, Yong
2014-10-01
We report a flexible amorphous Lanthanide doped In-Zn-O (IZO) thin-film transistor (TFT) backplane on polyimide (PI) substrate. In order to de-bond the PI film from the glass carrier easily after the flexible AMOLED process, a special inorganic film is deposited on the glass before the PI film is coated. The TFT exhibited a field-effect mobility of 6.97 cm2V-1 s-1, a subthreshold swing of 0.248 V dec-1, and an Ion/Ioff ratio of 5.19×107, which is sufficient to drive the OLEDs.
Development and applications of transparent conductive nanocellulose paper
NASA Astrophysics Data System (ADS)
Li, Shaohui; Lee, Pooi See
2017-12-01
Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.
NASA Astrophysics Data System (ADS)
Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong
2012-06-01
Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.
Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik
2013-04-01
Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).
Indigenous unit for bending and twisting tests of ultra-thin films on a flexible substrate
NASA Astrophysics Data System (ADS)
D'souza, Slavia Deeksha; Hazarika, Pratim; Prakasarao, Ch Surya; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul
2018-04-01
An indigenous unit is designed to test the stability of thin films deposited on to a flexible substrate by inducing a required number of bending and twisting under specific conditions. The unit is designed using aluminum and automated by sending pulse width modulated signals to servo motors using ATmega328 microcontroller. We have tested the unit by imparting stress on to a commercial ITO film deposited on a PET substrate. After a definite number of bending and twisting cycles, the electrical and surface properties are studied and the results are discussed.
ITO-free white OLEDs on flexible substrates with enhanced light outcoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, Barry
2017-02-05
The goal of this research is to further explore and integrate a number of innovative approaches we have developed that can overcome current bottlenecks to realize large-area ITO-free WOLEDs on flexible substrates, with processes and materials that are upscalable and amenable to low-cost production. In doing so, we provide an understanding of various loss mechanisms in OLEDs and how they can be extracted.
Takahashi, Kiyonori; Ishii, Ryo; Nakamura, Takashi; Suzuki, Asami; Ebina, Takeo; Yoshida, Manabu; Kubota, Munehiro; Nge, Thi Thi; Yamada, Tatsuhiko
2017-05-01
Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li + montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanostructured organic electronic materials: Synthesis and sensor applications
NASA Astrophysics Data System (ADS)
Dua, Vineet
2009-12-01
This study is an investigation into (a) the process by which one obtains bulk quantities of nanofibers of parent polythiophene, (b) in-situ deposition of nanofibers of polythiophene on flexible substrate and its application in vapor sensing, and (c) inkjet printing of graphene on flexible substrate and its application as a detector. (a) The 2 nd chapter of the thesis is an extension of "seeding" method from aqueous to organic solvents to synthesize parent polythiophene nanofibers. Bulk quantities of parent polythiophene nanofibers were synthesized in one step using catalytic amounts of freeze dried V2O5. This work is published in Chemistry Letters 2008 37(5), 526--527. (b) The 3rd chapter deals with in-situ films of polythiophene nanofibers on plastic substrates. In this a one step method to directly deposit nanofibers of parent polythiophene on flexible substrate is discussed. These films show a reversible detection of highly oxidizing vapors such as NO2, Cl2 and SO 2 at ppb levels under ambient conditions. This work is published in Macromolecules 2009, 42, 5414--5415. (c) The 4 th chapter describes the synthesis of reduced graphene oxide (RGO) using a mild reducing agent ascorbic acid (Vitamin C) rather than traditionally used harsh reducing agents (N2H4). Dispersions of RGO were inkjet printed on flexible substrate and has been shown to detect aggressive vapors NO2 and Cl2 at ambient conditions. This work is accepted for publication in Angewandte Chemie (Nov 2009).
Conductive stability of graphene on PET and glass substrates under blue light irradiation
NASA Astrophysics Data System (ADS)
Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin
2018-01-01
Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.
Polymer-metal hybrid transparent electrodes for flexible electronics
NASA Astrophysics Data System (ADS)
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-03-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.
Polymer-metal hybrid transparent electrodes for flexible electronics
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-01-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133
Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors
2016-01-01
We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079
Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays
NASA Astrophysics Data System (ADS)
Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu
2018-02-01
A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.
Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph
2009-01-01
The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861
Performance analysis of flexible DSSC with binder addition
NASA Astrophysics Data System (ADS)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur
2016-04-01
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.
Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Chun-Hao; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; Lin, Jheng-Cyuan
Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar tomore » those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.« less
Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen
2015-01-01
Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process. PMID:26640124
Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang
2017-07-01
Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
320-nm Flexible Solution-Processed 2,7-dioctyl[1] benzothieno[3,2-b]benzothiophene Transistors.
Ren, Hang; Tang, Qingxin; Tong, Yanhong; Liu, Yichun
2017-08-09
Flexible organic thin-film transistors (OTFTs) have received extensive attention due to their outstanding advantages such as light weight, low cost, flexibility, large-area fabrication, and compatibility with solution-processed techniques. However, compared with a rigid substrate, it still remains a challenge to obtain good device performance by directly depositing solution-processed organic semiconductors onto an ultrathin plastic substrate. In this work, ultrathin flexible OTFTs are successfully fabricated based on spin-coated 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) films. The resulting device thickness is only ~320 nm, so the device has the ability to adhere well to a three-dimension curved surface. The ultrathin C8-BTBT OTFTs exhibit a mobility as high as 4.36 cm² V -1 s -1 and an on/off current ratio of over 10⁶. These results indicate the substantial promise of our ultrathin flexible C8-BTBT OTFTs for next-generation flexible and conformal electronic devices.
320-nm Flexible Solution-Processed 2,7-dioctyl[1] benzothieno[3,2-b]benzothiophene Transistors
Ren, Hang; Tang, Qingxin; Tong, Yanhong; Liu, Yichun
2017-01-01
Flexible organic thin-film transistors (OTFTs) have received extensive attention due to their outstanding advantages such as light weight, low cost, flexibility, large-area fabrication, and compatibility with solution-processed techniques. However, compared with a rigid substrate, it still remains a challenge to obtain good device performance by directly depositing solution-processed organic semiconductors onto an ultrathin plastic substrate. In this work, ultrathin flexible OTFTs are successfully fabricated based on spin-coated 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) films. The resulting device thickness is only ~320 nm, so the device has the ability to adhere well to a three-dimension curved surface. The ultrathin C8-BTBT OTFTs exhibit a mobility as high as 4.36 cm2 V−1 s−1 and an on/off current ratio of over 106. These results indicate the substantial promise of our ultrathin flexible C8-BTBT OTFTs for next-generation flexible and conformal electronic devices. PMID:28792438
Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui
2018-04-18
A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.
Kang, Dae Y; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P
2015-09-16
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach.
Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John
2017-10-27
Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun
2015-11-01
In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)2 thin film was demonstrated. Home-made CuInS2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)2 film with the incident light from 350 to 2000 nm. A 36-cm2 CuIn(S,Se)2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)2 flexible thin film.
Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.
2015-01-01
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915
Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping
2017-01-01
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications. PMID:28150807
Chen, Jun-Yang; Lau, Yong-Chang; Coey, J M D; Li, Mo; Wang, Jian-Ping
2017-02-02
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.
Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates
Goyal, Amit
2014-08-05
Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Mandal, Soumit Sankar; Merz, Dale R; Buchsteiner, Maximilian; Dima, Ruxandra I; Rief, Matthias; Žoldák, Gabriel
2017-06-06
Owing to the cooperativity of protein structures, it is often almost impossible to identify independent subunits, flexible regions, or hinges simply by visual inspection of static snapshots. Here, we use single-molecule force experiments and simulations to apply tension across the substrate binding domain (SBD) of heat shock protein 70 (Hsp70) to pinpoint mechanical units and flexible hinges. The SBD consists of two nanomechanical units matching 3D structural parts, called the α- and β-subdomain. We identified a flexible region within the rigid β-subdomain that gives way under load, thus opening up the α/β interface. In exactly this region, structural changes occur in the ATP-induced opening of Hsp70 to allow substrate exchange. Our results show that the SBD's ability to undergo large conformational changes is already encoded by passive mechanics of the individual elements.
Light management in flexible OLEDs
NASA Astrophysics Data System (ADS)
Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan
2014-10-01
Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.
