Science.gov

Sample records for flexion knee deformity

  1. Fixed flexion deformity and total knee arthroplasty.

    PubMed

    Su, E P

    2012-11-01

    Fixed flexion deformities are common in osteoarthritic knees that are indicated for total knee arthroplasty. The lack of full extension at the knee results in a greater force of quadriceps contracture and energy expenditure. It also results in slower walking velocity and abnormal gait mechanics, overloading the contralateral limb. Residual flexion contractures after TKA have been associated with poorer functional scores and outcomes. Although some flexion contractures may resolve with time after surgery, a substantial percentage will become permanent. Therefore, it is essential to correct fixed flexion deformities at the time of TKA, and be vigilant in the post-operative course to maintain the correction. Surgical techniques to address pre-operative flexion contractures include: adequate bone resection, ligament releases, removal of posterior osteophytes, and posterior capsular releases. Post-operatively, extension can be maintained with focused physiotherapy, a specially modified continuous passive motion machine, a contralateral heel lift, and splinting.

  2. Total condylar knee arthroplasty for valgus and combined valgus-flexion deformity of the knee.

    PubMed

    Ranawat, C S; Rose, H A; Rich, D S

    1984-01-01

    Total condylar knee arthroplasty was performed on 64 knees with fixed valgus or valgus/flexion deformities. The technique for release of tight lateral and posterior structures is important to balance the ligament. Clinical results were rated good and excellent in 95% of the knees. Four patients with excessive flexion deformities required 6 weeks of cast bracing in the immediate postoperative period for instabilities caused by an imbalance in the spacing in flexion and extension. In no joint in the entire series did stability deteriorate with time. There were no patellar complications or nerve palsies noted. Radiographic evaluation revealed well-fixed components in 92% of the arthroplasties. None has required revision for mechanical loosening to date. With proper technique the total condylar prosthesis can be employed in knees with valgus or valgus/flexion deformities to give predictably good results. The total condylar III prosthesis may be required in severe combined deformities for added stability. PMID:6546120

  3. Genu Recurvatum versus Fixed Flexion after Total Knee Arthroplasty

    PubMed Central

    Silva, Amila; Chong, Hwei Chi; Chin, Pak Lin; Chia, Shi Lu; Lo, Ngai Ngung; Yeo, Seng Jin

    2016-01-01

    Background To date, there is no study comparing outcomes between post-total knee replacement genu recurvatum and fixed flexion. This study aims to provide data that will help in deciding which side to err on when neutral extension is not achieved. Methods A prospective cohort study of primary total knee arthroplasties was performed, which compared the 6-month and 2-year clinical outcomes between fixed flexion and genu recurvatum deformities at 6 months. Results At 6 months, knees in genu recurvatum did better than knees in fixed flexion deformity in terms of knee flexion. However, at 2 years, knees in fixed flexion deformity did better in terms of knee scores and showed better improvement in the degree of deformity. Conclusions We conclude that it is better to err on the side of fixed flexion deformity if neutral alignment cannot be achieved. PMID:27583106

  4. Distal femoral cut perpendicular to the mechanical axis may induce varus instability in flexion in medial osteoarthritic knees with varus deformity in total knee arthroplasty: a pitfall of the navigation system.

    PubMed

    Nagamine, Ryuji; Kondo, Keiichi; Ikemura, Satoshi; Shiranita, Atsushi; Nakashima, Satoshi; Hara, Toshihiko; Ihara, Hidetoshi; Sugioka, Yoichi

    2004-01-01

    Two factors that influence the external rotation angle of the femoral rotational axis in total knee arthroplasty (TKA) were assessed in 40 medial osteoarthritic knees with varus deformity. First, the anatomic configuration of the femur was assessed using standardized radiographs of the patients' lower extremities before TKA. Second, the degree of medial soft tissue release was assessed during TKA. The radiographs showed that the characteristics of the femur were lateral bowing of the shaft and external rotation of the condyle in the coronal plane. Therefore, when the distal femur is cut perpendicular to the mechanical axis, the cut surface may be in too much of a valgus position. Furthermore, some degree of medial soft tissue release was necessary in all knees. Medial soft tissue release rotates the femur externally in extension in the coronal plane, and it rotates the femur externally around the femoral axis in flexion relative to the tibia. A distal femoral cut in too much of a valgus position and medial soft tissue release induces varus instability in flexion in knees with lateral bowing of the femoral shaft. Anatomic variation such as femoral bowing should be considered when a navigation system is used for TKA because the navigation system shows only the mechanical axis.

  5. Distal femoral cut perpendicular to the mechanical axis may induce varus instability in flexion in medial osteoarthritic knees with varus deformity in total knee arthroplasty: a pitfall of the navigation system.

    PubMed

    Nagamine, Ryuji; Kondo, Keiichi; Ikemura, Satoshi; Shiranita, Atsushi; Nakashima, Satoshi; Hara, Toshihiko; Ihara, Hidetoshi; Sugioka, Yoichi

    2004-01-01

    Two factors that influence the external rotation angle of the femoral rotational axis in total knee arthroplasty (TKA) were assessed in 40 medial osteoarthritic knees with varus deformity. First, the anatomic configuration of the femur was assessed using standardized radiographs of the patients' lower extremities before TKA. Second, the degree of medial soft tissue release was assessed during TKA. The radiographs showed that the characteristics of the femur were lateral bowing of the shaft and external rotation of the condyle in the coronal plane. Therefore, when the distal femur is cut perpendicular to the mechanical axis, the cut surface may be in too much of a valgus position. Furthermore, some degree of medial soft tissue release was necessary in all knees. Medial soft tissue release rotates the femur externally in extension in the coronal plane, and it rotates the femur externally around the femoral axis in flexion relative to the tibia. A distal femoral cut in too much of a valgus position and medial soft tissue release induces varus instability in flexion in knees with lateral bowing of the femoral shaft. Anatomic variation such as femoral bowing should be considered when a navigation system is used for TKA because the navigation system shows only the mechanical axis. PMID:16228670

  6. In vivo healthy knee kinematics during dynamic full flexion.

    PubMed

    Hamai, Satoshi; Moro-oka, Taka-aki; Dunbar, Nicholas J; Miura, Hiromasa; Iwamoto, Yukihide; Banks, Scott A

    2013-01-01

    Healthy knee kinematics during dynamic full flexion were evaluated using 3D-to-2D model registration techniques. Continuous knee motions were recorded during full flexion in a lunge from 85° to 150°. Medial and lateral tibiofemoral contacts and femoral internal-external and varus-valgus rotations were analyzed as a function of knee flexion angle. The medial tibiofemoral contact translated anteroposteriorly, but remained on the center of the medial compartment. On the other hand, the lateral tibiofemoral contact translated posteriorly to the edge of the tibial surface at 150° flexion. The femur exhibited external and valgus rotation relative to the tibia over the entire activity and reached 30° external and 5° valgus rotations at 150° flexion. Kinematics' data during dynamic full flexion may provide important insight as to the designing of high-flexion total knee prostheses.

  7. [A man with a painful knee with restricted flexion].

    PubMed

    Valkering, Lucia J J; Zengerink, Maartje; van Kampen, Albert

    2015-01-01

    A 39-year-old man presented with knee pain and limited knee flexion. MRI showed a mucoid degeneration of the anterior cruciate ligament (celery stalk sign). This rare condition can be treated with arthroscopic debridement with volume reduction of the anterior cruciate ligament. In severe cases, anterior cruciate ligament resection could be considered. PMID:26395568

  8. Dynamic splinting for knee flexion contracture following total knee arthroplasty: a case report.

    PubMed

    Finger, Eric; Willis, F Buck

    2008-01-01

    Total Knee Arthroplasty operations are increasing in frequency, and knee flexion contracture is a common pathology, both pre-existing and post-operative. A 61-year-old male presented with knee flexion contracture following a total knee arthroplasty. Physical therapy alone did not fully reduce the contracture and dynamic splinting was then prescribed for daily low-load, prolonged-duration stretch. After 28 physical therapy sessions, the active range of motion improved from -20 degrees to -12 degrees (stiff knee still lacking full extension), and after eight additional weeks with nightly wear of dynamic splint, the patient regained full knee extension, (active extension improved from -12 degrees to 0 degrees ).

  9. Active Flexion in Weight Bearing Better Correlates with Functional Outcomes of Total Knee Arthroplasty than Passive Flexion

    PubMed Central

    Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune

    2016-01-01

    Purpose Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. Materials and Methods A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. Results We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Conclusions Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA. PMID:27274468

  10. The knee in full flexion: an anatomical study.

    PubMed

    Pinskerova, V; Samuelson, K M; Stammers, J; Maruthainar, K; Sosna, A; Freeman, M A R

    2009-06-01

    There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120 degrees and 160 degrees of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120 degrees to 160 degrees the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160 degrees the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160 degrees of flexion. Neither the events between 120 degrees and 160 degrees nor the anatomy at 160 degrees could result from a continuation of the kinematics up to 120 degrees . Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0 degrees to 160 degrees .

  11. Dynamic splinting for knee flexion contracture following total knee arthroplasty: a case report

    PubMed Central

    Finger, Eric; Willis, F Buck

    2008-01-01

    Total Knee Arthroplasty operations are increasing in frequency, and knee flexion contracture is a common pathology, both pre-existing and post-operative. A 61-year-old male presented with knee flexion contracture following a total knee arthroplasty. Physical therapy alone did not fully reduce the contracture and dynamic splinting was then prescribed for daily low-load, prolonged-duration stretch. After 28 physical therapy sessions, the active range of motion improved from -20° to -12° (stiff knee still lacking full extension), and after eight additional weeks with nightly wear of dynamic splint, the patient regained full knee extension, (active extension improved from -12° to 0°). PMID:19113998

  12. Interrater Reliability of Isokinetic Measures of Knee Flexion and Extension

    PubMed Central

    Keskula, Douglas R.; Dowling, Jeffrey S.; Davis, Virginia L.; Finley, Paula W.; Dell'Omo, Daniel L.

