Graphene-based materials for flexible supercapacitors.
Shao, Yuanlong; El-Kady, Maher F; Wang, Lisa J; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Mousavi, Mir F; Kaner, Richard B
2015-06-07
The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.
Carbon Nanotube Based Flexible Supercapacitors
2011-04-01
Carbon Nanotube Based Flexible Supercapacitors by Christopher M. Anton and Matthew H. Ervin ARL-TR-5522 April 2011...Carbon Nanotube Based Flexible Supercapacitors Christopher M. Anton and Matthew H. Ervin Sensors and Electron Devices Directorate, ARL...September 2010 4. TITLE AND SUBTITLE Carbon Nanotube Based Flexible Supercapacitors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Chemically modified graphene based supercapacitors for flexible and miniature devices
NASA Astrophysics Data System (ADS)
Ghosh, Debasis; Kim, Sang Ouk
2015-09-01
Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.
Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong
2012-02-17
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.
NASA Astrophysics Data System (ADS)
Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong
2012-02-01
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.
Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.
Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei
2013-11-07
Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.
Kang, Yu Jin; Yoo, Yongju; Kim, Woong
2016-06-08
State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics.
Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.
Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming
2016-08-01
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent, flexible, and solid-state supercapacitors based on graphene electrodes
NASA Astrophysics Data System (ADS)
Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam, P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F.
2013-07-01
In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ˜67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.
Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang
2017-10-18
We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.
NASA Astrophysics Data System (ADS)
Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli
2017-10-01
Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.
Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli
2017-10-27
Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.
Recent Progress on Flexible and Wearable Supercapacitors.
Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi
2017-12-01
Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical and Electrochemical Performance of Graphene-Based Flexible Supercapacitors
2014-08-01
Charge/ discharge testing of a packaged, flexible, graphene-based supercapacitor using 0.5 M K2SO4 electrolyte...the use of electrochemical double-layer capacitors (commonly referred to as “supercapacitors”) for high power charging/ discharging and long cyclic...exhibit rapid charging/ discharging and good performance over a wide temperature range. 1 Supercapacitors may prove useful as a standalone power
Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong
2012-07-24
We demonstrate all-solid-state flexible supercapacitors with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity, which were realized by rationally exploiting unique properties of bacterial nanocellulose, carbon nanotubes, and ionic liquid based polymer gel electrolytes. This deliberate choice and design of main components led to excellent supercapacitor performance such as high tolerance against bending cycles and high capacitance retention over charge/discharge cycles. More specifically, the performance of our supercapacitors was highly retained through 200 bending cycles to a radius of 3 mm. In addition, the supercapacitors showed excellent cyclability with C(sp) (~20 mF/cm(2)) reduction of only <0.5% over 5000 charge/discharge cycles at the current density of 10 A/g. Our demonstration could be an important basis for material design and development of flexible supercapacitors.
Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes
NASA Astrophysics Data System (ADS)
Lee, Churl Seung; Bae, Joonho
2013-12-01
Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.
One step shift towards flexible supercapacitors based on carbon nanotubes - A review
NASA Astrophysics Data System (ADS)
Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mumtaz, A.; Irshad, M. I.; Ahmad, F.
2014-10-01
Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2013-05-28
Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie
2013-01-01
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33136e
Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.
Fu, Yongping; Cai, Xin; Wu, Hongwei; Lv, Zhibin; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun
2012-11-08
A novel type of flexible fiber/wearable supercapacitor that is composed of two fiber electrodes - a helical spacer wire and an electrolyte - is demonstrated. In the carbon-based fiber supercapacitor (FSC), which has high capacitance performance, commercial pen ink is directly utilized as the electrochemical material. FSCs have potential benefits in the pursuit of low-cost, large-scale, and efficient flexible/wearable energy storage systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
Li, Huihua; Song, Juan; Wang, Linlin; Feng, Xiaomiao; Liu, Ruiqing; Zeng, Wenjin; Huang, Zhendong; Ma, Yanwen; Wang, Lianhui
2017-01-07
Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm -2 at a scan rate of 10 mV s -1 and maximum energy density of 24.31 mW h cm -2 at a power density of 2.74 mW cm -2 . In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm -1 , which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.
Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang
2014-10-22
Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.
Peng, Shuo; Fan, Lingling; Wei, Chengzhuo; Liu, Xiaohong; Zhang, Hongwei; Xu, Weilin; Xu, Jie
2017-02-10
Polypyrrole (PPy) and copper sulfide (CuS) have been successfully deposited on bacterial cellulose (BC) membranes to prepare nanofibrous composite electrodes of PPy/CuS/BC for flexible supercapacitor applications. The introduction of CuS remarkably improves the specific capacitance and cycling stability of BC-based electrodes. The specific capacitance of the supercapacitors based on the PPy/CuS/BC electrodes can reach to about 580Fg -1 at a current density of 0.8mAcm -2 and can retain about 73% of their initial value after 300 cycles, while the PPy/BC-based device could retain only 21.7% after 300 cycles. This work provides a promising approach to fabricate cost-effective and flexible nanofibrous composite membranes for high-performance supercapacitor electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.
One step shift towards flexible supercapacitors based on carbon nanotubes - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yar, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Dennis, J. O., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com
2014-10-24
Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on researchmore » which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.« less
Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.
Zhang, Leicong; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Su, Haibo; Li, Gang; Gao, Jihua; Sun, Rong; Wong, Ching-Ping
2016-01-26
In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.
Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes
NASA Astrophysics Data System (ADS)
Yang, Yu; Xi, Yunlong; Li, Junzhi; Wei, Guodong; Klyui, N. I.; Han, Wei
2017-06-01
Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g-1 at the current density of 1 A g-1, robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg-1. Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.
Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes.
Yang, Yu; Xi, Yunlong; Li, Junzhi; Wei, Guodong; Klyui, N I; Han, Wei
2017-12-01
Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g -1 at the current density of 1 A g -1 , robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg -1 . Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.
NASA Astrophysics Data System (ADS)
Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe
2018-03-01
Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.
Yu, Peng; Fu, Wei; Zeng, Qingsheng; Lin, Junhao; Yan, Cheng; Lai, Zhuangchai; Tang, Bijun; Suenaga, Kazu; Zhang, Hua; Liu, Zheng
2017-09-01
Compared with 2D S-based and Se-based transition metal dichalcogenides (TMDs), Te-based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te-based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te-based TMD is reported: the type-II Weyl semimetal 1Td WTe 2 . It is demonstrated that single crystals of 1Td WTe 2 can be exfoliated into the nanosheets with 2-7 layers by liquid-phase exfoliation, which are assembled into air-stable films and further all-solid-state flexible supercapacitors. The resulting supercapacitors deliver a mass capacitance of 221 F g -1 and a stack capacitance of 74 F cm -3 . Furthermore, they also show excellent volumetric energy and power densities of 0.01 Wh cm -3 and 83.6 W cm -3 , respectively, superior to the commercial 4V/500 µAh Li thin-film battery and the commercial 3V/300 µAh Al electrolytic capacitor, in association with outstanding mechanical flexibility and superior cycling stability (capacitance retention of ≈91% after 5500 cycles). These results indicate that the 1Td WTe 2 nanosheet is a promising flexible electrode material for high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible supercapacitor electrodes based on real metal-like cellulose papers.
Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan
2017-09-14
The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.
Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.
Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao
2018-04-01
Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functionalized graphene hydrogel-based high-performance supercapacitors.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2013-10-25
Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao
2017-11-30
Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.
Polypyrrole based nanocomposites for supercapacitor applications: A review
NASA Astrophysics Data System (ADS)
Sardar, A.; Gupta, P. S.
2018-05-01
Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
Peng, Lele; Peng, Xu; Liu, Borui; Wu, Changzheng; Xie, Yi; Yu, Guihua
2013-05-08
Planar supercapacitors have recently attracted much attention owing to their unique and advantageous design for 2D nanomaterials based energy storage devices. However, improving the electrochemical performance of planar supercapacitors still remains a great challenge. Here we report for the first time a novel, high-performance in-plane supercapacitor based on hybrid nanostructures of quasi-2D ultrathin MnO2/graphene nanosheets. Specifically, the planar structures based on the δ-MnO2 nanosheets integrated on graphene sheets not only introduce more electrochemically active surfaces for absorption/desorption of electrolyte ions, but also bring additional interfaces at the hybridized interlayer areas to facilitate charge transport during charging/discharging processes. The unique structural design for planar supercapacitors enables great performance enhancements compared to graphene-only devices, exhibiting high specific capacitances of 267 F/g at current density of 0.2 A/g and 208 F/g at 10 A/g and excellent rate capability and cycling stability with capacitance retention of 92% after 7000 charge/discharge cycles. Moreover, the high planar malleability of planar supercapacitors makes possible superior flexibility and robust cyclability, yielding capacitance retention over 90% after 1000 times of folding/unfolding. Ultrathin 2D nanomaterials represent a promising material platform to realize highly flexible planar energy storage devices as the power back-ups for stretchable/flexible electronic devices.
Flexible and integrated supercapacitor with tunable energy storage.
Shao, Changxiang; Xu, Tong; Gao, Jian; Liang, Yuan; Zhao, Yang; Qu, Liangti
2017-08-31
A flexible integrated supercapacitor based on three dimensional reduced graphene oxide/graphene oxide/reduced graphene oxide (RGO-GO-RGO) foam has been fabricated via a laser direct writing strategy. The supercapacitor with outstanding mechanical properties shows a high capacitance performance which can be easily regulated by controlling the compressive state of the electrodes. This work provides a new platform for potential applications in the next-generation intelligent power supply of electronics.
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie
2013-02-07
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.
A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.
Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong
2018-06-11
With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.
Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng
2014-12-22
The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paper-based transparent flexible thin film supercapacitors.
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-06-21
Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm(-2)), and a transmittance of about 56% (at 550 nm).
Wang, Qiufan; Ma, Yun; Wu, Yunlong; Zhang, Daohong; Miao, Menghe
2017-04-10
Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo 2 Se 4 positive electrode and a NiCo 2 O 4 @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.2 F cm -3 ) and excellent cycling performance (94 % retention after 5000 cycles at 0.6 mA) owing to their nanosheet and nanosphere structures. The asymmetric all-solid-state threadlike supercapacitor expanded the stability voltage window from 0-1.0 V to 0-1.7 V and exhibits high volume energy density (5.18 mWh cm -3 ) and superior flexibility under different bending conditions. This study provides a scalable method for fabricating high performance flexible supercapacitors from easily available materials for use in wearable and portable electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors.
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-11-21
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.
All-solid-state flexible ultrathin micro-supercapacitors based on graphene.
Niu, Zhiqiang; Zhang, Li; Liu, Lili; Zhu, Bowen; Dong, Haibo; Chen, Xiaodong
2013-08-07
Flexible, compact, ultrathin and all-solid-state micro-supercapacitors are prepared by coating H₃PO₄/PVA gel electrolyte onto micro-patterned rGO interdigitated electrodes prepared by combining photolithography with selective electrophoretic deposition. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paper‐Based Electrodes for Flexible Energy Storage Devices
Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu
2017-01-01
Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors
NASA Astrophysics Data System (ADS)
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-10-01
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f
Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
Liu, Lili; Niu, Zhiqiang; Chen, Jun
2016-07-25
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu
2018-04-04
Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.
NASA Astrophysics Data System (ADS)
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-11-01
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d
NASA Astrophysics Data System (ADS)
He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua
2018-02-01
Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.
Fiber-based all-solid-state flexible supercapacitors for self-powered systems.
Xiao, Xu; Li, Tianqi; Yang, Peihua; Gao, Yuan; Jin, Huanyu; Ni, Weijian; Zhan, Wenhui; Zhang, Xianghui; Cao, Yuanzhi; Zhong, Junwen; Gong, Li; Yen, Wen-Chun; Mai, Wenjie; Chen, Jian; Huo, Kaifu; Chueh, Yu-Lun; Wang, Zhong Lin; Zhou, Jun
2012-10-23
All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.
Highly flexible and all-solid-state paperlike polymer supercapacitors.
Meng, Chuizhou; Liu, Changhong; Chen, Luzhuo; Hu, Chunhua; Fan, Shoushan
2010-10-13
In recent years, much effort have been dedicated to achieve thin, lightweight and even flexible energy-storage devices for wearable electronics. Here we demonstrate a novel kind of ultrathin all-solid-state supercapacitor configuration with an extremely simple process using two slightly separated polyaniline-based electrodes well solidified in the H(2)SO(4)-polyvinyl alcohol gel electrolyte. The thickness of the entire device is much comparable to that of a piece of commercial standard A4 print paper. Under its highly flexible (twisting) state, the integrate device shows a high specific capacitance of 350 F/g for the electrode materials, well cycle stability after 1000 cycles and a leakage current of as small as 17.2 μA. Furthermore, due to its polymer-based component structure, it has a specific capacitance of as high as 31.4 F/g for the entire device, which is more than 6 times that of current high-level commercial supercapacitor products. These highly flexible and all-solid-state paperlike polymer supercapacitors may bring new design opportunities of device configuration for energy-storage devices in the future wearable electronic area.
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-01-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225
Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K
2016-08-22
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
NASA Astrophysics Data System (ADS)
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-08-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-12-07
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.
Direct printing and reduction of graphite oxide for flexible supercapacitors
NASA Astrophysics Data System (ADS)
Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon
2014-08-01
We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.
Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors.
Deng, Lingjuan; Gu, Yuanzi; Gao, Yihong; Ma, Zhanying; Fan, Guang
2017-05-15
The practical application of graphene (GR) has still been hindered because of its unsatisfied physical and chemical properties resulting from the irreversible agglomerates. Preparation of GR-based materials with designed porosities is essential for its practical application. In this work, a facile and scalable method is developed to synthesize carbon nanotubes/holey graphene (CNT/HGR) flexible film using functional CNT and HGR as precursors. Owing to the existence of the small amount CNT, the CNT-5/HGR flexible film with a 3D conductive interpenetrated architecture exhibit significantly improved ion diffusion rate compared to that of the HGR. Moreover, CNT-5/HGR flexible film can be used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 268Fg -1 , excellent rate capabilities, and superior cycling stabilities. CNT-5/HGR flexible film could be used to fabricate high-performance flexible supercapacitors electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.
Flexible energy-storage devices: design consideration and recent progress.
Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen
2014-07-23
Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors.
Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao
2014-08-07
Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm(-2) (for a single electrode) and 17.3 mF cm(-2) (for the whole device) at 0.1 mA cm(-2), respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.
Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja
2018-04-04
Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.
Wang, Shouzhi; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Zhang, Lei; Hao, Xiaopeng
2017-02-01
Flexible supercapacitors have attracted great interest as energy storage devices because of their promise in applications such as wearable and smart electronic devices. Herein, a novel flexible supercapacitor electrode based on gallium nitride nanowire (GaN NW)/graphite paper (GP) nanocomposites is reported. The outstanding electrical conductivities of the GaN NW (6.36 × 10 2 S m -1 ) and GP (7.5 × 10 4 S m -1 ) deliver a synergistically enhanced electrochemical performance that cannot be achieved by either of the components alone. The composite electrode exhibits excellent specific capacitance (237 mF cm -2 at 0.1 mA cm -2 ) and outstanding cycling performance (98% capacitance retention after 10 000 cycles). The flexible symmetric supercapacitor also manifests high energy and power densities (0.30 mW h cm -3 and 1000 mW cm -3 ). These findings demonstrate that the GaN/GP composite electrode has significant potential as a candidate for the flexible energy storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ye, Xingke; Zhu, Yucan; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang
2017-08-01
For practical applications of graphene-based materials in flexible supercapacitors, a technological breakthrough is currently required to fabricate high-performance graphene paper by a facile method. Herein, highly conductive (∼6900 S m-1) graphene paper with loose multilayered structure is produced by a high-efficiency in-situ chemical reduction process, which assembles graphite oxide suspensions into film and simultaneously conducts chemical reduction. Graphene papers with different parameters (including different types and doses of reductants, different thicknesses and areas of films) are successfully fabricated through this in-situ chemical reduction method. Meanwhile, the influences of the graphene papers with different parameters upon the supercapacitor performance are systematically investigated. Flexible supercapacitor based on the graphene paper exhibits high areal capacitance (152.4 mF cm-2 at current density of 2.0 mA cm-2 in aqueous electrolyte), and excellent rate performance (88.7% retention at 8.0 mA cm-2). Furthermore, bracelet-shaped all-solid supercapacitor with fascinating cycling stability (96.6% retention after 10 000 cycles) and electrochemical stability (an almost negligible capacity loss under different bending states and 99.6% retention after 4000 bending cycles) is established by employing the graphene paper electrode material and polymer electrolyte.
Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang
2014-05-21
Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thread-like supercapacitors based on one-step spun nanocomposite yarns.
Meng, Qinghai; Wang, Kai; Guo, Wei; Fang, Jin; Wei, Zhixiang; She, Xilin
2014-08-13
Thread-like electronic devices have attracted great interest because of their potential applications in wearable electronics. To produce high-performance, thread-like supercapacitors, a mixture of stable dispersions of single-walled carbon nanotubes and conducting polyaniline nanowires are prepared. Then, the mixture is spun into flexible yarns with a polyvinyl alcohol outer sheath by a one-step spinning process. The composite yarns show excellent mechanical properties and high electrical conductivities after sufficient washing to remove surfactants. After applying a further coating layer of gel electrolyte, two flexible yarns are twisted together to form a thread-like supercapacitor. The supercapacitor based on these two yarns (SWCNTs and PAniNWs) possesses a much higher specific capacitance than that based only on pure SWCNTs yarns, making it an ideal energy-storage device for wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct printing and reduction of graphite oxide for flexible supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo
2014-08-04
We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart powermore » applications.« less
Nanostructured graphene composite papers for highly flexible and foldable supercapacitors.
Liu, Lili; Niu, Zhiqiang; Zhang, Li; Zhou, Weiya; Chen, Xiaodong; Xie, Sishen
2014-07-23
Reduced graphene oxide (rGO) and polyaniline (PANI) assemble onto the surface of cellulose fibers (CFs) and into the pores of CF paper, to form a hierarchical nanostructured PANI-rGO/CF composite paper. Based on these composite papers, flexible and foldable all-solid-state supercapacitors are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors.
Guo, Ying; Zheng, Kaiqiang; Wan, Pengbo
2018-04-01
The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Shan; Xu, Chengjun; Yang, Cheng; Chen, Yanyi; Liu, Juanjuan; Kang, Feiyu
2013-01-01
Flexible asymmetric supercapacitors with excellent electrochemical performance and aesthetic property are realized by using ultrathin two-dimensional (2D) MnO2 and graphene nanosheets as cathode and anode materials, respectively. 2D MnO2 nanosheets (MSs) with a thickness of ca. 2 nm are synthesized with a soft template method for the first time, which achieve a high specific capacitance of 774 F g−1 even after 10000 cycles. Asymmetric supercapacitors based on ultrathin MSs and graphene exhibit a very high energy density up to 97.2 Wh kg−1 with no more than 3% capacitance loss after 10000 cycles in aqueous electrolyte. Most interestingly, we show that the energy storage device can have an aesthetic property. For instance, a “Chinese panda” supercapacitor is capable of lighting up a red light emitting diode. This work has another, quite different aspect that a supercapacitor is no longer a cold industry product, but could have the meaning of art. PMID:24008931
Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie
2012-08-08
Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.
Towards flexible solid-state supercapacitors for smart and wearable electronics.
Dubal, Deepak P; Chodankar, Nilesh R; Kim, Do-Heyoung; Gomez-Romero, Pedro
2018-03-21
Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.
Bora, Anindita; Mohan, Kiranjyoti; Doley, Simanta; Dolui, Swapan Kumar
2018-03-07
Flexible energy storage devices are in great demand since the advent of flexible electronics. Until now, flexible supercapacitors based on graphene analogues usually have had low operating potential windows. To this end, two dissimilar electrode materials with complementary potential ranges are employed to obtain an optimum cell voltage of 1.8 V. A low-temperature organic sol-gel method is used to prepare two different types of functionalized reduced graphene oxide aerogels (rGOA) where Ag nanorod functionalized rGOA acts as a negative electrode while polyaniline nanotube functionalized rGOA acts as a positive electrode. Both materials comprehensively exploit their unique properties to produce a device that has high energy and power densities. An assembled all-solid-state asymmetric supercapacitor gives a high energy density of 52.85 W h kg -1 and power density of 31.5 kW kg -1 with excellent cycling and temperature stability. The device also performs extraordinarily well under different bending conditions, suggesting its potential to meet the requirements for flexible electronics.
Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2016-03-02
Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
NASA Astrophysics Data System (ADS)
Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei
2016-11-01
Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.
Li, Na; Yang, Gongzheng; Sun, Yong; Song, Huawei; Cui, Hao; Yang, Guowei; Wang, Chengxin
2015-05-13
Transparency has never been integrated into freestanding flexible graphene paper (FF-GP), although FF-GP has been discussed extensively, because a thin transparent graphene sheet will fracture easily when the template or substrate is removed using traditional methods. Here, transparent FF-GP (FFT-GP) was developed using NaCl as the template and was applied in transparent and stretchable supercapacitors. The capacitance was improved by nearly 1000-fold compared with that of the laminated or wrinkled chemical vapor deposition graphene-film-based supercapacitors.
Moon, In Kyu; Yoon, Seonno; Oh, Jungwoo
2017-01-12
To achieve high energy storage on three-dimensional (3D) structures at low cost, materials with high power and long cycle life characteristics have to be developed. We synthesized ZnCo 2 O 4 /reduced graphene oxide (rGO) binary composites in commercial sponges. ZnCo 2 O 4 nanosheets were grown on the surface of GO/sponge through a hydrothermal reaction. The resulting flexible, free-standing ZnCo 2 O 4 /rGO/sponge electrodes were used as the electrodes in a symmetric supercapacitor. ZnCo 2 O 4 /rGO/sponge electrodes have a large specific capacitance of 1116.6 F g -1 at a scan rate of 2 mV s -1 in aqueous electrolyte. The all-solid-state flexible supercapacitor is assembled based on ZnCo 2 O 4 /rGO/sponge electrodes, which show excellent electrochemical performances with a specific capacitance of 143 F g -1 at a current density of 1 A g -1 . The as-fabricated supercapacitor also exhibits excellent cycling stability (93.4 % capacitance retention after 5000 cycles) and exceptional mechanical flexibility. These results demonstrate the potential of ZnCo 2 O 4 /rGO/sponge as an electrode in flexible, high-performance supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Tianchang; Kim, Christine H J; Cheng, Yingwen; Ma, Yanwen; Zhang, Hongbo; Liu, Jie
2015-02-21
A "top-down" and scalable approach for processing carbon fiber cloth (CFC) into flexible and all-carbon electrodes with remarkable areal capacity and cyclic stability was developed. CFC is commercially available in large quantities but its use as an electrode material in supercapacitors is not satisfactory. The approach demonstrated in this work is based on the sequential treatment of CFC with KOH activation and high temperature annealing that can effectively improve its specific surface area to a remarkable 2780 m(2) g(-1) while at the same time achieving a good electrical conductivity of 320 S m(-1) without sacrificing its intrinsic mechanical strength and flexibility. The processed CFC can be directly used as an electrode for supercapacitors without any binders, conductive additives and current collectors while avoiding elaborate electrode processing steps to deliver a specific capacitance of ∼0.5 F cm(-2) and ∼197 F g(-1) with remarkable rate performance and excellent cyclic stability. The properties of these processed CFCs are comparable or better than graphene and carbon nanotube based electrodes. We further demonstrate symmetric solid-state supercapacitors based on these processed CFCs with very good flexibility. This "top-down" and scalable approach can be readily applied to other types of commercially available carbon materials and therefore can have a substantial significance for high performance supercapacitor devices.
Wang, Qingrong; Wang, Xinyu; Wan, Fang; Chen, Kena; Niu, Zhiqiang; Chen, Jun
2018-06-01
The emergence of flexible and wearable electronics has raised the demand for flexible supercapacitors with accurate sizes and aesthetic shapes. Here, a strategy is developed to prepare flexible all-in-one integrated supercapacitors by combining all-freeze-casting with typography technique. The continuous seamless connection of all-in-one supercapacitor devices enhances the load and/or electron transfer capacity and avoids displacing and detaching between their neighboring components at bending status. Therefore, such a unique structure of all-in-one integrated devices is beneficial for retaining stable electrochemical performance at different bending levels. More importantly, the sizes and aesthetic shapes of integrated supercapacitors could be controlled by the designed molds, like type matrices of typography. The molds could be assembled together and typeset randomly, achieving the controllable construction and series and/or parallel connection of several supercapacitor devices. The preparation of flexible integrated supercapacitors will pave the way for assembling programmable all-in-one energy storage devices into highly flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lv, Shaoyi; Fu, Feng; Wang, Siqun; Huang, Jingda; Hu, La
2015-07-01
An interesting wood-based all-solid-state supercapacitor is produced using reduced graphene oxide (RGO) coated on wood transverse section slice (WTSS) as electrode material by means of a low-cost, eco-friendly, and simple method for the first time. The RGO-coated WTSS electrode has a porous 3D honeycomb framework due to the hierarchical cellular structure of the WTSS substrate and can function as an electrolyte reservoir. This special construction endows this novel electrode with good areal capacitance (102 mF cm-2) and excellent cyclic stability (capacitance retention of 98.9% after 5000 cycles). In addition, the supercapacitors exhibit good mechanical flexibility and preserve almost constant capacitive behavior under different bending conditions. Our study introduces a new and eco-friendly material design for electrodes in future flexible energy storage devices that closely resemble natural materials. [Figure not available: see fulltext.
Li, Wanwan; Lu, Han; Zhang, Ning; Ma, Mingming
2017-06-14
We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g -1 ). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm -2 and 210 F·g -1 ) and high energy density (18.7 W·h·kg -1 ), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge-discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze-thaw cycles for enhancing the performance of functional hydrogels.
NASA Astrophysics Data System (ADS)
Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo
2016-06-01
A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02215d
Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei
2012-12-01
We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.
Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.
Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming
2017-05-31
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.
Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan
2015-08-01
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei
2016-10-01
In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.
Zhao, Dawei; Zhang, Qi; Chen, Wenshuai; Yi, Xin; Liu, Shouxin; Wang, Qingwen; Liu, Yixing; Li, Jian; Li, Xianfeng; Yu, Haipeng
2017-04-19
Recent improvements in flexible electronics have increased the need to develop flexible and lightweight power sources. However, current flexible electrodes are limited by low capacitance, poor mechanical properties, and lack of cycling stability. In this article, we describe an ionic liquid-processed supramolecular assembly of cellulose and 3,4-ethylenedioxythiophene for the formation of a flexible and conductive cellulose/poly(3,4-ethylenedioxythiophene) PEDOT:poly(styrene sulfonate) (PSS) composite matrix. On this base, multiwalled carbon nanotubes (MWCNTs) were incorporated into the matrix to fabricate an MWCNT-reinforced cellulose/PEDOT:PSS film (MCPP), which exhibited favorable flexibility and conductivity. The MCPP-based electrode displayed comprehensively excellent electrochemical properties, such as a low resistance of 0.45 Ω, a high specific capacitance of 485 F g -1 at 1 A g -1 , and good cycling stability, with a capacity retention of 95% after 2000 cycles at 2 A g -1 . An MCPP-based symmetric solid-state supercapacitor with Ni foam as the current collector and PVA/KOH gel as the electrolyte exhibited a specific capacitance of 380 F g -1 at 0.25 A g -1 and achieved a maximum energy density of 13.2 Wh kg -1 (0.25 A g -1 ) with a power density of 0.126 kW kg -1 or an energy density of 4.86 Wh kg -1 at 10 A g -1 , corresponding to a high power density of 4.99 kW kg -1 . Another kind of MCPP-based solid-state supercapacitor without the Ni foam showed excellent flexibility and a high volumetric capacitance of 50.4 F cm -3 at 0.05 A cm -3 . Both the electrodes and the supercapacitors were environmentally stable and could be operated under remarkable deformation or high temperature without damage to their structural integrity or a significant decrease in capacitive performance. Overall, this work provides a strategy for the fabrication of flexible and conductive energy-storage films with ionic liquid-processed cellulose as a medium.
NASA Astrophysics Data System (ADS)
Shao, Liang; Wang, Qian; Ma, Zhonglei; Ji, Zhanyou; Wang, Xiaoying; Song, Doudou; Liu, Yuguo; Wang, Ni
2018-03-01
Metal-Organic Frameworks (MOFs) attract increasing attention in the field of energy storage, however, poor conductivity in most MOFs largely hinders their electrical properties. In this work, an effective strategy is developed to make the polyaniline (PANI) molecular chains grow in the pores of UiO-66 as one of the MOFs (labeled as PANI/UiO-66) to form a fixed interpenetrating network structure by using the highly stable porous MOFs, through a variety of synergistic effects to enhance the conductivity and electrochemical properties. Moreover, the design and analysis about PANI/UiO-66 is reported for the first time to our knowledge. In addition, PANI/UiO-66 exhibits an extraordinary capacitance of 1015 F g-1 at 1 A g-1 by electrochemical test. At the same time, the symmetric flexible solid-state supercapacitors is also assembled and tested. The resultant supercapacitor shows a favorable specific capacitance of 647 F g-1 at 1 A g-1 and a high cycling stability (91% capacitance retention after 5000 cycles). The bending test indicates that the obtained supercapacitor is flexible and its performance is only decreased 10% after 800 bending cycles with a bending angle of 180. This flexible solid-state supercapacitor shows great potential in energy storage device.