Mandal, Soumit Sankar; Buchsteiner, Maximilian; Dima, Ruxandra I.; Rief, Matthias; Žoldák, Gabriel
2017-01-01
Owing to the cooperativity of protein structures, it is often almost impossible to identify independent subunits, flexible regions, or hinges simply by visual inspection of static snapshots. Here, we use single-molecule force experiments and simulations to apply tension across the substrate binding domain (SBD) of heat shock protein 70 (Hsp70) to pinpoint mechanical units and flexible hinges. The SBD consists of two nanomechanical units matching 3D structural parts, called the α- and β-subdomain. We identified a flexible region within the rigid β-subdomain that gives way under load, thus opening up the α/β interface. In exactly this region, structural changes occur in the ATP-induced opening of Hsp70 to allow substrate exchange. Our results show that the SBD’s ability to undergo large conformational changes is already encoded by passive mechanics of the individual elements. PMID:28533394
Superhydrophobicity enhancement through substrate flexibility
NASA Astrophysics Data System (ADS)
Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas; Poulikakos, Dimos
2017-11-01
Inspired by manifestations in nature, micro/nanoengineering superhydrophobic surfaces has been the focus of much work. Generally, hydrophobicity is increased through the combined effects of surface texturing and chemistry; being durable, rigid substrate materials are the norm. However, many natural and technical materials are flexible, and the resulting effect on hydrophobicity has been largely unexplored. Here, we show that the rational tuning of flexibility can work collaboratively with the surface micro/nanotexture to enhance liquid repellency performance, defined by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate stiffness and areal density imparts immediate acceleration and intrinsic responsiveness to impacting droplets, mitigating the collision and lowering the impalement probability by 60 % without the need for active actuation. We demonstrate the above discoveries with materials ranging from thin steel or polymer sheets to butterfly wings. Partial support of the Swiss National Science Foundation under Grant 162565 and the European Research Council under Advanced Grant 669908 (INTICE) is acknowledged.
A flexible ultrasound transducer array with micro-machined bulk PZT.
Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling
2015-01-23
This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.
Large-area high-efficiency flexible PHOLED lighting panels
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.
2012-09-01
Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.
Graphene based strain sensor with LCP substrate
NASA Astrophysics Data System (ADS)
Nie, M.; Yang, H. S.; Xia, Y. H.
2018-02-01
A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.
Low thermal budget, photonic-cured compact TiO 2 layers for high-efficiency perovskite solar cells
Das, Sanjib; Gu, Gong; Joshi, Pooran C.; ...
2016-05-25
Rapid advances in organometallic trihalide perovskite solar cells (PSCs) have positioned them to be one of the leading next generation photovoltaic technologies. However, most of the high-performance PSCs, particularly those using compact TiO 2 as an electron transport layer, require a high-temperature sintering step, which is not compatible with flexible polymer-based substrates. Considering the materials of interest for PSCs and corresponding device configurations, it is technologically imperative to fabricate high-efficiency cells at low thermal budget so that they can be realized on low-temperature plastic substrates. In this paper, we report on a new photonic curing technique that produces crystalline anatase-phasemore » TiO 2 films on indium tin oxide-coated glass and flexible polyethylene terephthalate (PET) substrates. Finally, the planar PSCs, using photonic-cured TiO 2 films, exhibit PCEs as high as 15.0% and 11.2% on glass and flexible PET substrates, respectively, comparable to the device performance of PSCs incorporating furnace annealed TiO 2 films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervin, Shahab; Asadirad, Mojtaba; Materials Science and Engineering Program, University of Houston, Houston, Texas 77204
This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strainmore » in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.« less
Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.
Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng
2017-07-14
Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.
Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates
NASA Astrophysics Data System (ADS)
Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.
2017-08-01
In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.
Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications
NASA Astrophysics Data System (ADS)
Suchea, M.; Kornilios, N.; Koudoumas, E.
2010-10-01
This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.
Development and applications of transparent conductive nanocellulose paper
Li, Shaohui; Lee, Pooi See
2017-01-01
Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870
Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor.
Kim, Jong-Woo; Porte, Yoann; Ko, Kyung Yong; Kim, Hyungjun; Myoung, Jae-Min
2017-09-27
Micropatternable double-faced (DF) zinc oxide (ZnO) nanoflowers (NFs) for flexible gas sensors have been successfully fabricated on a polyimide (PI) substrate with single-walled carbon nanotubes (SWCNTs) as electrode. The fabricated sensor comprises ZnO nanoshells laid out on a PI substrate at regular intervals, on which ZnO nanorods (NRs) were grown in- and outside the shells to maximize the surface area and form a connected network. This three-dimensional network structure possesses multiple gas diffusion channels and the micropatterned island structure allows the stability of the flexible devices to be enhanced by dispersing the strain into the empty spaces of the substrate. Moreover, the micropatterning technique on a flexible substrate enables highly integrated nanodevices to be fabricated. The SWCNTs were chosen as the electrode for their flexibility and the Schottky barrier they form with ZnO, improving the sensing performance. The devices exhibited high selectivity toward NO 2 as well as outstanding sensing characteristics with a stable response of 218.1, fast rising and decay times of 25.0 and 14.1 s, respectively, and percent recovery greater than 98% upon NO 2 exposure. The superior sensing properties arose from a combination of high surface area, numerous active junction points, donor point defects in the ZnO NRs, and the use of the SWCNT electrode. Furthermore, the DF-ZnO NF gas sensor showed sustainable mechanical stability. Despite the physical degradation observed, the devices still demonstrated outstanding sensing characteristics after 10 000 bending cycles at a curvature radius of 5 mm.
NASA Astrophysics Data System (ADS)
Yang, Erika; Ryu, Byunghoon; Nam, Hongsuk; Liang, Xiaogan
2017-03-01
Two dimensional layered transition metal dichalcogenides (TMDC) materials have the growing potential to upstage graphene in the next generation of biosensors in detecting lower-concentrated areas of biomolecules. The current gold-standard detection method is the enzyme-linked immunosorbent assay (ELISA), an immunological assay technique that makes use of an enzyme bonded to a particular antibody or antigen. However, this technique is not only bulky, labor-intensive, and time extensive, but more importantly, the ELISA has relatively low detection limits of only 600 femtomolar (fM). In this work, for the first time, we present a novel flexible, sensitive MoS2 (molybdenum disulfide) biosensor, as shown in Figure 1, composed of few-layer of MoS2 as the channel material, and flexible polyimide as the substrate. In order to nano-fabricate this flexible biosensor, we mechanically transferred a few layers of MoS2 onto the flexible substrate polyimide and photolithography to create a patterning on the surface, and as a result, we were able to create a transistor that used MoS2 as its conductance channel. We successfully fabricated this MoS2 biosensor onto a flexible polyimide substrate. Furthermore, the fabricated flexible MoS2 biosensor can be utilized for quantifying the time-dependent reaction kinetics of streptavidin-biotin binding. Figure 2 shows the transfer characteristics of flexible MoS2 biosensors measured under different concentrations of streptavidin. The flexible MoS2 biosensor could illustrate a faster detection time in matters of minutes, and higher sensitivity with detection limits as low as 10 fM. Time versus equilibrium constants will be presented in details.
Flexible magnetic thin films and devices
NASA Astrophysics Data System (ADS)
Sheng, Ping; Wang, Baomin; Li, Runwei
2018-01-01
Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).
Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments
NASA Technical Reports Server (NTRS)
Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose
2012-01-01
Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.
Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands
NASA Astrophysics Data System (ADS)
Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.
2011-06-01
Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.
Branching out in locomotion: the mechanics of perch use in birds and primates.
Bonser, R H
1999-06-01
Many animals use thin perches, such as the branches of trees, as locomotory substrates. In this paper, I have reviewed the literature concerned with measurements of locomotory forces made by birds and primates on thin and flexible substrates. Through a knowledge of the locomotory forces exerted by animals when using different substrates, the mechanical cost of their use can be established. We are just beginning to learn about the magnitude and patterns of force production in various branch-using vertebrates, primarily as a result of the development of instrumented perches. Instrumented perches have been designed to measure the forces produced by birds and primates when leaping from rigid and flexible horizontal and flexible vertical perches, and also from instrumented handgrips during brachiation. The development of these techniques for birds and primates allows us to compare the way in which they use perches as locomotory substrates. In both birds and primates, the magnitudes of landing forces are smaller than those during take-off. Two explanations have been proposed; the difference is either a consequence of perch compliance or it is a strategic decision to be cautious of 'new' perches. Leaps from flexible perches may be somewhat inefficient because considerable energy is dissipated in bending the perch, and this energy may remain unrecovered when the animal leaves contact with the perch.
Okandan, Murat; Wessendorf, Kurt O.
2007-12-11
An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.
NASA Astrophysics Data System (ADS)
Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya
2018-04-01
Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.
NASA Astrophysics Data System (ADS)
Cooke, M. D.; Wood, D.
2015-11-01
Using commercial standard paper as a substrate has a significant cost reduction implication over other more expensive substrate materials by approximately a factor of 100 (Shenton et al 2015 EMRS Spring Meeting; Zheng et al 2013 Nat. Sci. Rep. 3 1786). Discussed here is a novel process which allows photolithography and etching of simple metal films deposited on paper substrates, but requires no additional facilities to achieve it. This allows a significant reduction in feature size down to the micron scale over devices made using more conventional printing solutions which are of the order of tens of microns. The technique has great potential for making cheap disposable devices with additional functionality, which could include flexibility and foldability, simple disposability, porosity and low weight requirements. The potential for commercial applications and scale up is also discussed.
A screen-printed flexible flow sensor
NASA Astrophysics Data System (ADS)
Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.
2017-04-01
A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.
Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.
2007-12-01
A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.
Zhu, Siwei; Gao, Yuan; Hu, Bin; Li, Jia; Su, Jun; Fan, Zhiyong; Zhou, Jun
2013-08-23
High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we developed a general way to fabricate TEs regardless of substrate limitations by transferring the as-fabricated Ag NW network onto various substrates directly, and the transmittance can remain as high as 91% with a sheet resistivity of 13 Ω/sq. The highly robust and stable flexible TEs will have broad applications in flexible optoelectronic and electronic devices.