    1995-01-01

    The purpose of this investigation was to determine the interrater reliability of peak torque and total work values obtained with isokinetic measures of knee flexion and extension. Eight male and eight female students were evaluated on four occasions by four different examiners (range of isokinetic test experience: 0 to 10 yrs) using a standardized isokinetic measurement protocol. Subjects were randomly assigned to participate in a test sequence determined by a 4 × 4 balanced Latin square. Peak torque and total work values at 60°/sec and 180°/sec were obtained for the concentric measures of knee extension and flexion. The measures of peak torque and total work were corrected for the effects of gravity. Intraclass correlation coefficients and standard error of measurement estimates were used to estimate the interrater reliability for each test condition (test speed × muscle group). Intraclass correlation coefficient values ranged from .90 to .96 for peak torque and .90 to .95 for total work. Standard error of measurement estimates ranged from 8.9 to 13.3 Nm for peak torque and 11.3 to 16.8 Nm for total work. The results of this investigation demonstrate that reliable measures of isokinetic muscle performance of knee extension and flexion may be obtained by four clinicians with varied experience when following a standardized measurement protocol. ImagesFig 1.Fig 2. PMID:16558330

  13. Modelling and analysis on biomechanical dynamic characteristics of knee flexion movement under squatting.

    PubMed

    Wang, Jianping; Tao, Kun; Li, Huanyi; Wang, Chengtao

    2014-01-01

    The model of three-dimensional (3D) geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE) model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR) and knee prosthesis design.

  14. Modelling and Analysis on Biomechanical Dynamic Characteristics of Knee Flexion Movement under Squatting

    PubMed Central

    Wang, Jianping; Tao, Kun; Li, Huanyi; Wang, Chengtao

    2014-01-01

    The model of three-dimensional (3D) geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE) model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR) and knee prosthesis design. PMID:25013852

  15. Does high-flexion total knee arthroplasty promote early loosening of the femoral component?

    PubMed

    Zelle, Jorrit; Janssen, Dennis; Van Eijden, Jolanda; De Waal Malefijt, Maarten; Verdonschot, Nico

    2011-07-01

    High-flexion knee replacements have been developed to accommodate a large range of motion (RoM > 120°). Knee implants that allow for higher flexion may be more sensitive to femoral loosening as the knee load is relatively high during deep knee flexion, which could result in an increased failure potential at the implant-cement interface of the femoral component. A 3D finite element knee model was developed including a posterior-stabilized high-flexion knee replacement to analyze the stress state at the femoral implant-cement interface during a full squatting movement (RoM ≤ 155°). During deep flexion (RoM > 120°), tensile and shear stress concentrations were found at the implant-cement interface beneath the proximal part of the anterior flange. Particularly, the shear stresses at this interface location increased during high flexion, from a peak stress of 4.03 MPa at 90° to 6.89 MPa at 140° of flexion. Tensile stresses were substantially lower, having a peak stress of 0.72 MPa at 100° of flexion. Using data from earlier interface strength experiments, none of the interface beneath the anterior flange was predicted to fail in the normal flexion range (RoM ≤ 120°), whereas the prediction increased to 2.2% of the interface during deeper knee flexion. Thigh-calf contact reduced the knee forces, interface load, and failure risk beyond 140-145° of flexion. Based on the more critical stresses at the femoral fixation site between 120° and 145° of flexion, we conclude that the femoral component has a higher risk of loosening at high-flexion angles.

  16. Knee extension and flexion: MR delineation of normal and torn anterior cruciate ligaments

    SciTech Connect

    Niitsu, Mamoru; Ikeda, Kotaroh; Fukubayashi, Tohru; Anno, Izumi; Itai, Yuji

    1996-03-01

    Our goal was to assess the effect of joint position of semiflexed and extended knees in MR delineation of the anterior cruciate ligament (ACL). With a mobile knee brace and a flexible surface coil, the knee joint was either fully extended or bent to a semiflexed position (average 45{degrees} of flexion) within the magnet bore. Sets of oblique sagittal MR images were obtained for both extended and flexed knee positions. Thirty-two knees with intact ACLs and 43 knees with arthroscopically proven ACL tears were evaluated. Two observers compared paired MR images of both extended and flexed positions and rated them by a relative three point scale. Anatomic correlation in MR images was obtained by a cadaveric knee with incremental flexion. The MR images of flexed knees were more useful than of extended knees in 53% of the case reviews of femoral attachments and 36% of reviews of midportions of normal ACLs. Compared with knee extensions, the MR images for knee flexion provided better clarity in 48% of reviews of disrupted sites and 52% of residual bundles of torn ACLs. Normal ACL appeared taut in the knee extension and lax in semiflexion. Compared with MR images of knees in extension, MR images of knees in flexion more clearly delineate the femoral side of the ligament with wider space under the intercondylar roof and with decreased volume-averaging artifacts, providing superior visualization of normal and torn ACLs. 13 refs., 7 figs., 1 tab.

  17. Analysis of the Flexion Gap on In Vivo Knee Kinematics Using Fluoroscopy.

    PubMed

    Nakamura, Shinichiro; Ito, Hiromu; Yoshitomi, Hiroyuki; Kuriyama, Shinichi; Komistek, Richard D; Matsuda, Shuichi

    2015-07-01

    There is a paucity of information on the relationships between postoperative knee laxity and in vivo knee kinematics. The correlations were analyzed in 22 knees with axial radiographs and fluoroscopy based 3D model fitting approach after a tri-condylar total knee arthroplasty. During deep knee bend activities, the medial flexion gap had significant correlations with the medial contact point (r=0.529, P=0.011) and axial rotation at full extension. During kneeling activities, a greater medial flexion gap caused larger anterior translation at complete contact (r=0.568, P=0.011). Meanwhile, the lateral flexion gap had less effect. In conclusion, laxity of the medial collateral ligament should be avoided because the magnitude of medial flexion stability was crucial for postoperative knee kinematics. PMID:25680453

  18. Effect of hamstring flexibility on isometric knee flexion angle-torque relationship.

    PubMed

    Alonso, J; McHugh, M P; Mullaney, M J; Tyler, T F

    2009-04-01

    The purpose of this study was to examine the relationship between hamstring flexibility and knee flexion angle-torque relationship. Hamstring flexibility was assessed in 20 subjects (10 men, 10 women) using the straight leg raise (SLR) and active knee extension (AKE) tests. Isometric knee flexion strength was measured at five knee flexion angles while subjects were seated with the test thigh flexed 40 degrees and the trunk flexed 80 degrees . Lower extremities were classified as tight or normal based on the SLR and AKE tests. Peak knee flexion torque, angle of peak torque, and angle-torque relationship were compared between flexibility groups. Peak knee flexion torque was not different between tight and normal groups (SLR P=0.82; AKE P=0.68) but occurred in greater knee flexion (shorter muscle length) in the tight group compared with the normal group (SLR P<0.01; AKE P<0.05). The tight group had higher torque than the normal group at the shortest muscle length tested but lower torque at longer muscle lengths (SLR P<0.001; AKE P<0.001). In conclusion, the angle-torque relationship was shifted to the left in less flexible hamstrings such that knee flexion torque was increased at short muscle lengths and decreased at long muscle lengths when compared with more flexible hamstrings.

  19. Biomechanical Considerations in the Design of High-Flexion Total Knee Replacements

    PubMed Central

    Cheng, Cheng-Kung; McClean, Colin J.; Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Chang, Chia-Ming

    2014-01-01

    Typically, joint arthroplasty is performed to relieve pain and improve functionality in a diseased or damaged joint. Total knee arthroplasty (TKA) involves replacing the entire knee joint, both femoral and tibial surfaces, with anatomically shaped artificial components in the hope of regaining normal joint function and permitting a full range of knee flexion. In spite of the design of the prosthesis itself, the degree of flexion attainable following TKA depends on a variety of factors, such as the joint's preoperative condition/flexion, muscle strength, and surgical technique. High-flexion knee prostheses have been developed to accommodate movements that require greater flexion than typically achievable with conventional TKA; such high flexion is especially prevalent in Asian cultures. Recently, computational techniques have been widely used for evaluating the functionality of knee prostheses and for improving biomechanical performance. To offer a better understanding of the development and evaluation techniques currently available, this paper aims to review some of the latest trends in the simulation of high-flexion knee prostheses. PMID:24892040

  20. Gastrocnemius and soleus are selectively activated when adding knee extensor activity to plantar flexion.

    PubMed

    Suzuki, Takahito; Chino, Kentaro; Fukashiro, Senshi

    2014-08-01

    The gastrocnemius is a biarticular muscle that acts not only as a plantar flexor, but also as a knee flexor, meaning that it is an antagonist during knee extension. In contrast, the soleus is a monoarticular plantar flexor. Based on this anatomical difference, these muscles' activities should be selectively activated during simultaneous plantar flexion and knee extension, which occur during many activities of daily living. This study examined the selective activation of gastrocnemius and soleus activities when voluntary isometric activation of knee extensors was added to voluntary isometric plantar flexion. Ten male volunteers performed isometric plantar flexion at 10%, 20%, and 30% of maximum effort. During each plantar flexion task, isometric knee extension was added at 0%, 50%, and 100% of maximum effort. When knee extension was added, the average rectified value of the electromyographic activity of the medial gastrocnemius was significantly depressed (P=.002), whereas that of the soleus was significantly increased (P<.001) regardless of the plantar flexion level. These results suggest that plantar flexion with concurrent knee extensor activity leads to selective activation of the soleus and depression of the synergistic activity of the gastrocnemius.