Purkait, Taniya; Singh, Guneet; Kumar, Dinesh; Singh, Mandeep; Dey, Ramendra Sundar
2018-01-12
A simple approach for growing porous electrochemically reduced graphene oxide (pErGO) networks on copper wire, modified with galvanostatically deposited copper foam is demonstrated. The as-prepared pErGO networks on the copper wire are directly used to fabricate solid-state supercapacitor. The pErGO-based supercapacitor can deliver a specific capacitance (C sp ) as high as 81±3 F g -1 at 0.5 A g -1 with polyvinyl alcohol/H 3 PO 4 gel electrolyte. The C sp per unit length and area are calculated as 40.5 mF cm -1 and 283.5 mF cm -2 , respectively. The shape of the voltammogram retained up to high scan rate of 100 V s -1 . The pErGO-based supercapacitor device exhibits noticeably high charge-discharge cycling stability, with 94.5% C sp retained even after 5000 cycles at 5 A g -1 . Nominal change in the specific capacitance, as well as the shape of the voltammogram, is observed at different bending angles of the device even after 5000 cycles. The highest energy density of 11.25 W h kg -1 and the highest power density of 5 kW kg -1 are also achieved with this device. The wire-based supercapacitor is scalable and highly flexible, which can be assembled with/without a flexible substrate in different geometries and bending angles for illustrating promising use in smart textile and wearable device.
Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo
2016-06-09
A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm(-3), which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L(-1) and 549 W L(-1), based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.
Moosavifard, Seyyed Ebrahim; Shamsi, Javad; Altafi, Mohammad Kazem; Moosavifard, Zeinab Sadat
2016-11-18
3D LSG/CoNi 2 S 4 //LSG interdigitated microelectrodes have been firstly developed by a facile, scalable and low cost process for all-solid-state, flexible integrated asymmetric micro-supercapacitors. These devices can achieve energy densities of up to 49 W h l -1 which is comparable to those of lead acid batteries.
Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors
Yu, Xiuxiu; Wang, Ying; Li, Li; Li, Hongbian; Shang, Yuanyuan
2017-01-01
Biomass materials are promising precursors for the production of carbonaceous materials due to their abundance, low cost and renewability. Here, a freestanding wrinkled carbon membrane (WCM) electrode material for flexible supercapacitors (SCs) was obtained from flower petal. The carbon membrane was fabricated by a simple thermal pyrolysis process and further activated by heating the sample in air. As a binder and current collector-free electrode, the activated wrinkled carbon membrane (AWCM) exhibited a high specific capacitance of 332.7 F/g and excellent cycling performance with 92.3% capacitance retention over 10000 cycles. Moreover, a flexible all-solid supercapacitor with AWCM electrode was fabricated and showed a maximum specific capacitance of 154 F/g and great bending stability. The development of this flower petal based carbon membrane provides a promising cost-effective and environmental benign electrode material for flexible energy storage. PMID:28361914
Pu, Xiong; Li, Linxuan; Liu, Mengmeng; Jiang, Chunyan; Du, Chunhua; Zhao, Zhenfu; Hu, Weiguo; Wang, Zhong Lin
2016-01-06
A novel and scalable self-charging power textile is realized by combining yarn supercapacitors and fabric triboelectric nanogenerators as energy-harvesting devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Yanping; Zhao, Junhong; Run, Zhen; Zhang, Guangqin; Pang, Huan
2014-12-07
Microporous nickel phosphite [Ni11(HPO3)8(OH)6] nanocrystals were prepared using a hydrothermal method, and were successfully applied as a positive electrode in a flexible all solid-state asymmetric supercapacitor. Because of the specific micro/nanostructure, the flexible solid-state asymmetric supercapacitor can achieve a maximum energy density of 0.45 mW h cm(-3), which is higher than most reported supercapacitors. More importantly, the device performance remains efficient for 10,000 cycles.
Amir, Fatima Z.; Pham, V. H.; Mullinax, D. W.; ...
2016-06-07
Ruthenium oxide (RuO 2) nanomaterials exist as excellent materials for electrochemical capacitors. However, they tend to suffer from low mechanical flexibility when cast into films, which makes them unsuitable for flexible device applications. Herein, we report an environmentally friendly and solution-processable approach to fabricate RuO 2-based composite electrodes for flexible solid state supercapacitors. The composites were produced by anchoring RuO 2 nanoparticles onto holey reduced graphene oxide (HRGO) via a sol-gel method, followed by the electrophoretic deposition (EPD) of the material into thin films. The uniform anchoring of ultra-small RuO 2 nanoparticles on the two-dimensional HRGO sheets resulted in HRGO-RuOmore » 2 hybrid sheets with excellent mechanical flexibility of HRGO. EPD induced a layer-by-layer assembly mechanism for the HRGO-RuO 2 hybrid sheets, which resulted in a binder-free, flexible electrode. The obtained HRGO-RuO 2 flexible supercapacitors exhibited excellent electrochemical capacitive performance in a PVA-H 2SO 4 gel electrolyte with a specific capacitance of 418 F g -1 and superior cycling stability of 88.5% capacitance retention after 10,000 cycles. Additionally, these supercapacitors exhibited high rate performance with capacitance retention of 85% by increasing the current density from 1.0 to 20.0 Ag -1, and excellent mechanical flexibility with only 4.9% decay in the performance when bent 180°.« less
NASA Astrophysics Data System (ADS)
Wu, Lingxia; Li, Ruizhi; Guo, Junling; Zhou, Cheng; Zhang, Wenpei; Wang, Chong; Huang, Yu; Li, Yuanyuan; Liu, Jinping
2013-08-01
Flexible solid-state symmetric supercapacitor was fabricated using MnO2 nanofilms growing directly on carbon cloth as the electrodes and PVA/H3PO4 gel as the electrolyte/separator. The device can be operated at a stable cell-voltage up to 1.4 V, obviously larger than that of conventional solid-state symmetric supercapacitors (≤1 V). It exhibited excellent rate capability with a scan rate as high as 20 V s-1 and a long cyclability (˜60000 cycles) even under severe mechanical deformation. The charge storage mechanism at different scan rates was also quantitatively analyzed.
Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua
2015-08-26
Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Kai; Meng, Qinghai; Zhang, Yajie; Wei, Zhixiang; Miao, Menghe
2013-03-13
Fine count two-ply yarn supercapacitors are constructed from carbon nanotube yarns and polyaniline nanowires. The thread-like supercapacitor possess excellent electrochemical capacity and are very strong and flexible. When being woven or knitted into wearable electronic devices, alone or in combination with conventional textile yarns, the two-ply yarn supercapacitors can be flexed and stretched repeatedly without significant loss of capacitance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sundriyal, Poonam; Bhattacharya, Shantanu
2017-11-08
Printed electronics is widely gaining much attention for compact and high-performance energy-storage devices because of the advancement of flexible electronics. The development of a low-cost current collector, selection, and utilization of the proper material deposition tool and improvement of the device energy density are major challenges for the existing flexible supercapacitors. In this paper, we have reported an inkjet-printed solid-state asymmetric supercapacitor on commercial A4 paper using a low-cost desktop printer (EPSON L130). The physical properties of all inks have been carefully optimized so that the developed inks are within the printable range, i.e., Fromm number of 4 < Z < 14 for all inks. The paper substrate is made conducting (sheet resistance ∼ 1.6 Ω/sq) by printing 40 layers of conducting graphene oxide (GO) ink on its surface. The developed conducting patterns on paper are further printed with a GO-MnO 2 nanocomposite ink to make a positive electrode, and another such structure is printed with activated carbon ink to form a negative electrode. A combination of both of these electrodes is outlaid by fabricating an asymmetric supercapacitor. The assembled asymmetric supercapacitor with poly(vinyl alcohol) (PVA)-LiCl gel electrolyte shows a stable potential window of 0-2.0 V and exhibits outstanding flexibility, good cyclic stability, high rate capability, and high energy density. The fabricated paper-substrate-based flexible asymmetric supercapacitor also displays an excellent electrochemical performances, e.g., a maximum areal capacitance of 1.586 F/cm 2 (1023 F/g) at a current density of 4 mA/cm 2 , highest energy density of 22 mWh/cm 3 at a power density of 0.099 W/cm 3 , a capacity retention of 89.6% even after 9000 charge-discharge cycles, and a low charge-transfer resistance of 2.3 Ω. So, utilization of inkjet printing for the development of paper-based flexible electronics has a strong potential for embedding into the next generation low-cost, compact, and wearable energy-storage devices and other printed electronic applications.
Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong
2015-01-01
A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2014-09-01
The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.
Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie
2012-02-06
Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s(-1) , the specific capacitance of the pillared GP is 138 F g(-1) and 83.2 F g(-1) with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s (-1) , the specific capacitance can reach 80 F g(-1) in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gongkai; Sun, Xiang; Lu, Fengyuan
2011-12-08
Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s -1, the specific capacitance of the pillared GP is 138 F g -1 and 83.2 F g -1 with negligible 3.85% and 4.35% capacitancemore » degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s -1, the specific capacitance can reach 80 F g -1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.« less
NASA Astrophysics Data System (ADS)
Fan, Xingye; Wang, Xiaolei; Li, Ge; Yu, Aiping; Chen, Zhongwei
2016-09-01
A highly flexible electrodes based on electrodeposited MnO2 and polypyrrole composite on carbon cloth is designed and developed by a facile in-situ electrodeposition technique. Such flexible composite electrodes with multiply layered structure possess a high specific capacitance of 325 F g-1 at a current density of 0.2 A g-1, and an excellent rate capability with a capacitance retention of 70% at a high current density of 5.0 A g-1. The superior electrochemical performance is mainly due to the unique electrode with improved ion- and electron-transportation pathways as well as the efficient utilization of active materials and electrode robustness. The excellent electrochemical performance and the low cost property endow this flexible nanocomposite electrode with great promise in applications of flexible supercapacitors.
Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin
2017-11-09
Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.
NASA Astrophysics Data System (ADS)
Ma, Wujun; Chen, Shaohua; Yang, Shengyuan; Chen, Wenping; Cheng, Yanhua; Guo, Yiwei; Peng, Shengjie; Ramakrishna, Seeram; Zhu, Meifang
2016-02-01
Towards rapid development of lightweight, flexible, and even wearable electronics, a highly efficient energy-storage device is required for their energy supply management. Graphene fiber-based supercapacitor is considered as one of the promising candidates because of the remarkable mechanical and electrical properties of graphene fibers. However, supercapacitors based on bare graphene fibers generally suffer a low capacitance, which certainly restricts their potentially wide applications. In this work, hierarchically structured MnO2 nanowire/graphene hybrid fibers are fabricated through a simple, scalable wet-spinning method. The hybrid fibers form mesoporous structure with large specific surface area of 139.9 m2 g-1. The mass loading of MnO2 can be as high as 40 wt%. Due to the synergistic effect between MnO2 nanowires and graphene, the main pseudocapacitance of MnO2 and the electric double-layer capacitance of graphene are improved simultaneously. In view of the practical demonstration, a highly flexible solid-state supercapacitor is fabricated by twisting of two MnO2/graphene fibers coated by polyvinyl alcohol/H3PO4 electrolyte. The supercapacitor exhibits a high volumetric capacitance (66.1 F cm-3, normalized by the total volume of two fiber electrodes), excellent cycling stability (96% capacitance retention over 10,000 cycles), high energy and power density (5.8 mWh cm-3 and 0.51 W cm-3, respectively).
Li, Xinda; Liu, Li; Wang, Xianzong; Ok, Yong Sik; Elliott, Janet A W; Chang, Scott X; Chung, Hyun-Joong
2017-05-10
A flexible and self-healing supercapacitor with high energy density in low temperature operation was fabricated using a combination of biochar-based composite electrodes and a polyampholyte hydrogel electrolyte. Polyampholytes, a novel class of tough hydrogel, provide self-healing ability and mechanical flexibility, as well as low temperature operation for the aqueous electrolyte. Biochar is a carbon material produced from the low-temperature pyrolysis of biological wastes; the incorporation of reduced graphene oxide conferred mechanical integrity and electrical conductivity and hence the electrodes are called biochar-reduced-graphene-oxide (BC-RGO) electrodes. The fabricated supercapacitor showed high energy density of 30 Wh/kg with ~90% capacitance retention after 5000 charge-discharge cycles at room temperature at a power density of 50 W/kg. At -30 °C, the supercapacitor exhibited an energy density of 10.5 Wh/kg at a power density of 500 W/kg. The mechanism of the low-temperature performance excellence is likely to be associated with the concept of non-freezable water near the hydrophilic polymer chains, which can motivate future researches on the phase behaviour of water near polyampholyte chains. We conclude that the combination of the BC-RGO electrode and the polyampholyte hydrogel electrolyte is promising for supercapacitors for flexible electronics and for low temperature environments.
Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin
2012-01-24
A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society
Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
NASA Astrophysics Data System (ADS)
Cai, Jinguang; Watanabe, Akira; Lv, Chao
2017-02-01
Micro-supercapacitors with small size, light weight, flexibility while maintaining high energy and power output are required for portable miniaturized electronics. The fabrication methods and materials should be cost-effective, scalable, and easily integrated to current electronic industry. Carbon materials have required properties for high-performance flexible supercapacitors, including high specific surface areas, electrochemical stability, and high electrical conductivity, as well as the high mechanical tolerance. Laser direct writing method is a non-contact, efficient, single-step fabrication technique without requirements of masks, post-processing, and complex clean room, which is a useful patterning technique, and can be easily integrated with current electronic product lines for commercial use. Previously we have reported micro-supercapacitors fabricated by laser direct writing on polyimide films in air or Ar, which showed highcapacitive performance. However, the conductivity of the carbon materials is still low for fast charge-discharge use. Here, we demonstrated the fabrication of flexible carbon/Au composite high-performance MSCs by first laser direct writing on commercial polyimide films followed by spin-coating Au nanoparticles ink and second in-situ laser direct writing using the low-cost semiconductor laser. As-prepared micro-supercapacitors show an improved conductivity and capacitance of 1.17 mF/cm2 at a high scanning rate of 10,000 mV/s, which is comparable to the reported capacitance of carbon-based micro-supercapacitors. In addition, the micro-supercapacitors have high bend tolerance and long-cycle stability.
Conducting polymer nanowire arrays for high performance supercapacitors.
Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang
2014-01-15
This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng
2015-04-07
One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes
NASA Astrophysics Data System (ADS)
Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.
2010-03-01
Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.
Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.
Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun
2013-09-25
High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Xiaoyu; Wu, Zhong-Shuai; Qin, Jieqiong; Zheng, Shuanghao; Wang, Sen; Zhou, Feng; Sun, Chenglin; Bao, Xinhe
2017-11-01
Printable supercapacitors are regarded as a promising class of microscale power source, but are facing challenges derived from conventional sandwich-like geometry. Herein, the printable fabrication of new-type planar graphene-based linear tandem micro-supercapacitors (LTMSs) on diverse substrates with symmetric and asymmetric configuration, high-voltage output, tailored capacitance, and outstanding flexibility is demonstrated. The resulting graphene-based LTMSs consisting of 10 micro-supercapacitors (MSs) present efficient high-voltage output of 8.0 V, suggestive of superior uniformity of the entire integrated device. Meanwhile, LTMSs possess remarkable flexibility without obvious capacitance degradation under different bending states. Moreover, areal capacitance of LTMSs can be sufficiently modulated by incorporating polyaniline-based pseudocapacitive nanosheets into graphene electrodes, showing enhanced capacitance of 7.6 mF cm -2 . To further improve the voltage output and energy density, asymmetric LTMSs are fabricated through controlled printing of linear-patterned graphene as negative electrodes and MnO 2 nanosheets as positive electrodes. Notably, the asymmetric LTMSs from three serially connected MSs are easily extended to 5.4 V, triple voltage output of the single cell (1.8 V), suggestive of the versatile applicability of this technique. Therefore, this work offers numerous opportunities of graphene and analogous nanosheets for one-step scalable fabrication of flexible tandem energy storage devices integrating with printed electronics on same substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong
2017-08-23
Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.
Paper-based supercapacitors for self-powered nanosystems.
Yuan, Longyan; Xiao, Xu; Ding, Tianpeng; Zhong, Junwen; Zhang, Xianghui; Shen, Yue; Hu, Bin; Huang, Yunhui; Zhou, Jun; Wang, Zhong Lin
2012-05-14
Energy storage on paper: paper-based, all-solid-state, and flexible supercapacitors were fabricated, which can be charged by a piezoelectric generator or solar cells and then discharged to power a strain sensor or a blue-light-emitting diode, demonstrating its efficient energy management in self-powered nanosystems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paper-based transparent flexible thin film supercapacitors
NASA Astrophysics Data System (ADS)
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-05-01
Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c
NASA Astrophysics Data System (ADS)
Zhang, Haitao; Su, Hai; Zhang, Lei; Zhang, Binbin; Chun, Fengjun; Chu, Xiang; He, Weidong; Yang, Weiqing
2016-11-01
Hierarchical structure design can greatly enhance the unique properties of primary material(s) but suffers from complicated preparation process and difficult self-assembly of materials with different dimensionalities. Here we report on the growth of single carbon tubular nanostructures with hierarchical structure (hCTNs) through a simple method based on direct conversion of carbon dioxide. Resorting to in-situ transformation and self-assembly of carbon micro/nano-structures, the obtained hCTNs are blood-like multichannel hierarchy composed of one large channel across the hCTNs and plenty of small branches connected to each other. Due to the unique pore structure and high surface area, these hCTN-based flexible supercapacitors possess the highest areal capacitance of ∼320 mF cm-2, as well as good rate-capability and excellent cycling stability (95% retention after 2500 cycles). It was established that this method can control the morphology, size, and density of hCTNs and effectively construct hCTNs well anchored to the various substrates. Our work unambiguously demonstrated the potential of hCTNs for large flexible supercapacitors and integrated energy management electronics.
NASA Astrophysics Data System (ADS)
Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin
2018-02-01
Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.
Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.
Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi
2016-01-27
The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
A novel flexible capacitive touch pad based on graphene oxide film.
Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai
2013-02-07
Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch "ON" to "OFF" voltage ratio up to ∼60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.
A novel flexible capacitive touch pad based on graphene oxide film
NASA Astrophysics Data System (ADS)
Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai
2013-01-01
Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch ``ON'' to ``OFF'' voltage ratio up to ~60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.
Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage.
Zhang, Yi-Zhou; Wang, Yang; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei
2015-08-07
Paper-based supercapacitors (SCs), a novel and interesting group of flexible energy storage devices, are attracting more and more attention from both industry and academia. Cellulose papers with a unique porous bulk structure and rough and absorptive surface properties enable the construction of paper-based SCs with a reasonably good performance at a low price. The inexpensive and environmentally friendly nature of paper as well as simple fabrication techniques make paper-based SCs promising candidates for the future 'green' and 'once-use-and-throw-away' electronics. This review introduces the design, fabrication and applications of paper-based SCs, giving a comprehensive coverage of this interesting field. Challenges and future perspectives are also discussed.
Ma, Lina; Liu, Rong; Niu, Haijun; Xing, Lixin; Liu, Li; Huang, Yudong
2016-12-14
Flexible energy-storage devices based on supercapacitors rely largely on the scrupulous design of flexible electrodes with both good electrochemical performance and high mechanical properties. Here, nitrogen-doped carbon nanofiber networks/reduced graphene oxide/bacterial cellulose (N-CNFs/RGO/BC) freestanding paper is first designed as a high-performance, mechanically tough, and bendable electrode for a supercapacitor. The BC is exploited as both a supporting substrate for a large mass loading of 8 mg cm -2 and a biomass precursor for N-CNFs by pyrolysis. The one-step carbonization treatment not only fabricates the nitrogen-doped three-dimensional (3D) nanostructured carbon composite materials but also forms the reduction of the GO sheets at the same time. The fabricated paper electrode exhibits an ultrahigh areal capacitance of 2106 mF cm -2 (263 F g -1 ) in a KOH electrolyte and 2544 mF cm -2 (318 F g -1 ) in a H 2 SO 4 electrolyte, exceptional cycling stability (∼100% retention after 20000 cycles), and excellent tensile strength (40.7 MPa). The symmetric supercapacitor shows a high areal capacitance (810 mF cm -2 in KOH and 920 mF cm -2 in H 2 SO 4 ) and thus delivers a high energy density (0.11 mWh cm -2 in KOH and 0.29 mWh cm -2 in H 2 SO 4 ) and a maximum power density (27 mW cm -2 in KOH and 37.5 mW cm -2 in H 2 SO 4 ). This work shows that the new procedure is a powerful and promising way to design flexible and freestanding supercapacitor electrodes.
Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.
Qiu, Tengfei; Luo, Bin; Giersig, Michael; Akinoglu, Eser Metin; Hao, Long; Wang, Xiangjun; Shi, Lin; Jin, Meihua; Zhi, Linjie
2014-10-29
A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P
2015-02-01
We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.
Flexible carbon micro-supercapacitors prepared by direct cw-laser writing
NASA Astrophysics Data System (ADS)
Cai, Jinguang; Watanabe, Akira
2016-03-01
Micro-/nano-scale power supply units with high energy and high power densities are critical components for the development of compact miniaturized portable electronic devices. Supercapacitors have attracted many research attentions due to their high power density, robust cycle performance, pollution-free operation, and maintenance-free features. Besides, the properties of small size, light weight, and flexibility are also required. On-chip microsupercapacitors (MSCs) have the potential acting as power supply units in portable devices, due to their simplified packaging processes and compatibility to the integrated circuits. However, the fabrication methods and materials should be cost-effective, scalable, and compatible to current electronic industry. Carbon materials own high specific surface areas, electrochemical stability, and high electrical conductivity, which are critical parameters for high-power supercapacitors. Moreover, the high mechanical tolerance makes them good candidates for flexible wearable devices. Therefore, MSCs based on carbon materials would satisfy the requirements of portable electronics. In this work, we demonstrated the fabrication of carbon MSCs by laser direct writing on commercial polyimide sheets in Ar with lowcost semiconductor cw-laser with a wavelength of 405nm. The obtained structures are macro-nanostructures comprising graphitized and amorphous carbon with relatively smooth surfaces and low resistance, in compared with the structures obtained by laser writing in air. As-prepared micro-supercapacitors show a high capacitance of about 14.9 mF/cm2 at a scanning rate of 10 mV/s, which is comparable to the reported highest capacitance of carbon-based supercapacitors fabricated by pulse-laser writing.
Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke
2017-11-08
Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.
NASA Astrophysics Data System (ADS)
Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang
2017-11-01
Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.
Peng, Zhiyuan; Zou, Yubo; Xu, Shiqi; Zhong, Wenbin; Yang, Wantai
2018-06-19
Employing renewable, earth-abundant, environmentally friendly, low-cost natural materials to design flexible supercapacitors (FSCs) as energy storage devices in wearable/portable electronics represents the global perspective to build sustainable and green society. Chemically stable and flexible cellulose and electroactive lignin have been employed to construct a biomass-based FSC for the first time. The FSC was assembled using lignosulfonate/single-walled carbon nanotube HNO 3 (Lig/SWCNT HNO 3 ) pressure-sensitive hydrogels as electrodes and cellulose hydrogels as an electrolyte separator. The assembled biomass-based FSC shows high specific capacitance (292 F g -1 at a current density of 0.5 A g -1 ), excellent rate capability, and an outstanding energy density of 17.1 W h kg -1 at a power density of 324 W kg -1 . Remarkably, the FSC presents outstanding electrochemical stability even suffering 1000 bending cycles. Such excellent flexibility, stability, and electrochemical performance enable the designed biomass-based FSCs as prominent candidates in applications of wearable electronic devices.
He, Yongmin; Chen, Wanjun; Li, Xiaodong; Zhang, Zhenxing; Fu, Jiecai; Zhao, Changhui; Xie, Erqing
2013-01-22
A lightweight, flexible, and highly efficient energy management strategy is needed for flexible energy-storage devices to meet a rapidly growing demand. Graphene-based flexible supercapacitors are one of the most promising candidates because of their intriguing features. In this report, we describe the use of freestanding, lightweight (0.75 mg/cm(2)), ultrathin (<200 μm), highly conductive (55 S/cm), and flexible three-dimensional (3D) graphene networks, loaded with MnO(2) by electrodeposition, as the electrodes of a flexible supercapacitor. It was found that the 3D graphene networks showed an ideal supporter for active materials and permitted a large MnO(2) mass loading of 9.8 mg/cm(2) (~92.9% of the mass of the entire electrode), leading to a high area capacitance of 1.42 F/cm(2) at a scan rate of 2 mV/s. With a view to practical applications, we have further optimized the MnO(2) content with respect to the entire electrode and achieved a maximum specific capacitance of 130 F/g. In addition, we have also explored the excellent electrochemical performance of a symmetrical supercapacitor (of weight less than 10 mg and thickness ~0.8 mm) consisting of a sandwich structure of two pieces of 3D graphene/MnO(2) composite network separated by a membrane and encapsulated in polyethylene terephthalate (PET) membranes. This research might provide a method for flexible, lightweight, high-performance, low-cost, and environmentally friendly materials used in energy conversion and storage systems for the effective use of renewable energy.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-22
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-01-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
NASA Astrophysics Data System (ADS)
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
Zhang, Longsheng; Ding, Qianwei; Huang, Yunpeng; Gu, Huahao; Miao, Yue-E; Liu, Tianxi
2015-10-14
The practical applications of transition metal oxides and hydroxides for supercapacitors are restricted by their intrinsic poor conductivity, large volumetric expansion, and rapid capacitance fading upon cycling, which can be solved by optimizing these materials to nanostructures and confining them within conductive carbonaceous frameworks. In this work, flexible hybrid membranes with ultrathin Ni(OH)2 nanoplatelets vertically and uniformly anchored on the electrospun carbon nanofibers (CNF) have been facilely prepared as electrode materials for supercapacitors. The Ni(OH)2/CNF hybrid membranes with three-dimensional macroporous architectures as well as hierarchical nanostructures can provide open and continuous channels for rapid diffusion of electrolyte to access the electrochemically active Ni(OH)2 nanoplatelets. Moreover, the carbon nanofiber can act both as a conductive core to provide efficient transport of electrons for fast Faradaic redox reactions of the Ni(OH)2 sheath, and as a buffering matrix to mitigate the local volumetric expansion/contraction upon long-term cycling. As a consequence, the optimized Ni(OH)2/CNF hybrid membrane exhibits a high specific capacitance of 2523 F g(-1) (based on the mass of Ni(OH)2, that is 701 F g(-1) based on the total mass) at a scan rate of 5 mV s(-1). The Ni(OH)2/CNF hybrid membranes with high mechanical flexibility, superior electrical conductivity, and remarkably improved electrochemical capacitance are condsidered as promising flexible electrode materials for high-performance supercapacitors.
Renewable-emodin-based wearable supercapacitors.
Hu, Pengfei; Chen, Tinghan; Yang, Yun; Wang, Hua; Luo, Zihao; Yang, Jie; Fu, Haoran; Guo, Lin
2017-01-26
With the increasing dependency of human life on wearable electronics, the development of corresponding energy-storage devices is being insensitively pursued. Considering the special usage locations of wearable energy-storage devices, the safety and non-toxicity of electrode materials adopted should be of concern. In this work, a novel all-solid-state wearable supercapacitor based on the renewable-biomolecule emodin, naturally derivable from traditional Chinese herbal rhubarb or Polygonum cuspidatum, was successfully fabricated. Such supercapacitors exhibited excellent charge storage and rate capability with great flexibility and could be integrated into wearable electronics. As a proof of concept, a strap-shaped supercapacitor was fabricated, and it was capable of powering an electronic watch. Our work will promote the development of safe wearable electronics.
NASA Astrophysics Data System (ADS)
Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong
2015-11-01
We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.
Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
Xie, Binghe; Yang, Cheng; Zhang, Zhexu; Zou, Peichao; Lin, Ziyin; Shi, Gaoquan; Yang, Quanhong; Kang, Feiyu; Wong, Ching-Ping
2015-06-23
With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.
NASA Astrophysics Data System (ADS)
Lin, Yingxi; Zhang, Haiyan; Deng, Wentao; Zhang, Danfeng; Li, Na; Wu, Qibai; He, Chunhua
2018-04-01
For the development of wearable electronic devices, it is crucial to develop energy storage components combining high-capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in-situ "growth and wrapping" method. The electrode contains polyaniline deposited on a carbon woven fabric and wrapped with a graphene-based envelop. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few layer graphene wrapping layer provides for a conductive network, which effectively enhances the cycling stability as 88.9% of the starting capacitance is maintained after 5000 charge/discharge cycles. Furthermore, the assembled device delivers a high areal capacity (of 790 F cm-2) at the current density of 1 A cm-2, a high areal energy (28.21 uWh cm-2) at the power densities of 0.12 mW cm-2 and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.
Flexible self-powered piezo-supercapacitor system for wearable electronics.
Gilshteyn, Evgenia P; Amanbaev, Daler; Silibin, Maxim V; Sysa, Artem; Kondrashov, Vladislav A; Anisimov, Anton S; Kallio, Tanja; Nasibulin, Albert G
2018-08-10
The integration of energy harvesting and energy storage in a single device both enables the conversion of ambient energy into electricity and provides a sustainable power source for various electronic devices and systems. On the other hand, mechanical flexibility, coupled with optical transparency of the energy storage devices, is required for many applications, ranging from self-powered rolled-up displays to wearable optoelectronic devices. We integrate a piezoelectric poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)) film into a flexible supercapacitor system to harvest and store the energy. The asymmetric output characteristics of the piezoelectric P(VDF-TrFE) film under mechanical impacts results in effective charging of the supercapacitors. The integrated piezo-supercapacitor exhibits a specific capacitance of 50 F g -1 . The open-circuit voltage of the flexible and transparent supercapacitor reached 500 mV within 20 s during the mechanical action. Our hybridized energy harvesting and storage device can be further extended to provide a sustainable power source for various types of sensors integrated into wearable units.