Screen printed UHF antennas on flexible substrates
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł
2010-09-01
Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.
Nanoparticle Selective Laser Processing for a Flexible Display Fabrication
NASA Astrophysics Data System (ADS)
Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,
2010-05-01
To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.
NASA Astrophysics Data System (ADS)
Zheng, Zhaoqiang; Zhang, Tanmei; Yao, Jiandomg; Zhang, Yi; Xu, Jiarui; Yang, Guowei
2016-06-01
Although two-dimensional (2D) materials have attracted considerable research interest for use in the development of innovative wearable optoelectronic systems, the integrated optoelectronic performance of 2D materials photodetectors, including flexibility, transparency, broadband response and stability in air, remains quite low to date. Here, we demonstrate a flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD). Benefiting from the 2D physics of WSe2 films, this device exhibits excellent average transparency of 72% in the visible range and superior photoresponse characteristics, including an ultra-broadband detection spectral range from 370 to 1064 nm, reversible photoresponsivity approaching 0.92 A W-1, external quantum efficiency of up to 180% and a relatively fast response time of 0.9 s. The fabricated photodetector also demonstrates outstanding mechanical flexibility and durability in air. Also, because of the wide compatibility of the PLD-grown WSe2 film, we can fabricate various photodetectors on multiple flexible or rigid substrates, and all these devices will exhibit distinctive switching behavior and superior responsivity. These indicate a possible new strategy for the design and integration of flexible, transparent and broadband photodetectors based on large-area WSe2 films, with great potential for practical applications in the wearable optoelectronic devices.
Silicone Coating on Polyimide Sheet
NASA Technical Reports Server (NTRS)
Park, J. J.
1985-01-01
Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.
Performance analysis of flexible DSSC with binder addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com
2016-04-19
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less
Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer
Pang, Da-Chen; Chang, Cheng-Min
2017-01-01
This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT) that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET) substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics. PMID:28632157
Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip
2014-06-11
Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.
NASA Astrophysics Data System (ADS)
Blagoev, B. S.; Aleksandrova, M.; Terziyska, P.; Tzvetkov, P.; Kovacheva, D.; Kolev, G.; Mehandzhiev, V.; Denishev, K.; Dimitrov, D.
2018-03-01
We present the results of studies on the structural, optical and piezoelectric properties of ZnO thin films deposited by ALD on flexible polyethylene naphthalate (PEN) substrates. Changes were observed in the optical transmission and crystal structures as the deposition temperature was varied. The electromechanical behavior, dielectric losses and voltage generated from ZnO flexible devices were investigated and discussed, in order to estimate their suitability for potential application as microgenerators activated by human motion.
Lai, Ying-Chih; Hsu, Fang-Chi; Chen, Jian-Yu; He, Jr-Hau; Chang, Ting-Chang; Hsieh, Ya-Ping; Lin, Tai-Yuan; Yang, Ying-Jay; Chen, Yang-Fang
2013-05-21
A newly designed transferable and flexible label-like organic memory based on a graphene electrode behaves like a sticker, and can be readily placed on desired substrates or devices for diversified purposes. The memory label reveals excellent performance despite its physical presentation. This may greatly extend the memory applications in various advanced electronics and provide a simple scheme to integrate with other electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent resistive switching memory using aluminum oxide on a flexible substrate
NASA Astrophysics Data System (ADS)
Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon
2016-02-01
Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.
Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.
Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin
2017-11-01
Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook
2013-01-01
Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.
Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor.
Zhao, Yuxi; Song, Jeong-Gyu; Ryu, Gyeong Hee; Ko, Kyung Yong; Woo, Whang Je; Kim, Youngjun; Kim, Donghyun; Lim, Jun Hyung; Lee, Sunhee; Lee, Zonghoon; Park, Jusang; Kim, Hyungjun
2018-05-08
The efficient synthesis of two-dimensional molybdenum disulfide (2D MoS2) at low temperatures is essential for use in flexible devices. In this study, 2D MoS2 was grown directly at a low temperature of 200 °C on both hard (SiO2) and soft substrates (polyimide (PI)) using chemical vapor deposition (CVD) with Mo(CO)6 and H2S. We investigated the effect of the growth temperature and Mo concentration on the layered growth by Raman spectroscopy and microscopy. 2D MoS2 was grown by using low Mo concentration at a low temperature. Through optical microscopy, Raman spectroscopy, X-ray photoemission spectroscopy, photoluminescence, and transmission electron microscopy measurements, MoS2 produced by low-temperature CVD was determined to possess a layered structure with good uniformity, stoichiometry, and a controllable number of layers. Furthermore, we demonstrated the realization of a 2D MoS2-based flexible gas sensor on a PI substrate without any transfer processes, with competitive sensor performance and mechanical durability at room temperature. This fabrication process has potential for burgeoning flexible and wearable nanotechnology applications.
Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi
2016-12-12
In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O 2 /Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O 2 /Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (I off ) of 3 pA, a high on/off current ratio of 2 × 10 7 , a high saturation mobility (μ sat ) of 66.7 cm 2 /V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (V th ) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.
NASA Astrophysics Data System (ADS)
Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi
2016-12-01
In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.
Highly Stretchable and Conductive Superhydrophobic Coating for Flexible Electronics.
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Chen, Zhonghua; Zeng, Xingrong
2018-03-28
Superhydrophobic materials integrating stretchability with conductivity have huge potential in the emerging application horizons such as wearable electronic sensors, flexible power storage apparatus, and corrosion-resistant circuits. Herein, a facile spraying method is reported to fabricate a durable superhydrophobic coating with excellent stretchable and electrical performance by combing 1-octadecanethiol-modified silver nanoparticles (M-AgNPs) with polystyrene- b-poly(ethylene- co-butylene)- b-polystyrene (SEBS) on a prestretched natural rubber (NR) substrate. The embedding of M-AgNPs in elastic SEBS matrix and relaxation of prestretched NR substrate construct hierarchical rough architecture and endow the coating with dense charge-transport pathways. The fabricated coating exhibits superhydrophobicity with water contact angle larger than 160° and a high conductivity with resistance of about 10 Ω. The coating not only maintains superhydrophobicity at low/high stretch ratio for the newly generated small/large protuberances but also responds to stretching and bending with good sensitivity, broad sensing range, and stable response cycles. Moreover, the coating exhibits excellent durability to heat and strong acid/alkali and mechanical forces including droplet impact, kneading, torsion, and repetitive stretching-relaxation. The findings conceivably stand out as a new tool to fabricate multifunctional superhydrophobic materials with excellent stretchability and conductivity for flexible electronics under wet or corrosive environments.
NASA Astrophysics Data System (ADS)
Kang, Dongseok; Lee, Sung-Min; Kwong, Anthony; Yoon, Jongseung
2015-03-01
Despite many unique advantages, vertical cavity surface emitting lasers (VCSELs) have been available mostly on rigid, planar wafers over restricted areas, thereby limiting their usage for applications that can benefit from large-scale, programmable assemblies, hybrid integration with dissimilar materials and devices, or mechanically flexible constructions. Here, materials design and fabrication strategies that address these limitations of conventional VCSELs are presented. Specialized design of epitaxial materials and etching processes, together with printing-based deterministic assemblies and substrate thermal engineering, enabled defect-free release of microscale VCSELs and their device- and circuit-level implementation on non-native, flexible substrates with performance comparable to devices on the growth substrate.
MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.
2014-04-01
Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.
Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.
Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping
2015-08-07
Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.
Status of flexible CIS research at ISET
NASA Technical Reports Server (NTRS)
Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.
1994-01-01
Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.
Passivation coating for flexible substrate mirrors
Tracy, C. Edwin; Benson, David K.
1990-01-01
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Huang, Zhan; Wang, Chaoxia
2018-05-01
Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.
NASA Astrophysics Data System (ADS)
Nichols, Jonathan A.
Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.
Flexible retinal electrode array
Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM
2006-10-24
An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.
Space Station Freedom Solar Array design development
NASA Technical Reports Server (NTRS)
Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.
1989-01-01
The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.
Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication
NASA Technical Reports Server (NTRS)
Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong
2013-01-01
NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to wet the CNT thin-film area and enable good contact with the source and drain contact after annealing. A passivation layer to protect the device channel is developed by bonding a thin Kapton film on top of the device channel. This film is also used as the media for transferring the aligned CNT thin-film on the device substrate. A simple and cost-effective technique to form multilayer metal interconnections on flexible substrate is developed and demonstrated. Contact vias are formed on the second substrate prior to bonding on the first substrate. Inkjet printing is used to fill the silver ink into the via structure. The printed silver ink penetrates through the vias to contact with the contact pads on the bottom layer. It is then annealed to form a good connection. One-dimensional and two-dimensional PAAs were fabricated and characterized. In these circuits, multilayer metal interconnects were used to make a complete PAA system.
The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells
NASA Astrophysics Data System (ADS)
Hanak, J. J.; Kaschmitter, J. L.