  1. Knee Flexion and Daily Activities in Patients following Total Knee Replacement: A Comparison with ISO Standard 14243

    PubMed Central

    Wimmer, Markus A.; Nechtow, William; Schwenke, Thorsten; Moisio, Kirsten C.

    2015-01-01

    Walking is only one of many daily activities performed by patients following total knee replacement (TKR). The purpose of this study was to examine the hypotheses (a) that subject activity characteristics are correlated with knee flexion range of motion (ROM) and (b) that there is a significant difference between the subject's flexion/extension excursion throughout the day and the ISO specified input for knee wear testing. In order to characterize activity, the number of walking and stair stepping cycles, the time spent with dynamic and stationary activities, the number of activity sequences, and the knee flexion/extension excursion of 32 TKR subjects were collected during daily activity. Flexion/extension profiles were compared with the ISO 14243 simulator input profile using a level crossing classification algorithm. Subjects took an average of 3102 (range: 343–5857) walking cycles including 65 (range: 0–319) stair stepping cycles. Active and passive ROMs were positively correlated with stair walking time, stair step counts, and stair walking sequences. Simulated knee motion according to ISO showed significantly fewer level crossings at the flexion angles 20–40° and beyond 50° than those measured with the monitor. This suggests that implant wear testing protocols should contain more cycles and a variety of activities requiring higher knee flexion angles with incorporated resting/transition periods to account for the many activity sequences. PMID:26347875

  2. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  3. Clinical evaluation of 292 Genesis II posterior stabilized high-flexion total knee arthroplasty: range of motion and predictors.

    PubMed

    Fuchs, Mathijs C H W; Janssen, Rob P A

    2015-01-01

    The primary aim of the study was to evaluate the range of motion and complications after Genesis II total knee arthroplasty with high-flexion tibia insert (TKA-HF). Furthermore, difference in knee flexion between high flexion and standard inserts was compared. The hypothesis was that knee flexion is better after high-flexion TKA. A total of 292 TKA-HF were retrospectively reviewed. Mean follow-up was 24.3 months. The range of motion was compared between TKA-HF (high-flexion group) and a comparable cohort of 86 Genesis II TKA with a standard tibia insert (control group). Surgeries were performed by one experienced knee orthopedic surgeon. Knee flexion in the high-flexion group increased from 114.8° preoperatively to 118.0° postoperatively (P < 0.01). Knee extension in the high-flexion group increased from -4.5° preoperatively to -0.4° after surgery (P < 0.01). Mean knee flexion was 5.52° (± 1.46°) better in the high-flexion group compared with the control group (P < 0.01). Preoperative range of motion, body mass index, diabetes mellitus and patellofemoral pain significantly influenced range of motion. Few complications occurred after TKA-HF. The Genesis II TKA-HF showed good short-term results with limited complications. Knee flexion after Genesis II TKA-HF was better compared with a standard tibia insert.

  4. Thigh-calf contact: does it affect the loading of the knee in the high-flexion range?

    PubMed

    Zelle, J; Barink, M; De Waal Malefijt, M; Verdonschot, N

    2009-03-26

    Recently, high-flexion knee implants have been developed to provide for a large range of motion (ROM>120 degrees ) after total knee arthroplasty (TKA). Since knee forces typically increase with larger flexion angles, it is commonly assumed that high-flexion knee implants are subjected to larger loads than conventional knee implants. However, most high-flexion studies do not consider thigh-calf contact which occurs during high-flexion activities such as squatting and kneeling. In this study, we hypothesized that thigh-calf contact reduces the knee forces during deep knee flexion as the tibio-femoral load shifts from occurring inside the knee towards the thigh-calf contact interface. Hence, the effect of thigh-calf contact on the knee loading was evaluated using a free body diagram and a finite element model and both the knee forces and polyethylene stresses were analyzed. Thigh-calf contact force characteristics from an earlier study were included and a squatting movement was simulated. In general, we found thigh-calf contact considerably reduced both the knee forces and polyethylene stresses during deep knee flexion. At maximal flexion (155 degrees ), the compressive knee force decreased from 4.89 to 2.90 times the bodyweight (BW) in case thigh-calf contact was included and the polyethylene contact stress at the tibial post decreased from 49.3 to 28.1MPa. Additionally, there was a clear correlation between a subject's thigh and calf circumference and the force reduction at maximal flexion due to thigh-calf contact (R=0.89). The findings presented in this study can be used to optimize the mechanical behavior of high-flexion total knee arthroplasty designs. PMID:19200996

  5. Retrospective comparison of functional and radiological outcome, between two contemporary high flexion knee designs

    PubMed Central

    Kapoor, Vikash; Chatterjee, Daipayan; Hazra, Sutanu; Chatterjee, Anirban; Garg, Parag; Debnath, Kaustav; Mandal, Soham; Sarkar, Sudipto

    2016-01-01

    Introduction: Patient satisfaction after total knee replacement (TKR) depends on the amount of pain relief and the functional activities achieved. An important criterion of good functional outcome is the amount of flexion achieved and whether the patient can manage high flexion activities. In order to increase the amount of safe flexion, various implant designs have been developed. This study aims to compare the outcome after TKR using two contemporary high flexion knee designs: Sigma CR150 High Flex Knee prosthesis (Depuy, Warsaw, Indiana) and NexGen High Flex Knee prosthesis (Zimmer, Warsaw, Indiana). Material: A retrospective study was conducted with 100 cases of each design and their functional and radiological outcome was assessed after two years of follow-up. Results: The two groups had comparable results in terms of subjective satisfaction, range of motion achieved and radiological outcome. Depuy group fared better than Zimmer in terms of functional outcome (modified Oxford knee score). Conclusion: Depuy group was found to have fared better than Zimmer in terms of functional outcome. However, it is very difficult to rate one design above the other based on our small sample size and short duration of follow-up. PMID:27748254

  6. Novel technique for evaluation of knee function continuously through the range of flexion.

    PubMed

    Bell, Kevin M; Arilla, Fabio V; Rahnemai-Azar, Ata A; Fu, Freddie H; Musahl, Volker; Debski, Richard E

    2015-10-15

    Previous research has utilized robots to examine joint kinematics and in situ forces in response to loads applied at discrete flexion angles (static method). Recently, studies have applied loads continuously throughout flexion (continuous flexion method). However, the joint kinematics resulting from each of these methods have not been directly compared. Therefore, the objective of this study was to utilize a robotic testing system to compare kinematics and in situ forces of porcine knees in response to 89 N of anterior tibial load and 4 Nm of internal tibial torque between the static method (loads applied at 30°, 45°, 60°, and 75° of flexion) and the continuous flexion method (measured continuously from 30-75° of flexion) for both the anterior cruciate ligament (ACL) intact and ACL deficient (ACLD) knees. When anterior tibial load was applied the average differences in anterior tibial translation between the two methods for the intact state was 0.5±0.0 mm and for the ACLD state was 0.3±0.2 mm. The difference in the in situ forces in the ACL was 1.6±0.9 N. When internal tibial torque was applied the average differences in the resultant internal tibial rotation for the intact state was 0.9±0.4° and for the ACLD state was 1.0±0.5°. The difference in the in situ forces in the ACL was 3.3±2.0 N. Both methods are equally efficient in detecting significant differences (p<0.05) between intact and ACL deficient knee states. The continuous flexion method was also shown to be more efficient than the static method and provides continuous data on knee function throughout the range of motion.

  7. Novel technique for evaluation of knee function continuously through the range of flexion.

    PubMed

    Bell, Kevin M; Arilla, Fabio V; Rahnemai-Azar, Ata A; Fu, Freddie H; Musahl, Volker; Debski, Richard E

    2015-10-15

    Previous research has utilized robots to examine joint kinematics and in situ forces in response to loads applied at discrete flexion angles (static method). Recently, studies have applied loads continuously throughout flexion (continuous flexion method). However, the joint kinematics resulting from each of these methods have not been directly compared. Therefore, the objective of this study was to utilize a robotic testing system to compare kinematics and in situ forces of porcine knees in response to 89 N of anterior tibial load and 4 Nm of internal tibial torque between the static method (loads applied at 30°, 45°, 60°, and 75° of flexion) and the continuous flexion method (measured continuously from 30-75° of flexion) for both the anterior cruciate ligament (ACL) intact and ACL deficient (ACLD) knees. When anterior tibial load was applied the average differences in anterior tibial translation between the two methods for the intact state was 0.5±0.0 mm and for the ACLD state was 0.3±0.2 mm. The difference in the in situ forces in the ACL was 1.6±0.9 N. When internal tibial torque was applied the average differences in the resultant internal tibial rotation for the intact state was 0.9±0.4° and for the ACLD state was 1.0±0.5°. The difference in the in situ forces in the ACL was 3.3±2.0 N. Both methods are equally efficient in detecting significant differences (p<0.05) between intact and ACL deficient knee states. The continuous flexion method was also shown to be more efficient than the static method and provides continuous data on knee function throughout the range of motion. PMID:26342768

  8. Maximal voluntary isokinetic knee flexion torque is associated with femoral shaft bone strength indices in knee replacement patients.