NASA Astrophysics Data System (ADS)
Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie
2015-08-01
Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.
Zheng, Shuanghao; Tang, Xingyan; Wu, Zhong-Shuai; Tan, Yuan-Zhi; Wang, Sen; Sun, Chenglin; Cheng, Hui-Ming; Bao, Xinhe
2017-02-28
The emerging smart power source-unitized electronics represent an utmost innovative paradigm requiring dramatic alteration from materials to device assembly and integration. However, traditional power sources with huge bottlenecks on the design and performance cannot keep pace with the revolutionized progress of shape-confirmable integrated circuits. Here, we demonstrate a versatile printable technology to fabricate arbitrary-shaped, printable graphene-based planar sandwich supercapacitors based on the layer-structured film of electrochemically exfoliated graphene as two electrodes and nanosized graphene oxide (lateral size of 100 nm) as a separator on one substrate. These monolithic planar supercapacitors not only possess arbitrary shapes, e.g., rectangle, hollow-square, "A" letter, "1" and "2" numbers, circle, and junction-wire shape, but also exhibit outstanding performance (∼280 F cm -3 ), excellent flexibility (no capacitance degradation under different bending states), and applicable scalability, which are far beyond those achieved by conventional technologies. More notably, such planar supercapacitors with superior integration can be readily interconnected in parallel and series, without use of metal interconnects and contacts, to modulate the output current and voltage of modular power sources for designable integrated circuits in various shapes and sizes.
Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.
Wu, Qiong; Xu, Yuxi; Yao, Zhiyi; Liu, Anran; Shi, Gaoquan
2010-04-27
Composite films of chemically converted graphene (CCG) and polyaniline nanofibers (PANI-NFs) were prepared by vacuum filtration the mixed dispersions of both components. The composite film has a layered structure, and PANI-NFs are sandwiched between CCG layers. Furthermore, it is mechanically stable and has a high flexibility; thus, it can be bent into large angles or be shaped into various desired structures. The conductivity of the composite film containing 44% CCG (5.5 x 10(2) S m(-1)) is about 10 times that of a PANI-NF film. Supercapacitor devices based on this conductive flexible composite film showed large electrochemical capacitance (210 F g(-1)) at a discharge rate of 0.3 A g(-1). They also exhibited greatly improved electrochemical stability and rate performances.
Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong
2015-11-04
In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.
NASA Astrophysics Data System (ADS)
El-Kady, Maher F.; Kaner, Richard B.
2013-02-01
The rapid development of miniaturized electronic devices has increased the demand for compact on-chip energy storage. Microscale supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. However, conventional micro-fabrication techniques have proven to be cumbersome in building cost-effective micro-devices, thus limiting their widespread application. Here we demonstrate a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner. More than 100 micro-supercapacitors can be produced on a single disc in 30 min or less. The devices are built on flexible substrates for flexible electronics and on-chip uses that can be integrated with MEMS or CMOS in a single chip. Remarkably, miniaturizing the devices to the microscale results in enhanced charge-storage capacity and rate capability. These micro-supercapacitors demonstrate a power density of ~200 W cm-3, which is among the highest values achieved for any supercapacitor.
A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices.
Sun, Yongming; Sills, Ryan B; Hu, Xianluo; Seh, Zhi Wei; Xiao, Xu; Xu, Henghui; Luo, Wei; Jin, Huanyu; Xin, Ying; Li, Tianqi; Zhang, Zhaoliang; Zhou, Jun; Cai, Wei; Huang, Yunhui; Cui, Yi
2015-06-10
Flexible energy storage devices are critical components for emerging flexible electronics. Electrode design is key in the development of all-solid-state supercapacitors with superior electrochemical performances and mechanical durability. Herein, we propose a bamboo-like graphitic carbon nanofiber with a well-balanced macro-, meso-, and microporosity, enabling excellent mechanical flexibility, foldability, and electrochemical performances. Our design is inspired by the structure of bamboos, where a periodic distribution of interior holes along the length and graded pore structure at the cross section not only enhance their stability under different mechanical deformation conditions but also provide a high surface area accessible to the electrolyte and low ion-transport resistance. The prepared nanofiber network electrode recovers its initial state easily after 3-folded manipulation. The mechanically robust membrane is explored as a free-standing electrode for a flexible all-solid-state supercapacitor. Without the need for extra support, the volumetric energy and power densities based on the whole device are greatly improved compared to the state-of-the-art devices. Even under continuous dynamic operations of forceful bending (90°) and twisting (180°), the as-designed device still exhibits stable electrochemical performances with 100% capacitance retention. Such a unique supercapacitor holds great promise for high-performance flexible electronics.
A bamboo-inspired nanostructure design for flexible foldable and twistable energy storage devices
Sun, Yongming; Sills, Ryan B; Hu, Xianluo; ...
2015-05-26
Flexible energy storage devices are critical components for emerging flexible electronics. Electrode design is key in the development of all-solid-state supercapacitors with superior electrochemical performances and mechanical durability. We propose a bamboo-like graphitic carbon nanofiber with a well-balanced macro-, meso-, and microporosity, enabling excellent mechanical flexibility, foldability, and electrochemical performances. Our design is inspired by the structure of bamboos, where a periodic distribution of interior holes along the length and graded pore structure at the cross section not only enhance their stability under different mechanical deformation conditions but also provide a high surface area accessible to the electrolyte and lowmore » ion-transport resistance. The prepared nanofiber network electrode recovers its initial state easily after 3-folded manipulation. The mechanically robust membrane is explored as a free-standing electrode for a flexible all-solid-state supercapacitor. Without the need for extra support, the volumetric energy and power densities based on the whole device are greatly improved compared to the state-of-the-art devices. Furthermore, even under continuous dynamic operations of forceful bending (90°) and twisting (180°), the as-designed device still exhibits stable electrochemical performances with 100% capacitance retention. As a result, such a unique supercapacitor holds great promise for high-performance flexible electronics.« less
NASA Astrophysics Data System (ADS)
Pendashteh, Afshin; Senokos, Evgeny; Palma, Jesus; Anderson, Marc; Vilatela, Juan J.; Marcilla, Rebeca
2017-12-01
Supercapacitors capable of providing high voltage, energy and power density but yet light, low volume occupying, flexible and mechanically robust are highly interesting and demanded for portable applications. Herein, freestanding flexible hybrid electrodes based on MnO2 nanoparticles grown on macroscopic carbon nanotube fibers (CNTf-MnO2) were fabricated, without the need of any metallic current collector. The CNTf, a support with excellent electrical conductivity, mechanical stability, and appropriate pore structure, was homogeneously decorated with porous akhtenskite ɛ-MnO2 nanoparticles produced via electrodeposition in an optimized organic-aqueous mixture. Electrochemical properties of these decorated fibers were evaluated in different electrolytes including a neutral aqueous solution and a pure 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (PYR14TFSI). This comparison helps discriminate the various contributions to the total capacitance: (surface) Faradaic and non-Faradaic processes, improved wetting by aqueous electrolytes. Accordingly, symmetric supercapacitors with PYR14TFSI led to a high specific energy of 36 Wh· kgMnO2-1 (16 Wh·kg-1 including the weight of CNTf) and real specific power of 17 kW· kgMnO2-1 (7.5 kW kg-1) at 3.0 V with excellent cycling stability. Moreover, flexible all solid-state supercapacitors were fabricated using PYR14TFSI-based polymer electrolyte, exhibiting maximum energy density of 21 Wh·kg-1 and maximum power density of 8 kW kg-1 normalized by total active material.
A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P
2013-12-01
We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.
Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen
2013-06-10
Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Yongmin; Chen, Wanjun; Zhou, Jinyuan; Li, Xiaodong; Tang, Pengyi; Zhang, Zhenxing; Fu, Jiecai; Xie, Erqing
2014-01-08
A type of freestanding three-dimensional (3D) micro/nanointerconnected structure, with a conjunction of microsized 3D graphene networks, nanosized 3D carbon nanofiber (CNF) forests, and consequently loaded MnO2 nanosheets, has been designed as the electrodes of an ultralight flexible supercapacitor. The resulting 3D graphene/CNFs/MnO2 composite networks exhibit remarkable flexibility and highly mechanical properties due to good and intimate contacts among them, without current collectors and binders. Simultaneously, this designed 3D micro/nanointerconnected structure can provide an uninterrupted double charges freeway network for both electron and electrolyte ion to minimize electron accumulation and ion-diffusing resistance, leading to an excellent electrochemical performance. The ultrahigh specific capacitance of 946 F/g from cyclic voltammetry (CV) (or 920 F/g from galvanostatic charging/discharging (GCD)) were obtained, which is superior to that of the present electrode materials based on 3D graphene/MnO2 hybrid structure (482 F/g). Furthermore, we have also investigated the superior electrochemical performances of an asymmetric supercapacitor device (weight of less than 12 mg/cm(2) and thickness of ~0.8 mm), showing a total capacitance of 0.33 F/cm(2) at a window voltage of 1.8 V and a maximum energy density of 53.4 W h/kg for driving a digital clock for 42 min. These inspiring performances would make our designed supercapacitors become one of the most promising candidates for the future flexible and lightweight energy storage systems.
Liu, Yazhi; Li, Gaoran; Guo, Yi; Ying, Yulong; Peng, Xinsheng
2017-04-26
Rational design of free-standing porous carbon materials with large specific surface area and high conductivity is a great need for ligh-weight suprecapacitors. Here, we report a flexible porous carbon film composed of metal-organic framework (MOF)-derived porous carbon polyhedrons and carbon nanotubes (CNTs) as binder-free supercapacitor electrode for the first time. Due to the synergistic combination of carbon polyhedrons and CNT, the obtained carbon electrode shows a specific capacitance of 381.2 F g -1 at 5 mV s -1 and 194.8 F g -1 at 2 A g -1 and outstanding cycling stability with a Coulombic effciency above 95% after 10000 cycles at 10 A g -1 . The assembled aqueous symmetrical supercapacitor exhibits an energy density of 9.1 Wh kg -1 with a power density of 3500 W kg -1 . The work opens a new way to design flexible MOF-based hierarchical porous carbon film as binder-free electrodes for high-performance energy storage devices.
Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Lv, Xvdan; Li, Guohui; Pang, Zengyuan; Li, Dawei; Lei, Luo; Lv, Pengfei; Mushtaq, Muhammad; Wei, Qufu
2018-05-01
For flexible film supercapacitor, high areal capacitance is a main evaluating indicator. In this paper, bacterial cellulose (BC) with special three-dimensional structure was used as the natural flexible base material. Fe3O4 nanoparticles with average diameter of 20 nm were synthesized on the surface of BC fibers. The conductive path polypyrrole (PPy) was introduced as shell of BC/Fe3O4 fibers to further improve the pseudo capacitance in 1 mol/L H2SO4 solution. Besides, the BC/Fe3O4@PPy was used for supercapacitor application in acid electrolyte, and delivered higher areal capacitance compared to other Fe3O4 composites in previous reports. The obtained BC/Fe3O4@PPy film showed excellent mechanical strength (tensile strength reached 11 MPa), high areal specific capacitance (5.4 F cm-2 at active mass of 8.4 mg cm-2), and long cycle life (1.95 F cm-2 over 3500 cycles).
WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.
Lu, Xihong; Zhai, Teng; Zhang, Xianghui; Shen, Yongqi; Yuan, Longyan; Hu, Bin; Gong, Li; Chen, Jian; Gao, Yihua; Zhou, Jun; Tong, Yexiang; Wang, Zhong Lin
2012-02-14
WO3–x@Au@MnO2 core–shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent, flexible supercapacitors from nano-engineered carbon films.
Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Transparent, flexible supercapacitors from nano-engineered carbon films
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970
Transparent, flexible supercapacitors from nano-engineered carbon films
NASA Astrophysics Data System (ADS)
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-10-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors
NASA Astrophysics Data System (ADS)
Choi, Changsoon; Kim, Kang Min; Kim, Keon Jung; Lepró, Xavier; Spinks, Geoffrey M.; Baughman, Ray H.; Kim, Seon Jeong
2016-12-01
Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the galleries of helically scrolled carbon nanotube sheets, which provide strength and electrical conductivity. Despite the high loading of brittle metal oxide particles, the biscrolled solid-state yarn supercapacitors are flexible and can be made elastically stretchable (up to 30% strain) by over-twisting to produce yarn coiling. The maximum areal capacitance of the yarn electrodes were up to 100 times higher than for previously reported fibres or yarn supercapacitors. Similarly, the energy density of complete, solid-state supercapacitors made from biscrolled yarn electrodes with gel electrolyte coating were significantly higher than for previously reported fibre or yarn supercapacitors.
NASA Astrophysics Data System (ADS)
Cai, Weihua; Lai, Ting; Dai, Wanlin; Ye, Jianshan
2014-06-01
A critical challenge for the construction of flexible electrochemical capacitors is the preparation of flexible electrodes with large specific capacitance and robust mechanical strength. Here, we demonstrate a facile approach to make high performance and flexible electrodes by dropping MnFe2O4/graphene hybrid inks onto flexible graphite sheets (as current collectors and substrates) and drying under an infrared lamp. MnFe2O4/graphene hybrid inks are synthesized by immobilizing the MnFe2O4 microspheres on the graphene nanosheets via a simple solvothermal route. Electrochemical studies show that MnFe2O4/graphene exhibits a high capacitance of 300 F g-1 at a current density of 0.3 A g-1. In addition, the excellent electrochemical performance of a supercapacitor consisting of a sandwich structure of two pieces of MnFe2O4/graphene hybrids modified electrodes separated by polyvinyl alcohol (PVA)-H2SO4 gel electrolyte is further explored. Our studies reveal that the flexible supercapacitor device with 227 μm thickness can achieve a maximum specific capacitance of 120 F g-1 at a current density of 0.1 A g-1 and excellent cycle performance retaining 105% capacitance after 5000 cycles. This research may offer a method for the fabrication of lightweight, stable, flexible and high performance energy storage devices.
Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors.
Kim, Sung-Kon; Koo, Hyung-Jun; Lee, Aeri; Braun, Paul V
2014-08-13
Selective wetting-induced micro-electrode patterning is used to fabricate flexible micro-supercapacitors (mSCs). The resulting mSCs exhibit high performance, mechanical stability, stable cycle life, and hold great promise for facile integration into flexible devices requiring on-chip energy storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Yuanjing; Gao, Yuan; Fan, Zhiyong
2017-11-01
Planar supercapacitors with high flexibility, desirable operation safety, and high performance are considered as attractive candidates to serve as energy-storage devices for portable and wearable electronics. Here, a scalable and printable technique is adopted to construct novel and unique hierarchical nanocoral structures as the interdigitated electrodes on flexible substrates. The as-fabricated flexible all-solid-state planar supercapacitors with nanocoral structures achieve areal capacitance up to 52.9 mF cm -2 , which is 2.5 times that of devices without nanocoral structures, and this figure-of-merit is among the highest in the literature for the same category of devices. More interestingly, due to utilization of the inkjet-printing technique, excellent versatility on electrode-pattern artistic design is achieved. Particularly, working supercapacitors with artistically designed patterns are demonstrated. Meanwhile, the high scalability of such a printable method is also demonstrated by fabrication of large-sized artistic supercapacitors serving as energy-storage devices in a wearable self-powered system as a proof of concept. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.
Chen, Bolin; Jiang, Yizhou; Tang, Xiaohui; Pan, Yayue; Hu, Shan
2017-08-30
The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.
Vongehr, Sascha
2017-05-22
It is argued that the main claims of "Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates" are strongly exaggerated. By selecting first a subregion (ΔV) of the total voltage drop, the capacitance (C ΔV ) is inflated by 30 %. Then, by selecting different regions for different properties and using different ΔV values in different terms of a single expression for the energy density (E ΔV ), the value is doubled. A bending angle of only 45° is instead claimed to be 180°. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-based in-plane micro-supercapacitors with high power and energy densities
Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088
Graphene-based in-plane micro-supercapacitors with high power and energy densities.
Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.
Su, Fenghua; Lv, Xiaoming; Miao, Menghe
2015-02-18
Yarn supercapacitors are promising power sources for flexible electronic applications that require conventional fabric-like durability and wearer comfort. Carbon nanotube (CNT) yarn is an attractive choice for constructing yarn supercapacitors used in wearable textiles because of its high strength and flexibility. However, low capacitance and energy density limits the use of pure CNT yarn in wearable high-energy density devices. Here, transitional metal oxide pseudocapacitive materials NiO and Co3 O4 are deposited on as-spun CNT yarn surface using a simple electrodeposition process. The Co3 O4 deposited on the CNT yarn surface forms a uniform hybridized CNT@Co3 O4 layer. The two-ply supercapacitors formed from the CNT@Co3 O4 composite yarns display excellent electrochemical properties with very high capacitance of 52.6 mF cm(-2) and energy density of 1.10 μWh cm(-2) . The high performance two-ply CNT@Co3 O4 yarn supercapacitors are mechanically and electrochemically robust to meet the high performance requirements of power sources for wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.
Zhang, Huihui; Qiao, Yan; Lu, Zhisong
2016-11-30
Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm -2 at a current density of 1 mA cm -2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.
Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua
2013-09-24
A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.
Song, Wei-Li; Song, Kuo; Fan, Li-Zhen
2015-02-25
Graphene-based supercapacitors and related flexible devices have attracted great attention because of the increasing demands in the energy storage. As promising three-dimensional (3D) nanostructures in the supercapacitor electrodes, graphene-based aerogels have been paid dramatic attention recently, and numerous methods have been developed for enhancing their performance in energy storage. In this study, an exclusive strategy is presented toward directly in situ growing reduced graphene oxide (RGO) aerogels inside the 3D porous carbon fabrics for engineering the interfaces of the resulting binary 3D architectures. Such unique architectures have shown various advantages in the improvements of the nanostructures and chemical compositions, allowing them to possess much enhanced electrochemical properties (391, 229, and 195 F g(-1) at current densities of 0.1, 1, and 5 A g(-1), respectively) with excellent cycling stability in comparison with the neat RGO aerogels. The results of the performance in the flexible all-solid-state supercapacitors along with discussion on the related mechanisms in the electrochemical properties indicate the remaining issues and associated opportunities in the development of advanced energy storage devices. This strategy is relatively facile, versatile, and tunable, which highlights a unique platform for engineering various 3D porous structures in many fields.
Dioxythiophene-based polymer electrodes for supercapacitor modules.
Liu, David Y; Reynolds, John R
2010-12-01
We report on the electrochemical and capacitive behaviors of poly(2,2-dimethyl-3,4-propylene-dioxythipohene) (PProDOT-Me2) films as polymeric electrodes in Type I electrochemical supercapacitors. The supercapacitor device displays robust capacitive charging/discharging behaviors with specific capacitance of 55 F/g, based on 60 μg of PProDOT-Me2 per electrode, that retains over 85% of its storage capacity after 32 000 redox cycles at 78% depth of discharge. Moreover, an appreciable average energy density of 6 Wh/kg has been calculated for the device, along with well-behaved and rapid capacitive responses to 1.0 V between 5 to 500 mV s(-1). Tandem electrochemical supercapacitors were assembled in series, in parallel, and in combinations of the two to widen the operating voltage window and to increase the capacitive currents. Four supercapacitors coupled in series exhibited a 4.0 V charging/discharging window, whereas assembly in parallel displayed a 4-fold increase in capacitance. Combinations of both serial and parallel assembly with six supercapacitors resulted in the extension of voltage to 3 V and a 2-fold increase in capacitive currents. Utilization of bipolar electrodes facilitated the encapsulation of tandem supercapacitors as individual, flexible, and lightweight supercapacitor modules.
NASA Astrophysics Data System (ADS)
Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi
2015-03-01
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm-1), light weight (1 mg cm-2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.
Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi
2015-01-01
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm−1), light weight (1 mg cm−2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics. PMID:25797022
Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi
2015-03-23
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm(-1)), light weight (1 mg cm(-2)) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.
Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah
2014-09-10
We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan
The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less
Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jun; Ren, Chang E.; Maleski, Kathleen
A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm –3 at a scan rate of 2 mV s –1, an impressivemore » rate capability with 61% capacitance retention at 1 V s –1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L –1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.« less
Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan; ...
2018-01-04
The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less
NASA Astrophysics Data System (ADS)
Obeidat, Amr M.
Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.
Wang, Xinyu; Lu, Qiongqiong; Chen, Chen; Han, Mo; Wang, Qingrong; Li, Haixia; Niu, Zhiqiang; Chen, Jun
2017-08-30
The rapid development of printable electronic devices with flexible and wearable characteristics requires supercapacitor devices to be printable, light, thin, integrated macro- and micro-devices with flexibility. Herein, we developed a consecutive spray printing strategy to controllably construct and integrate diverse supercapacitors on various substrates. In such a strategy, all supercapacitor components are fully printable, and their thicknesses and shapes are well controlled. As a result, supercapacitors obtained by this strategy achieve diverse structures and shapes. In addition, different nanocarbon and pseudocapacitive materials are applicable for the fabrication of these diverse supercapacitors. Furthermore, the diverse supercapacitors can be readily constructed on various objects with planar, curved, or even rough surfaces (e.g., plastic film, glass, cloth, and paper). More importantly, the consecutive spray printing process can integrate several supercapacitors together in the perpendicular and parallel directions of one substrate by designing the structure of electrodes and separators. This enlightens the construction and integration of fully printable supercapacitors with diverse configurations to be compatible with fully printable electronics on various substrates.
Elastic Fiber Supercapacitors for Wearable Energy Storage.
Qin, Si; Seyedin, Shayan; Zhang, Jizhen; Wang, Zhiyu; Yang, Fangli; Liu, Yuqing; Chen, Jun; Razal, Joselito M
2018-05-17
The development of wearable devices such as smart watches, intelligent garments, and wearable health-monitoring devices calls for suitable energy storage devices which have matching mechanical properties and can provide sufficient power for a reasonable duration. Stretchable fiber-based supercapacitors are emerging as a promising candidates for this purpose because they are lightweight, flexible, have high energy and power density, and the potential for easy integration into traditional textile processes. An important characteristic that is oftentimes ignored is stretchability-fiber supercapacitors should be able to accommodate large elongation during use, endure a range of bending motions, and then revert to its original form without compromising electrical and electrochemical performance. This article summarizes the current research progress on stretchable fiber-based supercapacitors and discusses the existing challenges on material preparation and fiber-based device fabrication. This article aims to help researchers in the field to better understand the challenges related to material design and fabrication approaches of fiber-based supercapacitors, and to provide insights and guidelines toward their wearability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun
2018-02-16
Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors
Choi, Changsoon; Kim, Kang Min; Kim, Keon Jung; Lepró, Xavier; Spinks, Geoffrey M.; Baughman, Ray H.; Kim, Seon Jeong
2016-01-01
Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the galleries of helically scrolled carbon nanotube sheets, which provide strength and electrical conductivity. Despite the high loading of brittle metal oxide particles, the biscrolled solid-state yarn supercapacitors are flexible and can be made elastically stretchable (up to 30% strain) by over-twisting to produce yarn coiling. The maximum areal capacitance of the yarn electrodes were up to 100 times higher than for previously reported fibres or yarn supercapacitors. Similarly, the energy density of complete, solid-state supercapacitors made from biscrolled yarn electrodes with gel electrolyte coating were significantly higher than for previously reported fibre or yarn supercapacitors. PMID:27976668
Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors.
Choi, Changsoon; Kim, Kang Min; Kim, Keon Jung; Lepró, Xavier; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong
2016-12-15
Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO 2 ). The yarn electrodes are made by a biscrolling process that traps host MnO 2 nanoparticles within the galleries of helically scrolled carbon nanotube sheets, which provide strength and electrical conductivity. Despite the high loading of brittle metal oxide particles, the biscrolled solid-state yarn supercapacitors are flexible and can be made elastically stretchable (up to 30% strain) by over-twisting to produce yarn coiling. The maximum areal capacitance of the yarn electrodes were up to 100 times higher than for previously reported fibres or yarn supercapacitors. Similarly, the energy density of complete, solid-state supercapacitors made from biscrolled yarn electrodes with gel electrolyte coating were significantly higher than for previously reported fibre or yarn supercapacitors.
A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics
NASA Astrophysics Data System (ADS)
Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan
2016-09-01
At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.
Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.
Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei
2017-11-15
Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.
NASA Astrophysics Data System (ADS)
Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh
2016-01-01
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.
Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh
2016-01-01
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724
Manganese oxides-based composite electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Su, Dongyun; Ma, Jun; Huang, Mingyu; Liu, Feng; Chen, Taizhou; Liu, Chao; Ni, Hongjun
2017-06-01
In recent, nanostructured transition metal oxides as a new class of energy storage materials have widely attracted attention due to its excellent electrochemical performance for supercapacitors. The MnO2 based transition metal oxides and their composite electrode materials were focused in the review for supercapacitor applications. The researches on different nanostructures of manganese oxides such as Nano rods, Nano sheets, nanowires, nanotubes and so on have been discovered in recent years, together with brief explanations of their properties. Research on enhancing materials’ properties by designing combination of different materials on the micron or Nano scale is too limited, and therefore we discuss the effects of different components’ sizes and their synergy on the performance. Moreover, the low-cost and large-scale fabrication of flexible supercapacitors with high performance (high energy density and cycle stability) have been pointed out and studied.
Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan
2017-07-12
Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.
Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin
2015-02-11
A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-05-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-07-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites.
Lv, Tian; Yao, Yao; Li, Ning; Chen, Tao
2016-08-01
Stretchable supercapacitors that can sustain their performance under unpredictable tensile force are important elements for practical applications of various portable and wearable electronics. However, the stretchability of most reported supercapacitors was often lower than 100 % because of the limitation of the electrodes used. Herein we developed all-solid-state supercapacitors with a stretchability as high as 240 % by using aligned carbon nanotube composites with compact structure as electrodes. By combined with pseudocapacitive molybdenum disulfide nanosheets, the newly developed supercapacitor showed a specific capacitance of 13.16 F cm(-3) , and also showed excellent cycling retention (98 %) after 10 000 charge-discharge cycles. This work also presents a general and effective approach in developing high-performance electrodes for flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-02-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-01-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913
Niu, Zhiqiang; Zhou, Weiya; Chen, Jun; Feng, Guoxing; Li, Hong; Hu, Yongsheng; Ma, Wenjun; Dong, Haibo; Li, Jinzhu; Xie, Sishen
2013-02-25
Ultrathin SWCNT transparent and conductive films on flexible and transparent substrates are prepared via repeatedly halving the directly grown SWCNT films and flexible and transparent supercapacitors with excellent performance were fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
Zou, Yuqin; Wang, Shuangyin
2015-07-07
Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.
Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors
NASA Astrophysics Data System (ADS)
Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao
2014-07-01
Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b
High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth
NASA Astrophysics Data System (ADS)
Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Long, Hu; Xi, Shuang; Hu, Hao; Tang, Zirong
2014-12-01
A simple and effective strategy is proposed to activate carbon cloth for the fabrication of flexible and high-performance supercapacitors. Firstly, the carbon cloth surface is exfoliated as nanotextures through wet chemical treatment, then an annealing process is applied at H2/N2 atmosphere to reduce the surface oxygen functional groups which are mainly introduced from the first step. The activated carbon cloth electrode shows excellent wettablity, large surface area and delivers remarkable electrochemical performance. A maximum areal capacitance of 485.64 mF cm-2 at the current density of 2 mA cm-2 is achieved for the activated carbon cloth electrode, which is considerably larger than the resported results for carbon cloth. Furthermore, the flexible all-solid-state supercapacitor, which is fabricated based on the activated carbon cloth electrodes, shows high areal capacitance, superior cycling stability as well as stable electrochemical performance even under constant bending or twisting conditions. An areal capacitance of 161.28 mF cm-2 is achieved at the current density of 12.5 mA cm-2, and 104% of its initial capacitance is retained after 30,000 charging/discharging cycles. This study would also provide an effective way to boost devices' electrochemical performance by accommodating other active materials on the activated carbon cloth.
Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing
2015-10-28
Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.
Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics
NASA Astrophysics Data System (ADS)
Su, Fenghua; Miao, Menghe
2014-04-01
Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg-1 at a lower power density of 483.7 W kg-1, and 28.02 Wh kg-1 at a higher power density of 19 250 W kg-1. The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.
Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
Su, Fenghua; Miao, Menghe
2014-04-04
Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO₂ are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@Mn₂2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO₂ composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg(-1) at a lower power density of 483.7 W kg(-1), and 28.02 Wh kg(-1) at a higher power density of 19,250 W kg(-1). The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.