1991-05-01
An ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) has been identified as a potential low-cost power source for small satellites. We have conducted a survey of the status of the a-Si PV array technology with respect to present and future performance, availability, cost and risks. For existing, experimental array 'blankets' made of commercial cell material, utilizing metal foil substrates, the BOL performance at AM0 and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated EOL power output after 10 years in a nominal low-earth orbit would be 80 percent of BOL, the degradation being due to largely light-induced effects (minus 10 to minus 15 percent) and in part (minus 5 percent) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing US national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long-range development program toward developing of this important power source for space. One new US developer has emerged as a future potential supplier of a-Si PV devices on thin, polyimide substrates.
Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper
Wu, Jingda; Lin, Lih Y.
2017-01-01
Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651
Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power
NASA Technical Reports Server (NTRS)
Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.
2004-01-01
The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-03
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Ultrathin and lightweight organic solar cells with high flexibility
Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried
2012-01-01
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014
Thin film encapsulation for flexible AM-OLED: a review
NASA Astrophysics Data System (ADS)
Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang
2011-03-01
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
Microelectromechanical apparatus for elevating and tilting a platform
Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.
2003-04-08
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
Microelectromechanical apparatus for elevating and tilting a platform
Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.
2004-07-06
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
Flexible inorganic light emitting diodes based on semiconductor nanowires
Guan, Nan; Dai, Xing; Babichev, Andrey V.; Julien, François H.
2017-01-01
The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail. PMID:29568439
Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity
NASA Astrophysics Data System (ADS)
Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang
2017-11-01
We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.
Jiu, Jinting; Sugahara, Tohru; Nogi, Masaya; Araki, Teppei; Suganuma, Katsuaki; Uchida, Hiroshi; Shinozaki, Kenji
2013-12-07
Silver nanowire (AgNW) films with a random mesh structure have attracted considerable attention as high-performance flexible transparent electrodes that can replace the expensive and brittle ITO-sputtered films widely used in displays, touch screens, and solar cells. Methods such as heating, pressure treatment, and light treatment are usually used to obtain an optically transparent and electrically conductive film comparable to those of commercial ITO. However, the adhesion between the AgNW film and the substrate is so weak that other overcoatings or extra treatments are necessary. Here, a high-intensity pulsed light (HIPL) sintering technique was developed to rapidly and simply sinter the AgNW film and thus achieve strong adhesion and even high conductivity on these flexible polymer substrates which will be widely applied to the printing of electronic devices. The conductivity of the AgNW film closely depended on the thermal performance of substrates, and the adhesion was determined by the soft state of the substrate surface originating from the glass transition or melting of substrates with light intensity. The rapid sintering technique can be popularized to fabricate new devices on these polymer substrates by considering the thermal properties of the substrate to improve the performance of devices.
Wafer-scale design of lightweight and transparent electronics that wraps around hairs
NASA Astrophysics Data System (ADS)
Salvatore, Giovanni A.; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Zysset, Christoph; Strebel, Ivo; Büthe, Lars; Tröster, Gerhard
2014-01-01
Electronics on very thin substrates have shown remarkable bendability, conformability and lightness, which are important attributes for biological tissues sensing, wearable or implantable devices. Here we propose a wafer-scale process scheme to realize ultra flexible, lightweight and transparent electronics on top of a 1-μm thick parylene film that is released from the carrier substrate after the dissolution in water of a polyvinyl- alcohol layer. The thin substrate ensures extreme flexibility, which is demonstrated by transistors that continue to work when wrapped around human hairs. In parallel, the use of amorphous oxide semiconductor and high-K dielectric enables the realization of analogue amplifiers operating at 12 V and above 1 MHz. Electronics can be transferred on any object, surface and on biological tissues like human skin and plant leaves. We foresee a potential application as smart contact lenses, covered with light, transparent and flexible devices, which could serve to monitor intraocular pressure for glaucoma disease.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.
Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao
2016-08-10
Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.
Transformational electronics: a powerful way to revolutionize our information world
NASA Astrophysics Data System (ADS)
Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Hussain, Aftab M.; Ahmed, Sally M.; Nassar, Joanna M.; Bahabry, Rabab R.; Nour, Maha; Kutbee, Arwa T.; Byas, Ernesto; Al-Saif, Bidoor; Alamri, Amal M.; Hussain, Muhammad M.
2014-06-01
With the emergence of cloud computation, we are facing the rising waves of big data. It is our time to leverage such opportunity by increasing data usage both by man and machine. We need ultra-mobile computation with high data processing speed, ultra-large memory, energy efficiency and multi-functionality. Additionally, we have to deploy energy-efficient multi-functional 3D ICs for robust cyber-physical system establishment. To achieve such lofty goals we have to mimic human brain, which is inarguably the world's most powerful and energy efficient computer. Brain's cortex has folded architecture to increase surface area in an ultra-compact space to contain its neuron and synapses. Therefore, it is imperative to overcome two integration challenges: (i) finding out a low-cost 3D IC fabrication process and (ii) foldable substrates creation with ultra-large-scale-integration of high performance energy efficient electronics. Hence, we show a low-cost generic batch process based on trench-protect-peel-recycle to fabricate rigid and flexible 3D ICs as well as high performance flexible electronics. As of today we have made every single component to make a fully flexible computer including non-planar state-of-the-art FinFETs. Additionally we have demonstrated various solid-state memory, movable MEMS devices, energy harvesting and storage components. To show the versatility of our process, we have extended our process towards other inorganic semiconductor substrates such as silicon germanium and III-V materials. Finally, we report first ever fully flexible programmable silicon based microprocessor towards foldable brain computation and wirelessly programmable stretchable and flexible thermal patch for pain management for smart bionics.
NASA Astrophysics Data System (ADS)
Moon, Hong Chul; Lodge, Timothy P.; Frisbie, C. Daniel
2014-03-01
We have expanded the functionality of ion gels and successfully demonstrated low voltage, flexible electrochemiluminescent (ECL) devices using patterned ECL gels. An ECL device composed of only an emissive gel and two electrodes was fabricated on an ITO-coated substrate by solution casting the ECL gel and brush-painting the top silver electrode. The device turned on at an AC voltage as low as 2.6 V (-1.3 V ~ +1.3 V) and showed a relatively rapid response (sub-ms). Also, we varied the mechanical properties of the ECL gel simply by substituting polystyrene-block-poly(methyl methacrylate)-block-polystyrene (SMS) with commercially available poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)), enabling the fabrication of flexible ECL devices on any target substrate by the ``cut-and-stick'' strategy. This simple, rubbery ECL gel should be attractive for flexible electronics applications such as displays on packaging.
NASA Astrophysics Data System (ADS)
Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming
2017-10-01
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.
Flexible active-matrix displays and shift registers based on solution-processed organic transistors.
Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M
2004-02-01
At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'.
Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-01-01
This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g. PMID:23698262
Flexible PZT thin film tactile sensor for biomedical monitoring.
Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong
2013-04-25
This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.
Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob
2016-09-01
Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.
Vo-Dinh, Tuan
1987-01-01
A substrate for use in surface-enhanced Raman spectroscopy (SERS) is disclosed, comprising a support, preferably flexible, coated with roughness-imparting microbodies and a metallized overcoating. Also disclosed is apparatus for using the aforesaid substrate in continuous and static SERS trace analyses, especially of organic compounds.
NASA Astrophysics Data System (ADS)
Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo
2015-11-01
Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Pradhipta Tenggara, Ayodya; Park, S. J.; Teguh Yudistira, Hadi; Ahn, Y. H.; Byun, Doyoung
2017-03-01
We demonstrated the fabrication of terahertz metamaterial sensor for the accurate and on-site detection of yeast using electrohydrodynamic jet printing, which is inexpensive, simple, and environmentally friendly. The very small sized pattern up to 5 µm-width of electrical split ring resonator unit structures could be printed on a large area on both a rigid substrate and flexible substrate, i.e. silicon wafer and polyimide film using the drop on demand technique to eject liquid ink containing silver nanoparticles. Experimental characterization and simulation were performed to study their performances in detecting yeast of different weights. It was shown that the metamaterial sensor fabricated on a flexible polyimide film had higher sensitivity by more than six times than the metamaterial sensor fabricated on a silicon wafer, due to the low refractive index of the PI substrate and due to the extremely thin substrate thickness which lowers the effective index further. The resonance frequency shift saturated when the yeast weights were 145 µg and 215 µg for metamaterial structures with gap size 6.5 µm fabricated on the silicon substrate and on the polyimide substrate, respectively.
NASA Astrophysics Data System (ADS)
Madaria, Anuj R.; Kumar, Akshay; Zhou, Chongwu
2011-06-01
The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σDC/σOp, for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, ΦTE. Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.