    PubMed

    Rantalainen, T; Valtonen, A; Sipilä, S; Pöyhönen, T; Heinonen, A

    2012-03-01

    It is currently unknown whether knee replacement-associated bone loss is modified by rehabilitation programs. Thus, a sample of 45 (18 men and 25 women) persons with unilateral knee replacement were recruited; age 66 years (sd 6), height 169 cm (sd 8), body mass 83 kg (sd 15), time since operation 10 months (sd 4) to explore the associations between maximal torque/power in knee extension/flexion and femoral mid-shaft bone traits (Cortical cross-sectional area (CoA, mm(2)), cortical volumetric bone mineral density (CoD, mg/mm(3)) and bone bending strength index (SSI, mm(3))). Bone traits were calculated from a single computed tomography slice from the femoral mid-shaft. Pain in the operated knee was assessed with the WOMAC questionnaire. Stepwise regression models were built for the operated leg bone traits, with knee extension and flexion torque and power, age, height, body mass, pain score and time since operation as independent variables. CoA was 2.3% (P=0.015), CoD 1.2% (P<0.001) and SSI 1.6% (P=0.235) lower in the operated compared to non-operated leg. The overall proportions of the variation explained by the regression models were 50%, 29% and 55% for CoA, CoD and SSI, respectively. Body mass explained 12% of Coa, 11% of CoD and 11% of SSI (P≤0.003). Maximal knee flexion torque explained 38% of Coa, 7% of CoD and 44% of SSI (p≤0.047). For CoD time since operation also became a significant predictor (11%, P=0.045). Knee flexion torque of the operated leg was positively associated with bone strength in the operated leg. Thus, successful rehabilitation may diminish bone loss in the operated leg.

  9. Quasi-stiffness of the knee joint in flexion and extension during the golf swing.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2015-01-01

    Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment-angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers participated in this study. Six infrared cameras and two force platforms were used to record a swing motion. The anatomical angle and moment were calculated from kinematic and kinetic models, and quasi-stiffness of the knee joint was determined as an instantaneous slope of moment-angle curves. The lead knee of the skilled group had decreased resistance duration compared with the unskilled group (P < 0.05), and the resistance duration of the lead knee was lower than that of the trail knee in the skilled group (P < 0.01). The lead knee of the skilled golfers had greater flexible excursion duration than the trail knee of the skilled golfers, and of both the lead and trail knees of the unskilled golfers. These results provide critical information for preventing knee injuries during a golf swing and developing rehabilitation strategies following surgery.

  10. Quasi-stiffness of the knee joint in flexion and extension during the golf swing.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2015-01-01

    Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment-angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers participated in this study. Six infrared cameras and two force platforms were used to record a swing motion. The anatomical angle and moment were calculated from kinematic and kinetic models, and quasi-stiffness of the knee joint was determined as an instantaneous slope of moment-angle curves. The lead knee of the skilled group had decreased resistance duration compared with the unskilled group (P < 0.05), and the resistance duration of the lead knee was lower than that of the trail knee in the skilled group (P < 0.01). The lead knee of the skilled golfers had greater flexible excursion duration than the trail knee of the skilled golfers, and of both the lead and trail knees of the unskilled golfers. These results provide critical information for preventing knee injuries during a golf swing and developing rehabilitation strategies following surgery. PMID:25651162

  11. Sex Differences in Knee Flexion Angle During a Rapid Change of Direction While Running

    PubMed Central

    Sheu, Christopher L.; Gray, Aaron M.; Brown, David; Smith, Brian A.

    2015-01-01

    Background: Females experience greater overall rates of athletic anterior cruciate ligament (ACL) injury than males. The specific mechanisms of the predisposition remain unclear. Hypothesis: Modeling of knee kinematics has shown that the more extended the knee joint, the greater the strain on the ACL. The authors hypothesized that female athletes would have a lesser degree of knee flexion than male athletes at initial ground contact while performing change-of-direction cutting maneuvers. Study Design: Controlled laboratory study. Methods: Twenty female and 20 male high school soccer athletes with at least 1 year of experience were recruited for the study. Athletes were excluded if they had a history of any major lower limb injury or current knee pain causing a reduction in training and/or competition. Reflective markers were attached at the greater trochanter of the femur, the lateral epicondyle of the knee, and the lateral malleolus of the ankle to enable motion capture. Each athlete performed 6 change-of-direction maneuvers in random order in front of 2 cameras. Multiple regression analysis was used to determine differences between the sexes from the motion data captured; P < .05 defined significance. Results: Statistically significant differences existed in knee flexion angles between male and female participants at the 90° and 135° cutting angles. At 90°, males and females showed initial contact knee flexion angles (mean ± SD) of 39.0° ± 6.8° and 29.3° ± 6.2°, respectively (P < .0001), and mean maximum flexion angles of 56.4° ± 6.9° and 49.7° ± 7.0°, respectively (P = .0036). At 135°, males and females showed mean initial contact knee flexion angles of 36.8° ± 7.9° and 29.7° ± 7.8°, respectively (P = .0053), and mean maximum flexion angles of 60.7° ± 8.1° and 51.6° ± 9.4°, respectively (P = .0017). Conclusion: The research conducted is intended to foster an awareness of injury disposition in female athletes and guide future

  12. Investigating the Effects of Knee Flexion during the Eccentric Heel-Drop Exercise

    PubMed Central

    Weinert-Aplin, Robert A.; Bull, Anthony M.J.; McGregor, Alison H.

    2015-01-01

    This study aimed to characterise the biomechanics of the widely practiced eccentric heel-drop exercises used in the management of Achilles tendinosis. Specifically, the aim was to quantify changes in lower limb kinematics, muscle lengths and Achilles tendon force, when performing the exercise with a flexed knee instead of an extended knee. A musculoskeletal modelling approach was used to quantify any differences between these versions of the eccentric heel drop exercises used to treat Achilles tendinosis. 19 healthy volunteers provided a group from which optical motion, forceplate and plantar pressure data were recorded while performing both the extended and flexed knee eccentric heel-drop exercises over a wooden step when barefoot or wearing running shoes. This data was used as inputs into a scaled musculoskeletal model of the lower limb. Range of ankle motion was unaffected by knee flexion. However, knee flexion was found to significantly affect lower limb kinematics, inter-segmental loads and triceps muscle lengths. Peak Achilles load was not influenced despite significantly reduced peak ankle plantarflexion moments (p < 0.001). The combination of reduced triceps lengths and greater ankle dorsiflexion, coupled with reduced ankle plantarflexion moments were used to provide a basis for previously unexplained observations regarding the effect of knee flexion on the relative loading of the triceps muscles during the eccentric heel drop exercises. This finding questions the role of the flexed knee heel drop exercise when specifically treating Achilles tendinosis. Key points A more dorsiflexed ankle and a flexing knee are characteristics of performing the flexed knee heel-drop eccentric exercise. Peak ankle plantarflexion moments were reduced with knee flexion, but did not reduce peak Achilles tendon force. Kinematic changes at the knee and ankle affected the triceps muscle length and resulted in a reduction in the amount of Achilles tendon work performed. A version

  13. Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion.

    PubMed

    Moglo, K E; Shirazi-Adl, A

    2005-05-01

    The screw-home mechanism and coupling between forces in cruciate ligaments during passive knee joint flexion were investigated for various boundary conditions, flexion axis alignments and posterior cruciate ligaments (PCL)/anterior cruciate ligament (ACL) conditions. A developed non-linear 3D finite element model was used to perform detailed elasto-static response analyses of the human tibiofemoral joint as a function of flexion angle varying from 10 degrees hyper-extension to 90 degrees flexion. The tibia rotated internally as the femur flexed and externally as the femur extended. The re-alignment of the flexion axis by +/-5 degrees rotation about the axial (distal-proximal) axis, transection of the ACL and changes in cruciate ligament initial strains substantially influenced the 'screw-home' motion. On the other hand, restraint on this coupled rotation diminished ACL forces in flexion. A remarkable coupling was predicted between ACL and PCL forces in flexion; forces in both cruciate ligaments increased as the initial strain or pretension in one of them increased whereas they both diminished as one of them was cut or became slack. This has important consequences in joint functional biomechanics following a ligament injury or replacement surgery and, hence, in the proper management of joint disorders. PMID:15797589

  14. Absolute reliability of isokinetic knee flexion and extension measurements adopting a prone position.

    PubMed

    Ayala, F; De Ste Croix, M; Sainz de Baranda, P; Santonja, F

    2013-01-01

    The main purpose of this study was to determine the absolute and relative reliability of isokinetic peak torque (PT), angle of peak torque (APT), average power (PW) and total work (TW) for knee flexion and extension during concentric and eccentric actions measured in a prone position at 60, 180 and 240° s(-1). A total of 50 recreational athletes completed the study. PT, APT, PW and TW for concentric and eccentric knee extension and flexion were recorded at three different angular velocities (60, 180 and 240° s(-1)) on three different occasions with a 72- to 96-h rest interval between consecutive testing sessions. Absolute reliability was examined through typical percentage error (CV(TE)), percentage change in the mean (ChM) and relative reliability with intraclass correlations (ICC(3,1)). For both the knee extensor and flexor muscle groups, all strength data (except APT during knee flexion movements) demonstrated moderate absolute reliability (ChM < 3%; ICCs > 0·70; and CV(TE) < 20%) independent of the knee movement (flexion and extension), type of muscle action (concentric and eccentric) and angular velocity (60, 180 and 240° s(-1)). Therefore, the current study suggests that the CV(TE) values reported for PT (8-20%), APT (8-18%) (only during knee extension movements), PW (14-20%) and TW (12-28%) may be acceptable to detect the large changes usually observed after rehabilitation programmes, but not acceptable to examine the effect of preventative training programmes in healthy individuals.