Liu, Rong; Ma, Lina; Mei, Jia; Huang, Shu; Yang, Shaoqiang; Li, Enyuan; Yuan, Guohui
2017-02-21
A flexible and freestanding supercapacitor electrode with a N,P-co-doped carbon nanofiber network (N,P-CNFs)/graphene (GN) composite loaded on bacterial cellulose (BC) is first designed and fabricated in a simple, low-cost, and effective approach. The porous structure and excellent mechanical properties make the BC paper an ideal substrate that shows a large areal mass of 8 mg cm -2 . As a result, the flexible N,P-CNFs/GN/BC paper electrode shows appreciable areal capacitance (1990 mF cm -2 in KOH and 2588 mF cm -2 in H 2 SO 4 electrolytes) without sacrificing gravimetric capacitance (248.8 F g -1 and 323.5 F g -1 ), exhibits excellent cycling ability (without capacity loss after 20 000 cycles), and remarkable tensile strength (42.8 MPa). By direct coupling of two membrane electrodes, the symmetric supercapacitor delivers a prominent areal capacitance of 690 mF cm -2 in KOH and 898 mF cm -2 in H 2 SO 4 , and remarkable power/energy density (19.98 mW cm -2 /0.096 mW h cm -2 in KOH and 35.01 mW cm -2 /0.244 mW h cm -2 in H 2 SO 4 ). Additionally, it shows stable behavior in both bent and flat states. These results promote new opportunities for N,P-CNFs/GN/BC paper electrodes as high areal performance, freestanding electrodes for flexible supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Promising applications of graphene and graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-06-01
The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of molecules, vapors and gases through nanopores in graphene membranes, experimental works investigating selective transport of different molecules through nanopores in single-layer graphene and graphene-based membranes toward the water desalination, chemical mixture separation and gas control. Various applications of graphene in bio-medicine are the contents of the fourth scientific subject of the review. They include the DNA translocations through nanopores in graphene membranes toward the fabrication of devices for genomic screening, in particular DNA sequencing; subnanometre trans-electrode membranes with potential applications to the fabrication of very high resolution, high throughput nanopore-based single-molecule detectors; antibacterial activity of graphene, graphite oxide, graphene oxide and reduced graphene oxide; nanopore sensors for nucleic acid analysis; utilization of graphene multilayers as the gates for sequential release of proteins from surface; utilization of graphene-based electroresponsive scaffolds as implants for on-demand drug delivery etc. The fifth scientific subject of the review is the research on the utilization of graphene in energy storage devices: ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage; self-assembled graphene/carbon nanotube hybrid films for supercapacitors; carbon-based supercapacitors fabricated by activation of graphene; functionalized graphene sheet-sulfure nanocomposite for using as cathode material in rechargeable lithium batteries; tunable three-dimensional pillared carbon nanotube-graphene networks for high-performance capacitance; fabrications of electrochemical micro-capacitors using thin films of carbon nanotubes and chemically reduced graphenes; laser scribing of high-performance and flexible graphene-based electrochemical capacitors; emergence of next-generation safe batteries featuring graphene-supported Li metal anode with exceptionally high energy or power densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed.
Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density
NASA Astrophysics Data System (ADS)
Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta
2018-05-01
In this present work we have synthesized few layered MnO2 nanosheets by mixed solvent exfoliation process for the application as electrode material of in-plane supercapacitor. The Structure and surface morphology of the as prepared samples are characterized by Raman, Transmission electron microscopy and Scanning electron microscopy. The patterns of the hybrids were directly fabricated by (50: 50 wt %) mixture of MnO2 and SWCNT dispersions with the help of a customized mask, and directly transferred onto a flexible PET substrate. Remarkably, the prepared in-plane supercapacitors deliver high energy density of 2.62mWh/cm2. Furthermore, our supercapacitors shows exceptional flexibility and stable performance under bending conditions
Sun, Yimin; Fang, Zheng; Wang, Chenxu; Ariyawansha, K R Rakhitha Malinga; Zhou, Aijun; Duan, Hongwei
2015-05-07
A sandwich-structured flexible supercapacitor electrode has been developed based on MnO2 nanonest (MNN) modified ionic liquid (IL) functionalized graphene paper (GP), which is fabricated by functionalizing graphene nanosheets with an amine-terminated IL (i.e., 1-(3-aminopropyl)-3-methylimidazolium bromide) to form freestanding IL functionalized GP (IL-GP), and then modifying IL-GP with a unique MNN structure via controllable template-free ultrasonic electrodeposition. The as-obtained MNN modified IL-GP (MNN/IL-GP) inherits the excellent pseudocapacity of the metal oxide, the high conductivity and electric double layer charging/discharging of IL-graphene composites, and therefore shows an enhanced supercapacitor performance. The maximum specific capacitance of 411 F g(-1) can be achieved by chronopotentiometry at a current density of 1 A g(-1). Meanwhile, the MNN/IL-GP electrode exhibits excellent rate capability and cycling stability, its specific capacitance is maintained at 70% as the current densities increase from 1 to 20 A g(-1) and 85% at a current density of 10 A g(-1) after 10 000 cycles. More importantly, the MNN/IL-GP displays distinguished mechanical stability and flexibility for device packaging, although its thickness is merely 8 μm. These features collectively demonstrate the potential of MNN/IL-GP as a high-performance paper electrode for flexible and lightweight and highly efficient electrochemical capacitor applications.
Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng
2016-10-05
The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.
All-fabric-based wearable self-charging power cloth
NASA Astrophysics Data System (ADS)
Song, Yu; Zhang, Jinxin; Guo, Hang; Chen, Xuexian; Su, Zongming; Chen, Haotian; Cheng, Xiaoliang; Zhang, Haixia
2017-08-01
We present an all-fabric-based self-charging power cloth (SCPC), which integrates a fabric-based single-electrode triboelectric generator (STEG) and a flexible supercapacitor. To effectively scavenge mechanical energy from the human motion, the STEG could be directly woven among the cloth, exhibiting excellent output capability. Meanwhile, taking advantage of fabric structures with a large surface-area and carbon nanotubes with high conductivity, the wearable supercapacitor exhibits high areal capacitance (16.76 mF/cm2) and stable cycling performance. With the fabric configuration and the aim of simultaneously collecting body motion energy by STEG and storing in supercapacitors, such SCPC could be easily integrated with textiles and charged to nearly 100 mV during the running motion within 6 min, showing great potential in self-powered wearable electronics and smart cloths.
MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.
2014-04-01
Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.
Liu, Nishuang; Ma, Wenzhen; Tao, Jiayou; Zhang, Xianghui; Su, Jun; Li, Luying; Yang, Congxing; Gao, Yihua; Golberg, Dmitri; Bando, Yoshio
2013-09-20
A novel cable-type flexible supercapacitor with excellent performance is fabricated using 3D polypyrrole(PPy)-MnO2 -CNT-cotton thread multi-grade nanostructure-based electrodes. The multiple supercapacitors with a high areal capacitance 1.49 F cm(-2) at a scan rate of 1 mV s(-1) connected in series and in parallel can successfully drive a LED segment display. Such an excellent performance is attributed to the cumulative effect of conducting single-walled carbon nanotubes on cotton thread, active mesoporous flower-like MnO2 nanoplates, and PPy conductive wrapping layer improving the conductivity, and acting as pseudocapacitance material simultaneously. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors
NASA Astrophysics Data System (ADS)
Drieschner, Simon; von Seckendorff, Maximilian; del Corro, Elena; Wohlketzetter, Jörg; Blaschke, Benno M.; Stutzmann, Martin; Garrido, Jose A.
2018-06-01
Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm‑3 and 0.16 F cm‑2. The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.
Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors.
Drieschner, Simon; Seckendorff, Maximilian von; Corro, Elena Del; Wohlketzetter, Jörg; Blaschke, Benno M; Stutzmann, Martin; Garrido, Jose A
2018-06-01
Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm -3 and 0.16 F cm -2 . The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.
PEDOT-based composites as electrode materials for supercapacitors.
Zhao, Zhiheng; Richardson, Georgia F; Meng, Qingshi; Zhu, Shenmin; Kuan, Hsu-Chiang; Ma, Jun
2016-01-29
Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.
Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang
2013-12-23
A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supercapacitors based on pillared graphene nanostructures.
Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S
2012-03-01
We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.
NASA Astrophysics Data System (ADS)
Zhao, Junhong; Zheng, Mingbo; Run, Zhen; Xia, Jing; Sun, Mengjun; Pang, Huan
2015-07-01
1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes are synthesized for the first time by a hydrothermal method. We present a self-reacting template method to synthesize 1D Co2.18Ni0.82Si2O5(OH)4 architectures using Ni(SO4)0.3(OH)1.4 nanobelts. A high-performance flexible asymmetric solid-state supercapacitor can be successfully fabricated based on the 1D Co2.18Ni0.82Si2O5(OH)4 architectures and graphene nanosheets. Interestingly, the as-assembled 1D Co2.18Ni0.82Si2O5(OH)4 architectures//Graphene nanosheets asymmetric solid-state supercapacitor can achieve a maximum energy density of 0.496 mWh cm-3, which is higher than most of reported solid state supercapacitors. Additionally, the device shows high cycle stability for 10,000 cycles. These features make the 1D Co2.18Ni0.82Si2O5(OH)4 architectures as one of the most promising candidates for high-performance energy storage devices.
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin
2015-12-01
In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm2 at 5 mV s-1 which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm2-109 mF/cm2) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm2). In contrast, only 190 mF/cm2 of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.
Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin
2015-12-08
In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm(2) at 5 mV s(-1) which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm(2)-109 mF/cm(2)) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm(2)). In contrast, only 190 mF/cm(2) of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.
Jin, Yu; Chen, Hongyuan; Chen, Minghai; Liu, Ning; Li, Qingwen
2013-04-24
MnO2 has been widely studied as the pseudo-capactive electrode material of high-performance supercapacitors for its large operating voltage, low cost, and environmental friendliness. However, it suffers from low conductivity and being hardly handle as the electrodes of supercapacitors especially with flexibility, which largely limit its electrochemical performance and application. Herein, we report a novel ternary composite paper composed of reduced graphene sheet (GR)-patched carbon nanotube (CNT)/MnO2, which has controllable structures and prominent electrochemical properties for a flexible electrode of the supercapacitor. The composite paper was prepared by electrochemical deposition of MnO2 on a flexible CNT paper and further adsorption of GR on its surface to enhance the surface conductivity of the electrode and prohibit MnO2 nanospheres from detaching with the electrode. The presence of GR was found remarkably effective in enhancing the initial electrochemical capacitance of the composite paper from 280 F/g to 486.6 F/g. Furthermore, it ensures the stability of the capacitance after a long period of charge/discharge cycles. A flexible CNT/polyaniline/CNT/MnO2/GR asymmetric supercapacitor was assembled with this composite paper as an electrode and aqueous electrolyte gel as the separator. Its operating voltage reached 1.6 V, with an energy density at 24.8 Wh/kg. Such a composite structure derived from a multiscale assembly can offer not only a robust scaffold loading MnO2 nanospheres but also a conductive network for efficient ionic and electronic transport; thus, it is potentially promising as a novel electrode architecture for high-performance flexible energy storage devices.
Coffee-Driven Green Activation of Cellulose and Its Use for All-Paper Flexible Supercapacitors.
Lee, Donggue; Cho, Yoon-Gyo; Song, Hyun-Kon; Chun, Sang-Jin; Park, Sang-Bum; Choi, Don-Ha; Lee, Sun-Young; Yoo, JongTae; Lee, Sang-Young
2017-07-12
Cellulose, which is one of the most-abundant and -renewable natural resources, has been extensively explored as an alternative substance for electrode materials such as activated carbons. Here, we demonstrate a new class of coffee-mediated green activation of cellulose as a new environmentally benign chemical-activation strategy and its potential use for all-paper flexible supercapacitors. A piece of paper towel is soaked in espresso coffee (acting as a natural activating agent) and then pyrolyzed to yield paper-derived activated carbons (denoted as "EK-ACs"). Potassium ions (K + ), a core ingredient of espresso, play a viable role in facilitating pyrolysis kinetics and also in achieving a well-developed microporous structure in the EK-ACs. As a result, the EK-ACs show significant improvement in specific capacitance (131 F g -1 at a scan rate of 1.0 mV s -1 ) over control ACs (64 F g -1 ) obtained from the carbonization of a pristine paper towel. All-paper flexible supercapacitors are fabricated by assembling EK-ACs/carbon nanotube mixture-embedded paper towels (as electrodes), poly(vinyl alcohol)/KOH mixture-impregnated paper towels (as electrolytes), and polydimethylsiloxane-infiltrated paper towels (as packaging substances). The introduction of the EK-ACs (as an electrode material) and the paper towel (as a deformable and compliant substrate) enables the resulting all-paper supercapacitor to provide reliable and sustainable cell performance as well as exceptional mechanical flexibility. Notably, no appreciable loss in the cell capacitance is observed after repeated bending (over 5000 cycles) or multiple folding. The coffee-mediated green activation of cellulose and the resultant all-paper flexible supercapacitors open new material and system opportunities for eco-friendly high-performance flexible power sources.
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes.
Fong, Kara D; Wang, Tiesheng; Kim, Hyun-Kyung; Kumar, R Vasant; Smoukov, Stoyan K
2017-09-08
Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.
Zhou, Xi; Chen, Qiang; Wang, Anqi; Xu, Jian; Wu, Shishan; Shen, Jian
2016-02-17
A bamboo-like nanomaterial composed of V2O5/polyindole (V2O5/PIn) decorated onto the activated carbon cloth was fabricated for supercapacitors. The PIn could effectively enhance the electronic conductivity and prevent the dissolution of vanadium. And the activation of carbon cloth with functional groups is conducive to anchoring the V2O5 and improving surface area, which results in an enhancement of electrochemical performance and leads to a high specific capacitance of 535.5 F/g. Moreover, an asymmetric flexible supercapacitor based on V2O5/PIn@activate carbon cloth and reduced graphene oxide (rGO)@activate carbon cloth exhibits a high energy density (38.7 W h/kg) at a power density of 900 W/kg and good cyclic stability (capacitance retention of 91.1% after 5000 cycles). And the prepared device is shown to power the light-emitting diode bulbs efficiently.
Nan, Honghong; Yu, Liutao; Ma, Wenqin; Geng, Baoyou; Zhang, Xiaojun
2015-05-28
Flexible supercapacitors have recently attracted increasing attention as they show unique promising advantages, such as flexibility and shape diversity, and they are light-weight and so on. Herein, we designed a series of 3D porous spinous iron oxide materials synthesized on a thin iron plate through a facile method under mild conditions. The unique nanostructural features endow them with excellent electrochemical performance. The electrochemical properties of the integrated electrodes as active electrode materials for supercapacitors have been investigated using different electrochemical techniques including cyclic voltammetry, and galvanostatic charge-discharge in Na2SO4 and LiPF6/EC : DEC electrolyte solutions. These integrated electrodes showed high specific capacitance (as high as 524.6 F g(-1) at the current density of 1 A g(-1)) in 1.0 M Na2SO4 (see Table S1). Moreover, the integrated electrodes also show high power densities and high energy densities in a LiPF6/EC : DEC electrolyte solution; for example, the energy densities were 319.3, 252.5, 152.1, 74.13 and 38.6 W h kg(-1) at different power densities of 8.81, 21.59, 56.65, 92.09 and 152.64 kW kg(-1), respectively. Additionally, the flexible superior electrode exhibited excellent stability with capacitance retention of 92.9% after 5000 cycles. Therefore, such flexible integrated devices might be used in smart and portable electronics.
Yang, Bingchao; Hao, Chunxue; Wen, Fusheng; Wang, Bochong; Mu, Congpu; Xiang, Jianyong; Li, Lei; Xu, Bo; Zhao, Zhisheng; Liu, Zhongyuan; Tian, Yongjun
2017-12-27
We proposed a simple route for fabrication of the flexible BP nanoflake/carbon nanotube (CNT) composite paper as flexible electrodes in all-solid-state supercapacitors. The highly conductive CNTs not only play a role as active materials but also increase conductivity of the hybrid electrode, enhance electrolyte shuttling and prevent the restacking between BP nanoflakes. The fabricated flexible all-solid-state supercapacitor (ASSP) device at the mass proportion of BP/CNTs 1:4 was found to deliver the highest volumetric capacitance of up to 41.1 F/cm 3 at 0.005 V/s, superior to the ASSP based on the bare graphene or BP. The BP/CNTs (1:4) device delivers a rapid charging/discharging up to 500 V/s, which exhibits the characteristic of a high power density of 821.62 W/cm 3 , while having outstanding mechanical flexibility and high cycling stability over 10 000 cycles (91.5% capacitance retained). Moreover the BP/CNTs (1:4) ASSP device still retains large volumetric capacitance (35.7 F/cm 3 at the scan rate of 0.005 V/s) even after 11 months. In addition, the ASSP of BP/CNTs (1:4) exhibits high energy density of 5.71 mWh/cm 3 and high power density of 821.62 W/cm 3 . As indicated in our work, the strategy of assembling stacked-layer composites films will open up novel possibility for realizing BP and CNTs in new-concept thin-film energy storage devices.
Flexible freestanding sandwich type ZnO/rGO/ZnO electrode for wearable supercapacitor
NASA Astrophysics Data System (ADS)
Ghorbani, Mina; Golobostanfard, Mohammad Reza; Abdizadeh, Hossein
2017-10-01
The development of flexible supercapacitors with high energy and power density as one of the main components of wearable electronics is in an enormous interest. In this report, a unique flexible electrode based on freestanding sandwich type ZnO/rGO/ZnO paper is fabricated by a simple low cost sol-gel method for utilizing in flexible supercapacitor. ZnO layers are deposited on both sides of rGO paper which is prepared by a modified Hummer's method and evaporation induced assembly. The uniform and densely packed ZnO layers are formed on graphene oxide paper and the paper is simultaneously reduced. Structural analysis reveals the formation of ZnO thin films on both sides of rGO nanosheets, which leads to the sandwich architecture. Also, the effect of ZnO sol-gel process parameters on microstructure of sandwich paper are investigated and the most suitable condition for highest supercapacity performance is the solvent of 1-PrOH, stabilizer of TeA, sol concentration of 0.2 M, deposition speed of 30 mm min-1, and 10 deposited layers. The results of electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry confirm that the incorporation of ZnO improves the capacitive performance of rGO electrode. Moreover, ZnO/rGO/ZnO flexible electrode exhibits suitable capacitance value of 60.63 F g-1 at scan rate of 5 mV/s.
Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se
2013-12-17
Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan
2013-10-01
Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications. Electronic supplementary information (ESI) available: Chemical structures of functional groups on cellulose fibers, the surface water wettability of rice paper, CV curves of supercapacitors at different scan rates, galvanostatic charge-discharge curves of supercapacitors at different current densities, TGA profiles of the SWCNT-MnO2-paper composites synthesized at different temperatures, TEM images of MnO2 particles deposited on rice paper at different temperatures, photographs of supercapacitors under different bending test conditions, and a video of bending and folding the SWCNT-MnO2-paper composites. See DOI: 10.1039/c3nr03010e
Grote, Fabian; Yu, Zi-You; Wang, Jin-Long; Yu, Shu-Hong; Lei, Yong
2015-09-01
The implementation of an optical function into supercapacitors is an innovative approach to make energy storage devices smarter and to meet the requirements of smart electronics. Here, it is reported for the first time that nickel-cobalt hydroxide on reduced graphene oxide can be utilized for flexible electrochromic supercapacitors. A new and straightforward one-step electrochemical deposition process is introduced that is capable of simultaneously reducing GO and depositing amorphous Co(1-x)Ni(x)(OH)2 on the rGO. It is shown that the rGO nanosheets are homogeneously coated with metal hydroxide and are vertically stacked. No high temperature processes are used so that flexible polymer-based substrates can be coated. The synthesized self-stacked rGO-Co(1-x)Ni(x)(OH)2 nanosheet material exhibits pseudocapacitive charge storage behavior with excellent rate capability, high Columbic efficiency, and nondiffusion limited behavior. It is shown that the electrochemical behavior of the Ni(OH)2 can be modulated, by simultaneously depositing nickel and cobalt hydroxide, into broad oxidization and reduction bands. Further, the material exhibits electrochromic property and can switch between a bleached and transparent state. Literature comparison reveals that the performance characteristics of the rGO-Co(1-x)Ni(x)(OH)2 nanosheet material, in terms of gravimetric capacitance, areal capacitance, and long-term cycling stability, are among the highest reported values of supercapacitors with electrochromic property. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct laser-patterned micro-supercapacitors from paintable MoS2 films.
Cao, Liujun; Yang, Shubin; Gao, Wei; Liu, Zheng; Gong, Yongji; Ma, Lulu; Shi, Gang; Lei, Sidong; Zhang, Yunhuai; Zhang, Shengtao; Vajtai, Robert; Ajayan, Pulickel M
2013-09-09
Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Sen; Wu, Zhong-Shuai; Zheng, Shuanghao; Zhou, Feng; Sun, Chenglin; Cheng, Hui-Ming; Bao, Xinhe
2017-04-25
Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand of smart integrated electronics. However, single-step scalable fabrication of MSCs with both high energy and power densities is still challenging. Here we demonstrate the scalable fabrication of graphene-based monolithic MSCs with diverse planar geometries and capable of superior integration by photochemical reduction of graphene oxide/TiO 2 nanoparticle hybrid films. The resulting MSCs exhibit high volumetric capacitance of 233.0 F cm -3 , exceptional flexibility, and remarkable capacity of modular serial and parallel integration in aqueous gel electrolyte. Furthermore, by precisely engineering the interface of electrode with electrolyte, these monolithic MSCs can operate well in a hydrophobic electrolyte of ionic liquid (3.0 V) at a high scan rate of 200 V s -1 , two orders of magnitude higher than those of conventional supercapacitors. More notably, the MSCs show landmark volumetric power density of 312 W cm -3 and energy density of 7.7 mWh cm -3 , both of which are among the highest values attained for carbon-based MSCs. Therefore, such monolithic MSC devices based on photochemically reduced, compact graphene films possess enormous potential for numerous miniaturized, flexible electronic applications.
Wang, Kai; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Meng, Qinghai; Ma, Yanwei; Wei, Zhixiang
2015-12-02
A high-strength poly(vinyl alcohol) chemical hydrogel (PCH) film is prepared by coupling covalent crosslinking with a film-casting process. Conducting polyaniline (PANI) is then embedded in the PCH film by in situ growth to form a composite film with a PANI-hydrogel-PANI configuration, which leads to a new conceptual flexible supercapacitor with all-in-one configuration that exhibits superior electrochemical performance and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Huijuan; Li, Li; Ren, Jing; Cai, Zhenbo; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng
2013-01-01
Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability. PMID:23443325
Functional flexible and wearable supercapacitors
NASA Astrophysics Data System (ADS)
Huang, Yan; Zhi, Chunyi
2017-07-01
Substantial effort has been devoted to endowing flexible and wearable supercapacitors with desirable functions and solving urgent concerns regarding their practical application, particularly materials selection, air permeability, self-healability, shape memory, integration, and modularization. This gives rise to challenges with regard to both suitable materials and device fabrication. This review highlights the current state-of-the-art of these supercapacitors pertinent to materials, fabrication strategies, and performance. Challenges and solutions are also discussed to further improve their practicality. The aim of this review is to make a timely summary of this emerging field and discuss future opportunities and challenges.
Wang, Xianfu; Liu, Bin; Wang, Qiufan; Song, Weifeng; Hou, Xiaojuan; Chen, Di; Cheng, Yi-bing; Shen, Guozhen
2013-03-13
Highly flexible stacked and in-plane all-solid-state supercapacitors are fabricated on 3D hierarchical GeSe2 nanostructures with high performance, and, when configured as a self-powered photodetector nanosystem, can be used to power CdSe nanowire photodetectors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo
2015-08-01
The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03363b
Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M
2016-12-28
Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.
NASA Astrophysics Data System (ADS)
Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei
2016-08-01
Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.
All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor.
Wang, Chao; Xiong, Ye; Wang, Hanwei; Sun, Qingfeng
2018-05-30
All-round utilization of resources is proposed for maximizing environmental and economic benefits. Herein, the concept of all-round utilization on biomass derivations applying to carbon-based supercapacitors is demonstrated. Orange peel is used for all subassemblies of supercapacitor, including electrodes, separator and electrolyte. A monolithic porous carbon (OPHPC) is prepared by one-step carbonization of orange peel and another composite electrode is further synthesized by a simple hydrothermal process, based on sufficient utilization of natural structure and chemical components. OPHPC exhibits a high specific surface area of 860 m 2 g -1 and naturally doped nitrogen. The composite electrode shows the homogeneous and high mass loading of MnO 2 . Orange peel also affords the role of separator benefited from the natural porous channel structure and high porosity of 74.6%. Orange peel juice is exploited to produce the electrolyte, and exhibits the best retention in natural separator. All-orange peel all-solid-state supercapacitor shows the high areal capacitance of 3987 mF cm -2 . Furthermore, the flexibility of orange peel is also utilized to achieve the shape-tailored monolithic porous carbon electrode and device, which further extends the utilized dimensionality in biomass applying to supercapacitors. The work starts with all dimensional utilization for biomass derived supercapacitor. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe
2015-09-01
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02961a
Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin
2015-01-01
In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm2 at 5 mV s−1 which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm2–109 mF/cm2) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm2). In contrast, only 190 mF/cm2 of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications. PMID:26644364
NASA Astrophysics Data System (ADS)
Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-10-01
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.
Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-10-20
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.
Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar
2015-01-01
Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921
NASA Astrophysics Data System (ADS)
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-07-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.
Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen
2017-11-22
We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.
Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian
2017-05-24
Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.
Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe
2015-10-07
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm(-2) at a current density of 2 mA cm(-2), which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm(-2). An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm(-2)) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg(-1) (3.522 mW h cm(-3)), demonstrating great potential for practical applications in flexible energy storage electronics.
All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers
NASA Astrophysics Data System (ADS)
Laforgue, Alexis
Poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers were obtained by the combination of electrospinning and vapor-phase polymerization. The fibers had diameters around 350 nm, and were soldered at most intersections, providing a strong dimensional stability to the mats. The nanofiber mats demonstrated very high conductivity (60 ± 10 S cm -1, the highest value reported so far for polymer nanofibers) as well as improved electrochemical properties, due to the ultraporous nature of the electrospun mats. The mats were incorporated into all-textile flexible supercapacitors, using carbon cloths as the current collectors and electrospun polyacrylonitrile (PAN) nanofibrous membranes as the separator. The textile layers were stacked and embedded in a solid electrolyte containing an ionic liquid and PVDF-co-HFP as the host polymer. The resulting supercapacitors were totally flexible and demonstrated interesting and stable performances in ambient conditions.
All-SPEEK flexible supercapacitor exploiting laser-induced graphenization
NASA Astrophysics Data System (ADS)
Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.
2017-09-01
Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.
Liu, Yuqing; Weng, Bo; Razal, Joselito M; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G; Chen, Jun
2015-11-20
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
NASA Astrophysics Data System (ADS)
Liu, Yuqing; Weng, Bo; Razal, Joselito M.; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G.; Chen, Jun
2015-11-01
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg cm-2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang
2017-11-01
Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.
Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.
Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai
2013-09-21
Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.
Tao, Jiayou; Liu, Nishuang; Li, Luying; Su, Jun; Gao, Yihua
2014-03-07
A solid-state high performance flexible asymmetric supercapacitor (ASC) was fabricated. Its anode is based on organic-inorganic materials, where polypyrrole (PPy) is uniformly wrapped on MnO2 nanoflowers grown on carbon cloth (CC), and its cathode is made of activated carbon (AC) on CC. The ASC has an areal capacitance of 1.41 F cm(-2) and an energy density of 0.63 mW h cm(-2) at a power density of 0.9 mW cm(-2). An energy storage unit fabricated using multiple ASCs can drive a light-emitting diode (LED) segment display, a mini motor and even a toy car after full charging. The high-performance ASCs have significant potential applications in flexible electronics and electrical vehicles.
Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite
NASA Astrophysics Data System (ADS)
Amiri, Morteza Hassanpour; Namdar, Naser; Mashayekhi, Alireza; Ghasemi, Foad; Sanaee, Zeinab; Mohajerzadeh, Shams
2016-08-01
We report on the fabrication of graphene/Zno nanocomposite supercapacitor electrodes. Laser-scribing process was implemented in order to reduce the graphene oxide (GO)/ZnO mixture on a DVD disk. With reduced graphene oxide (rGO)/ZnO composite prepared by a mass ratio of 1:25 of Zn(NO3)2·6H2O to GO constituents, nanoparticles of ZnO with sizes ranging from 20 to 50 nm are obtained. Consequently, 12 times improvement in the specific capacitance was achieved at a current density of 0.1 mA/cm2 compared with pristine rGO electrodes. In addition, flexible microsupercapacitor was fabricated by spin coating of the gel electrolyte, showing high stack capacitance of 9 F/cm3 at a current density of 150 mA/cm2. This microsupercapacitor delivers power density of 70 mW/cm3 and energy density of 1.2 mWh/cm3. Furthermore, the performance of device was investigated at different bending angles. The resulted characteristics demonstrate that LSG/ZnO nanocomposite is a promising electrode material for high-performance supercapacitors.
All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.
Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin
2016-11-22
Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.
NASA Astrophysics Data System (ADS)
Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei
2017-11-01
All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.
Sami, Syed Kamran; Siddiqui, Saqib; Shrivastava, Sajal; Lee, Nae-Eung; Chung, Chan-Hwa
2017-12-01
Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm -2 at a current density of 0.1 mA cm -2 with a power density of more than 1600 W kg -1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abdelkader, Amr M.; Karim, Nazmul; Vallés, Cristina; Afroj, Shaila; Novoselov, Kostya S.; Yeates, Stephen G.
2017-09-01
Printed graphene supercapacitors have the potential to empower tomorrow’s wearable electronics. We report a solid-state flexible supercapacitor device printed on textiles using graphene oxide ink and a screen-printing technique. After printing, graphene oxide was reduced in situ via a rapid electrochemical method avoiding the use of any reducing reagents that may damage the textile substrates. The printed electrodes exhibited excellent mechanical stability due to the strong interaction between the ink and textile substrate. The unique hierarchical porous structure of the electrodes facilitated ionic diffusion and maximised the surface area available for the electrolyte/active material interface. The obtained device showed outstanding cyclic stability over 10 000 cycles and maintained excellent mechanical flexibility, which is necessary for wearable applications. The simple printing technique is readily scalable and avoids the problems associated with fabricating supercapacitor devices made of conductive yarn, as previously reported in the literature.