Wang, Yingcheng; Jin, Yuanhao; Xiao, Xiaoyang; Zhang, Tianfu; Yang, Haitao; Zhao, Yudan; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Li, Qunqing
2018-05-30
A flexible and transparent film assembled from the cross-nanoporous structures of Au on PET (CNS of Au@PET) is developed as a versatile and effective SERS substrate for rapid, on-site trace analysis with high sensitivity. The fabrication of the CNS of Au can be achieved on a large scale at low cost by employing an etching process with super-aligned carbon nanotubes as a mask, followed by metal deposition. A strongly enhanced Raman signal with good uniformity can be obtained, which is attributed to the excitation of "hot spots" around the metal nanogaps and sharp edges. Using the CNS of Au@PET film as a SERS platform, real-time and on-site SERS detection of the food contaminant crystal violet (CV) is achieved, with a detection limit of CV solution on a tomato skin of 10-7 M. Owing to its ability to efficiently extract trace analytes, the resulting substrate also achieves detection of 4-ATP contaminants and thiram pesticides by swabbing the skin of an apple. A SERS detection signal for 4-ATP has a relative standard deviation of less than 10%, revealing the excellent reproducibility of the substrate. The flexible, transparent and highly sensitive substrates fabricated using this simple and cost-effective strategy are promising for practical application in rapid, on-site SERS-based detection.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.
Method of manufacturing a shapeable short-resistant capacitor
Taylor, Ralph S.; Myers, John D.; Baney, William J.
2013-04-02
A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.
Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating
NASA Astrophysics Data System (ADS)
Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred
2011-03-01
We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.
Sun, Bai; Zhang, Xuejiao; Zhou, Guangdong; Yu, Tian; Mao, Shuangsuo; Zhu, Shouhui; Zhao, Yong; Xia, Yudong
2018-06-15
In this work, a flexible resistive switching memory device based on ZnO film was fabricated using a foldable Polyethylene terephthalate (PET) film as substrate while Ag and Ti acts top and bottom electrode. Our as-prepared device represents an outstanding nonvolatile memory behavior with good "write-read-erase-read" stability at room temperature. Finally, a physical model of Ag conductive filament is constructed to understanding the observed memory characteristics. The work provides a new way for the preparation of flexible memory devices based on ZnO films, and especially provides an experimental basis for the exploration of high-performance and portable nonvolatile resistance random memory (RRAM). Copyright © 2018 Elsevier Inc. All rights reserved.
A novel evaluation strategy for fatigue reliability of flexible nanoscale films
NASA Astrophysics Data System (ADS)
Zheng, Si-Xue; Luo, Xue-Mei; Wang, Dong; Zhang, Guang-Ping
2018-03-01
In order to evaluate fatigue reliability of nanoscale metal films on flexible substrates, here we proposed an effective evaluation way to obtain critical fatigue cracking strain based on the direct observation of fatigue damage sites through conventional dynamic bending testing technique. By this method, fatigue properties and damage behaviors of 930 nm-thick Au films and 600 nm-thick Mo-W multilayers with individual layer thickness 100 nm on flexible polyimide substrates were investigated. Coffin-Manson relationship between the fatigue life and the applied strain range was obtained for the Au films and Mo-W multilayers. The characterization of fatigue damage behaviors verifies the feasibility of this method, which seems easier and more effective comparing with the other testing methods.
Self-assembly of block copolymers on topographically patterned polymeric substrates
Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting
2016-05-10
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
Imparting Icephobicity with Substrate Flexibility.
Vasileiou, Thomas; Schutzius, Thomas M; Poulikakos, Dimos
2017-07-11
Ice accumulation hinders the performance of, and poses safety threats for, infrastructure both on the ground and in the air. Previously, rationally designed superhydrophobic surfaces have demonstrated some potential as a passive means to mitigate ice accretion; however, further studies on material solutions that reduce impalement and the contact time for impacting supercooled droplets (high viscosity) and can also repel droplets that freeze during surface contact are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface micro/nanotexture on enhancing both icephobicity and the repellency of viscous droplets (typical of supercooled water). We first investigate the influence of increased viscosity (spanning from 0.9 to 1078 mPa·s using water-glycerol mixtures) on impalement resistance and the droplet-substrate contact time after impact. Then we examine the effect of droplet partial solidification on recoil and simulate more challenging icing conditions by impacting supercooled water droplets (down to -15 °C) onto flexible and rigid surfaces containing ice nucleation promoters (AgI). We demonstrate a passive mechanism for shedding partially solidified (recalescent) droplets-under conditions where partial solidification occurs much faster than the natural droplet oscillation-which does not rely on converting droplet surface energy into kinetic energy (classic recoil mechanism). Using an energy-based model (kinetic-elastic-capillary), we identify a previously unexplored mechanism whereby the substrate oscillation and velocity govern the rebound process, with low areal density and moderately stiff substrates acting to efficiently absorb the incoming droplet kinetic energy and rectify it back, allowing droplets to overcome adhesion and gravitational forces, and recoil. This mechanism applies for a range of droplet viscosities, spanning from low- to high-viscosity fluids and even ice slurries, which do not rebound from rigid superhydrophobic substrates. For a low-viscosity fluid, i.e., water, if the substrate oscillates faster than the droplet spreading and retraction, the action of the substrate is decoupled from the droplet oscillation, resulting in a reduction in the droplet-substrate contact time.
Method for encapsulating the edge of a flexible sheet
Keenihan, James R; Clarey, Todd M
2013-02-19
The present invention is premised upon an inventive method of producing an over-molded edge portion on a flexible substrate, wherein the edge portion is void of open areas due to support devices in the mold cavity.
Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing
NASA Astrophysics Data System (ADS)
Hines, Daniel R.
Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.
Surface-enhanced Raman scattering from graphene covered gold nanocap arrays
NASA Astrophysics Data System (ADS)
Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng
2013-11-01
This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.
NASA Astrophysics Data System (ADS)
Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun
2016-08-01
Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 106 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.
Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array
NASA Astrophysics Data System (ADS)
Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min
2009-03-01
We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.
Rich variety of substrates for surface enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong
2016-09-01
The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.
Lightening Soldiers' Loads by Lifting PV Cells onto Flexible Surfaces |
efficiency of cells grown on thick-glass substrates. Reese's challenge has been to combine the best of both CdTe solar cells on flexible glass. "When you grow a CdTe cell, you need to grow it for highest glass, which can withstand high temperatures, was promising, this approach had a drawback. Even flexible
Flexible diodes for radio frequency (RF) electronics: a materials perspective
NASA Astrophysics Data System (ADS)
Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.
2017-12-01
Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.
Tavakoli, Mohammad Mahdi; Tsui, Kwong-Hoi; Zhang, Qianpeng; He, Jin; Yao, Yan; Li, Dongdong; Fan, Zhiyong
2015-10-27
Flexible thin film solar cells have attracted a great deal of attention as mobile power sources and key components for building-integrated photovoltaics, due to their light weight and flexible features in addition to compatibility with low-cost roll-to-roll fabrication processes. Among many thin film materials, organometallic perovskite materials are emerging as highly promising candidates for high efficiency thin film photovoltaics; however, the performance, scalability, and reliability of the flexible perovskite solar cells still have large room to improve. Herein, we report highly efficient, flexible perovskite solar cells fabricated on ultrathin flexible glasses. In such a device structure, the flexible glass substrate is highly transparent and robust, with low thermal expansion coefficient, and perovskite thin film was deposited with a thermal evaporation method that showed large-scale uniformity. In addition, a nanocone array antireflection film was attached to the front side of the glass substrate in order to improve the optical transmittance and to achieve a water-repelling effect at the same time. It was found that the fabricated solar cells have reasonable bendability, with 96% of the initial value remaining after 200 bending cycles, and the power conversion efficiency was improved from 12.06 to 13.14% by using the antireflection film, which also demonstrated excellent superhydrophobicity.
Chemical formation of soft metal electrodes for flexible and wearable electronics.
Wang, Dongrui; Zhang, Yaokang; Lu, Xi; Ma, Zhijun; Xie, Chuan; Zheng, Zijian
2018-06-18
Flexible and wearable electronics is one major technology after smartphones. It shows remarkable application potential in displays and informatics, robotics, sports, energy harvesting and storage, and medicine. As an indispensable part and the cornerstone of these devices, soft metal electrodes (SMEs) are of great significance. Compared with conventional physical processes such as vacuum thermal deposition and sputtering, chemical approaches for preparing SMEs show significant advantages in terms of scalability, low-cost, and compatibility with the soft materials and substrates used for the devices. This review article provides a detailed overview on how to chemically fabricate SMEs, including the material preparation, fabrication technologies, methods to characterize their key properties, and representative studies on different wearable applications.
A Flexible Metamaterial Terahertz Perfect Absorber
NASA Astrophysics Data System (ADS)
Chen, X. R.; Zheng, Y. W.; Qin, L. M.; Wei, G. C.; Qin, Z. P.; Zhang, N. G.; Liu, K.; Li, S. Z.; Wang, S. X.
2017-12-01
We designed a THz matematerial absorber using metallic wires (MWs) and split resonant rings (SRRs). This matematerial absorber exhibits perfect absorption which up to 96% at 4.03 THz and is capable of wrapped around objects because of flexible polyimide dielectric substrate.