  15. Effect of chronic knee osteoarthritis on flexion-relaxation phenomenon of the erector spinae in elderly females

    PubMed Central

    Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Koo, Jung-Wan

    2016-01-01

    [Purpose] This study investigated the flexion-relaxation phenomenon of the erector spinae in elderly women with chronic knee osteoarthritis and determined whether the flexion-relaxation phenomenon can be used as a pain evaluation tool in such cases. [Subjects and Methods] Seventeen elderly females with chronic knee osteoarthritis and 13 healthy young females voluntarily participated in this study. They performed three postural positions in 15 s: trunk flexion, complete trunk flexion, and trunk extension, each for 5 s. While these positions were held, muscle activation of the thoracic and lumbar erector spinae were measured using surface electromyography. The flexion-relaxation rate was determined by dividing the values for trunk extension by those of complete trunk flexion and by dividing the values for trunk flexion by those of complete trunk flexion. [Results] According to our results, the flexion-relaxation phenomenon was different between healthy young and elderly females with chronic knee osteoarthritis. Specifically, there was a difference in the left thoracic erector spinae muscle, but not in the left and right lumbar erector spinae or right thoracic spinae muscle. [Conclusion] Our study demonstrated that the erector spinae muscle flexion-relaxation phenomenon can be used as a pain evaluation tool in elderly females with chronic knee osteoarthritis. PMID:27512244

  16. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    PubMed Central

    Shyr, Tien-Wei; Shie, Jing-Wen; Jiang, Chang-Han; Li, Jung-Jen

    2014-01-01

    In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements. PMID:24577526

  17. A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements.

    PubMed

    Shyr, Tien-Wei; Shie, Jing-Wen; Jiang, Chang-Han; Li, Jung-Jen

    2014-01-01

    In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements. PMID:24577526

  18. DOES RECTUS FEMORIS TRANSFER INCREASE KNEE FLEXION DURING STANCE PHASE IN CEREBRAL PALSY?

    PubMed Central

    de Morais, Mauro César; Blumetti, Francesco Camara; Kawamura, Cátia Miyuki; Lopes, José Augusto Fernandes; Neves, Daniella Lins; Cardoso, Michelle de Oliveira

    2016-01-01

    ABSTRACT Objective: To evaluate whether distal rectus femoris transfer (DRFT) is related to postoperative increase of knee flexion during the stance phase in cerebral palsy (CP). Methods: The inclusion criteria were Gross Motor Function Classification System (GMFCS) levels I-III, kinematic criteria for stiff-knee gait at baseline, and individuals who underwent orthopaedic surgery and had gait analyses performed before and after intervention. The patients included were divided into the following two groups: NO-DRFT (133 patients), which included patients who underwent orthopaedic surgery without DRFT, and DRFT (83 patients), which included patients who underwent orthopaedic surgery that included DRFT. The primary outcome was to evaluate in each group if minimum knee flexion in stance phase (FMJFA) changed after treatment. Results: The mean FMJFA increased from 13.19° to 16.74° (p=0.003) and from 10.60° to 14.80° (p=0.001) in Groups NO-DRFT and DRFT, respectively. The post-operative FMJFA was similar between groups NO-DRFT and DRFT (p=0.534). The increase of FMJFA during the second exam (from 13.01° to 22.51°) was higher among the GMFCS III patients in the DRFT group (p<0.001). Conclusion: In this study, DRFT did not generate additional increase of knee flexion during stance phase when compared to the control group. Level of Evidence III, Retrospective Comparative Study. PMID:26997910

  19. Comparison of the thoracic flexion relaxation ratio and pressure pain threshold after overhead assembly work and below knee assembly work

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] The purpose of this study was to compare the thoracic flexion relaxation ratio following overhead work and below-knee work. [Subjects and Methods] Ten men (20–30 years) were recruited to this study. The thoracic flexion relaxation ratio and pressure pain threshold was measured after both overhead work and below-knee work. [Results] The pressure-pain thresholds of the thoracic erector spinae muscle decreased significantly from initial, to overhead, to below-knee work. Similarly, the thoracic flexion relaxation ratio decreased significantly from initial, to overhead, to below-knee work. [Conclusion] Below-knee work results in greater thoracic pain than overhead work. Future studies should investigate below-knee work in detail. This study confirmed the thoracic relaxation phenomenon in the mid-position of the thoracic erector spinae. PMID:26957744

  20. Influence of Hip Joint Position on Muscle Activity during Prone Hip Extension with Knee Flexion

    PubMed Central

    Suehiro, Tadanobu; Mizutani, Masatoshi; Okamoto, Mitsuhisa; Ishida, Hiroshi; Kobara, Kenichi; Fujita, Daisuke; Osaka, Hiroshi; Takahashi, Hisashi; Watanabe, Susumu

    2014-01-01

    [Purpose] This study investigated the selective activation of the gluteus maximus during a prone hip extension with knee flexion exercise, with the hip joint in different positions. [Subjects] The subjects were 21 healthy, male volunteers. [Methods] Activities of the right gluteus maximus, right hamstrings, bilateral lumbar erector spinae, and bilateral lumbar multifidus were measured using surface electromyography during a prone hip extension with knee flexion exercise. Measurements were made with the hip joint in each of 3 positions: (1) a neutral hip joint position, (2) an abduction hip joint position, and (3) an abduction with external rotation hip joint position. [Results] Gluteus maximus activity was significantly higher when the hip was in the abduction with external rotation hip joint position than when it was in the neutral hip joint and abduction hip joint positions. Gluteus maximus activity was also significantly higher in the abduction hip joint position than in the neutral hip joint position. Hamstring activity was significantly lower when the hip was in the abduction with external rotation hip joint position than when it was in the neutral hip joint and abduction hip joint positions. [Conclusion] Abduction and external rotation of the hip during prone hip extension with knee flexion exercise selectively activates the gluteus maximus. PMID:25540492

  1. Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods.

    PubMed

    Schache, Anthony G; Baker, Richard; Lamoreux, Larry W

    2006-08-01

    Minimising measurement variability associated with hip axial rotation and avoiding knee joint angle cross-talk are two fundamental objectives of any method used to define the knee joint flexion-extension axis for purposes of quantitative gait analysis. The aim of this experiment was to compare three different methods of defining this axis: the knee alignment device (KAD) method, a method based on the transepicondylar axis (TEA) and an alternative numerical method (Dynamic). The former two methods are common approaches that have been applied clinically in many quantitative gait analysis laboratories; the latter is an optimisation procedure. A cohort of 20 subjects performed three different functional tasks (normal gait; squat; non-weight bearing knee flexion) on repeated occasions. Three-dimensional hip and knee angles were computed using the three alternative methods of defining the knee joint flexion-extension axis. The repeatability of hip axial rotation measurements during normal gait was found to be significantly better for the Dynamic method (p<0.01). Furthermore, both the variance in the knee varus-valgus kinematic profile and the degree of knee joint angle cross-talk were smallest for the Dynamic method across all functional tasks. The Dynamic method therefore provided superior results in comparison to the KAD and TEA-based methods and thus represents an attractive solution for orientating the knee joint flexion-extension axis for purposes of quantitative gait analysis.

  2. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study

    PubMed Central

    Yin, Li; Chen, Kaining; Guo, Lin; Cheng, Liangjun; Wang, Fuyou; Yang, Liu

    2015-01-01

    Purpose This study aimed to calculate the flexion-extension axis (FEA) of the knee through in-vivo knee kinematics data, and then compare it with two major anatomical axes of the femoral condyles: the transepicondylar axis (TEA) defined by connecting the medial sulcus and lateral prominence, and the cylinder axis (CA) defined by connecting the centers of posterior condyles. Methods The knee kinematics data of 20 healthy subjects were acquired under weight-bearing condition using bi-planar x-ray imaging and 3D-2D registration techniques. By tracking the vertical coordinate change of all points on the surface of femur during knee flexion, the FEA was determined as the line connecting the points with the least vertical shift in the medial and lateral condyles respectively. Angular deviation and distance among the TEA, CA and FEA were measured. Results The TEA-FEA angular deviation was significantly larger than that of the CA-FEA in 3D and transverse plane (3.45° vs. 1.98°, p < 0.001; 2.72° vs. 1.19°, p = 0.002), but not in the coronal plane (1.61° vs. 0.83°, p = 0.076). The TEA-FEA distance was significantly greater than that of the CA-FEA in the medial side (6.7 mm vs. 1.9 mm, p < 0.001), but not in the lateral side (3.2 mm vs. 2.0 mm, p = 0.16). Conclusion The CA is closer to the FEA compared with the TEA; it can better serve as an anatomical surrogate for the functional knee axis. PMID:26039711

  3. Soleus and vastus medialis H-reflexes: similarities and differences while standing or lying during varied knee flexion angles.