Graphene and Polymer Composites for Supercapacitor Applications: a Review
NASA Astrophysics Data System (ADS)
Gao, Yang
2017-06-01
Supercapacitors, as one of the energy storage devices, exhibit ultrahigh capacitance, high power density, and long cycle. High specific surface area, mechanical and chemical stability, and low cost are often required for supercapacitor materials. Graphene, as a new emerging carbon material, has attracted a lot of attention in energy storage field due to its intrinsic properties. Polymers are often incorporated into graphene for a number of enhanced or new properties as supercapacitors. In this paper, different polymers which are used to form composite materials for supercapacitor applications are reviewed. The functions, strategies, and the enhanced properties of graphene and polymer composites are discussed. Finally, the recent development of graphene and polymers for flexible supercapacitors are also discussed.
Liu, Chunyan; Zhao, Shulin; Lu, Yanan; Chang, Yingxue; Xu, Dongdong; Wang, Qi; Dai, Zhihui; Bao, Jianchun; Han, Min
2017-03-01
3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets are successfully prepared by controllable thermal conversion of oleylamine-capped mixed-phase SnS 2 -SnS nanodisks precursors, and employed as electroactive material to fabricate flexible, symmetric, all-solid-state supercapacitors. The fabricated solid devices exhibit very high areal specific capacitance (2.98 mF cm -2 ), good cycling stability (99% for 10 000 cycles), excellent flexibility, and desirable mechanical stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.
Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan
2014-07-22
Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
Li, Panpan; Jin, Zhaoyu; Peng, Lele; Zhao, Fei; Xiao, Dan; Jin, Yong; Yu, Guihua
2018-05-01
Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self-standing and flexible electrode-based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self-assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber-shaping process. A proof-of-concept all-gel-state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm -3 (at power density of 30.77 mW cm -3 ), outperforming many fiber-shaped supercapacitors reported previously. The all-hydrogel design opens up opportunities in the fabrication of next-generation wearable and portable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qi, Kai; Hou, Ruizuo; Zaman, Shahid; Qiu, Yubing; Xia, Bao Yu; Duan, Hongwei
2018-05-30
Metal-organic frameworks (MOFs) hold promising potential in energy storage but are limited by poor conductivity. In this work, a metal-organic framework/polypyrrole hybrid is constructed by a facile one-pot electrodeposition method in the presence of dopamine. An all-solid-state fabric supercapacitor based on this hybrid demonstrates excellent electrochemical energy-storage performance, which achieves a specific capacitance of 10 mF cm -1 (206 mF cm -2 ), a power density of 132 μW cm -1 (2102 μW cm -2 ), and an energy density of 0.8 μWh cm -1 (12.8 μWh cm -2 ). The stable cycling life and excellent mechanical flexibility over a wide range of working temperature are also achieved, which maintains a capacitance retention of 89% over 10 000 charging/discharging cycles, a capacitance decrease of only 4% after 1000 frizzy (360° bending) cycles, and no obvious capacitance loss under 100 repeated heating (100 °C)/cooling (-15 °C) cycles. This fibrous supercapacitor displays promising potential in wearable textile electronics as it can be easily woven into common cotton cloth. Our strategy may shed some valuable light on the construction of MOF-based hybrids for flexible energy-storage electronics.
NASA Astrophysics Data System (ADS)
Chen, Shaohua; Ma, Wujun; Xiang, Hengxue; Cheng, Yanhua; Yang, Shengyuan; Weng, Wei; Zhu, Meifang
2016-07-01
Graphene fibers based flexible supercapacitors have great potential as wearable power sources for textile electronics. However, their electrochemical performance is limited by the serious stacking of graphene sheets and their hydrophobicity in aqueous electrolytes. Meanwhile, their brittleness is unfavorable for practical application. Incorporation of nanofillers into graphene fibers has been proved effective for enhancing their capacitance, whereas often leading to deteriorated mechanical strength. Herein we demonstrate that the strength, toughness and capacitive performance of graphene-based fibers can be significantly enhanced simultaneously, simply by incorporating hydrophilic poly(vinyl alcohol) (PVA) into a non-liquid-crystalline graphene oxide (GO) dispersion before wet spinning and chemical reduction. The structure and properties of the resulted PVA/graphene hybrid fibers are systematically investigated, and the mechanism behind these enhancements is discussed in detail. The hybrid fiber with a PVA/GO weight ratio of 10/90 possesses a strength of 186 MPa, a toughness of 11.3 J cm-3, and a capacitance of 241 F cm-3 in 1 M H2SO4. A solid-state yarn supercapacitor assembled from these fibers exhibits a device energy of 5.97 mW h cm-3, and features excellent flexibility and bending stability. This device is robust enough to be integrated into textile and thus promising as wearable power supply for smart textiles.
Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.
Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin
2014-04-22
Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors.
Lee, Jiho; Kim, Wonbin; Kim, Woong
2014-08-27
A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.
Qin, Ping; Li, Xingxing; Gao, Biao; Fu, Jijiang; Xia, Lu; Zhang, Xuming; Huo, Kaifu; Shen, Wenli; Chu, Paul K
2018-05-10
Titanium nitride (TiN) is an attractive electrode material in fast charging/discharging supercapacitors because of its excellent conductivity. However, the low capacitance and mechanical brittleness of TiN restricts its further application in flexible supercapacitors with high energy density. Thus, it is still a challenge to rationally design TiN electrodes with both high electrochemical and mechanical properties. Herein, the hierarchical TiN nanoparticles-assembled nanopillars (H-TiN NPs) array as binder free electrodes were obtained by nitriding of hierarchical titanium dioxide (TiO2) nanopillars, which was produced by a simple hydrothermal treatment of anodic TiO2 nanotubes (NTs) array in water. The porous TiN nanoparticles connected to each other to form ordered nanopillar arrays, effectively providing larger specific surface area and more active sites for charge storage. The H-TiN NPs delivered a high volumetric capacitance of 120 F cm-3 at 0.83 A cm-3, which is better than that of TiN NTs arrays (69 F cm-3 at 0.83 A cm-3). After assembling into all-solid-state devices, the H-TiN NPs based supercapacitors exhibited outstanding volumetric capacitance of 5.9 F cm-3 at 0.02 A cm-3 and a high energy density of 0.53 mW h cm-3. Our results reveal a new strategy to optimize the supercapacitive performance of metal nitrides.
NASA Astrophysics Data System (ADS)
Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed
2016-08-01
A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.
NASA Astrophysics Data System (ADS)
Ren, Guofeng; Li, Shiqi; Fan, Zhao-Xia; Hoque, Md Nadim Ferdous; Fan, Zhaoyang
2016-09-01
Large-capacitance and ultrahigh-rate electrochemical supercapacitors (UECs) with frequency response up to kilohertz (kHz) range are reported using light, thin, and flexible freestanding electrodes. The electrode is formed by perpendicularly edge oriented multilayer graphene/thin-graphite (EOG) sheets grown radially around individual fibers in carbonized cellulous paper (CCP), with cellulous carbonization and EOG deposition implemented in one step. The resulted ∼10 μm thick EOG/CCP electrode is light and flexible. The oriented porous structure of EOG with large surface area, in conjunction with high conductivity of the electrode, ensures ultrahigh-rate performance of the fabricated cells, with large areal capacitance of 0.59 mF cm-2 and 0.53 mF cm-2 and large phase angle of -83° and -80° at 120 Hz and 1 kHz, respectively. Particularly, the hierarchical EOG/CCP sheet structure allows multiple sheets stacked together for thick electrodes with almost linearly increased areal capacitance while maintaining the volumetric capacitance nearly no degradation, a critical merit for developing practical faraday-scale UECs. 3-layers of EOG/CCP electrode achieved an areal capacitance of 1.5 mF cm-2 and 1.4 mF cm-2 at 120 Hz and 1 kHz, respectively. This demonstration moves a step closer to the goal of bridging the frequency/capacitance gap between supercapacitors and electrolytic capacitors.
Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics.
Li, La; Lou, Zheng; Chen, Di; Jiang, Kai; Han, Wei; Shen, Guozhen
2017-11-22
The popularization of personalized wearable devices has accelerated the development of flexible/stretchable supercapacitors (SCs) that possess remarkable features of miniaturization, high security, and easy integration to build an all-in-one integrated system, and realize the functions of comfortable, noninvasive and continuous health monitoring, motion records, and information acquisition, etc. This Review presents a brief phylogeny of flexible/stretchable SCs, represented by planar micro-supercapacitors (MSCs) and 1D fibrous SCs. The latest progress and advantages of different flexible/stretchable/self-healing substrate, solid-state electrolyte and electrode materials for the fabrication of wearable SCs devices are summarized. The various configurations used in planar MSCs and 1D fibrous SCs aiming at the improvement of performance are also discussed. In addition, from the viewpoint of practical value and large-scale production, a survey of integrated systems, from different types of SC powered wearable sensing (gas, pressure, tactile…) systems, wearable all-in-one systems (including energy harvest, storage, and functional groups), to device packaging is presented. Finally, the challenges and future perspectives of wearable SCs are also considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Shaojuan; Zhao, Jinlai; Zou, Jifei; He, Zhiliang; Xu, Changwen; Liu, Fuwei; Huang, Yang; Dong, Lei; Wang, Lei; Zhang, Han
2018-01-31
With the rapid development of portable electronics, solid-state flexible supercapacitors (SCs) are considered as one of the promising energy devices in powering electronics because of their intrinsic advantages. Polypyrrole (PPy) is an ideal electrode material in constructing flexible SCs owing to its high electrochemical activity and inherent flexibility, although its relatively low capacitance and poor cycling stability are still worthy of improvement. Herein, through the innovative introduction of black phosphorus (BP) nanosheets, we developed a laminated PPy/BP self-standing film with enhanced capacitance and cycling stability via a facile one-step electrochemical deposition method. The film exhibits a high capacitance of 497.5 F g -1 (551.7 F cm -3 ) and outstanding cycling stability of 10 000 charging/discharging cycles, thanks to BP nanosheets inducing laminated assembly which hinder dense and disordered stacking of PPy during electrodeposition, consequently providing a precise pathway for ion diffusion and electron transport together with alleviation of the structural deterioration during charge/discharge. The flexible SC fabricated by laminated films delivers a high capacitance of 452.8 F g -1 (7.7 F cm -3 ) besides its remarkable mechanical flexibility and cycling stability. Our facile strategy paves the way to improve the electrochemical performance of PPy-based SC that could serve as promising flexible energy device for portable electronics.
Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Shen, Zexiang; Huang, Wei
2017-01-01
Abstract A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni–Co–S nanosheet array is successfully deposited on graphene foam (Ni–Co–S/GF) by a one‐step electrochemical method. The Ni–Co–S/GF composed of Ni–Co–S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni–Co–S/GF electrodes have high specific capacitance values of 2918 and 2364 F g−1 at current densities of 1 and 20 A g−1, respectively. Using such hierarchical Ni–Co–S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg−1 when the power densities are 825.0 and 16100 W kg−1, respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni–Co–S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices. PMID:29610721
Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Lai, Linfei; Shen, Zexiang; Huang, Wei
2018-02-01
A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni-Co-S nanosheet array is successfully deposited on graphene foam (Ni-Co-S/GF) by a one-step electrochemical method. The Ni-Co-S/GF composed of Ni-Co-S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni-Co-S/GF electrodes have high specific capacitance values of 2918 and 2364 F g -1 at current densities of 1 and 20 A g -1 , respectively. Using such hierarchical Ni-Co-S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg -1 when the power densities are 825.0 and 16100 W kg -1 , respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni-Co-S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices.
Electrochromic fiber-shaped supercapacitors.
Chen, Xuli; Lin, Huijuan; Deng, Jue; Zhang, Ye; Sun, Xuemei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Guan, Guozhen; Peng, Huisheng
2014-12-23
An electrochromic fiber-shaped super-capacitor is developed by winding aligned carbon nanotube/polyaniline composite sheets on an elastic fiber. The fiber-shaped supercapacitors demonstrate rapid and reversible chromatic transitions under different working states, which can be directly observed by the naked eye. They are also stretchable and flexible, and are woven into textiles to display designed signals in addition to storing energy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thin Film Photovoltaic Cells on Flexible Substrates Integrated with Energy Storage
2012-07-01
selected mass-altered planes is varied, we have constructed a simple one-dimensional lattice that approximates the solids simulated previously with...to Sn atoms added to a silicon lattice). Development of Solid State Supercapacitors Integrated with Solar cells for Solar Electricity Storage This... supercapacitor for solar electricity storage. These areas and the major tasks therein are: (i) Supercapacitor Electrodes: We have investigated an approach to
Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.
Li, Xin; Rong, Jiepeng; Wei, Bingqing
2010-10-26
The effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with single-walled carbon nanotube (SWNT) film electrodes and 1 M aqueous electrolytes with different anions and cations were thoroughly investigated. The under-pressed capacitive and resistive features of the supercapacitors were studied by means of cyclic voltammetry measurements and electrochemical impedance analysis. The results demonstrated that the specific capacitance increased first and saturated in corresponding decreases of the series resistance, the charge-transfer resistance, and the Warburg diffusion resistance under an increased pressure from 0 to 1723.96 kPa. Wettability as well as ion-size effect of different aqueous electrolytes played important roles to determine the pressure dependence behavior of the suerpcapacitors under an applied pressure. An improved high-frequency capacitive response with 1172 Hz knee frequency, which is significantly higher compared to reported values, was observed under the compressive pressure of 1723.96 kPa, indicating an improving and excellent high-power capability of the supercapacitors under the pressure. The experimental results and the thorough analysis described in this work not only provide fundamental insight of pressure effects on supercapacitors but also give an important guideline for future design of next generation flexible/stretchable supercapacitors for industrial and consumer applications.
Raj, C Justin; Kim, Byung Chul; Cho, Won-Je; Lee, Won-gil; Jung, Sang-Don; Kim, Yong Hee; Park, Sang Yeop; Yu, Kook Hyun
2015-06-24
Flexible supercapacitor electrodes have been fabricated by simple fabrication technique using graphite nanoflakes on polymer lapping films as flexible substrate. An additional thin layer of conducting polymer polypyrrole over the electrode improved the surface conductivity and exhibited excellent electrochemical performances. Such capacitor films showed better energy density and power density with a maximum capacitance value of 37 mF cm(-2) in a half cell configuration using 1 M H2SO4 electrolyte, 23 mF cm(-2) in full cell, and 6 mF cm(-2) as planar cell configuration using poly(vinyl alcohol) (PVA)/phosphoric acid (H3PO4) solid state electrolyte. Moreover, the graphite nanoflakes/polypyrrole over polymer lapping film demonstrated good flexibility and cyclic stability.
Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng
2017-11-15
The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue
2018-02-01
The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-01-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478
Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan
2014-10-22
A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Xihong; Yu, Minghao; Wang, Gongming; Zhai, Teng; Xie, Shilei; Ling, Yichuan; Tong, Yexiang; Li, Yat
2013-01-11
A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
He, Shuijian; Hou, Haoqing; Chen, Wei
2015-04-01
3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.
Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin
2016-05-11
Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.
NASA Astrophysics Data System (ADS)
Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao
2014-11-01
Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).
NASA Astrophysics Data System (ADS)
Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang
2016-04-01
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c6nr00468g
Fabrication of silicon nanowires based on-chip micro-supercapacitor
NASA Astrophysics Data System (ADS)
Soam, Ankur; Arya, Nitin; Singh, Aniruddh; Dusane, Rajiv
2017-06-01
An on-chip micro-supercapacitor (μ-SC) based on Silicon nanowires (SiNWs) has been developed by Hot-wire chemical vapor process. First, finger patterned electrodes of Al were made on a silicon nitride coated Si wafer and SiNWs were then grown selectively on the Al electrodes. μ-SC performance has been tested in an ionic electrolyte and a capacitance of 13 μF/cm2 has been obtained by the μ-SC. The resulted μ-SC can be exploited to store the harvesting energy in micro-electro-mechanical-systems and coupled with battery for peak power leveling. Low temperature growth of SiNWs at 350 °C makes it suitable for prospective flexible electronics applications.
Wearable woven supercapacitor fabrics with high energy density and load-bearing capability.
Shen, Caiwei; Xie, Yingxi; Zhu, Bingquan; Sanghadasa, Mohan; Tang, Yong; Lin, Liwei
2017-10-30
Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g -1 or 3.6 mWh cm -3 , high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.
Wearable energy-smart ribbons for synchronous energy harvest and storage
Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-01-01
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm−3 and a power density of 243 mW cm−3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles. PMID:27834367
Wearable energy-smart ribbons for synchronous energy harvest and storage
NASA Astrophysics Data System (ADS)
Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-11-01
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm-3 and a power density of 243 mW cm-3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.
Wearable energy-smart ribbons for synchronous energy harvest and storage.
Li, Chao; Islam, Md Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-11-11
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm -3 and a power density of 243 mW cm -3 . Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.
NASA Astrophysics Data System (ADS)
Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo
2015-11-01
Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.
2017-08-01
In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.
Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D
2015-12-15
The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.
Fei, Haojie; Saha, Nabanita; Kazantseva, Natalia; Moucka, Robert; Cheng, Qilin; Saha, Petr
2017-01-01
The flexible supercapacitors (SCs) of the conventional sandwich-type structure have poor flexibility due to the large thickness of the final entire device. Herein, we have fabricated a highly flexible asymmetric SC using manganese dioxide (MnO2) and reduced graphene oxide (RGO) nanosheet-piled hydrogel films and a novel bacterial cellulose (BC)-filled polyacrylic acid sodium salt-Na2SO4 (BC/PAAS-Na2SO4) neutral gel electrolyte. Apart from being environmentally friendly, this BC/PAAS-Na2SO4 gel electrolyte has high viscosity and a sticky property, which enables it to combine two electrodes together. Meanwhile, the intertangling of the filled BC in the gel electrolyte hinders the decrease of the viscosity with temperature, and forms a separator to prevent the two electrodes from short-circuiting. Using these materials, the total thickness of the fabricated device does not exceed 120 μm. This SC device demonstrates high flexibility, where bending and even rolling have no obvious effect on the electrochemical performance. In addition, owing to the asymmetric configuration, the cell voltage of this flexible SC has been extended to 1.8 V, and the energy density can reach up to 11.7 Wh kg−1 at the power density of 441 W kg−1. This SC also exhibits a good cycling stability, with a capacitance retention of 85.5% over 5000 cycles. PMID:29084177
NASA Astrophysics Data System (ADS)
Li, Yiju; Ye, Ke; Cheng, Kui; Yin, Jinling; Cao, Dianxue; Wang, Guiling
2015-01-01
In this report, graphene nanosheets (GNS)/nickel sulfide (NiS) based material for high-performance supercapacitor is prepared by "dip and dry" and electrodeposition methods. Commercial flexible make-up cottons (MCs) are chose as skeletons to construct homogeneous three-dimensional (3D) interconnected graphene-wrapped macro-networks, which can support structures for high loading of active electrode materials and facilitate the access of electrolytes to active electrode materials. The hybrid GNS/NiS based MCs (denoted as MCs@GNS@NiS) electrode yields relatively high specific capacitance of 775 F g-1 at a charge/discharge specific current of 0.5 A g-1 and good capacitance retention of 88.1% after 1000 cycles at 2 A g-1. Furthermore, the MCs@GNS@NiS electrode delivers a high energy density of 11.2 Wh kg-1 at even a high power density of 1008 W kg-1. Therefore, such low-cost and high-performance energy MCs based on GNS/NiS hierarchical nanostructures offer great promise in large-scale energy storage device applications.
Dye Wastewater Cleanup by Graphene Composite Paper for Tailorable Supercapacitors.
Yu, Dandan; Wang, Hua; Yang, Jie; Niu, Zhiqiang; Lu, Huiting; Yang, Yun; Cheng, Liwei; Guo, Lin
2017-06-28
Currently, the energy crisis and environmental pollution are two critical challenges confronted by humans. The development of smart strategies to address the above-mentioned issues simultaneously is significant. As the main accomplices for water pollution, several kinds of organic dyes with intrinsic redox functional groups such as phenothiazines derivatives, anthraquinone, and indigoid dyes are potential candidates for the replacement of the conventional pseudocapacitive materials. In this work, three typical organic dyes can be efficiently removed by a facile adsorption procedure using reduced graphene oxide coated cellulose fiber (rGO@CF) paper. Flexible supercapacitors based on dye/rGO@CF electrodes exhibit excellent electrochemical performances that are superior to or comparable with those of conventional pseudocapacitive materials based devices, presenting a new type of promising electrode materials. Moreover, benefiting from the high flexibility and considerable mechanical strength of the graphene composite paper, the operating potential and capacitance of the devices can be easily adjusted by tailoring the hybrid electrodes into different specific shapes followed by rational integrating. The smart design of these dye/rGO@CF paper based electrodes shows that energy storage and environmental remediation can be achieved simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Li; Jiang, Wenchao; Yuan, Yang
We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7more » Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Tang, Yao; Song, Junhua
A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promisingmore » electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less
Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah
2016-10-01
We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.
Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan
2013-11-21
Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g(-1)), energy (9.0 W h kg(-1)), power (59.7 kW kg(-1)), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.
Tran, Ngoc Quang; Kang, Bong Kyun; Woo, Moo Hyun; Yoon, Dae Ho
2016-08-23
The effect of the doping configuration and concentration of nitrogen (N) and sulfur (S) on the electrochemical performance of 3 D N and S co-doped hole defect graphene hydrogel (NS-HGH) electrodes is investigated. Surprisingly, by introducing a hole defect on the graphene surface, the difference in the doping concentrations of N and S can be used to effectively modulate the electrochemical behavior of the NS-HGH. The hole defects provide a rapid ion diffusion path. Finally, we showed that the intriguing specific capacitance (536 F g(-1) ) of the NS-HGH could enhance the overall performance of the pseudocapacitance and electric double layer capacitance. The rational design of the NS-HGH-based flexible solid state supercapacitor results in not only outstanding electrochemical performance with a maximum energy density of 14.8 Wh kg(-1) and power density of 5.2 KW kg(-1) but also in extraordinary mechanical flexibility and excellent cycle stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhou, Gangyong; Xiong, Tianrou; He, Shuijian; Li, Yonghong; Zhu, Yongmei; Hou, Haoqing
2016-06-01
Nanostructured nickel-cobalt binary hydroxide (NiCosbnd BH) is widely investigated as supercapacitor electrode material. However, the aggregation and poor electrical conductivity of NiCosbnd BH limit its practical application as a supercapacitor. In this work, a flexible free-standing hierarchical porous composite composed of NiCosbnd BH nanosheets and titanium carbide-carbon nanofiber (NiCosbnd BH@TiC/CNF) is fabricated through electrospinning and microwave assisted method. The as-prepared composites exhibit desirable electrochemical performances, including high specific capacitance, cycling stability, and rate capability. In particular, the NiCosbnd BH41@TiC/CNF composite electrode exhibits a maximum specific capacitance of 2224 F g-1 at the current density of 0.5 A g-1 and excellent cyclic stability of 91% capacity retention after 3000 cycles at 5.0 A g-1. To expand its practical application, an asymmetric supercapacitor (ASC) is fabricated using the NiCosbnd BH41@TiC/CNF composite as the positive electrode and active carbon as the negative electrode. The ASC exhibits a prominent energy density of 55.93 Wh kg-1 and a high power density of 18,300 W kg-1 at 5.0 A g-1. The superior electrochemical property is attributed to the uniform dispersion of NiCosbnd BH nanosheets on the TiC/CNF felt matrix. The TiC/CNF felt with uniformed TiC nanoparticles makes the fiber surface more suitable for growing NiCosbnd BH nanosheets and simultaneously enhances the conductivity of electrode.
Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage
NASA Astrophysics Data System (ADS)
Tiliakos, Athanasios; Trefilov, Alexandra M. I.; Tanasǎ, Eugenia; Balan, Adriana; Stamatin, Ioan
2018-04-01
Revamping ground-breaking ideas from fractal geometry, we propose an alternative micro-supercapacitor configuration realized by laser-induced graphene (LIG) foams produced via laser pyrolysis of inexpensive commercial polymers. The Space-Filling Supercapacitor Carpet (SFSC) architecture introduces the concept of nested electrodes based on the pre-fractal Peano space-filling curve, arranged in a symmetrical equilateral setup that incorporates multiple parallel capacitor cells sharing common electrodes for maximum efficiency and optimal length-to-area distribution. We elucidate on the theoretical foundations of the SFSC architecture, and we introduce innovations (high-resolution vector-mode printing) in the LIG method that allow for the realization of flexible and scalable devices based on low iterations of the Peano algorithm. SFSCs exhibit distributed capacitance properties, leading to capacitance, energy, and power ratings proportional to the number of nested electrodes (up to 4.3 mF, 0.4 μWh, and 0.2 mW for the largest tested model of low iteration using aqueous electrolytes), with competitively high energy and power densities. This can pave the road for full scalability in energy storage, reaching beyond the scale of micro-supercapacitors for incorporating into larger and more demanding applications.
Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying
2015-09-30
In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.
Zhu, Guoyin; He, Zhi; Chen, Jun; Zhao, Jin; Feng, Xiaomiao; Ma, Yanwen; Fan, Quli; Wang, Lianhui; Huang, Wei
2014-01-21
Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors.
NASA Astrophysics Data System (ADS)
Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja
2016-06-01
Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g-1 or 552 μF cm-2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.
Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu
2010-08-24
In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.
Lu, Haicui; Chen, Jizhang; Tian, Qinghua
2018-03-01
Wearable electronics are developing rapidly in recent years. In this work, we develop a cost-effective, facile, and scalable approach to transform insulating cotton textile to highly conductive Ni-coated cotton textile (NCT). In order to verify the feasibility of NCT as a flexible current collector for wearable supercapacitors, we electrodeposit low-crystalline Ni-Al layered double hydroxide (LDH) nanoparticles onto the NCT. The obtained NCT@NiAl-LDH shows high specific capacitance (935.2 mF cm -2 ), superior rate capability, and good cyclability. Besides, the asymmetric supercapacitor (ASC) assembled from NCT@NiAl-LDH exhibits high specific energy of 58.8 Wh kg -1 (134 μWh cm -2 ) when the specific power is 539 W kg -1 (1228 μW cm -2 ). The results demonstrate great potential of our methodology. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Bin; Liu, Boyang; Wang, Qiufan; Wang, Xianfu; Xiang, Qingyi; Chen, Di; Shen, Guozhen
2013-10-23
Hierarchical ZnCo2O4/nickel foam architectures were first fabricated from a simple scalable solution approach, exhibiting outstanding electrochemical performance in supercapacitors with high specific capacitance (∼1400 F g(-1) at 1 A g(-1)), excellent rate capability (72.5% capacity retention at 20 A g(-1)), and good cycling stability (only 3% loss after 1000 cycles at 6 A g(-1)). All-solid-state supercapacitors were also fabricated by assembling two pieces of the ZnCo2O4-based electrodes, showing superior performance in terms of high specific capacitance and long cycling stability. Our work confirms that the as-prepared architectures can not only be applied in high energy density fields, but also be used in high power density applications, such as electric vehicles, flexible electronics, and energy storage devices.
NASA Astrophysics Data System (ADS)
Pang, Huan; Li, Xinran; Li, Bing; Zhang, Yizhou; Zhao, Qunxing; Lai, Wen-Yong; Huang, Wei
2016-06-01
Dimanganese trioxide microflowers are easily obtained from a Mn(ii) 8-hydroxyquinoline microcoordination after calcination in air. We also look into the possible formation mechanism of the flower-like morphology, and find that the reaction time affects the morphology of the coordination. Furthermore, the as-prepared porous Mn2O3 microflowers are made of many nanoplates which form many nanogaps and nanochannels. Interestingly, the assembled electrode based on the as-prepared porous Mn2O3 microflowers proves to be a high-performance electrode material for supercapacitors. The electrode shows a specific capacitance of 994 F g-1, which can work well even after 4000 cycles at 0.75 A g-1. More importantly, the porous Mn2O3 microflowers and activated carbons are assembled into a high-performance flexible solid-state asymmetric supercapacitor with a specific capacitance of 312.5 mF cm-2. The cycle test shows that the device can offer 95.6% capacity of the initial capacitance at 2.0 mA cm-2 after 5000 cycles with little decay. The maximum energy density of the device can achieve 6.56 mWh cm-3 and the maximum power density can also achieve 283.5 mW cm-3, which are among the best results for manganese based materials.Dimanganese trioxide microflowers are easily obtained from a Mn(ii) 8-hydroxyquinoline microcoordination after calcination in air. We also look into the possible formation mechanism of the flower-like morphology, and find that the reaction time affects the morphology of the coordination. Furthermore, the as-prepared porous Mn2O3 microflowers are made of many nanoplates which form many nanogaps and nanochannels. Interestingly, the assembled electrode based on the as-prepared porous Mn2O3 microflowers proves to be a high-performance electrode material for supercapacitors. The electrode shows a specific capacitance of 994 F g-1, which can work well even after 4000 cycles at 0.75 A g-1. More importantly, the porous Mn2O3 microflowers and activated carbons are assembled into a high-performance flexible solid-state asymmetric supercapacitor with a specific capacitance of 312.5 mF cm-2. The cycle test shows that the device can offer 95.6% capacity of the initial capacitance at 2.0 mA cm-2 after 5000 cycles with little decay. The maximum energy density of the device can achieve 6.56 mWh cm-3 and the maximum power density can also achieve 283.5 mW cm-3, which are among the best results for manganese based materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02267g
NASA Astrophysics Data System (ADS)
Santato, Clara
2015-10-01
The boom in multifunctional, flexible, and portable electronics and the increasing need of low-energy cost and autonomy for applications ranging from wireless sensor networks for smart environments to biomedical applications are triggering research efforts towards the development of self-powered sustainable electronic devices. Within this context, the coupling of electronic devices (e.g. sensors, transistors) with small size energy storage systems (e.g. micro-batteries or micro-supercapacitors) is actively pursued. Micro-electrochemical supercapacitors are attracting much attention in electronics for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. For their high specific pseudocapacitance, electronically conducting polymers are well known as positive materials for hybrid supercapacitors featuring high surface carbon negative electrodes. The processability of both polymer and carbon is of great relevance for the development of flexible miniaturised devices. Electronically conducting polymers are even well known to feature an electronic conductivity that depends on their oxidation (p-doped state) and that it is modulated by the polymer potential. This property and the related pseudocapacitive response make polymer very attracting channel materials for electrolyte-gated (EG) transistors. Here, we propose a novel concept of "Trans-capacitor", an integrated device that exhibits the storage properties of a polymer/carbon hybrid supercapacitor and the low-voltage operation of an electrolyte-gated transistor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Tang, Yao; Song, Junhua
A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less
Li, Xing; Tang, Yao; Song, Junhua; ...