Wang, Qun; Jin, Xin
2018-01-01
We report the first results of functional properties of nitrogenized silver-permalloy thin films deposited on polyethylene terephthalic ester {PETE (C10H8O4)n} flexible substrates by magnetron sputtering. These new soft magnetic thin films have magnetization that is comparable to pure Ni81Fe19 permalloy films. Two target compositions (Ni76Fe19Ag5 and Ni72Fe18Ag10) were used to study the effect of compositional variation and sputtering parameters, including nitrogen flow rate on the phase evolution and surface properties. Aggregate flow rate and total pressure of Ar+N2 mixture was 60 sccm and 0.55 Pa, respectively. The distance between target and the substrate was kept at 100 mm, while using sputtering power from 100–130 W. Average film deposition rate was confirmed at around 2.05 nm/min for argon atmosphere and was reduced to 1.8 nm/min in reactive nitrogen atmosphere. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and contact angle measurements were used to characterize the functional properties. Nano sized character of films was confirmed by XRD and SEM. It is found that the grain size was reduced by the formation of nitride phase, which in turns enhanced the magnetization and lowers the coercivity. Magnetic field coupling efficiency limit was determined from 1.6–2 GHz frequency limit. The results of comparable magnetic performance, lowest magnetic loss, and highest surface free energy, confirming that 15 sccm nitrogen flow rate at 115 W is optimal for producing Ag-doped permalloy flexible thin films having excellent magnetic field coupling efficiency. PMID:29562603
Salvatore, Giovanni A; Münzenrieder, Niko; Barraud, Clément; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Ensslin, Klaus; Tröster, Gerhard
2013-10-22
Recently, transition metal dichalcogenides (TMDCs) have attracted interest thanks to their large field effective mobility (>100 cm(2)/V · s), sizable band gap (around 1-2 eV), and mechanical properties, which make them suitable for high performance and flexible electronics. In this paper, we present a process scheme enabling the fabrication and transfer of few-layers MoS2 thin film transistors from a silicon template to any arbitrary organic or inorganic and flexible or rigid substrate or support. The two-dimensional semiconductor is mechanically exfoliated from a bulk crystal on a silicon/polyvinyl alcohol (PVA)/polymethyl methacrylane (PMMA) stack optimized to ensure high contrast for the identification of subnanometer thick flakes. Thin film transistors (TFTs) with structured source/drain and gate electrodes are fabricated following a designed procedure including steps of UV lithography, wet etching, and atomic layer deposited (ALD) dielectric. Successively, after the dissolution of the PVA sacrificial layer in water, the PMMA film, with the devices on top, can be transferred to another substrate of choice. Here, we transferred the devices on a polyimide plastic foil and studied the performance when tensile strain is applied parallel to the TFT channel. We measured an electron field effective mobility of 19 cm(2)/(V s), an I(on)/I(off)ratio greater than 10(6), a gate leakage current as low as 0.3 pA/μm, and a subthreshold swing of about 250 mV/dec. The devices continue to work when bent to a radius of 5 mm and after 10 consecutive bending cycles. The proposed fabrication strategy can be extended to any kind of 2D materials and enable the realization of electronic circuits and optical devices easily transferrable to any other support.
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy
2004-01-01
Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,
Architecture of cognitive flexibility revealed by lesion mapping
Barbey, Aron K.; Colom, Roberto; Grafman, Jordan
2013-01-01
Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia
2016-01-15
Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the poresmore » of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for the commercialization of S-ALD for coating Li ion battery electrodes.« less
2012-01-01
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400
Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung
2015-10-01
Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.
Direct transfer of wafer-scale graphene films
NASA Astrophysics Data System (ADS)
Kim, Maria; Shah, Ali; Li, Changfeng; Mustonen, Petri; Susoma, Jannatul; Manoocheri, Farshid; Riikonen, Juha; Lipsanen, Harri
2017-09-01
Flexible electronics serve as the ubiquitous platform for the next-generation life science, environmental monitoring, display, and energy conversion applications. Outstanding multi-functional mechanical, thermal, electrical, and chemical properties of graphene combined with transparency and flexibility solidifies it as ideal for these applications. Although chemical vapor deposition (CVD) enables cost-effective fabrication of high-quality large-area graphene films, one critical bottleneck is an efficient and reproducible transfer of graphene to flexible substrates. We explore and describe a direct transfer method of 6-inch monolayer CVD graphene onto transparent and flexible substrate based on direct vapor phase deposition of conformal parylene on as-grown graphene/copper (Cu) film. The method is straightforward, scalable, cost-effective and reproducible. The transferred film showed high uniformity, lack of mechanical defects and sheet resistance for doped graphene as low as 18 Ω/sq and 96.5% transparency at 550 nm while withstanding high strain. To underline that the introduced technique is capable of delivering graphene films for next-generation flexible applications we demonstrate a wearable capacitive controller, a heater, and a self-powered triboelectric sensor.
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...
2016-02-09
To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-01
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.
Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng
2014-10-08
Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.
Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics
Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng
2014-01-01
Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573
Flexible Skins Containing Integrated Sensors and Circuitry
NASA Technical Reports Server (NTRS)
Liu, Chang
2007-01-01
Artificial sensor skins modeled partly in imitation of biological sensor skins are undergoing development. These sensor skins comprise flexible polymer substrates that contain and/or support dense one- and two-dimensional arrays of microscopic sensors and associated microelectronic circuits. They afford multiple tactile sensing modalities for measuring physical phenomena that can include contact forces; hardnesses, temperatures, and thermal conductivities of objects with which they are in contact; and pressures, shear stresses, and flow velocities in fluids. The sensor skins are mechanically robust, and, because of their flexibility, they can be readily attached to curved and possibly moving and flexing surfaces of robots, wind-tunnel models, and other objects that one might seek to equip for tactile sensing. Because of the diversity of actual and potential sensor-skin design criteria and designs and the complexity of the fabrication processes needed to realize the designs, it is not possible to describe the sensor-skin concept in detail within this article.
NASA Astrophysics Data System (ADS)
Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.
2017-05-01
In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.
Scheib, H.; Pleiss, J.; Kovac, A.; Paltauf, F.; Schmid, R. D.
1999-01-01
The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity. PMID:10210199
Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions
NASA Astrophysics Data System (ADS)
You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen
2017-04-01
Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.
Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.
2005-01-01
The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.
Dye-sensitized solar cells using laser processing techniques
NASA Astrophysics Data System (ADS)
Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.
2004-07-01
Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.
NASA Astrophysics Data System (ADS)
Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui
2018-05-01
In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.
Assembling surface mounted components on ink-jet printed double sided paper circuit board.
Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik
2014-03-07
Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.
Zhang, Kui; Li, Jia; Fang, Yunsheng; Luo, Beibei; Zhang, Yanli; Li, Yanqiu; Zhou, Jun; Hu, Bin
2018-04-25
A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.
Flexible random lasers with tunable lasing emissions.
Lee, Ya-Ju; Chou, Chun-Yang; Yang, Zu-Po; Nguyen, Thi Bich Hanh; Yao, Yung-Chi; Yeh, Ting-Wei; Tsai, Meng-Tsan; Kuo, Hao-Chun
2018-04-19
In this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate. Such observation is highly repeatable and reversible, and this validates that we can control the lasing wavelength by simply bending the flexible substrate decorated with the Ag NPRs. The scattering spectrum of the Ag NPRs was obtained using a dark-field microscope to understand the mechanism for the dependence of the wavelength shift on the exerted bending strains. As a result, we believe that the experimental demonstration of tunable lasing emissions based on the revealed structure is expected to open up a new application field of random lasers.
Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
Liu, Yi-Kai; Lee, Ming-Tsang
2014-08-27
This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.
Knuesel, Robert J.; Jacobs, Heiko O.
2010-01-01
This paper introduces a method for self-assembling and electrically connecting small (20–60 micrometer) semiconductor chiplets at predetermined locations on flexible substrates with high speed (62500 chips/45 s), accuracy (0.9 micrometer, 0.14°), and yield (> 98%). The process takes place at the triple interface between silicone oil, water, and a penetrating solder-patterned substrate. The assembly is driven by a stepwise reduction of interfacial free energy where chips are first collected and preoriented at an oil-water interface before they assemble on a solder-patterned substrate that is pulled through the interface. Patterned transfer occurs in a progressing linear front as the liquid layers recede. The process eliminates the dependency on gravity and sedimentation of prior methods, thereby extending the minimal chip size to the sub-100 micrometer scale. It provides a new route for the field of printable electronics to enable the integration of microscopic high performance inorganic semiconductors on foreign substrates with the freedom to choose target location, pitch, and integration density. As an example we demonstrate a fault-tolerant segmented flexible monocrystalline silicon solar cell, reducing the amount of Si that is used when compared to conventional rigid cells. PMID:20080682
Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong
2016-02-21
Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.
Choi, David; Poudel, Nirakar; Park, Saungeun; Akinwande, Deji; Cronin, Stephen B; Watanabe, Kenji; Taniguchi, Takashi; Yao, Zhen; Shi, Li
2018-04-04
Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO 2 /Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO 2 /Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO 2 /Si, resulting in a larger degree of temperature reduction.
Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles
NASA Astrophysics Data System (ADS)
Roy, N. K.; Dibua, O. G.; Cullinan, M. A.
2018-03-01
Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.
Drying of Pigment-Cellulose Nanofibril Substrates
Timofeev, Oleg; Torvinen, Katariina; Sievänen, Jenni; Kaljunen, Timo; Kouko, Jarmo; Ketoja, Jukka A.