    PubMed

    Alrowayeh, Hesham N; Sabbahi, Mohamed A; Etnyre, Bruce

    2005-06-15

    The H-reflex may be a useful measure to examine the lower extremity muscles activation and inhibition following an injury. Recording the vastus medialis H-reflex amplitudes in healthy subjects while standing or lying during varied knee flexion angles may establish a reference for comparison for patients with ACL injury. Vastus medialis and soleus H-reflexes were recorded from 14 healthy subjects while lying and standing during 0, 30, 45, and 60 degrees knee flexion. EMG unit was used to electrically stimulate the tibial and femoral nerves (using 0.5 ms pulses at 0.2 pps of H-maximum amplitude) and to record four traces of the soleus and vastus medialis H-wave and one trace of the M-wave peak-to-peak amplitudes. Repeated measures three-way ANOVAs were calculated with the global alpha=0.05. Results showed that (1) the average soleus H-reflex amplitude was significantly less during standing than lying across all knee flexion conditions, (2) the average vastus medialis H-reflex amplitudes showed no measurable significant differences between neutral standing compared with lying, (3) the average vastus medialis H-reflex amplitudes were significantly greater during standing knee flexion conditions (30, 45, and 60 degrees ) than lying or neutral standing, and (4) there were no differences between soleus and vastus medialis H-reflex amplitudes during lying across all knee flexion conditions. Data from H/M ratio follow the same pattern of H-amplitude. Recording the vastus medialis H-reflex amplitude during standing and knee flexion may be a reflective of the knee function. It is more specific than the soleus H-reflex because it reflects the changes in the excitability of the quadriceps motoneurons acting directly around the knee joint.

  4. Hi-flexion and gender-specific designs fail to provide significant increases in range of motion during cruciate-retaining total knee arthroplasty.

    PubMed

    Song, Eun Kyoo; Park, Sang Jin; Yoon, Taek Rim; Park, Kyung Soon; Seo, Hyoung Yeon; Seon, Jong Keun

    2012-06-01

    The effects of different femoral component designs on intraoperative range of motion were examined in 40 female patients during primary cruciate-retaining (CR) total knee arthroplasty. After complete bone resection and soft tissue balancing, standard CR, high-flexion, and gender-specific knee trials were sequentially inserted, and maximal flexion and extension under gravity were measured using a navigation system. Average maximal flexions were 134.3° for standard CR knees, 136.2° for high-flexion knees, and 136.4° for gender-specific knees. No significant intergroup differences in intraoperative maximal flexion and extension were found (P > .05). High-flexion and gender-specific femoral designs were found to show subtle increases in intraoperative range of motion as compared with the standard design but no significant differences.

  5. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.

    PubMed

    Anderson, Frank C; Goldberg, Saryn R; Pandy, Marcus G; Delp, Scott L

    2004-05-01

    A three-dimensional dynamic simulation of walking was used together with induced position analysis to determine how kinematic conditions at toe-off and muscle forces following toe-off affect peak knee flexion during the swing phase of normal gait. The flexion velocity of the swing-limb knee at toe-off contributed 30 degrees to the peak knee flexion angle; this was larger than any contribution from an individual muscle or joint moment. Swing-limb muscles individually made large contributions to knee angle (i.e., as large as 22 degrees), but their actions tended to balance one another, so that the combined contribution from all swing-limb muscles was small (i.e., less than 3 degrees of flexion). The uniarticular muscles of the swing limb made contributions to knee flexion that were an order of magnitude larger than the biarticular muscles of the swing limb. The results of the induced position analysis make clear the importance of knee flexion velocity at toe-off relative to the effects of muscle forces exerted after toe-off in generating peak knee flexion angle. In addition to improving our understanding of normal gait, this study provides a basis for analyzing stiff-knee gait, a movement abnormality in which knee flexion in swing is diminished.

  6. Effects of knee joint angle on the fascicle behavior of the gastrocnemius muscle during eccentric plantar flexions.

    PubMed

    Wakahara, Taku; Kanehisa, Hiroaki; Kawakami, Yasuo; Fukunaga, Tetsuo

    2009-10-01

    The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90 degrees flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30 degrees plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15 degrees of dorsiflexion with an isokinetic dynamometer at 30 degrees /s and 150 degrees /s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force-length relations and/or to the slackness of tendinous tissues.

  7. The effect of tibio-femoral traction mobilization on passive knee flexion motion impairment and pain: a case series.

    PubMed

    Maher, Sara; Creighton, Doug; Kondratek, Melodie; Krauss, John; Qu, Xianggui

    2010-03-01

    The purpose of this case series was to explore the effects of tibio-femoral (TF) manual traction on pain and passive range of motion (PROM) in individuals with unilateral motion impairment and pain in knee flexion. Thirteen participants volunteered for the study. All participants received 6 minutes of TF traction mobilization applied at end-range passive knee flexion. PROM measurements were taken before the intervention and after 2, 4, and 6 minutes of TF joint traction. Pain was measured using a visual analog scale with the TF joint at rest, at end-range passive knee flexion, during the application of joint traction, and immediately post-treatment. There were significant differences in PROM after 2 and 4 minutes of traction, with no significance noted after 4 minutes. A significant change in knee flexion of 25.9°, which exceeded the MDC(95,) was found when comparing PROM measurements pre- to final intervention. While pain did not change significantly over time, pain levels did change significantly during each treatment session. Pain significantly increased when the participant's knee was passively flexed to end range; it was reduced, although not significantly, during traction mobilization; and it significantly decreased following traction. This case series supports TF joint traction as a means of stretching shortened articular and periarticular tissues without increasing reported levels of pain during or after treatment. In addition, this is the first study documenting the temporal aspects of treatment effectiveness in motion restoration.

  8. Two- to Four-Year Follow-up Results of Total Knee Arthroplasty Using a New High-Flexion Prosthesis

    PubMed Central

    Kim, Man Soo; Koh, In Jun; Jang, Sung Won; Jeon, Neung Han

    2016-01-01

    Purpose The purpose of this study was to evaluate minimum 2-year follow-up results of total knee arthroplasty (TKA) performed using a new high-flexion prosthesis design (LOSPA). Materials and Methods The 2- to 4-year results of 191 consecutive TKAs (177 patients) with the LOSPA posterior-stabilized prosthesis were evaluated. The patients were assessed clinically and radiographically using the Knee Society scoring system (KSS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Results The mean range of motion (ROM) increased significantly from 117.4° (range, 75° to 140°) preoperatively to 126.7° (range, 80° to 144°) postoperatively (p<0.001). The mean KSS and WOMAC scores improved significantly from 121.4 (range, 42 to 185) and 56.1 (range, 23 to 88) preoperatively to 174.0 (range, 130 to 200) and 16.4 (range, 0 to 85) postoperatively, respectively (both, p<0.001). One knee required revision for deep infection. No knee had aseptic loosening or osteolysis. Radiolucent lines were noted in 15 knees (7.9%). Conclusions The new high-flexion total knee prosthesis resulted in no early aseptic loosening of the component and improved postoperative ROM comparable to other high-flexion TKA prostheses at 2- to 4-year follow-ups. PMID:26955612

  9. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.

    PubMed

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2014-01-01

    Recently developed powered prostheses are capable of producing near-physiological joint torque at the knee and/or ankle joints. Based on previous studies of biological joint impedance and the mechanics of able-bodied gait, an impedance-based controller has been developed for a powered knee and ankle prosthesis that integrates knee swing initiation and powered plantar flexion in late stance with increasing ankle stiffness throughout stance. In this study, five prosthesis configuration conditions were tested to investigate the individual contributions of each sub-strategy to the overall walking mechanics of four unilateral transfemoral amputees as they completed a clinical 10-m walk test using a powered knee and ankle prosthesis. The baseline condition featured constant ankle stiffness and no swing initiation or powered plantar flexion. The four remaining conditions featured knee swing initiation alone (SI) or in combination with powered plantar flexion (SI+PF), increasing ankle stiffness (SI+IK), or both (SI+PF+IK). Self-selected walking speed did not significantly change between conditions, although subjects tended to walk the slowest in the baseline condition compared to conditions with swing initiation. The addition of powered plantar flexion resulted in significantly higher ankle power generation in late stance irrespective of ankle stiffness. The inclusion of swing initiation resulted in a significantly more flexed knee at toe off and a significantly higher average extensor knee torque following toe off. Identifying individual contributions of intrinsic control strategies to prosthesis biomechanics could help inform the refinement of impedance-based prosthesis controllers and simplify future designs of prostheses and lower-limb assistive devices alike.

  10. Larger plantar flexion torque variability implies less stable balance in the young: an association affected by knee position.

    PubMed

    Mello, Emanuele Moraes; Magalhães, Fernando Henrique; Kohn, André Fabio

    2013-12-01

    The present study examined the association between plantar flexion torque variability during isolated isometric contractions and during quiet bipedal standing. For plantar flexion torque measurements in quiet stance (QS), subjects stood still over a force plate. The mean plantar flexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg force-matching tasks in extended knee (KE) and flexed knee (KF) conditions. Muscle activation levels (EMG amplitudes) of the triceps surae and mean, standard deviation and coefficient of variation of plantar flexion torque were computed from signals acquired during periods with and without visual feedback. No significant correlations were found between EMG amplitudes and torque variability, regardless of the condition and muscle being analyzed. A significant correlation was found between torque variability in QS and KE, whereas no significant correlation was found between torque variability in QS and KF, regardless of vision availability. Therefore, torque variability measured in a controlled extended knee plantar flexion contraction is a predictor of torque variability in the anterior-posterior direction when the subjects are in quiet standing. In other words, larger plantar flexion torque variability in KE (but not in KF) implies less stable balance. The mechanisms underlying the findings above are probably associated with the similar proprioceptive feedback from the triceps surae in QS and KE and poorer proprioceptive feedback from the triceps surae in KF due to the slackening of the gastrocnemii. An additional putative mechanism includes the different torque contributions of each component of the triceps surae in the two knee angles. From a clinical and research standpoint, it would be advantageous to be able to estimate changes in balance ability by means of simple measurements of torque variability in a force matching task.