2017-12-06
A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less
Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
NASA Astrophysics Data System (ADS)
Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao
2014-05-01
Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.
Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao
2014-01-01
Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366
Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure.
Guo, Kai; Wang, Xianfu; Hu, Lintong; Zhai, Tianyou; Li, Huiqiao; Yu, Neng
2018-06-01
Fiber supercapacitors have attracted tremendous attention as promising power source candidates for the next generation of wearable electronics, which are flexible, stretchable, and washable. Although asymmetric fiber supercapacitors with a high energy density have been achieved, their stretchability is no more than 200%, and they still face mechanical instability and an unreliable waterproof structure. This work develops a highly integrated structure for a waterproof, highly stretchable, and asymmetric fiber-shaped supercapacitor, which is assembled by integrating a helix-shaped asymmetric fiber supercapacitor into a bifunctional polymer. The asymmetric fiber supercapacitor demonstrates a working voltage of 1.6 V, a high energy density of 2.86 mW h/cm 3 , has unchanged capacitance after being immersed in water for 50 h, and retains 95% of its initial capacitance after 3000 cycles of stretching-releasing at a maximum strain of 400%. The extraordinary waterproof capability, the large stretching strain, and excellent stretching stability are attributed to the highly integrated structure design, which can also simplify the assembly process of stretchable, waterproof fiber supercapacitors.
2015-01-01
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm–2 and a volumetric capacitance of 10.4 F·cm–3, exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated. PMID:26618406
Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui
2015-12-23
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.
Electropolymerized polyazulene as active material in flexible supercapacitors
NASA Astrophysics Data System (ADS)
Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita
2017-07-01
We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).
Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan
2017-12-20
Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.
A nanostructured graphene/polyaniline hybrid material for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g-1 was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
A nanostructured graphene/polyaniline hybrid material for supercapacitors.
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g(-1) was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong
2016-01-01
With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776
Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan
2016-05-11
Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite.
NASA Astrophysics Data System (ADS)
Hu, Shan
This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.
NASA Astrophysics Data System (ADS)
Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.
Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.
Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.
Liu, Wei; Song, Min-Sang; Kong, Biao; Cui, Yi
2017-01-01
Energy-storage technologies such as lithium-ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever-growing market of flexible and wearable electronics has nourished progress in building multifunctional energy-storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed. The challenges of developing novel materials and configurations with tailored features, and in designing simple and large-scaled manufacturing methods that can be widely utilized are considered. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu
2018-04-16
Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Novel Slicing Method for Thin Supercapacitors.
Sun, Hao; Fu, Xuemei; Xie, Songlin; Jiang, Yishu; Guan, Guozhen; Wang, Bingjie; Li, Houpu; Peng, Huisheng
2016-08-01
Thin and flexible supercapacitors with low cost and individual variation are fabricated by a new and efficient slicing method. Tunable output voltage and energy can be realized with a high specific capacitance of 248.8 F g(-1) or 150.8 F cm(-3) , which is well maintained before and after bending. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lehtimäki, Suvi; Suominen, Milla; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita; Lupo, Donald
2015-10-14
Composite films consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) were electrochemically polymerized by electrooxidation of EDOT in ionic liquid (BMIMBF4) onto flexible electrode substrates. Two polymerization approaches were compared, and the cyclic voltammetry (CV) method was found to be superior to potentiostatic polymerization for the growth of PEDOT/GO films. After deposition, incorporated GO was reduced to rGO by a rapid electrochemical method of repetitive cathodic potential cycling, without using any reducing reagents. The films were characterized in 3-electrode configuration in BMIMBF4. Symmetric supercapacitors with aqueous electrolyte were assembled from the composite films and characterized through cyclic voltammetry and galvanostatic discharge tests. It was shown that PEDOT/rGO composites have better capacitive properties than pure PEDOT or the unreduced composite film. The cycling stability of the supercapacitors was also tested, and the results indicate that the specific capacitance still retains well over 90% of the initial value after 2000 consecutive charging/discharging cycles. The supercapacitors were demonstrated as energy storages in a room light energy harvester with a printed organic solar cell and printed electrochromic display. The results are promising for the development of energy-autonomous, low-power, and disposable electronics.
Wei, Chengzhuo; Xu, Qi; Chen, Zeqi; Rao, Weida; Fan, Lingling; Yuan, Ye; Bai, Zikui; Xu, Jie
2017-08-01
A novel all-solid-state yarn supercapacitor (YSC) has been fabricated by using the cotton yarns coated with polypyrrole (PPy) nanotubes. The interconnected network structure of PPy can increase the surface area as well as the electrode/electrolyte interface area, thus resulting in improved electrochemical performance. For the proposed YSC, a high areal-specific capacitance of 74.0mFcm -2 and a desirable energy density of 7.5μWhcm -2 are achieved. The flexibility of the YSC demonstrates that it is suitable for the integration as flexible power sources in wearable electronic textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power.
Kwon, Se Ra; Harris, John; Zhou, Tianyang; Loufakis, Dimitrios; Boyd, James G; Lutkenhaus, Jodie L
2017-07-25
Structural energy and power systems offer both mechanical and electrochemical performance in a single multifunctional platform. These are of growing interest because they potentially offer reduction in mass and/or volume for aircraft, satellites, and ground transportation. To this end, flexible graphene-based supercapacitors have attracted much attention due to their extraordinary mechanical and electrical properties, yet they suffer from poor strength. This problem may be exacerbated with the inclusion of functional guest materials, often yielding strengths of <15 MPa. Here, we show that graphene paper supercapacitor electrodes containing aramid nanofibers as guest materials exhibit extraordinarily high tensile strength (100.6 MPa) and excellent electrochemical stability. This is achieved by extensive hydrogen bonding and π-π interactions between the graphene sheets and aramid nanofibers. The trade-off between capacitance and mechanical properties is evaluated as a function of aramid nanofiber loading, where it is shown that these electrodes exhibit multifunctionality superior to that of other graphene-based supercapacitors, nearly rivaling those of graphene-based pseudocapacitors. We anticipate these composite electrodes to be a starting point for structural energy and power systems that harness the mechanical properties of aramid nanofibers.
NASA Astrophysics Data System (ADS)
Zhang, Huanhuan; Li, Jinyu; Gu, Cheng; Yao, Mingming; Yang, Bing; Lu, Ping; Ma, Yuguang
2016-11-01
The relatively low energy density is now a central issue hindering the development of supercapacitors as energy storage devices. Various approaches are thus developed to enhance the energy density, mainly centering on the fabrication of electrode materials or optimization of cell configurations. Compared with these approaches, modifications in electrolytes are much simple and versatile. Herein, we integrate the wide voltages endowed by organic electrolytes and the additional capacitances brought by redox mediators, to fabricate high energy density supercapacitors. On the basis of this idea, supercapacitors with poly(3,4-ethylenedioxythiophene) (PEDOT) as electrode material exhibit extended operating voltage of 1.5 V, extraordinary capacitance of 363 F g-1 and high energy density of 27.4 Wh kg-1. The redox mediators reported here, ferrocene and 4-oxo-2,2,6,6-tetramethylpiperidinooxy, are the first time being applied in supercapacitors, especially in the gel state. While providing additional faradaic capacitances, they also exhibit synergistic interaction with PEDOT and improve the cycling stability of supercapacitors.
Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2015-10-01
Successful application of inexpensive energy storage devices lies in the exploitation of fabrication approaches that are based on cost-efficient materials and that can be easily scaled up. Here, inexpensive textile weaved by natural flax fiber is selected as raw material in preparing flexible and binder-free electrode material for supercapacitors. Although carbon fiber cloth obtained from the direct carbonization of flax textile exhibits a low specific capacitance of 0.78 F g-1, carbon fiber cloth electrode shows a very short relaxation time of 39.1 m s and good stability with almost 100% capacitance retaining after 104 cycles at 5 A g-1. To extend the application of the resulting carbon cloth in supercapacitor field, a layer of MnO2 nanosheets is deposited on the surface of carbon fiber via in situ redox reaction between carbon and KMnO4. The specific capacitance of MnO2 reaches 683.73 F g-1 at 2 A g-1 and still retains 269.04 F g-1 at 300 A g-1, indicating the excellent rate capacitance performance of the carbon cloth/MnO2 hybrids. The present study shows that carbon cloth derived from flax textile can provide a low-cost material platform for the facile, cost-efficient and large scale fabrication of binder-free electrode materials for energy storage devices.
Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals.
Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin
2016-11-22
We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe 2 O 3 -CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe 3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe 2 O 3 ) by attaching Fe 2 O 3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe 2 O 3 -CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm -2 (1660 F g -1 ) at 2 mA cm -2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm -2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm -3 and power density of 253.9 mW cm -3 . Additionally, its good flexibility makes it suitable for portable devices.
Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals
NASA Astrophysics Data System (ADS)
Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin
2016-12-01
We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe2O3-CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe2O3) by attaching Fe2O3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe2O3-CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm-2 (1660 F g-1) at 2 mA cm-2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm-2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm-3 and power density of 253.9 mW cm-3. Additionally, its good flexibility makes it suitable for portable devices.
Yao, Lei; Wu, Qin; Zhang, Peixin; Zhang, Junmin; Wang, Dongrui; Li, Yongliang; Ren, Xiangzhong; Mi, Hongwei; Deng, Libo; Zheng, Zijian
2018-03-01
2D carbon nanomaterials such as graphene and its derivatives, have gained tremendous research interests in energy storage because of their high capacitance and chemical stability. However, scalable synthesis of ultrathin carbon nanosheets with well-defined pore architectures remains a great challenge. Herein, the first synthesis of 2D hierarchical porous carbon nanosheets (2D-HPCs) with rich nitrogen dopants is reported, which is prepared with high scalability through a rapid polymerization of a nitrogen-containing thermoset and a subsequent one-step pyrolysis and activation into 2D porous nanosheets. 2D-HPCs, which are typically 1.5 nm thick and 1-3 µm wide, show a high surface area (2406 m 2 g -1 ) and with hierarchical micro-, meso-, and macropores. This 2D and hierarchical porous structure leads to robust flexibility and good energy-storage capability, being 139 Wh kg -1 for a symmetric supercapacitor. Flexible supercapacitor devices fabricated by these 2D-HPCs also present an ultrahigh volumetric energy density of 8.4 mWh cm -3 at a power density of 24.9 mW cm -3 , which is retained at 80% even when the power density is increased by 20-fold. The devices show very high electrochemical life (96% retention after 10000 charge/discharge cycles) and excellent mechanical flexibility. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Liu, Jinping
2014-01-01
Carbon nanotubes (CNTs) have received increasing attention as electrode materials for high-performance supercapacitors. We herein present a straightforward method to synthesize CNT films directly on carbon cloths as electrodes for all-solid-state flexible supercapacitors (AFSCs). The as-made highly conductive electrodes possess a three-dimensional (3D) network architecture for fast ion diffusion and good flexibility, leading to an AFSC with a specific capacitance of 106.1 F g-1, an areal capacitance of 38.75 mF cm-2, an ultralong cycle life of 100 000 times (capacitance retention: 99%), a good rate capability (can scan at 1000 mV s-1, at which the capacitance is still ˜37.8% of that at 5 mV s-1), a high energy density (2.4 μW h cm-2) and a high power density (19 mW cm-2). Moreover, our AFSC maintains excellent electrochemical attributes even with serious shape deformation (bending, folding, etc), high mechanical pressure (63 kPa) and a wide temperature window (up to 100 ° C). After charging for only 5 s, three such AFSC devices connected in series can efficiently power a red round LED for 60 s. Our work could pave the way for the design of practical AFSCs, which are expected to be used for various flexible portable/wearable electronic devices in the future.
Multicolor, Fluorescent Supercapacitor Fiber.
Liao, Meng; Sun, Hao; Zhang, Jing; Wu, Jingxia; Xie, Songlin; Fu, Xuemei; Sun, Xuemei; Wang, Bingjie; Peng, Huisheng
2017-10-05
Fiber-shaped supercapacitors have attracted broad attentions from both academic and industrial communities due to the demonstrated potentials as next-generation power modules. However, it is important while remains challenging to develop dark-environment identifiable supercapacitor fibers for enhancement on operation convenience and security in nighttime applications. Herein, a novel family of colorful fluorescent supercapacitor fibers has been produced from aligned multi-walled carbon nanotube sheets. Fluorescent dye particles are introduced and stably anchored on the surfaces of aligned multi-walled carbon nanotubes to prepare hybrid fiber electrodes with a broad range of colors from red to purple. The fluorescent component in the dye introduces fluorescent indication capability to the fiber, which is particularly promising for flexible and wearable devices applied in dark environment. In addition, the colorful fluorescent supercapacitor fibers also maintain high electrochemical performance under cyclic bending and charge-discharge processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supercapacitors based on carbon nanotube fuzzy fabric structural composites
NASA Astrophysics Data System (ADS)
Alresheedi, Bakheet Awad
Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with excellent capacitive energy properties was successfully prepared. Moreover, after carbon nanotube growth the fuzzy fabric gained tangible energy storage properties without any structural degradation to the carbon fiber. These results represent a state-of-the-art advancement for multifunctional structural composites and warrant further development.
Ghosh, Kalyan; Yue, Chee Yoon; Sk, Md Moniruzzaman; Jena, Rajeeb Kumar
2017-05-10
We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO 2 @PANI) composite as positive electrode and 3D graphene foam (GF) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO 2 @PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO 2 @PANI composite occurs first by nucleation and growth of the MnO 2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO 2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO 2 @PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge-discharge tests. The symmetric all-solid-state flexible MnO 2 @PANI//MnO 2 @PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g -1 at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg -1 ) with respect to the solid-state symmetric supercapacitors MnO 2 @PANI//MnO 2 @PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg -1 , respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg -1 at a high current density of 5 A g -1 . The solid-state asymmetric supercapacitor shows a good cyclic stability in which ∼11% capacitance loss was observed after 5000 cycles.
He, Nanfei; Pan, Qin; Liu, Yixin; Gao, Wei
2017-07-26
One-dimensional flexible fiber supercapacitors (FSCs) have attracted great interest as promising energy-storage units that can be seamlessly incorporated into textiles via weaving, knitting, or braiding. The major challenges in this field are to develop tougher and more efficient FSCs with a relatively easy and scalable process. Here, we demonstrate a wet-spinning process to produce graphene oxide (GO) fibers from GO dispersions in N-methyl-2-pyrrolidone (NMP), with ethyl acetate as the coagulant. Upon chemical reduction of GO, the resulting NMP-based reduced GO (rGO) fibers (rGO@NMP-Fs) are twice as high in the surface area and toughness but comparable in tensile strength and conductivity as that of the water-based rGO fibers (rGO@H 2 O-Fs). When assembled into parallel FSCs, rGO@NMP-F-based supercapacitors (rGO@NMP-FSCs) offered a specific capacitance of 196.7 F cm -3 (147.5 mF cm -2 ), five times higher than that of rGO@H 2 O-F-based supercapacitors (rGO@H 2 O-FSCs) and also higher than most existing wet-spun rGO-FSCs, as well as those FSCs built with metal wires, graphene/carbon nanotube (CNT) fibers, or even pseudocapacitive materials. In addition, our rGO@NMP-FSCs can provide good bending and cycling stability. The energy density of our rGO@NMP-FSCs reaches ca. 6.8 mWh cm -3 , comparable to that of a Li thin-film battery (4 V/500 μAh).
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
Dong, Kai; Wang, Yi-Cheng; Deng, Jianan; Dai, Yejing; Zhang, Steven L; Zou, Haiyang; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin
2017-09-26
Rapid advancements in stretchable and multifunctional wearable electronics impose a challenge on corresponding power devices that they should have comparable portability and stretchability. Here, we report a highly stretchable and washable all-yarn-based self-charging knitting power textile that enables both biomechanical energy harvesting and simultaneously energy storing by hybridizing triboelectrical nanogenerator (TENG) and supercapacitor (SC) into one fabric. With the weft-knitting technique, the power textile is qualified with high elasticity, flexibility, and stretchability, which can adapt to complex mechanical deformations. The knitting TENG fabric is able to generate electric energy with a maximum instantaneous peak power density of ∼85 mW·m -2 and light up at least 124 light-emitting diodes. The all-solid-state symmetrical yarn SC exhibits lightweight, good capacitance, high flexibility, and excellent mechanical and long-term stability, which is suitable for wearable energy storage devices. The assembled knitting power textile is capable of sustainably driving wearable electronics (for example, a calculator or temperature-humidity meter) with energy converted from human motions. Our work provides more opportunities for stretchable multifunctional power sources and potential applications in wearable electronics.
High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes
NASA Astrophysics Data System (ADS)
Li, Shuoshuo; Cheng, Pengpeng; Luo, Jiaxian; Zhou, Dan; Xu, Weiming; Li, Jingwei; Li, Ruchun; Yuan, Dingsheng
2017-07-01
A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g-1 at a current density of 1 A g-1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g-1 at a current density of 2 A g-1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm-2 at 2 mA cm-2 and a high energy density of 0.71 mWh cm-2 at a power density of 17.05 mW cm-2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge-discharge cycles).
Zhu, Zhengju; Jiang, Hao; Guo, Shaojun; Cheng, Qilin; Hu, Yanjie; Li, Chunzhong
2015-10-30
Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g(-1) at 1 A g(-1) with excellent rate capability (120 F g(-1) at 50 A g(-1)) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems.
NASA Astrophysics Data System (ADS)
Zhu, Zhengju; Jiang, Hao; Guo, Shaojun; Cheng, Qilin; Hu, Yanjie; Li, Chunzhong
2015-10-01
Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g-1 at 1 A g-1 with excellent rate capability (120 F g-1 at 50 A g-1) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems.
NASA Astrophysics Data System (ADS)
Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping
2015-01-01
Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.
Zhu, Zhengju; Jiang, Hao; Guo, Shaojun; Cheng, Qilin; Hu, Yanjie; Li, Chunzhong
2015-01-01
Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g−1 at 1 A g−1 with excellent rate capability (120 F g−1 at 50 A g−1) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems. PMID:26515442
On-chip and freestanding elastic carbon films for micro-supercapacitors
Huang, Peihua; Lethien, C.; Pinaud, S.; ...
2016-02-11
Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less
On-chip and freestanding elastic carbon films for micro-supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peihua; Lethien, C.; Pinaud, S.
Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less
Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming
2013-04-21
Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-06-11
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene-metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm(-3) and 1,400 mW cm(-3), respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-01-01
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. PMID:26068809
MXene: a potential candidate for yarn supercapacitors.
Zhang, Jizhen; Seyedin, Shayan; Gu, Zhoujie; Yang, Wenrong; Wang, Xungai; Razal, Joselito M
2017-12-07
The increasing developments in wearable electronics demand compatible power sources such as yarn supercapacitors (YSCs) that can effectively perform in a limited footprint. MXene nanosheets, which have been recently shown in the literature to possess ultra-high volumetric capacitance, were used in this study for the fabrication of YSCs in order to identify their potential merit and performance in YSCs. With the aid of a conductive binder (PEDOT-PSS), YSCs with high mass loading of MXene are demonstrated. These MXene-based YSCs exhibit excellent device performance and stability even under bending and twisting. This study demonstrates that MXene is a promising candidate for YSCs and its further development can lead to flexible power sources with sufficient performance for powering miniaturized and/or wearable electronics.
Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Liu, Xianbin; Zou, Shuai; Liu, Kaixi; Lv, Chao; Wu, Ziping; Yin, Yanhong; Liang, Tongxiang; Xie, Zailai
2018-04-01
The fabrication of three-dimensional (3D) graphene-based macroscopic materials with superior mechanical and electrical properties for flexible energy storage devices is still extremely challenging. Here, we report a novel 3D graphene hydrogel decorated by the biomass phytic acid (PAGH) with developed porosity and strengthen mechanical property via hydrothermal and freeze-drying methods. The phytic acid molecules are intercalated into the graphene sheets, enabling robust network structure. This induces the formation of materials with larger specific surface area, lower density and enhanced compressive strength compared with pure GH. When directly employed as an electrode, the PAGH exhibits a high specific capacitance of 248.8 F g-1 at 1 A g-1 and excellent rate performance of 67.9% as current density increasing to 20 A g-1. Furthermore, the all-solid-state supercapacitor based PAGH can deliver outstanding cycle life (86.2% after cycling 10,000 times), glorious energy density (26.5 Wh kg-1) and power density (5135.1 W kg-1). The prepared device shows stable electrochemical behaviors at random bending angles. Therefore, the present work will open a new avenue to design and fabricate new flexible and portable graphene-based electrodes for future applications in energy storage devices.
Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.
Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya
2014-02-07
We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.
NASA Astrophysics Data System (ADS)
Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig
2018-06-01
In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.
Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae
2017-04-22
Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi
2011-11-09
With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.
Devarayan, Kesavan; Park, Jiyoung; Kim, Hak-Yong; Kim, Byoung-Suhk
2017-05-01
In this study, we present a highly efficient and economical solution called as 'in situ hydrogenation' for preparation of highly conductive thin film electrode based on silver nanodendrites. The silver nanodendrite (AgND)/cellulose acetate (CA) thin film electrodes exhibited sheet resistance ranging from 0.32ohm/sq to 122.1ohm/sq which could be controlled by changing the concentration of both silver and polymer. In addition, these electrodes exhibited outstanding toughness during the bending test. Further, these thin film electrodes have great potential for scale-up with an average weight of 3mg/cm 2 and can be also combined with active nanomaterials such as multiwalled carbon nanotubes (MWCNTs) to fabricate AgND/CA/MWCNTs thin film for high-performance flexible supercapacitor electrode. The AgND/CA/MWCNTs electrodes exhibited a maximum specific capacitance of 237F/g at a current density of 0.3A/g. After 1000 cycles, the AgND/MWCNT/CA exhibited a decrease of 16.0% of specific capacitance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Facilitated ion transport in all-solid-state flexible supercapacitors.
Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok
2011-09-27
The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society
2013-02-01
supplement the main power supply. Here we report on the use of flexible carbon nanotube (CNT)-based composites for multifunctional structural energy storage...TERMS Micro vehicle, Supercapacitor, Carbon Nanotubes , CNTs, Energy Storage, Multifunctional Materials 16. SECURITY CLASSIFICATION OF: 17...consists of a current collector, a porous electrode layer ( carbon nanotubes [CNTs], in this case) infiltrated with an electrolyte (i.e., a liquid
Flexible Supercapacitors Based on Carbon Nanomaterials
2014-02-26
Pasta , F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han and Y. Cui, Nano Lett., 2010, 10, 708–714. J. Mater. Chem. A This...Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta , H. N. Alshareef and Y. Cui, ACS Nano, 2011, 5, 8904–8913. 64 G. Yu, X. Xie, L. Pan, Z. Bao and Y. Cui, Nano
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae
2016-07-01
Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.
NASA Astrophysics Data System (ADS)
Tian, Yazhou; Gong, Jiangfeng; Zhu, Weihua
2017-11-01
Vertically-aligned Co(OH)2 nanosheets were cathodically electrodeposited on a piece of gold coated polyethylene terephthalate (Au-PET) as an electrode material for supercapacitor. The Co(OH)2 electrode showed a high capacitance of 2695 F g-1 at 8 A g-1 in 1 M KOH aqueous electrolyte. Besides, the films were employed to assemble symmetric all-solid-state supercapacitors with PVA/LiCl gel served as solid electrolyte. The device exhibits an areal capacitance of 50.5 μF cm-2 at the current density of 2 μA cm-2 accompanied by excellent cycle stability.
Xu, Jing; Wang, Qiufan; Wang, Xiaowei; Xiang, Qingyi; Liang, Bo; Chen, Di; Shen, Guozhen
2013-06-25
We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0-1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm(3) at a power density of 13.29 W/cm(3) in aqueous electrolyte and an energy density of 1.44 mWh/cm(3) at the power density of 0.89 W/cm(3) in solid-state electrolyte, which are almost 10-fold higher than those reported in early ASC work. Moreover, they present excellent cycling performance at multirate currents and large currents after thousands of cycles. The high-performance nanostructured ASCs have significant potential applications in portable electronics and electrical vehicles.
Chen, Yuyun; Han, Min; Tang, Yujia; Bao, Jianchun; Li, Shunli; Lan, Yaqian; Dai, Zhihui
2015-08-11
Novel polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids (TNHs) are synthesized via a one-pot redox relay strategy. The TNHs exhibit high areal specific capacitance (2.61 mF cm(-2)), and the fabricated solid device also exhibits good rate capability, excellent flexibility and mechanical stability.
Gund, Girish S; Dubal, Deepak P; Chodankar, Nilesh R; Cho, Jun Y; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D
2015-07-24
The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg(-1), about 2-fold of higher energy density (41.8 Wh kg(-1)) than symmetric SC and excellent mechanical flexibility. Furthermore, the "real-life" demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.
Ye, Jianglin; Tan, Huabing; Wu, Shuilin; Ni, Kun; Pan, Fei; Liu, Jie; Tao, Zhuchen; Qu, Yan; Ji, Hengxing; Simon, Patrice; Zhu, Yanwu
2018-05-17
High-performance yet flexible micro-supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene-based MSCs (MG-MSCs), by direct laser writing (DLW) of stacked graphene films made from industry-scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large-areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer-designed integration. The MG-MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm -3 and power density of 1860 W cm -3 in an ionogel electrolyte. Notably, such MG-MSCs demonstrate an outstanding flexible alternating current line-filtering performance in poly(vinyl alcohol) (PVA)/H 2 SO 4 hydrogel electrolyte, indicated by a phase angle of -76.2° at 120 Hz and a resistance-capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG-polyaniline (MG-PANI) hybrid MSCs fabricated by DLW of MG-PANI hybrid films show an optimized capacitance of 3.8 mF cm -2 in PVA/H 2 SO 4 hydrogel electrolyte; an integrated device comprising MG-MSCs line filtering, MG-PANI MSCs, and pressure/gas sensors is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor.
Li, Yong; Kang, Zhuo; Yan, Xiaoqin; Cao, Shiyao; Li, Minghua; Guo, Yan; Huan, Yahuan; Wen, Xiaosong; Zhang, Yue
2018-05-17
In recent years, the rapid development of portable and wearable electronic products has promoted the prosperity of fiber supercapacitors (FSCs), which serve as flexible and lightweight energy supply devices. However, research on FSCs is still in its infancy and the energy density of FSCs is far below the level of lithium-ion batteries. Here, we report a facile method to prepare a novel fibrous CNT-aerogel by electrochemical activation and freeze-drying. The fibrous CNT-aerogel electrode possesses a large specific surface area, high mechanical strength, excellent electrical conductivity, as well as a high specific capacitance of 160.8 F g-1 at 0.5 mA and long cycling stability. Then we assembled a non-faradaic FSC based on a fibrous CNT-aerogel as the electrode and a P(VDF-HFP)/EMIMBF4 ionogel as the electrolyte. The introduction of the ionogel electrolyte increases the operating voltage of the FSC to 3 V, and makes the device combine the intrinsic high power density (27.3 kW kg-1) of non-faradaic SCs with an ultrahigh energy density of 29.6 W h kg-1. More importantly, the assembled FSCs show excellent flexibility and bending-stability, and can still operate normally within a wide working temperature window (0-80 °C). The outstanding electrochemical performance and the mechanical/thermal stability indicate that the assembled FSC device is a promising power source for flexible electronics.
Li, Zhuangnan; Gadipelli, Srinivas; Yang, Yuchen; Guo, Zhengxiao
2017-11-01
Graphene-oxide (GO) based porous structures are highly desirable for supercapacitors, as the charge storage and transfer can be enhanced by advancement in the synthesis. An effective route is presented of, first, synthesis of three-dimensional (3D) assembly of GO sheets in a spherical architecture (GOS) by flash-freezing of GO dispersion, and then development of hierarchical porous graphene (HPG) networks by facile thermal-shock reduction of GOS. This leads to a superior gravimetric specific capacitance of ≈306 F g -1 at 1.0 A g -1 , with a capacitance retention of 93% after 10 000 cycles. The values represent a significant capacitance enhancement by 30-50% compared with the GO powder equivalent, and are among the highest reported for GO-based structures from different chemical reduction routes. Furthermore, a solid-state flexible supercapacitor is fabricated by constructing the HPG with polymer gel electrolyte, exhibiting an excellent areal specific capacitance of ≈220 mF cm -2 at 1.0 mA cm -2 with exceptional cyclic stability. The work reveals a facile but efficient synthesis approach of GO-based materials to enhance the capacitive energy storage. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices
NASA Astrophysics Data System (ADS)
Lee, Jae Ah; Shin, Min Kyoon; Kim, Shi Hyeong; Cho, Hyun U.; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Lepró, Xavier; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong
2013-06-01
Flexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fast-ion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into ~20 μm diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to ~179 F cm-3) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to ~80 V s-1 and ~20 V s-1 for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.