2014-01-01
A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature. PMID:28788220
Wu, Yizhen; Wang, Le; Chen, Mingxing; Jin, Zhaoxia; Zhang, Wei; Cao, Rui
2017-12-08
Artificial photosynthesis requires efficient anodic electrode materials for water oxidation. Cobalt metal thin films are prepared through facile physical vapor deposition (PVD) on various nonconductive substrates, including regular and quartz glass, mica sheet, polyimide, and polyethylene terephthalate (PET). Subsequent surface electrochemical modification by cyclic voltammetry (CV) renders these films active for electrocatalytic water oxidation, reaching a current density of 10 mA cm -2 at a low overpotential of 330 mV in 1.0 m KOH solution. These electrodes are robust with unchanged activity throughout prolonged chronopotentiometry measurements. This work is thus significant to show that the combination of PVD and CV is very valuable and convenient to fabricate active electrodes on various nonconductive substrates, particularly with flexible polyimide and PET substrates. This efficient, safe and convenient method can potentially be expanded to many other electrochemical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
All dispenser printed flexible 3D structured thermoelectric generators
NASA Astrophysics Data System (ADS)
Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.
2015-12-01
This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.
Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.
2015-04-01
Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.
Flexible single-crystal silicon nanomembrane photonic crystal cavity.
Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T
2014-12-23
Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.
Ultraclean and Direct Transfer of a Wafer-Scale MoS2 Thin Film onto a Plastic Substrate.
Phan, Hoang Danh; Kim, Youngchan; Lee, Jinhwan; Liu, Renlong; Choi, Yongsuk; Cho, Jeong Ho; Lee, Changgu
2017-02-01
An ultraclean method to directly transfer a large-area MoS 2 film from the original growth substrate to a flexible substrate by using epoxy glue is developed. The transferred film is observed to be free of wrinkles and cracks and to be as smooth as the film synthesized on the original substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon
2012-04-01
TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.
NASA Astrophysics Data System (ADS)
Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.
2015-01-01
Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.
NASA Astrophysics Data System (ADS)
Vidor, Fábio F.; Meyers, Thorsten; Müller, Kathrin; Wirth, Gilson I.; Hilleringmann, Ulrich
2017-11-01
Driven by the Internet of Things (IoT), flexible and transparent smart systems have been intensively researched by the scientific community and by several companies. This technology is already available for consumers in a wide range of innovative products, e.g., flexible displays, radio-frequency identification tags and wearable electronic skins which, for instance, collect and analyze data for medical applications. For these systems, thin-film transistors (TFTs) are the key elements responsible for the driving currents. Solution-based materials such as nanoparticle dispersions avail the fabrication on large-area substrates with high throughput processes. In this study, we discuss the integration of ZnO nanoparticle thin-film transistors and inverter circuits on freestanding polymeric substrates enclosing the main issues concerning the transfer of the integration process from a rigid substrate to a flexible one. The TFTs depict VON between -0.2 and 1 V, ION/IOFF > 104 and field-effect mobility >0.5 cm2 V-1 s-1. Additionally, in order to enhance the transistors and inverters performance, an adaptation on the device configuration, from an inverted coplanar to an inverted staggered setup, was conducted and analyzed. By employing the inverted staggered setup a considerable increase in the contact quality between the semiconductor and the drain and source electrodes was observed. As the integrated devices depict electrical characteristics which enable the fabrication of electronic circuits for the low-cost sector, inverters were fabricated and characterized, evaluating the circuit's gain as function of the applied supply voltage and circuit's geometric ratio.
Method for making thick and/or thin film
Pham, Ai Quoc; Glass, Robert S.
2004-11-02
A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.
Bioprinting for stem cell research
Tasoglu, Savas; Demirci, Utkan
2012-01-01
Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A
2008-07-24
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
NASA Astrophysics Data System (ADS)
Rahy, Abdelaziz
The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koda, Tatsunori; Toyota, Hiroshi, E-mail: h.toyota.za@it-hiroshima.ac.jp
The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities ofmore » I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.« less
Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun
2017-01-01
Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229
NASA Astrophysics Data System (ADS)
Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun
2017-03-01
Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq-1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq-1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.
Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.
Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon
2016-03-01
We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.
Fabrication of silicon films from patterned protruded seeds
NASA Astrophysics Data System (ADS)
Zeng, Huang; Zhang, Wei; Li, Jizhou; Wang, Cong; Yang, Hui; Chen, Yigang; Chen, Xiaoyuan; Liu, Dongfang
2017-05-01
Thin, flexible silicon crystals are starting up applications such as light-weighted flexible solar cells, SOI, flexible IC chips, 3D ICs imagers and 3D CMOS imagers on the demand of high performance with low cost. Kerfless wafering technology by direct conversion of source gases into mono-crystalline wafers on reusable substrates is highly cost-effective and feedstock-effective route to cheap wafers with the thickness down to several microns. Here we show a prototype for direct conversion of silicon source gases to wafers by using the substrate with protruded seeds. A reliable and controllable method of wafer-scaled preparation of protruded seed patterns has been developed by filling liquid wax into a rod array as the mask for the selective removal of oxide layer on the rod head. Selectively epitaxial growth is performed on the protruded seeds, and the voidless film is formed by the merging of neighboring seeds through growing. And structured hollows are formed between the grown film and the substrate, which would offer the transferability of the grown film and the reusability of the protruded seeds.
Advances in all-sputtered CdTe solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Wieland, Kristopher; Mahabaduge, Hasitha; Vasko, Anthony; Compaan, Alvin
2010-03-01
The University of Toledo II-VI semiconductor group has developed magnetron sputtering (MS) for the deposition of thin films of CdS, CdTe, and related materials for photovoltaic applications. On glass superstrates, we have reached air mass 1.5 efficiencies of 14%.[1] Recently we have studied the use of MS for the fabrication of thin-film CdS/CdTe cells on flexible polyimide superstrates. This takes advantage of the high film quality that can be achieved at substrate temperatures below 300 C when RF MS is used. Our recent CdS/CdTe solar cells have reached 10.5% on flexible polyimide substrates. [2] This all-sputtered cell (except for back contact) has a structure of polyimide/ZnO:Al/ZnO/CdS/CdTe/Cu/Au. The physics of this device will be discussed through the use of spectral quantum efficiency and current-voltage measurements as a function of CdTe layer thickness. Pathways toward further increases in device efficiencies will also be discussed. [1] Appl. Phys. Lett. 85, 684 (2004) [2] Phys. Stat. Sol. (B) 241, No. 3, 779--782 (2004)
Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo
2017-03-01
Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype
NASA Astrophysics Data System (ADS)
Chlenova, A. A.; Melnikov, G. Yu.; Svalov, A. V.; Kurlyandskaya, G. V.
2016-09-01
Magnetically soft [Ti/FeNi]5/Ti/Cu/Ti/[FeNi/Ti]4 multilayered structures were obtained by magnetron sputtering. Based on them sensitive elements have been investigated with focus on the design of the giant magnetoimpedance (MI) pressure sensors. Magnetic properties and MI of fabricated sensitive elements were comparatively analyzed for both multilayers deposited both onto rigid and flexible polymer substrates. Structures on a rigid substrate had the highest MI ratio of 140 %. They showed the sensitivity of 0.70 %/Ba suitable for possible applications in pressure sensing. Structures deposited onto flexible Cyclo Olefin Copolymer substrates had slightly lower sensitivity of 0.55 %/Ba. That structures showing linear dependence of MI ratio in the pressure range of 0 to 360 Ba are promising for microfluidic and biosensor applications.
Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates
NASA Astrophysics Data System (ADS)
Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.
2012-11-01
The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.
Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array.
Koh, Juntae; Yi, Mihye; Yang Lee, Byung; Kim, Tae Hyun; Lee, Joohyung; Jhon, Young Min; Hong, Seunghun
2008-12-17
We have developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for use as flexible biosensors. In this strategy, a thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and a linker-free assembly process was applied on the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited a typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neurotransmitting material, and monosodium glutamate, a food additive.
Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P; Datta, Santanu; Venkatraman, Janani
2017-01-01
Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved.
Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P.; Datta, Santanu; Venkatraman, Janani
2017-01-01
Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved. PMID:28107498
NASA Technical Reports Server (NTRS)
Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.
2007-01-01
Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.
Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng
2014-01-01
Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458
Screen printed passive components for flexible power electronics
NASA Astrophysics Data System (ADS)
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-10-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Screen printed passive components for flexible power electronics
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-01-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331
Remarkably High Mobility Thin-Film Transistor on Flexible Substrate by Novel Passivation Material.
Shih, Cheng Wei; Chin, Albert
2017-04-25
High mobility thin-film transistor (TFT) is crucial for future high resolution and fast response flexible display. Remarkably high performance TFT, made at room temperature on flexible substrate, is achieved with record high field-effect mobility (μ FE ) of 345 cm 2 /Vs, small sub-threshold slope (SS) of 103 mV/dec, high on-current/off-current (I ON /I OFF ) of 7 × 10 6 , and a low drain-voltage (V D ) of 2 V for low power operation. The achieved mobility is the best reported data among flexible electronic devices, which is reached by novel HfLaO passivation material on nano-crystalline zinc-oxide (ZnO) TFT to improve both I ON and I OFF . From X-ray photoelectron spectroscopy (XPS) analysis, the non-passivated device has high OH-bonding intensity in nano-crystalline ZnO, which damage the crystallinity, create charged scattering centers, and form potential barriers to degrade mobility.