  11. Flexion-extension gap in cruciate-retaining versus posterior-stabilized total knee arthroplasty: a cadaveric study.

    PubMed

    Matthews, Joshua; Chong, Alexander; McQueen, David; O'Guinn, Justin; Wooley, Paul

    2014-05-01

    We re-examined experimental model results using half-body specimens with intact extensor mechanisms and navigation to evaluate cruciate-retaining (CR) and posterior stabilized (PS) total knee arthroplasty (TKA) component gaps through an entire range of motion. Six sequential testing regimens were conducted with the knee intact, with a CR TKA in place, and with a PS TKA in place, with and without 22 N traction in place at each stage. Each of 10 knees was taken through six full ranges of motion from 0° to 120° at every stage using a navigated knee system to record component gapping. No significant difference was found between loaded and unloaded component gaps, and no significant differences were found in component gapping between CR and PS TKAs throughout a full range of motion. Flexion-extension gap measurements were significantly different from previously published data (at 90° flexion). No difference was found in kinematics when comparing CR and PS TKA component designs. Our results suggest that intact extensor mechanisms may be required to perform proper kinematic studies of TKA. Our findings provide evidence that the extensor mechanism may play a major role in the flexion-extension gaps in cadaveric knees.

  12. A Novel Device to Apply Controlled Flexion and Extension to the Rat Knee Following Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Eng, Mark Stasiak M.; Wiznia, Dan; Alzoobae, Saif; Ciccotti, Michael; Imhauser, Carl; Voigt, Clifford; Torzilli, Peter; Deng, Xenghua; Rodeo, Scott

    2013-01-01

    We designed and validated a novel device for applying flexion-extension cycles to a rat knee in an in-vivo model of anterior cruciate ligament reconstruction (ACL-R). Our device is intended to simulate rehabilitation motion and exercise post ACL-R to optimize physical rehabilitation treatments for the improved healing of tendon graft ligament reconstructions. The device was validated for repeatability of the knee kinematic motion by measuring the force versus angular rotation response from repeated trials using cadaver rats. The average maximum force required for rotating an ACL reconstructed rat knee through 100 degrees of flexion-extension was 0.4 N with 95 % variability for all trials within ±0.1 N PMID:22667683

  13. Analysis of Impingement between Patella Bone and Bearing Post in Cruciate-Substituting High-Flexion Total Knee Arthroplasty

    PubMed Central

    Chon, Jegyun; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon

    2016-01-01

    Background We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. Methods This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. Results In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. Conclusions In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion. PMID:27247740

  14. Automatic string generation for estimating in vivo length changes of the medial patellofemoral ligament during knee flexion.

    PubMed

    Graf, Matthias; Diether, Salomon; Vlachopoulos, Lazaros; Fucentese, Sandro; Fürnstahl, Philipp

    2014-06-01

    Modeling ligaments as three-dimensional strings is a popular method for in vivo estimation of ligament length. The purpose of this study was to develop an algorithm for automated generation of non-penetrating strings between insertion points and to evaluate its feasibility for estimating length changes of the medial patellofemoral ligament during normal knee flexion. Three-dimensional knee models were generated from computed tomography (CT) scans of 10 healthy subjects. The knee joint under weight-bearing was acquired in four flexion positions (0°-120°). The path between insertion points was computed in each position to quantify string length and isometry. The average string length was maximal in 0° of flexion (64.5 ± 3.9 mm between femoral and proximal patellar point; 62.8 ± 4.0 mm between femoral and distal patellar point). It was minimal in 30° (60.0 ± 2.6 mm) for the proximal patellar string and in 120° (58.7 ± 4.3 mm) for the distal patellar string. The insertion points were considered to be isometric in 4 of the 10 subjects. The proposed algorithm appears to be feasible for estimating string lengths between insertion points in an automatic fashion. The length measurements based on CT images acquired under physiological loading conditions may give further insights into knee kinematics.

  15. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion

    PubMed Central

    Lauber, Benedikt; Lichtwark, Glen A.; Cresswell, Andrew G.

    2014-01-01

    Abstract While medial gastrocnemius (MG) and soleus (SOL) are considered synergists, they are anatomically exclusive in that SOL crosses only the ankle, while MG crosses both the knee and ankle. Due to the force‐length properties of both active and passive structures, activation of SOL and MG must be constantly regulated to provide the required joint torques for any planned movement. As such, the aim of this study was to investigate the neural regulation of MG and SOL when independently changing their length by changing only the knee joint angle, thus exclusively altering the length of MG fibers. MG and SOL motor units (MU) were recorded intramuscularly along with ultrasound imaging of MG and SOL fascicle lengths, while moving the knee through 60° of rotation and maintaining a low level of voluntary plantar flexor torque. The results showed a reciprocal activation of MG and SOL as the knee was moved into flexion and extension. A clear reduction in MG MU firing rates occurred as the knee was flexed (MG fascicles shortening), with de‐recruitment of most MG MU occurring at close to full knee flexion. A concomitant increase in SOL MU activity was observed while no change in the length of its fascicles was found. The opposite effects were found when the knee was moved into extension. A strong correlation (ICC = 0.78) was found between the fascicle length at which MG MUs were de‐recruited and subsequently re‐recruited. This was stronger than the relationship of de‐recruitment and re‐recruitment with knee angle (ICC = 0.52), indicating that in this instance, muscle fascicle length rather than joint angle is more influential in regulating MG recruitment. Such a reciprocal arrangement like the one presented here for SOL and MG is essential for human voluntary movements such as walking or cycling. PMID:24920126

  16. Restoration of Stance Phase Knee Flexion during Walking after Spinal Cord Injury using a Variable Impedance Orthosis

    PubMed Central

    Bulea, Thomas C.; Kobetic, Rudi; Triolo, Ronald. J.

    2013-01-01

    A hybrid neuroprosthesis (HNP) combines lower extremity bracing with functional neuromuscular stimulation (FNS) to restore walking function and enhance the efficiency of ambulation. This report details the development of a novel HNP containing a variable impedance knee mechanism (VIKM) capable of supporting the knee against collapse while allowing controlled stance phase knee flexion. The design of a closed loop, finite state controller for coordination of VIKM activity with FNS-driven gait is presented. The controller is verified in testing during able bodied gait. The improved functionality provided by this system has the potential to delay the onset of fatigue and to expand FNS driven gait to allow walking over uneven terrains and down stairs. PMID:22254383

  17. Measurement of perioperative flexion-extension mechanics of the knee joint.

    PubMed

    Giori, N J; Giori, K L; Woolson, S T; Goodman, S B; Lannin, J V; Schurman, D J

    2001-10-01

    Perioperative knee mechanics currently are evaluated Perioperative knee mechanics currently are evaluated by measuring range of motion. This is an incomplete measurement, however, because the torque applied to achieve the motion is not measured. We hypothesized that a custom goniometer and force transducer could measure the torque required to passively flex a knee through its full range of motion. This measurement was done in the operating room immediately before and after surgery in 20 knees having total knee arthroplasty and 9 having surgery on another limb. Surgery changed the mechanics of 8 knees, whereas unoperated knees remained unchanged. This measurement technique is safe, easy, and repeatable. It improves on the current standard of perioperative knee measurement and can be applied to investigate the effects of surgery and rehabilitation on ultimate knee motion.

  18. The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome.

    PubMed

    Fairclough, John; Hayashi, Koji; Toumi, Hechmi; Lyons, Kathleen; Bydder, Graeme; Phillips, Nicola; Best, Thomas M; Benjamin, Mike

    2006-03-01

    Iliotibial band (ITB) syndrome is a common overuse injury in runners and cyclists. It is regarded as a friction syndrome where the ITB rubs against (and 'rolls over') the lateral femoral epicondyle. Here, we re-evaluate the clinical anatomy of the region to challenge the view that the ITB moves antero-posteriorly over the epicondyle. Gross anatomical and microscopical studies were conducted on the distal portion of the ITB in 15 cadavers. This was complemented by magnetic resonance (MR) imaging of six asymptomatic volunteers and studies of two athletes with acute ITB syndrome. In all cadavers, the ITB was anchored to the distal femur by fibrous strands, associated with a layer of richly innervated and vascularized fat. In no cadaver, volunteer or patient was a bursa seen. The MR scans showed that the ITB was compressed against the epicondyle at 30 degrees of knee flexion as a consequence of tibial internal rotation, but moved laterally in extension. MR signal changes in the patients with ITB syndrome were present in the region occupied by fat, deep to the ITB. The ITB is prevented from rolling over the epicondyle by its femoral anchorage and because it is a part of the fascia lata. We suggest that it creates the illusion of movement, because of changing tension in its anterior and posterior fibres during knee flexion. Thus, on anatomical grounds, ITB overuse injuries may be more likely to be associated with fat compression beneath the tract, rather than with repetitive friction as the knee flexes and extends.

  19. Test-retest reliability of isokinetic knee extension and flexion torque measurements in persons with spastic hemiparesis.

    PubMed

    Tripp, E J; Harris, S R

    1991-05-01

    The purpose of this study was to evaluate and compare the test-retest reliability of isokinetic torque measurements in the involved and uninvolved knee musculature of 20 subjects with spastic hemiparesis. An isokinetic dynamometer was used to measure maximal voluntary knee extension and flexion at 60 degrees and 120 degrees/s. Peak torque (PT) and average peak torque (APT) data were collected from five repetitions on two separate occasions. Average peak torque was defined as the mean of the PT values obtained during each of the five repetitions. Spasticity was measured in the involved knee musculature prior to isokinetic testing using the Ashworth Scale. Pearson Product-Moment Correlation Coefficients and intraclass correlation coefficients (ICCs) were high (greater than or equal to .90) for both knees for PT and APT at both angular velocities. No clinically meaningful differences were found between the Pearson correlation coefficients and the ICCs of the involved versus the uninvolved knee for any testing conditions. We concluded that isokinetic evaluation of torque, as measured by PT and APT in subjects with spastic hemiparesis, can yield reliable results in both extremities.