NASA Astrophysics Data System (ADS)
Kim, Christine H. J.; Zhang, Hongbo; Liu, Jie
2015-06-01
Microporous carbons (MPCs) are promising electrode materials for supercapacitors because of their high surface area and accessible pores. However, their low electrical conductivity and mechanical instability result in limited power density and poor cycle life. This work proposes a unique two-layered film made of polyetheretherketone-derived MPCs and reduced graphene oxide (rGO) as an electrode for supercapacitors. Electrochemical characterizations of films show that such a layered structure is more effective in increasing the accessibility of ions to the hydrophilic MPCs and establishing conductive paths through the rGO network than a simple mixed composite film. The two-layered structure increases the capacitance by ˜124% (237 F g-1) with excellent cycling stability (˜93% after 6000 cycles). More importantly, we demonstrate that such performance improvements result from an optimal balance between electrical conductivity and ion accessibility, which maximizes the synergistic effects of MPC and rGO. The MPCs, which are exposed to the surface, provide a highly accessible surface area for ion adsorption. The rGO serves a dual function as a conductive filler to increase the electrical conductivity and as a binder to interconnect individual MPC particles into a robust and flexible film. These findings provide a rational basis for the design of MPC-based electrodes in high performance supercapacitors.
Chiu, Cheng-Ting; Chen, Dong-Hwang
2018-04-27
Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.
NASA Astrophysics Data System (ADS)
Chiu, Cheng-Ting; Chen, Dong-Hwang
2018-04-01
Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.
NASA Astrophysics Data System (ADS)
Basiricò, Lucia; Lanzara, Giulia
2014-12-01
A novel monolithic, pre-fabricated, fully functional film made of a nanostructured free-standing layer is presented for a new and competitive class of easy-to-assemble flexible supercapacitors whose design is in-between the all solid state and the traditional liquid electrolyte. The film is made of two vertically aligned multi-walled carbon nanotube (VANT) electrodes that store ions, embedded-in, and monolithically interspaced by a solution of microcrystalline cellulose in a room temperature ionic liquid (RTIL) electrolyte (1-ethyl-3-methylimidazolium acetate-EMIM Ac). The fine tuning of VANTs length and electrolyte/cellulose amount leads, in a sole and continuous block, to ions storage and physical separation between the electrodes without the need of the additional separator layer that is typically used in supercapacitors. Thus, physical discontinuities that can induce disturbances to ions mobility, are fully eliminated significantly reducing the equivalent series resistance and increasing the knee frequency, hence outclassing the best supercapacitors based on VANTs and non-aqueous electrolytes. The excellent electrochemical response can also be addressed to the chosen electrolyte that, not only has the advantage of leading to a significantly simpler and more affordable fabrication procedure, but has higher ionic conductivity, lower viscosity and higher ions mobility than other electrolytes capable of dissolving cellulose.
Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping
2015-01-01
Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm−3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374
Deng, Ming-Jay; Chen, Kai-Wen; Che, Yo-Cheng; Wang, I-Ju; Lin, Chih-Ming; Chen, Jin-Ming; Lu, Kueih-Tzu; Liao, Yen-Fa; Ishii, Hirofumi
2017-01-11
Here we report a simple, scalable, and low-cost method to enhance the electrochemical properties of Mn oxide electrodes for highly efficient and flexible symmetrical supercapacitors. The method involving printing on a printer, pencil-drawing, and electrodeposition is established to fabricate Mn oxide/Ni-nanotube/graphite/paper hybrid electrodes operating with a low-cost, novel urea-LiClO 4 /PVA as gel electrolyte for flexible solid-state supercapacitor (FSSC) devices. The Mn oxide nanofiber/Ni-nanotube/graphite/paper (MNNGP) electrodes in urea-LiClO 4 /PVA gel electrolyte show specific capacitance (C sp ) 960 F/g in voltage region 0.8 V at 5 mV/s and exhibit excellent rates of capacitance retention more than 85% after 5000 cycles. Moreover, the electrochemical behavior of the MNNGP electrodes in urea-LiClO 4 /PVA at operating temperatures 27-110 °C was investigated; the results show that the MNNGP electrodes in urea-LiClO 4 /PVA exhibit outstanding performance (1100 F/g), even at 90 °C. The assembled FSSC devices based on the MNNGP electrodes in urea-LiClO 4 /PVA exhibit great C sp (380 F/g in potential region of 2.0 V at 5 mV/s, exhibiting superior energy density 211.1 W h/kg) and great cycle stability (less than 15% loss after 5000 cycles at 25 mV/s). The oxidation-state change was examined by in situ X-ray absorption spectroscopy. FSSC devices would open new opportunities in developing novel portable, wearable, and roll-up electric devices owing to the cheap, high-performance, wide range of operating temperature, and simple procedures for large-area fabrication.
High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.
Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi
2013-05-22
Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.
Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan
2018-01-19
In this work, bismuth selenides (Bi 2 Se 3 and Bi 3 Se 4 ), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi 2 Se 3 nanoplates exhibit much better performance as an electrode material than Bi 3 Se 4 nanoparticles do, delivering a higher specific capacitance (272.9 F g -1 ) than that of Bi 3 Se 4 (193.6 F g -1 ) at 5 mV s -1 . This result may be attributed to the fact that Bi 2 Se 3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi 3 Se 4 ). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi 2 Se 3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm -3 at 20 mV s -1 (Bi 3 Se 4 : 79.1 F cm -3 ), a high energy density of 17.9 mWh cm -3 and a high power density of 18.9 W cm -3 . The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi 2 Se 3 (Bi 3 Se 4 :90.3%). Clearly, Bi 2 Se 3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.
NASA Astrophysics Data System (ADS)
Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan
2018-02-01
In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.
Chen, Jun Song; Guan, Cao; Gui, Yang; Blackwood, Daniel John
2017-01-11
We report a rationally designed two-step method to fabricate self-supported Ni 3 S 2 nanosheet arrays. We first used 2-methylimidazole (2-MI), an organic molecule commonly served as organic linkers in metal-organic frameworks (MOFs), to synthesize an α-Ni(OH) 2 nanosheet array as a precursor, followed by its hydrothermal sulfidization into Ni 3 S 2 . The resulting Ni 3 S 2 nanosheet array demonstrated superior supercapacitance properties, with a very high capacitance of about 1,000 F g -1 being delivered at a high current density of 50 A g -1 for 20,000 charge-discharge cycles. This performance is unparalleled by other reported nickel sulfide-based supercapacitors and is also advantageous compared to other nickel-based materials such as NiO and Ni(OH) 2 . An asymmetric supercapacitor was then established, exhibiting a very stable capacitance of about 200 F g -1 at a high current density of 10 A g -1 for 10,000 cycles and a surprisingly high energy density of 202 W h kg -1 . This value is comparable to that of the lithium-ion batteries, i.e., 180 W h kg -1 . The potential of the material for practical applications was evaluated by building a quasi-solid-state asymmetric supercapacitor which showed good flexibility and power output, and two of these devices connected in series were able to power up 18 green light-emitting diodes.
NASA Astrophysics Data System (ADS)
Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei
2017-09-01
More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.
Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors
NASA Astrophysics Data System (ADS)
Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You
2017-07-01
The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r = 3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.
High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers
NASA Astrophysics Data System (ADS)
Samuel, Edmund; Jo, Hong Seok; Joshi, Bhavana; Park, Hyun Goo; Kim, Yong Il; An, Seongpil; Swihart, Mark T.; Yun, Je Moon; Kim, Kwang Ho; Yoon, Sam S.
2017-11-01
We demonstrate the fabrication of a MnOx/carbamide carbon nanofiber (CCNF) composite consisting of MnO particles embedded in CCNFs as a highly flexible and freestanding electrode material for supercapacitors. A sacrificial polymer component, polymethylmethacrylate, included in the precursor solution, pyrolyzes during heating, resulting in pores in the fibers, some of which are filled by the MnO nanocrystals. Carbamide is added to control the size of the MnOx particles as well as to increase the carbon content of the composite and hence its conductivity. The X-ray diffraction and Raman spectra of the composite show that the MnO particles formed have low crystallinity. Transmission electron microscopy confirms that the MnO particles are distributed very uniformly over the CCNFs. Symmetric supercapacitors constructed using electrodes of this composite exhibit specific capacitances of 498 F•g-1 at a scan rate of 10 mV•s-1 and 271 F•g-1 at a current density of 1 A•g-1. They also exhibit excellent long-term cycling performance, retaining 93% of their initial capacity after 5000 cycles of galvanostatic charging/discharging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei
We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less
Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei; ...
2017-08-28
We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less
NASA Astrophysics Data System (ADS)
Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat
2013-08-01
Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.
Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat
2013-09-07
Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.
Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John
2017-10-27
Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A nanoporous MXene film enables flexible supercapacitors with high energy storage.
Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan
2018-05-14
MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.
NASA Astrophysics Data System (ADS)
Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo
2018-01-01
Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.
NASA Astrophysics Data System (ADS)
Bondavalli, P.; Pribat, D.; Schnell, J.-P.; Delfaure, C.; Gorintin, L.; Legagneux, P.; Baraton, L.; Galindo, C.
2012-10-01
This contribution deals with the state of the art of studies concerning the fabrication of electric double-layer capacitors (EDLCs) also called super- or ultracapacitors and obtained using carbon nanotubes (CNTs) without exploiting Faradic reactions. From the first work published in 1997, EDLCs fabricated using carbon nanotubes as constitutive material for electrodes showed very interesting characteristics. It appeared that they could potentially outperform traditional technologies based on activated carbon. Different methods to fabricate the CNT-based electrodes have been proposed in order to improve the performances (mainly energy densities and power densities), for example filtration, direct growth on metal collector or deposition using an air-brush technique. In this contribution we will introduce the main works in the field. Finally, we will point out an emerging interest for supercapacitors fabricated on flexible substrates, exploiting the outstanding mechanical performances of CNTs, for new kinds of applications such as portable electronics.
Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen
2012-10-22
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jing; Zhang, Leipeng; Liu, Xusong; Zhang, Xiang; Tian, Yanlong; Liu, Xiaoxu; Zhao, Jiupeng; Li, Yao
2017-01-01
In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@NiMoO4·xH2O electrode yields high-capacitance performance with a high specific capacitance of 1582 F g−1, good cycling stability with the capacitance retention of 97.1% after 3000 cycles and good rate capability. The electrode also shows excellent mechanical flexibility. Also, a flexible Fe2O3 nanorods/CF electrode with enhanced electrochemical performance was prepared. A solid-state asymmetric supercapacitor device is successfully fabricated by using flexible CoMoO4@NiMoO4·xH2O as the positive electrode and Fe2O3 as the negative electrode. The asymmetric supercapacitor with a maximum voltage of 1.6 V demonstrates high specific energy (41.8 Wh kg−1 at 700 W kg−1), high power density (12000 W kg−1 at 26.7 Wh kg−1), and excellent cycle ability with the capacitance retention of 89.3% after 5000 cycles (at the current density of 3A g−1). PMID:28106170
Wang, Yixiang; Yang, Jingqi; Du, Rongbing; Chen, Lingyun
2017-07-19
Flexible carbon ultrafine fibers are highly desirable in energy storage and conversion devices. Our previous finding showed that electrospun hordein/zein fibers stabilized by Ca 2+ were successfully transferred into nitrogen-doped carbon ultrafine fibers for supercapacitors. However, their relatively brittle nature needed to be improved. Inspired by this stabilizing effect of Ca 2+ , in this work, four transition metal divalent cations were used to assist the formation of flexible hordein/zein-derived carbon ultrafine fibers. Without alteration of the electrospinnability, adequate amounts of zinc acetate and cobalt acetate supported the fibrous structure during pyrolysis. This resulted in flexible freestanding carbon films consisting of well-defined fibers with nitrogen-doped graphitic layers and hierarchical pores. These carbon films were easily cut into small square pieces and directly applied as working electrode in the three-electrode testing system without the need for polymer binders or conducting agents. Notably, the hz-Zn0.3-p electrode, synthesized with 0.3 mol/L Zn 2+ and post-acid treatment, exhibited a specific capacitance of 393 F/g (at 1 A/g), a large rate capability (72.3% remained at 20 A/g), and a capacitance retention of ∼98% after 2000 charging-discharging cycles at 10 A/g. These superior electrochemical properties were attributed to the synergistic effects of the well-developed graphitic layers induced by Zn 2+ , the nitrogen-decorated carbon structure, and the interconnected channels generated by HCl treatment. This research advances potential applications for prolamin proteins as nitrogen-containing raw materials in developing carbon structures for high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su
2015-06-01
Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.
Li, La; Lou, Zheng; Han, Wei; Shen, Guozhen
2016-08-11
The development of wearable electronic devices in recent decades has brought new opportunities in the exploration of micro-supercapacitors as energy storage units. In this work, we report the fabrication of flexible NiFe2O4 nanofiber based in-plane micro-supercapacitors (MSCs), which can serve as energy storage receptors to drive a portable graphene pressure sensor. The obtained NiFe2O4 nanofiber electrodes exhibited a specific capacitance of 2.23 F cm(-3) at the scan rate of 100 mV s(-1), and excellent rate capability and robust cycling stability with a capacitance retention of 93.6% after 10 000 charge/discharge cycles. Moreover, the in-plane MSCs have superior flexibility and outstanding stability even after repetition of charge/discharge cycles during the convex and concave bending states. The MSCs offered a high energy density of 0.197 mWh cm(-3) and power density up to 2.07 W cm(-3). We also coupled the MSCs with a graphene pressure sensor as a micro-integrated system to implement it's pressure response function and used MATLAB to simulate this system behavior as well. The performance of the designed systems exhibited a stable pressure response, and the simulated results coincide well with the experimental data, demonstrating its feasibility in wearable electronic devices.
Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
Liu, Nishuang; Gao, Yihua
2017-12-01
Due to the boom of miniaturized electronic devices in the last decade, there are great demands for ultrathin and flexible on-chip rechargeable energy storage microdevices. Supercapacitor, as one of the most hopeful appearing energy storage devices, can provide a wonderful alternative to batteries or electrolytic capacitors, owing to its fast charge and discharge rates, high power density, and long cycling stability. Especially for the recently developed micro-supercapacitors, the unique in-plane interdigital electrode architecture can fully meet the integration requirements of rapidly developed miniaturized electronic devices, and improve the power density of the unit via shortening the ionic diffusion distance between the interdigital electrodes. This concept introduces the recent advances on the design, fabrication, and application of planar micro-supercapacitors for on-chip energy storage from an overall perspective. Moreover, challenges and future development trends are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nagaraju, Goli; Chandra Sekhar, S; Krishna Bharat, L; Yu, Jae Su
2017-11-28
We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for in situ electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core-shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core-shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm 2 at a current density of 2 mA/cm 2 and excellent rate capability of 78.3% at 30 mA/cm 2 (420.5 μAh/cm 2 ) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm 2 at 3 mA/cm 2 , and a high energy density of 0.392 mWh/cm 2 at a power density of 2.353 mW/cm 2 . Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.
Du, Jun; Zhou, Gang; Zhang, Haiming; Cheng, Chao; Ma, Jianmin; Wei, Weifeng; Chen, Libao; Wang, Taihong
2013-08-14
NiCo2O4 with higher specific capacitance is an excellent pseudocapacitive material. However, the bulk NiCo2O4 material prevents the achievement of high energy desity and great rate performance due to the limited electroactive surface area. In this work, NiCo2O4 nanosheet arrays were deposited on flexible carbon fabric (CF) as a high-performance electrode for supercapacitors. The NiCo2O4 arrays were constructed by interconnected ultrathin nanosheets (10 nm) with many interparticle pores. The porous feature of NiCo2O4 nanosheets increases the amount of electroactive sites and facilitates the electrolyte penetration. Hence, the NiCo2O4/CF composites exhibited a high specific capacitance of 2658 F g(-1) (2 A g(-1)), good rate performance, and superior cycling life, suggesting the NiCo2O4/CF is a promising electrode material for flexible electrochemical capacitors.
All solid-state V2O5-based flexible hybrid fiber supercapacitors
NASA Astrophysics Data System (ADS)
Li, Huan; He, Jin; Cao, Xin; Kang, Liping; He, Xuexia; Xu, Hua; Shi, Feng; Jiang, Ruibin; Lei, Zhibin; Liu, Zong-Huai
2017-12-01
Vanadium pentoxide/single-walled carbon nanotube (V2O5-SWCNT) hybrid fibers with good electrochemical performance and flexibility are firstly prepared by using wet-spinning method. V2O5 nanobelt suspension is obtained by mixing V2O5 bulk, 30% H2O2, H2O and followed by hydrothermally treating at 190 °C for 15 h. SWCNT suspension is suspended into V2O5 nanobelt suspension under vigorous stirring, the V2O5-SWCNT homogenous suspension is obtained. It is injected into a coagulation bath composed of 5 wt % CaCl2 ethanol-water solution using syringe pump, V2O5-SWCNT hybrid fibers are prepared by washing with deionized water and drying at room temperature. Reduced graphene oxide (RGO)-SWCNT hybrid fibers are also prepared by the similar wet-spinning approach and followed by reducing GO-SWCNT hybrid fibers in an aqueous solution of hydriodic acid. All solid-state asymmetric V2O5/SWCNT//RGO/SWCNT fiber supercapacitors are assembled with V2O5-SWCNT fiber as positive electrode and RGO-SWCNT fiber as negative electrode by using PVA-H3PO4 as gel electrolyte. The assembled device not only shows maximum volumetric energy density of 1.95 mW h cm-3 at a volumetric power density of 7.5 mW cm-3, superior rate performance and cycling stability, but also exhibits remarkable flexibility to tolerate long-term and repeated bending. This work will open a new application filed of V2O5-based fibers in wearable energy storage devices.
Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors.
Trivedi, Tushar J; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung; Kumar, Arvind
2015-10-12
Agarose has been functionalized (acetylated/carbanilated) in an ionic liquid (IL) medium of 1-butyl-3-methylimidazolium acetate at ambient conditions. The acetylated agarose showed a highly hydrophobic nature, whereas the carbanilated agarose could be dissolved in water as well as in the IL medium. Thermoreversible ionogels were obtained by cooling the IL sols of carbanilated agarose at room temperature. The ionogel prepared from a protic-aprotic mixed-IL system (1-butyl-3-methylimidazolium chloride and N-(2-hydroxyethyl)ammonium formate) demonstrated a superior self-healing property, as confirmed from rheological measurements. The superior self-healing property of such an ionogel has been attributed to the unique inter-intra hydrogen-bonding network of functional groups inserted in the agarose. The ionogel was tested as a flexible solid electrolyte for an activated-carbon-based supercapacitor cell. The measured specific capacitance was found to be comparable with that of a liquid electrolyte system at room temperature and was maintained for up to 1000 charge-discharge cycles. Such novel functionalized-biopolymer self-healing ionogels with flexibility and good conductivity are desirable for energy-storage devices and electronic skins with superior lifespans and robustness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gund, Girish S.; Dubal, Deepak P.; Chodankar, Nilesh R.; Cho, Jun Y.; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D.
2015-01-01
The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0–1 V and 0–2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg−1, about 2-fold of higher energy density (41.8 Wh kg−1) than symmetric SC and excellent mechanical flexibility. Furthermore, the “real-life” demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC. PMID:26208144
NASA Astrophysics Data System (ADS)
Gund, Girish S.; Dubal, Deepak P.; Chodankar, Nilesh R.; Cho, Jun Y.; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D.
2015-07-01
The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg-1, about 2-fold of higher energy density (41.8 Wh kg-1) than symmetric SC and excellent mechanical flexibility. Furthermore, the “real-life” demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.
Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei
2017-01-24
Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO 2 /MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO 2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO 2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO 2 @MWCNT fiber, in which amorphous MnO 2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO 2 @MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO 2 @MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.
Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S
2016-05-10
Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.
Potential active materials for photo-supercapacitor: A review
NASA Astrophysics Data System (ADS)
Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.
2015-11-01
The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.
NASA Astrophysics Data System (ADS)
Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang
2018-04-01
Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.
Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu
2016-02-10
Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.
Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K
2017-08-29
In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.
NASA Astrophysics Data System (ADS)
Shi, HaoTian Harvey; Naguib, Hani E.
2016-04-01
Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.
Patil, Amar M; Lokhande, Abhishek C; Shinde, Pragati A; Lokhande, Chandrakant D
2018-05-16
A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO 2 ) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO 2 /flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO 4 /h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO 4 gel electrolyte. Highly active surface areas of α-MnO 2 (75 m 2 g -1 ) and h-CuS (83 m 2 g -1 ) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g -1 at 5 mV s -1 , energy density of 18.9 Wh kg -1 , and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.
Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.
Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J
2015-06-24
Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-based Nanoelectronics
2011-02-01
deposition rate of 1 Å/s, 13 followed by atomic layer deposition (ALD) of aluminum oxide (Al2O3) (15 nm). The SiO2 also serves as a nucleation layer...alternating pulses of trimethylaluminum (TMA) and H2O in a Cambridge Nanotech Fiji ALD system, enabled by nucleation on the SiO2. The thicknesses of...Y.; Liu, H.-K.; Dou, S.-X. Electrodeposition of MnO2 Nanowires on Carbon Nanotube Paper as Free-standing, Flexible Electrode for Supercapacitors
Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang
2016-01-01
Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179
Carbon coated textiles for flexible energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Kristy; Perez, Carlos R.; McDonough, John K.
This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25more » A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².« less
Carbon coated textiles for flexible energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Kristy; Perez, Carlos O; Mcdonough, John
This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25more » A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.« less
All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor.
Lim, Lucas; Liu, Yangshuai; Liu, Wenwen; Tjandra, Ricky; Rasenthiram, Lathankan; Chen, Zhongwei; Yu, Aiping
2017-11-15
Graphene fibers (GF) have aroused great interest in wearable electronics applications because of their excellent mechanical flexibility and superior electrical conductivity. Herein, an all-in-one graphene and MnO 2 composite hybrid supercapacitor fiber device has been developed. The unique coaxial design of this device facilitates large-scale production while avoiding the risk of short circuiting. The core backbone of the device consists of GF that not only provides mechanical stability but also ensures fast electron transfer during charge-discharge. The introduction of a MnO 2 (200 nm in length) hierarchical nanostructured film enhanced the pseudocapacitance dramatically compared to the graphene-only device in part because of the abundant number of active sites in contact with the poly(vinyl alcohol) (PVA)/H 3 PO 4 electrolyte. The entire device exhibits outstanding mechanical strength as well as good electrocapacitive performance with a volumetric capacitance of 29.6 F cm -3 at 2 mv s -1 . The capacitance of the device did not fade under bending from 0° to 150°, while the capacitance retention of 93% was observed after 1000 cycles. These unique features make this device a promising candidate for applications in wearable fabric supercapacitors.
Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen
2014-01-01
SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar
2016-01-20
Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.
Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.
Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad
2018-04-24
Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.
Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe
2016-06-01
A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia
2016-09-15
Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.
NASA Astrophysics Data System (ADS)
Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia
2016-09-01
Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.
Wearable energy sources based on 2D materials.
Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan
2018-05-08
Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.
Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua
2016-12-01
State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Choudhury, Arup; Dey, Baban; Sinha Mahapatra, Susanta; Kim, Doo-Won; Yang, Kap-Seung; Yang, Duck-Joo
2018-04-01
Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.
Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.
2016-01-01
Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379
Li, Haowen; Fu, Dongying; Zhang, Xian-Ming
2018-01-01
In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H 2 BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H 2 BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm -2 compared to that of PC-900/CNTF electrode (22.8 mF cm -2 ) at 5 mV s -1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm -2 ) at the scan rate of 5 mV s -1 ; the volumetric energy density is 57.3 µWh cm -3 and the volumetric power density is 2.4 mW cm -3 at the current density of 0.5 mA cm -2 based on poly(vinyl alcohol)/H 3 PO 4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles.
Li, Haowen; Zhang, Xian-Ming
2018-01-01
In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H2BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H2BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm−2 compared to that of PC-900/CNTF electrode (22.8 mF cm−2) at 5 mV s−1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm−2) at the scan rate of 5 mV s−1; the volumetric energy density is 57.3 µWh cm−3 and the volumetric power density is 2.4 mW cm−3 at the current density of 0.5 mA cm−2 based on poly(vinyl alcohol)/H3PO4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles. PMID:29410815
Jin, Li-Na; Liu, Ping; Jin, Chun; Zhang, Jia-Nan; Bian, Shao-Wei
2018-01-15
In this work, a flexible and porous WO 3 /grapheme/polyester (WO 3 /G/PT) textile electrode was successfully prepared by in situ growing WO 3 on the fiber surface inside G/PT composite fabrics. The unique electrode structure facilitates to enhance the energy storage performance because the 3D conductive network constructed by the G/PT increase the electron transportation rate, nanotructured WO 3 exposed enhanced electrochemically active surface area and the hierarchically porous structure improved the electrolyte ion diffusion rate. The optimized WO 3 /G/PT textile electrode exhibited good electrochemical performance with a high areal capacitance of 308.2mFcm -2 at a scan rate of 2mVs -1 and excellent cycling stability. A flexible asymmetric supercapacitor (ASC) device was further fabricated by using the WO 3 /G/PT electrode and G/PT electrode, which exhibited a good specific capacitance of 167.6mFcm -3 and high energy density of 60μWhcm -3 at the power density of 2320 μWcm -3 . Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shengnan; Li, Dagang
2017-03-01
As the porous structure and conductivity result in improvement of electrochemical properties, the chitin nanofibers (ChNFs), multi-walled carbon nanotubes (MWCNTs) and MnO2 (manganese dioxide) nanoflakes 3D porous network core-shell structure gel-film was fabricated for flexible free-standing supercapacitor electrodes. The electrodes were characterized by various techniques and the results demonstrate that the as-synthesized ChNFs/MWCNTs/MnO2 gel-film electrodes exhibits excellent supercapacitive behaviours. The ChNFs/MWCNTs/MnO2 gel-film electrode shows a high capacitance of 295.2 mF/cm2 at 0.1 mA/cm2 in 1 M Na2SO4 aqueous electrolyte because of its 3D porous structure. Furthermore, the electrodes also showed surprising cycling stability for 5000 cycles with retention rate up to 157.14% at 1 mA/cm2. The data presents great promise in the application of high-performance flexible supercapacitors with the low cost, light-weight and excellent cycling ability.
Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage
NASA Astrophysics Data System (ADS)
Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling
2017-12-01
Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.
NASA Astrophysics Data System (ADS)
Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao
2015-10-01
Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.
Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao
2015-10-16
Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m(2) g(-1) present high specific capacities of the 308 and 200 F g(-1) in KOH electrolyte at current densities of 0.1 and 10 A g(-1), respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g(-1) at 0.1 A g(-1) and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.
Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao
2015-01-01
Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144
NASA Astrophysics Data System (ADS)
Li, Jianmin; Li, Haizeng; Li, Jiahui; Wu, Guiqing; Shao, Yuanlong; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2018-05-01
Volumetric energy density is generally considered to be detrimental to the actual application of supercapacitors, which has provoked a range of research work on increasing the packing density of electrodes. Herein, we fabricate a free-standing single-walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/copper hexacyanoferrate (CuHCF) nanoparticles (NPs) composite supercapacitor electrode, with a high packing density of 2.67 g cm-3. The pseudocapacitive CuHCF NPs are decorated onto the SWCNTs/PEDOT:PSS networks and filled in interspace to increase both of packing density and specific capacitance. This hybrid electrode exhibits a series of outstanding performances, such as high electric conductivity, ultrahigh areal and volumetric capacitances (969.8 mF cm-2 and 775.2 F cm-3 at scan rate of 5 mV s-1), long cycle life and superior rate capability. The asymmetric supercapacitor built by using the SWCNTs/PEDOT:PSS/CuHCF film as positive electrode and Mo-doped WO3/SWCNTs film as negative electrode, can deliver a high energy density of 30.08 Wh L-1 with a power density of 4.25 kW L-1 based on the total volume of the device. The approach unveiled in this study could provide important insights to improving the volumetric performance of energy storage devices and help to reach the critical targets for high rate and high power density demand applications.
Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors.
Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Xie, Shilei; Ling, Yichuan; Liang, Chaolun; Tong, Yexiang; Li, Yat
2012-10-10
Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15,000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm(3). The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexible SCs.
Pandit, Bidhan; Karade, Swapnil S; Sankapal, Babasaheb R
2017-12-27
Transition metal chalcogenides (TMCs) embedded with a carbon network are gaining much attention because of their high power capability, which can be easily integrated to portable electronic devices. Facile chemical route has been explored to synthesize hexagonal structured VS 2 nanoparticles onto multiwalled carbon nanotubes (MWCNTs) matrix. Such surface-modified VS 2 /MWCNTs electrode has boosted the electrochemical performance to reach high capacitance to 830 F/g and excellent stability to 95.9% over 10 000 cycles. Designed flexible solid-state symmetric supercapacitor device (FSSD) with a wide voltage window of 1.6 V exhibited maximum gain in specific capacitance value of 182 F/g at scan rate of 2 mV/s along with specific energy of 42 Wh/kg and a superb stability of 93.2% over 5000 cycles. As a practical approach, FSSD has lightened up "VNIT" panel consisting of 21 red LEDs.
Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin
2017-03-22
Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).
NASA Astrophysics Data System (ADS)
Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.
2017-03-01
A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.