Screen printed passive components for flexible power electronics.
Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C
2015-10-30
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Piezoresistive effect observed in flexible amorphous carbon films
NASA Astrophysics Data System (ADS)
Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.
2018-05-01
Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.
1-dimension nano-material-based flexible device
NASA Astrophysics Data System (ADS)
Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong
2009-11-01
1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.
Insights into substrate binding and catalysis in bacterial type I dehydroquinase.
Maneiro, María; Peón, Antonio; Lence, Emilio; Otero, José M; Van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción
2014-09-15
Structural, biochemical and computational studies to study substrate binding and the role of the conserved residues of the DHQ1 (type I dehydroquinase) enzyme active site are reported in the present paper. The crystal structure of DHQ1 from Salmonella typhi in complex with (2R)-2-methyl-3-dehydroquinic acid, a substrate analogue, was solved at 1.5 Å. The present study reveals a previously unknown key role for conserved Glu46, Phe145 and Met205 and Gln236, Pro234 and Ala233 residues, with the latter three being located in the flexible substrate-covering loop. Gln236 was shown to be responsible for the folding of this loop and for the dramatic reduction of its flexibility, which triggers active site closure. Glu46 was found to be key in bringing the substrate close to the lysine/histidine catalytic pocket to initiate catalysis. The present study could be useful in the rational design of inhibitors of this challenging and recognized target for the development of novel herbicides and antimicrobial agents.
Solution processed aluminum paper for flexible electronics.
Lee, Hye Moon; Lee, Ha Beom; Jung, Dae Soo; Yun, Jung-Yeul; Ko, Seung Hwan; Park, Seung Bin
2012-09-11
As an alternative to vacuum deposition, preparation of highly conductive papers with aluminum (Al) features is successfully achieved by the solution process consisting of Al precursor ink (AlH(3){O(C(4)H(9))(2)}) and low temperature stamping process performed at 110 °C without any serious hydroxylation and oxidation problems. Al features formed on several kinds of paper substrates (calendar, magazine, and inkjet printing paper substrates) are less than ~60 nm thick, and their electrical conductivities were found to be as good as thermally evaporated Al film or even better (≤2 Ω/□). Strong adhesion of Al features to paper substrates and their excellent flexibility are also experimentally confirmed by TEM observation and mechanical tests, such as tape and bending tests. The solution processed Al features on paper substrates show different electrical and mechanical performance depending on the paper type, and inkjet printing paper is found to be the best substrate with high and stable electrical and mechanical properties. The Al conductive papers produced by the solution process may be applicable in disposal paper electronics.
The macroscopic delamination of thin films from elastic substrates
Vella, Dominic; Bico, José; Boudaoud, Arezki; Roman, Benoit; Reis, Pedro M.
2009-01-01
The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine. PMID:19556551
Conformational transitions in DNA polymerase I revealed by single-molecule FRET
Santoso, Yusdi; Joyce, Catherine M.; Potapova, Olga; Le Reste, Ludovic; Hohlbein, Johannes; Torella, Joseph P.; Grindley, Nigel D. F.; Kapanidis, Achillefs N.
2010-01-01
The remarkable fidelity of most DNA polymerases depends on a series of early steps in the reaction pathway which allow the selection of the correct nucleotide substrate, while excluding all incorrect ones, before the enzyme is committed to the chemical step of nucleotide incorporation. The conformational transitions that are involved in these early steps are detectable with a variety of fluorescence assays and include the fingers-closing transition that has been characterized in structural studies. Using DNA polymerase I (Klenow fragment) labeled with both donor and acceptor fluorophores, we have employed single-molecule fluorescence resonance energy transfer to study the polymerase conformational transitions that precede nucleotide addition. Our experiments clearly distinguish the open and closed conformations that predominate in Pol-DNA and Pol-DNA-dNTP complexes, respectively. By contrast, the unliganded polymerase shows a broad distribution of FRET values, indicating a high degree of conformational flexibility in the protein in the absence of its substrates; such flexibility was not anticipated on the basis of the available crystallographic structures. Real-time observation of conformational dynamics showed that most of the unliganded polymerase molecules sample the open and closed conformations in the millisecond timescale. Ternary complexes formed in the presence of mismatched dNTPs or complementary ribonucleotides show unique FRET species, which we suggest are relevant to kinetic checkpoints that discriminate against these incorrect substrates. PMID:20080740
High-Throughput Fabrication of Flexible and Transparent All-Carbon Nanotube Electronics.
Chen, Yong-Yang; Sun, Yun; Zhu, Qian-Bing; Wang, Bing-Wei; Yan, Xin; Qiu, Song; Li, Qing-Wen; Hou, Peng-Xiang; Liu, Chang; Sun, Dong-Ming; Cheng, Hui-Ming
2018-05-01
This study reports a simple and effective technique for the high-throughput fabrication of flexible all-carbon nanotube (CNT) electronics using a photosensitive dry film instead of traditional liquid photoresists. A 10 in. sized photosensitive dry film is laminated onto a flexible substrate by a roll-to-roll technology, and a 5 µm pattern resolution of the resulting CNT films is achieved for the construction of flexible and transparent all-CNT thin-film transistors (TFTs) and integrated circuits. The fabricated TFTs exhibit a desirable electrical performance including an on-off current ratio of more than 10 5 , a carrier mobility of 33 cm 2 V -1 s -1 , and a small hysteresis. The standard deviations of on-current and mobility are, respectively, 5% and 2% of the average value, demonstrating the excellent reproducibility and uniformity of the devices, which allows constructing a large noise margin inverter circuit with a voltage gain of 30. This study indicates that a photosensitive dry film is very promising for the low-cost, fast, reliable, and scalable fabrication of flexible and transparent CNT-based integrated circuits, and opens up opportunities for future high-throughput CNT-based printed electronics.
NASA Astrophysics Data System (ADS)
Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho
2016-04-01
Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00444j
Yoon, Bora; Ham, Dae-Young; Yarimaga, Oktay; An, Hyosung; Lee, Chan Woo; Kim, Jong-Man
2011-12-08
Inkjet-printable aqueous suspensions of conjugated polymer precursors are developed for fabrication of patterned color images on paper substrates. Printing of a diacetylene (DA)-surfactant composite ink on unmodified paper and photopaper, as well as on a banknote, enables generation of latent images that are transformed to blue-colored polydiacetylene (PDA) structures by UV irradiation. Both irreversible and reversible thermochromism with the PDA printed images are demonstrated and applied to flexible and disposable sensors and to displays. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tensile and fatigue behaviors of printed Ag thin films on flexible substrates
NASA Astrophysics Data System (ADS)
Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok
2012-11-01
Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.
Elastomeric silicone substrates for terahertz fishnet metamaterials
NASA Astrophysics Data System (ADS)
Khodasevych, I. E.; Shah, C. M.; Sriram, S.; Bhaskaran, M.; Withayachumnankul, W.; Ung, B. S. Y.; Lin, H.; Rowe, W. S. T.; Abbott, D.; Mitchell, A.
2012-02-01
In this work, we characterize the electromagnetic properties of polydimethylsiloxane (PDMS) and use this as a free-standing substrate for the realization of flexible fishnet metamaterials at terahertz frequencies. Across the 0.2-2.5 THz band, the refractive index and absorption coefficient of PDMS are estimated as 1.55 and 0-22 cm-1, respectively. Electromagnetic modeling, multi-layer flexible electronics microfabrication, and terahertz time-domain spectroscopy are used in the design, fabrication, and characterization of the metamaterials, respectively. The properties of PDMS add a degree of freedom to terahertz metamaterials, with the potential for tuning by elastic deformation or integrated microfluidics.
NASA Astrophysics Data System (ADS)
Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie
2017-11-01
Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.
Hard and flexible optical printed circuit board
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-02-01
We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.
Wang, Feng-Xia; Lin, Jian; Gu, Wei-Bing; Liu, Yong-Qiang; Wu, Hao-Di; Pan, Ge-Bo
2013-03-25
Nanowire networks of zinc octaethylporphyrin (ZnOEP) were printed using an aerosol-jet printer on a poly(ethylene terephthalate) (PET) flexible substrate. The prototype photodetector based on the as-printed network exhibited high photosensitivity, fast photoresponse, and excellent mechanical stability.
Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays
2011-01-01
Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660
Flexible copper-indium-diselenide films and devices for space applications
NASA Technical Reports Server (NTRS)
Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.
1991-01-01
With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.
Laser patterning of highly conductive flexible circuits
NASA Astrophysics Data System (ADS)
Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun
2017-04-01
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.
NASA Astrophysics Data System (ADS)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.
2015-10-01
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.
Laser patterning of highly conductive flexible circuits.
Ji, Seok Young; Ajmal, C Muhammed; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun
2017-04-21
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s -1 ). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm -1 . The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.