Liu, Na; Su, Yanli; Wang, Zhiqiang; Wang, Zhen; Xia, Jinsong; Chen, Yong; Zhao, Zhigang; Li, Qingwen; Geng, Fengxia
2017-08-22
A three-dimensional (3D) macroscopic network of manganese oxide (MnO 2 ) sheets was synthesized by an easily scalable solution approach, grafting the negatively charged surfaces of the MnO 2 sheets with an aniline monomer by electrostatic interactions followed by a quick chemical oxidizing polymerization reaction. The obtained structure possessed MnO 2 sheets interconnected with polyaniline chains, producing a 3D monolith rich in mesopores. The MnO 2 sheets had almost all their reactive centers exposed on the electrode surface, and combined with the electron transport highways provided by polyaniline and the shortened diffusion paths provided by the porous structure, the deliberately designed electrode achieved an excellent capacitance of 762 F g -1 at a current of 1 A g -1 and cycling performance with a capacity retention of 90% over 8000 cycles. Furthermore, a flexible asymmetric supercapacitor based on the constructed electrode and activated carbon serving as the positive and negative electrodes, respectively, was successfully fabricated, delivering a maximum energy density of 40.2 Wh kg -1 (0.113 Wh cm -2 ) and power density of 6227.0 W kg -1 (17.44 W cm -2 ) in a potential window of 0-1.7 V in a PVA/Na 2 SO 4 gel electrolyte.
Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.
2016-01-01
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067
Hu, Nantao; Zhang, Liling; Yang, Chao; ...
2016-01-22
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
NASA Astrophysics Data System (ADS)
Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong
2016-06-01
Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.
Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong
2016-01-01
Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm−3), highly conductive (39 S cm−1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm−3 at 2 mV s−1 in a three-electrode cell and 300 F cm−3 at 175.7 mA cm−3 (568 mF cm−2 at 0.5 mA cm−2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm−3 with a maximum power density of 1600 mW cm−3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices. PMID:27248510
Flexible all-fiber electrospun supercapacitor
NASA Astrophysics Data System (ADS)
Liu, Xinhua; Naylor Marlow, Max; Cooper, Samuel J.; Song, Bowen; Chen, Xiaolong; Brandon, Nigel P.; Wu, Billy
2018-04-01
We present an all-fiber flexible supercapacitor with composite nanofiber electrodes made via electrospinning and an electrospun separator. With the addition of manganese acetylacetonate (MnACAC) to polyacrylonitrile (PAN) as a precursor for the electrospinning process and subsequent heat treatment, the performance of pure PAN supercapacitors was improved from 90 F g-1 to 200 F g-1 (2.5 mV s-1) with possible mass loadings of MnACAC demonstrated as high as 40 wt%. X-ray diffraction measurements showed that after thermal treatment, the MnACAC was converted to MnO, meanwile, the thermal decomposition of MnACAC increased the graphitic degree of the carbonised PAN. Scanning electron microscopy and image processing showed that static electrospinning of pure PAN and PAN-Mn resulted in fiber diameters of 460 nm and 480 nm respectively after carbonisation. Further analysis showed that the fiber orientation exhibited a slight bias which was amplified with the addition of MnACAC. Use of focused ion beam scanning electron microscopy tomography also showed that MnO particles were evenly distributed through the fiber at low MnACAC concentrations, while at a 40 wt% loading the MnO particles were also visible on the surface. Comparison of the electrospun separators showed improved performance relative to a commercial Celgard separator (200 F g-1 vs 141 F g-1).
Flexible Hybrid Battery/Pseudocapacitor
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Paley, Steven
2015-01-01
Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.
NASA Astrophysics Data System (ADS)
Liu, Xinyue; Wang, Jianxing; Yang, Guowei
2017-07-01
There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.
Zhang, Genqiang; Lou, Xiong Wen David
2013-02-20
Mesoporous NiCo(2) O(4) nanosheets can be directly grown on various conductive substrates, such as Ni foam, Ti foil, stainless-steel foil and flexible graphite paper, through a general template-free solution method combined with a simple post annealing treatment. As a highly integrated binder- and conductive-agent-free electrode for supercapacitors, the mesoporous NiCo(2) O(4) nanosheets supported on Ni foam deliver ultrahigh capacitance and excellent high-rate cycling stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene and graphene-based materials for energy storage applications.
Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua
2014-09-10
With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Haifu; Tang, Yanmei; Xu, Lianqiang; Tang, Shaolong; Du, Youwei
2014-07-09
Here, a novel graphene composite foam with 3D lightweight continuous and interconnected nickel network was successfully synthesized by hydroiodic (HI) acid using nickel foam as substrate template. The graphene had closely coated on the backbone of the 3D nickel conductive network to form nickel network supported composite foam without any polymeric binder during the HI reduction of GO process, and the nickel conductive network can be maintained even in only a small amount of nickel with 1.1 mg/cm(2) and had replaced the traditional current collector nickel foam (35 mg/cm(2)). In the electrochemical measurement, a supercapacitor device based on the 3D nickel network and graphene composite foam exhibited high rate capability of 100 F/g at 0.5 A/g and 86.7 F/g at 62.5 A/g, good cycle stability with capacitance retention of 95% after 2000 cycles, low internal resistance (1.68 Ω), and excellent flexible properties. Furthermore, the gravimetric capacitance (calculated using the total mass of the electrode) was high up to 40.9 F/g. Our work not only demonstrates high-quality graphene/nickel composite foam, but also provides a universal route for the rational design of high performance of supercapacitors.
Bioinspired fractal electrodes for solar energy storages.
Thekkekara, Litty V; Gu, Min
2017-03-31
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3 Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1 Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
Bioinspired fractal electrodes for solar energy storages
Thekkekara, Litty V.; Gu, Min
2017-01-01
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924
Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R
2013-12-26
We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.
Wang, Feifei; Wang, Ting; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan
2018-06-11
A novel NiFe-LDH/RGO/CNFs composite was produced by using a facile one-step hydrothermal method as electrode for supercapacitor. Compared with NiFe-LDH/CNFs, NiFe-LDH/CNTs and NiFe-LDH/RGO, NiFe-LDH/RGO/CNFs demonstrated a high specific capacitance of 1330.2 F g -1 at 1 A g -1 and a super rate capability of 64.2% from 1 to 20 A g -1 , indicating great potential for supercapacitor application. Additionally, an asymmetric supercapacitor using NiFe-LDH/RGO/CNFs composite as positive electrode material and activated carbon as negative electrode material was assembled. The asymmetric supercapacitor can work in the voltage range of 0-1.57 V. It displayed high energy density of 33.7 W h kg -1 at power density of 785.8 W kg -1 and excellent cycling stability with 97.1% of the initial capacitance after 2500 cycles at 8 A g -1 . Two flexible AC//LDH-RGO-CNFs ASC devices connected in series were able to light up a red LED indicator after being fully charged. The results demonstrate that the AC//LDH-RGO-CNFs ASC has a promising potential in commercial application.
A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting
2013-07-01
A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting by Matthew H. Ervin, Carlos M. Pereira, John R...Capacitors and Supercapacitors for Piezo-Based Energy Harvesting Matthew H. Ervin Sensors and Electronic Devices Directorate, ARL Carlos M. Pereira... Supercapacitors for Piezo-Based Energy Harvesting 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew H
NASA Astrophysics Data System (ADS)
Gu, Lin; Wang, Yewu; Fang, Yanjun; Lu, Ren; Sha, Jian
2013-12-01
In this paper, we report the supercapacitor electrodes with excellent cycle stability, which are made of silicon carbide nanowires (SiC NWs) grown on flexible carbon fabric. A high areal capacitance of 23 mF cm-2 is achieved at a scan rate of 50 mV s-1 at room temperature and capacitances increase with the rise of the working temperature. Owing to the excellent thermal stability of SiC NWs and carbon fabric, no observable decrease of capacitance occurs at room temperature (20 °C) after 105 cycles, which satisfies the demands of the commercial applications. Further increasing the measurement temperature to 60 °C, 90% of the initial capacitance is still retained after 105 cycles. This study shows that silicon carbide nanowires on carbon fabric are a promising electrode material for high temperature and stable micro-supercapacitors.
Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena
2017-04-28
In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.
Mangisetti, Sandhya Rani; Pari, Baraneedharan; M, Kamaraj; Ramaprabhu, Sundara
2018-05-25
The preparation of highly conductive, high-surface-area, heteroatom-doped, porous carbon nanocomposite materials with enhanced electrochemical performance for sustainable energy-storage technologies, such as supercapacitors, is challenging. Herein, a route for the large-scale synthesis of nitrogen-doped porous carbon wrapped partially exfoliated carbon nanotubes (N-PPECNTs) with an interconnected hierarchical porous structure, as an advanced electrode material that can realize several potential applications for energy storage, is presented. Polypyrrole conductive polymer acts as both nitrogen and carbon sources that contribute to the pseudocapacitance. Partially exfoliated carbon nanotubes (PECNTs) provide a high specific surface area for ion and charge transportation and act as a conductive matrix. The derived porous N-PPECNT displays a nitrogen content of 6.95 at %, with a specific surface area of 2050 m 2 g -1 , and pore volume of 1.13 cm 3 g -1 . N-PPECNTs, as an electrode material for supercapacitors, exhibit an excellent specific capacitance of 781 F g -1 at 2 A g -1 , with a high cycling stability of 95.3 % over 10 000 cycles. Furthermore, the symmetric supercapacitor exhibits remarkable energy densities as high as 172.8, 62.7, and 53.55 Wh kg -1 in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][TFSI]), organic, and aqueous electrolytes, respectively. Also, biocompatible hydrogel and polymer gel electrolyte based, stable, flexible supercapacitors with excellent electrochemical performance could be demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abdul Bashid, Hamra Assyaima; Lim, Hong Ngee; Kamaruzaman, Sazlinda; Abdul Rashid, Suraya; Yunus, Robiah; Huang, Nay Ming; Yin, Chun Yang; Rahman, Mohammad Mahbubur; Altarawneh, Mohammednoor; Jiang, Zhong Tao; Alagarsamy, Pandikumar
2017-12-01
A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g - 1 , 13.35 Wh kg - 1 and of 322.85 W kg - 1 , respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g - 1 . The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.
Synthesis and applications of carbon nanomaterials for energy generation and storage.
Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio
2016-01-01
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.
Synthesis and applications of carbon nanomaterials for energy generation and storage
Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy
2016-01-01
Summary The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future. PMID:26925363
NASA Astrophysics Data System (ADS)
de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti
2014-08-01
The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.
Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua
2016-09-23
In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm(-2) at 1 mA cm(-2), good flexibility with a higher value (204.6 mF cm(-2)) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg(-1) (with a power density of 3.2 kW kg(-1)) and a maximum power density of 4.2 kW kg(-1) (with an energy density of 3.1 Wh kg(-1)). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.
NASA Astrophysics Data System (ADS)
Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua
2016-09-01
In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.
Zhai, Shengli; Wang, Chaojun; Karahan, Huseyin Enis; Wang, Yanqing; Chen, Xuncai; Sui, Xiao; Huang, Qianwei; Liao, Xiaozhou; Wang, Xin; Chen, Yuan
2018-06-07
Compactness and versatility of fiber-based micro-supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO 2 ) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon-based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single-walled carbon nanotubes as nanospacers. This facile approach involes (1) space-confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru 3+ ions, and (3) anchoring RuO 2 nanoparticles on HrGO surfaces. Solid-state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm -3 at 2 mV s -1 . Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm -3 , the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self-powering energy system, a light-emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano-RuO 2 -decorated HrGO composite fibers for constructing micro-supercapacitors with high energy density for wearable electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors
NASA Astrophysics Data System (ADS)
Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj
2010-03-01
We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.
Paper-based batteries: a review.
Nguyen, Thu H; Fraiwan, Arwa; Choi, Seokheun
2014-04-15
There is an extensively growing interest in using paper or paper-like substrates for batteries and other energy storage devices. Due to their intrinsic characteristics, paper (or paper-like) batteries show outstanding performance while retaining low cost, multifunctionality, versatility, flexibility and disposability. In this overview, we review recent achievements in paper (or paper-like) batteries as well as their applications. Various types of paper power devices are discussed including electrochemical batteries, biofuel cells, lithium-ion batteries, supercapacitors, and nanogenerators. Further scientific and technological challenges in this field are also discussed. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Scalia, Alberto; Bella, Federico; Lamberti, Andrea; Bianco, Stefano; Gerbaldi, Claudio; Tresso, Elena; Pirri, Candido Fabrizio
2017-08-01
The recent need to benefit from electricity in every moment of daily life, particularly when the access to the electric grid is limited, is forcing the scientific and industrial community to an intensive effort towards the production of integrated energy harvesting and storage devices able to drive low power electronics. In this framework, flexibility represents a mandatory requirement to cover non-planar or bendable surfaces, more and more common in nowadays-electronic devices. To this purpose, here we present an innovative device consisting of a TiO2 nanotube-based dye sensitized solar cell and a graphene-based electrical double layer capacitor integrated in a flexible architecture. Both the units are obtained by easily scalable fabrication processes exploiting photopolymer membranes as electrolytes and metal grids as current collectors. The performance of the two units and of the integrated system are thoroughly investigated by electrochemical measurements also under different irradiation conditions. To the best of our knowledge, this work shows the highest energy conversion and storage efficiency (1.02%) ever attained under 1 Sun irradiation condition for a flexible dye-sensitized-based non-wired photocapacitor. Noteworthy, this value dramatically increases while lowering the illumination condition to 0.3 Sun, achieving a remarkable value of 1.46%, thus showing optimal performances in real operation conditions.
Lv, Haipeng; Gao, Xiujiao; Xu, Qunjie; Liu, Haimei; Wang, Yong-Gang; Xia, Yongyao
2017-11-22
Manganese oxides (MnO 2 ) are regarded as typical and promising electrode materials for supercapacitors. However, the practical electrochemical performance of MnO 2 is far from its theoretical value. Nowadays, numerous efforts are being devoted to the design and preparation of nanostructured MnO 2 with the aim of improving its electrochemical properties. In this work, ultralong MnO 2 nanowires were fabricated in a process induced by carbon quantum dots (CQDs); subsequently, a binder-free flexible electrode membrane was easily obtained by vacuum filtration of the MnO 2 nanowires. The effects of the CQDs not only induced the formation of one-dimensional nanostructured MnO 2 , but also significantly improved the wettability between electrode and electrolyte. In other words, the MnO 2 membrane demonstrated a superhydrophilic character in aqueous solution, indicating the sufficient and abundant contact probability between electrode and electrolyte. The binder-free flexible MnO 2 electrode exhibited a preeminent specific capacitance of 340 F g -1 at 1 A g -1 ; even when the current density reached 20 A g -1 , it still maintained 260 F g -1 (76% retention rate compared to that at 1 A g -1 ). Moreover, it also showed good cycling stability with 80.1% capacity retention over 10 000 cycles at 1 A g -1 . Furthermore, an asymmetric supercapacitor was constructed using the MnO 2 membrane and active carbon as the positive and negative electrodes, respectively, which exhibited a high energy density of 33.6 Wh kg -1 at 1.0 kW kg -1 , and a high power density of 10 kW kg -1 at 12.5 Wh kg -1 .
NASA Astrophysics Data System (ADS)
Lyu, Shaoyi; Chang, Huanjun; Fu, Feng; Hu, La; Huang, Jingda; Wang, Siqun
2016-09-01
A paper-based wearable supercapacitor with excellent foldability and tailorability is fabricated from a chopped carbon fiber (CCF)-reinforced cellulose paper electrode material by coating with reduced graphene oxide (RGO) and polypyrrole (PPy) via in situ polymerization. The CCFs not only form an interpenetrating conducting network that acts as highly conductive electron transfer highways for the RGO/PPy layer in the paper electrode, but also endow the resulting electrode with an excellent areal capacitance of 363 mF cm-2 and a volumetric energy density of 0.28 mW h cm-3. Further, the CCFs give the electrode remarkable mechanical robustness, guaranteeing foldability and tailorability, with only slight loss of capacitance after repeated folding 600 times. Even after being subjected to severe cut-in fracture, the capacitance retention is up to 84%, indicating outstanding damage tolerance. The present study reveals a promising candidate for flexible wearable energy storage devices that are required to function in harsh environments.
Zhao, Chen; Wang, Caiyun; Yue, Zhilian; Shu, Kewei; Wallace, Gordon G
2013-09-25
There has been an emerging interest in stretchable power sources compatible with flexible/wearable electronics. Such power sources must be able to withstand large mechanical strains and still maintain function. Here we report a highly stretchable H3PO4-poly(vinyl alcohol) (PVA) polymer electrolyte obtained by optimizing the polymer molecular weight and its weight ratio to H3PO4 in terms of conductivity and mechanical properties. The electrolyte demonstrates a high conductivity of 3.4 × 10(-3) S cm(-1), and a high fracture strain at 410% elongation. It is mechanically robust with a tensile strength of 2 MPa and a Young's modulus of 1 MPa, and displays a small plastic deformation (5%) after 1000 stretching cycles at 100% strain. A stretchable supercapacitor device has been developed based on buckled polypyrrole electrodes and the polymer electrolyte. The device shows only a small capacitance loss of 5.6% at 30% strain, and can retain 81% of the initial capacitance after 1000 cycles of such stretching.
NASA Astrophysics Data System (ADS)
Muralee Gopi, Chandu V. V.; Ravi, Seenu; Rao, S. Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je
2017-04-01
Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg-1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.
Muralee Gopi, Chandu V V; Ravi, Seenu; Rao, S Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je
2017-04-19
Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg -1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.
Chen, Yuejiao; Xu, Bingang; Wen, Jianfeng; Gong, Jianliang; Hua, Tao; Kan, Chi-Wai; Deng, Jiwei
2018-04-19
Rapid advances in functional electronics bring tremendous demands on innovation toward effective designs of device structures. Yarn supercapacitors (SCs) show advantages of flexibility, knittability, and small size, and can be integrated into various electronic devices with low cost and high efficiency for energy storage. In this work, functionalized stainless steel yarns are developed to support active materials of positive and negative electrodes, which not only enhance capacitance of both electrodes but can also be designed into stretchable configurations. The as-made asymmetric yarn SCs show a high energy density of 0.0487 mWh cm -2 (10.19 mWh cm -3 ) at a power density of 0.553 mW cm -2 (129.1 mW cm -3 ) and a specific capacitance of 127.2 mF cm -2 under an operating voltage window of 1.7 V. The fabricated SC is then made into a stretchable configuration by a prestraining-then-releasing approach using polydimethylsiloxane (PDMS) tube, and its electrochemical performance can be well maintained when stretching up to a high strain of 100%. Moreover, the stretchable cable-type SCs are stably workable under water-immersed condition. The method opens up new ways for fabricating flexible, stretchable, and waterproof devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jia, Dedong; Yu, Xin; Chen, Tinghan; Wang, Shu; Tan, Hua; Liu, Hong; Wang, Zhong Lin; Li, Linlin
2017-08-01
Generally, carbon or graphite fibers (GFs) are used as the supporting materials for the preparation of flexible supercapacitors (SCs) by assembling various electrochemically active nanomaterials on them. A facile and rapid electrochemical oxidation method with a voltage of 3 V in a mixed H2SO4-HNO3 solution for 2-15 min is proposed to active continuous filament GFs. Detailed structural characterization, SEM, TEM, XRD, Raman and XPS demonstrate that the GFs-8 (oxidized for 8 min) possessing high specific surface area which provided numerous electrochemical sites and a large number of oxygen-containing functional groups producing pseudocapacitance. Cyclic voltammetric (CV), galvanostatic charge-discharge measurements and electrochemical impedance spectroscopy (EIS) are conducted to test the capacitive of GFs and activated GFs. The capacitance of GFs-8 reaches as high as 570 mF cm-1 at the current density of 1 mA cm-1 in LiCl electrolyte, a 1965-fold enhancement with respect to the pristine GFs (0.29 mF cm-1). The fabricated fiber solid-state supercapacitors (SSCs) provide high energy density of 0.68 mWh cm-3 at the power density 3.3 W cm-3 and have excellent durability with 90% capacitance retention after 10000 cycles. In addition, such fiber SSCs features flexibility and mechanical stability, which may have wide applications in wearable electronic devices.
Huang, Jun; Wei, Junchao; Xiao, Yingbo; Xu, Yazhou; Xiao, Yujuan; Wang, Ying; Tan, Licheng; Yuan, Kai; Chen, Yiwang
2018-03-27
Although cobalt sulfide is a promising electrode material for supercapacitors, its wide application is limited by relative poor electrochemical performance, low electrical conductivity, and inefficient nanostructure. Here, we demonstrated that the electrochemical activity of cobalt sulfide could be significantly improved by Al doping. We designed and fabricated hierarchical core-branch Al-doped cobalt sulfide nanosheets anchored on Ni nanotube arrays combined with carbon cloth (denoted as CC/H-Ni@Al-Co-S) as an excellent self-standing cathode for asymmetric supercapacitors (ASCs). The combination of structural and compositional advantages endows the CC/H-Ni@Al-Co-S electrode with superior electrochemical performance with high specific capacitance (1830 F g -1 /2434 F g -1 at 5 mV s -1 /1 A g -1 ) and excellent rate capability (57.2%/72.3% retention at 1000 mV s -1 /100 A g -1 ). The corresponding all-solid-state ASCs with CC/H-Ni@Al-Co-S and multilayer graphene/CNT film as cathode and anode, respectively, achieve a high energy density up to 65.7 W h kg -1 as well as superb cycling stability (90.6% retention after 10 000 cycles). Moreover, the ASCs also exhibit good flexibility and stability under different bending conditions. This work provides a general, effective route to prepare high-performance electrode materials for flexible all-solid-state energy storage devices.
He, Junzhi; Zhao, Junhong; Run, Zhen; Sun, Mengjun; Pang, Huan
2015-02-01
Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all-solid-state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm(-3) and a high life cycle of >6000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul
2018-05-01
Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.
Transparent and Flexible Supercapacitors with Networked Electrodes.
Kiruthika, S; Sow, Chaitali; Kulkarni, G U
2017-10-01
Transparent and flexible energy storage devices have received immense attention due to their suitability for innovative electronics and displays. However, it remains a great challenge to fabricate devices with high storage capacity and high degree of transmittance. This study describes a simple process for fabrication of supercapacitors with ≈75% of visible transparency and areal capacitance of ≈3 mF cm -2 with high stability tested over 5000 cycles of charging and discharging. The electrodes consist of Au wire networks obtained by a simple crackle template method which are coated with MnO 2 nanostructures by electrodeposition process. Importantly, the membrane separator itself is employed as substrate to bring in the desired transparency and light weight while additionally exploiting its porous nature in enhancing the interaction of electrolyte with the active material from both sides of the substrate, thereby enhancing the storage capacity. The method opens up new ways for fabricating transparent devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
Salunkhe, Rahul R; Lee, Ying-Hui; Chang, Kuo-Hsin; Li, Jing-Mei; Simon, Patrice; Tang, Jing; Torad, Nagy L; Hu, Chi-Chang; Yamauchi, Yusuke
2014-10-20
Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene Oxide Annealing Procedures for Graphene-Based Supercapacitors
2015-09-01
Annealing Procedures for Graphene-Based Supercapacitors by Louis B Levine and Matthew H Ervin Sensors and Electron Devices Directorate, ARL...SUBTITLE Graphene Oxide Annealing Procedures for Graphene-Based Supercapacitors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Liao, Yaozu; Wang, Haige; Zhu, Meifang; Thomas, Arne
2018-03-01
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m 2 g -1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g -1 in 0.5 m H 2 SO 4 at a current of 1 A g -1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g -1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g -1 of total electrode materials, an energy density of 60 Wh kg -1 at a power density of 1300 W kg -1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-step spray processing of high power all-solid-state supercapacitors
NASA Astrophysics Data System (ADS)
Huang, Chun; Grant, Patrick S.
2013-08-01
Aqueous suspensions of multi-wall carbon nanotubes (MWNTs) in dilute H2SO4 were sprayed onto both sides of a Nafion membrane and dried to fabricate flexible solid-state supercapacitors. A single cell with MWNT-only electrodes had a capacitance of 57 F g-1 per electrode at 2 mV s-1 and 44 F g-1 at 150 mV s-1 but with low H+ mobility. Cells with MWNT + ionomer hybrid electrodes showed higher H+ mobility, and the electric double layer (EDL) capacitance increased to 145 F g-1 at 2 mV s-1 and 91 F g-1 at 150 mV s-1. The energy and power densities of one electrode charged to 1 V at 1 A g-1 were 12.9 Wh kg-1 and 3.3 kW kg-1 respectively. Three solid-state supercapacitor cells connected in series charged to 3 V at 1 and 2 A g-1 provided a device power density of 8.9 kW kg-1 at 1 A g-1 and 9.4 kW kg-1 at 2 A g-1, the highest for all-solid-state EDL supercapacitors.
Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu
2015-08-12
Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Ruozhou; Peng, Rui; Tumuluri, Uma; ...
2016-02-11
Direct laser-reduction of graphene oxide (GO), as a lithography-free approach, has been proven effective in manufacturing in-plane micro-supercapacitors (MSCs) with fast ion diffusion. However, the power density and the charge/discharge rate are still limited by the relatively low conductivity of electrodes. Here, we report a facile approach by exploiting femtolaser in situ reduction of the hydrated GO and chloroauric acid (HAuCl 4) nanocomposite simultaneously, which incorporates both the patterning of rGO electrodes and the fabrication of Au current collectors in a single step. These flexible MSCs boast achievements of one-hundred fold increase in electrode conductivities of up to 1.1 ×more » 10 6 S m –1, which provide superior rate capability (50% for the charging rate increase from 0.1 V s –1 to 100 V s –1), sufficiently high frequency responses (362 Hz, 2.76 ms time constant), and large specific capacitances of 0.77 mF cm –2 (17.2 F cm –3 for volumetric capacitance) at 1 V s –1, and 0.46 mF cm –2 (10.2 F cm –3) at 100 V s –1. The use of photo paper substrates enables the flexibility of this fabrication protocol. Moreover, proof-of-concept 3D MSCs are demonstrated with enhanced areal capacitance (up to 3.84 mF cm –2 at 1 V s –1) while keeping high rate capabilities. As a result, this prototype of all solid-state MSCs demonstrates the broad range of potentials of thin-film based energy storage device applications for flexible, portable, and wearable electronic devices that require a fast charge/discharge rate and high power density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ruozhou; Peng, Rui; Tumuluri, Uma
Direct laser-reduction of graphene oxide (GO), as a lithography-free approach, has been proven effective in manufacturing in-plane micro-supercapacitors (MSCs) with fast ion diffusion. However, the power density and the charge/discharge rate are still limited by the relatively low conductivity of electrodes. Here, we report a facile approach by exploiting femtolaser in situ reduction of the hydrated GO and chloroauric acid (HAuCl 4) nanocomposite simultaneously, which incorporates both the patterning of rGO electrodes and the fabrication of Au current collectors in a single step. These flexible MSCs boast achievements of one-hundred fold increase in electrode conductivities of up to 1.1 ×more » 10 6 S m –1, which provide superior rate capability (50% for the charging rate increase from 0.1 V s –1 to 100 V s –1), sufficiently high frequency responses (362 Hz, 2.76 ms time constant), and large specific capacitances of 0.77 mF cm –2 (17.2 F cm –3 for volumetric capacitance) at 1 V s –1, and 0.46 mF cm –2 (10.2 F cm –3) at 100 V s –1. The use of photo paper substrates enables the flexibility of this fabrication protocol. Moreover, proof-of-concept 3D MSCs are demonstrated with enhanced areal capacitance (up to 3.84 mF cm –2 at 1 V s –1) while keeping high rate capabilities. As a result, this prototype of all solid-state MSCs demonstrates the broad range of potentials of thin-film based energy storage device applications for flexible, portable, and wearable electronic devices that require a fast charge/discharge rate and high power density.« less
NASA Astrophysics Data System (ADS)
Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan
2017-05-01
Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.
Xie, Hao; Tang, Shaochun; Li, Dongdong; Vongehr, Sascha; Meng, Xiangkang
2017-05-22
To push the energy density limit of supercapacitors (SCs), new electrode materials with hierarchical nano-micron pore architectures are strongly desired. Graphene hydrogels that consist of 3 D porous frameworks have received particular attention but their capacitance is limited by electrical double layer capacitance. In this work, we report the rational design and fabrication of a composite hydrogel of N-doped graphene (NG) that contains embedded Ni(OH) 2 nanoplates that is cut conveniently into films to serve as positive electrodes for flexible asymmetric solid-state SCs with NG hydrogel films as negative electrodes. The use of high-power ultrasound leads to hierarchically porous micron-scale sheets that consist of a highly interconnected 3 D NG network in which Ni(OH) 2 nanoplates are well dispersed, which avoids the stacking of NG, Ni(OH) 2 , and their composites. The optimal SC device benefits from the compositional features and 3 D electrode architecture and has a high specific areal capacitance of 255 mF cm -2 at 1.0 mA cm -2 and a very stable, high output cell voltage of 1.45 V, which leads to an energy density of 80 μW h cm -2 even at a high power of 944 μW cm -2 , considerably higher than that reported for similar devices. The devices exhibit a high rate capability and only 8 % capacitance loss over 10 000 charging cycles as well as excellent flexibility with no clear performance degradation under strong bending. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible capacitive behavior of hybrid carbon materials prepared from graphene sheets
NASA Astrophysics Data System (ADS)
Ding, Y.-H.; Xie, W.; Zhang, P.; Jiang, Y.
2016-06-01
High frequency ultrasonication was employed to reduce the aggregation of graphene by constructing hybrid carbon materials (HCMs), which are endowed with a large electrochemical reaction area and high energy density. HCMs exhibited a specific capacitance of 168.5 F · g-1 with ˜100% capacitance retention over 500 cycles. Flexible supercapacitors fabricated from HCMs also showed an excellent capacitive behavior even under tough conditions. These outstanding electrochemical properties were ascribed to the increased specific surface area and open structure of HCMs.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-01
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-26
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.