  20. The flexion-extension axis of the knee and its relationship to the rotational orientation of the tibial plateau.

    PubMed

    Lawrie, Charles M; Noble, Philip C; Ismaily, Sabir K; Stal, Drew; Incavo, Steve J

    2011-09-01

    We measured the optimal rotational alignment of the tibial component with respect to anatomic landmarks. Kinematic data were collected from functional maneuvers simulated in 20 cadaveric knees mounted in a joint simulator. The axis of knee motion was calculated for squatting and lunging activities over the interval of 30° to 90° of knee flexion. We then examined the accuracy and variability of 5 different anatomic axes in predicting the direction of knee motion. No one landmark guaranteed correct alignment of the tibial component and most predictors were highly variable (range, 6°-21°). The most accurate indicators were the medial third of the tibial tubercle (average error: squatting: 3.5° external rotation; lunging: 9.5°), and the medial-lateral axis of the resected tibial surface (6.7° and 1.1° internal rotation). The correct alignment of the tibial component can be best achieved by splitting the difference between these landmarks to eliminate placement of the component in excessive external and excessive internal rotation.

  1. Focusing on Increasing Velocity during Heavy Resistance Knee Flexion Exercise Boosts Hamstring Muscle Activity in Chronic Stroke Patients

    PubMed Central

    Jakobsen, Markus D.

    2016-01-01

    Background. Muscle strength is markedly reduced in stroke patients, which has negative implications for functional capacity and work ability. Different types of feedback during strength training exercises may alter neuromuscular activity and functional gains. Objective. To compare levels of muscle activity during conditions of blindfolding and intended high contraction speed with a normal condition of high-intensity knee flexions. Methods. Eighteen patients performed unilateral machine knee flexions with a 10-repetition maximum load. Surface electromyography (EMG) was recorded from the quadrics and hamstring muscles and normalized to maximal EMG (nEMG) of the nonparetic limb. Results. For the paretic leg, the speed condition showed higher values of muscle activity compared with the normal and blindfolded conditions for both biceps femoris and semitendinosus. Likewise, the speed condition showed higher co-contraction values compared with the normal and blindfolded conditions for the vastus lateralis. No differences were observed between exercise conditions for the nonparetic leg. Conclusion. Chronic stroke patients are capable of performing heavy resistance training with intended high speed of contraction. Focusing on speed during the concentric phase elicited higher levels of muscle activity of the hamstrings compared to normal and blindfolded conditions, which may have implications for regaining fast muscle strength in stroke survivors. PMID:27525118

  2. Focusing on Increasing Velocity during Heavy Resistance Knee Flexion Exercise Boosts Hamstring Muscle Activity in Chronic Stroke Patients.

    PubMed

    Vinstrup, Jonas; Calatayud, Joaquin; Jakobsen, Markus D; Sundstrup, Emil; Andersen, Lars L

    2016-01-01

    Background. Muscle strength is markedly reduced in stroke patients, which has negative implications for functional capacity and work ability. Different types of feedback during strength training exercises may alter neuromuscular activity and functional gains. Objective. To compare levels of muscle activity during conditions of blindfolding and intended high contraction speed with a normal condition of high-intensity knee flexions. Methods. Eighteen patients performed unilateral machine knee flexions with a 10-repetition maximum load. Surface electromyography (EMG) was recorded from the quadrics and hamstring muscles and normalized to maximal EMG (nEMG) of the nonparetic limb. Results. For the paretic leg, the speed condition showed higher values of muscle activity compared with the normal and blindfolded conditions for both biceps femoris and semitendinosus. Likewise, the speed condition showed higher co-contraction values compared with the normal and blindfolded conditions for the vastus lateralis. No differences were observed between exercise conditions for the nonparetic leg. Conclusion. Chronic stroke patients are capable of performing heavy resistance training with intended high speed of contraction. Focusing on speed during the concentric phase elicited higher levels of muscle activity of the hamstrings compared to normal and blindfolded conditions, which may have implications for regaining fast muscle strength in stroke survivors. PMID:27525118

  3. The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study.

    PubMed

    Clary, Chadd W; Fitzpatrick, Clare K; Maletsky, Lorin P; Rullkoetter, Paul J

    2013-04-26

    Fluoroscopic evaluation of total knee arthroplasty (TKA) has reported sudden anterior translation of the femur relative to the tibia (paradoxical anterior motion) for some cruciate-retaining designs. This motion may be tied to abrupt changes in the femoral sagittal radius of curvature characteristic of traditional TKA designs, as the geometry transitions from a large load-bearing distal radius to a smaller posterior radius which can accommodate femoral rollback. It was hypothesized that a gradually reducing radius may attenuate sudden changes in anterior-posterior motion that occur in mid-flexion with traditional discrete-radius designs. A combined experimental and computational approach was employed to test this hypothesis. A previously developed finite element (FE) model of the Kansas knee simulator (KKS), virtually implanted with multiple implant designs, was used to predict the amount of paradoxical anterior femoral slide during a simulated deep knee bend. The model predicted kinematics demonstrated that incorporating a gradually reducing radius in mid-flexion reduced the magnitude of paradoxical anterior translation between 21% and 68%, depending on the conformity of the tibial insert. Subsequently, both a dual-radius design and a modified design incorporating gradually reducing radii were tested in vitro in the KKS for verification. The model-predicted and experimentally observed kinematics exhibited good agreement, while the average experimental kinematics demonstrated an 81% reduction in anterior translation with the modified design. The FE model demonstrated sufficient sensitivity to appropriately differentiate kinematic changes due to subtle changes in implant design, and served as a useful pre-clinical design-phase tool to improve implant kinematics. PMID:23499227

  4. Epiphyseal stapling for angular deformity at the knee.

    PubMed

    Zuege, R C; Kempken, T G; Blount, W P

    1979-04-01

    Fifty six patients with angular deformities of eighty-two knees were treated with epiphyseal stapling between 1954 and 1973 and followed until maturity. There were sixty-four knock-knees and eighteen bowlegs. In twelve patients with concurrent leg-length discrepancies, long legs were stapled asymmetrically. The deformities were allowed to overcorrect before the staples were removed, but the rebound phenomenon occurred in twenty-two patients with thirty-five deformities. In older children the staples were taken out when the legs looked straight. Exaggerated physiological deformities may correct spontaneously. They should not be stapled before the skeletal age of eleven in girls and twelve in boys. Secondary deformities are corrected earlier. There were no significant complications. Ten revisions of staples were necessary because of extrusion or shifting. The results were satisfactory or improved in 87 per cent of the deformities. When it is indicated epiphyseal stapling is a safe and effective method of correcting angular deformity at the knee in growing children.

  5. The Columbus Knee System: 4-Year Results of a New Deep Flexion Design Compared to the NexGen Full Flex Implant.

    PubMed

    Goebel, D; Schultz, W

    2012-01-01

    The Columbus knee system is designed as a standard knee implant to allow high flexion without additional bone resection. Between August, 2004 and March, 2010 we performed 109 total knee arthroplasties of the Columbus knee system in 101 consecutive patients suffering from primary arthrosis of the knee. Mean age was 72.4 years in women and 70.3 years in men. Mean followup was 47.3 months. The 4-year results of a group of patients who received the NexGen Full Flex implant operated by the same surgeon were used for comparison. Mean total knee score was Columbus: 175.6 and NexGen Flex: 183.4; P = 0.037. Mean operation time was 53 min for Columbus and 66 min for NexGen Flex; P < 0.001. With new streamlined instruments operative time became 60 min for the Columbus; P > 0.05. Radiological assessment showed no signs of loosening for both groups. Therefore, the Columbus knee system can be recommended for flexion angles up to 140°.

  6. Baseline knee adduction and flexion moments during walking are both associated with five year cartilage changes in patients with medial knee osteoarthritis

    PubMed Central

    Chehab, Eric F.; Favre, Julien; Erhart-Hledik, Jennifer C.; Andriacchi, Thomas P.

    2014-01-01

    Objective To test the hypothesis that knee cartilage changes over five years are associated with baseline peak knee adduction moment (KAM) and peak knee flexion moment (KFM) during early stance. Design Baseline KAM and KFM were measured in sixteen subjects with medial knee OA. Regional changes in cartilage thickness and changes in medial-to-lateral thickness ratio were quantified using magnetic resonance imaging at baseline and again after five years. Multiple regression was used to determine whether baseline measures of KAM and KFM were associated with cartilage changes over five years. Associations with baseline pain score, Kellgren-Lawrence grade, walking speed, age, gender, and body mass index were tested one-by-one in the presence of KAM and KFM. Results Changes over five years in femoral medial-to-lateral thickness ratio were associated with baseline KAM, KFM, and pain score (R2=0.60, p=0.010), and most significantly with KAM (R2=0.33, p=0.019). Changes in tibial medial-to-lateral thickness ratio were associated with baseline KAM, KFM, and walking speed (R2=0.49, p=0.039), with KFM driving this association (R2=0.40, p=0.009). Changes in medial tibial thickness were associated with baseline KAM, KFM, and walking speed (R2=0.49, p=0.041); KFM also drove this association (R2=0.42, p=0.006). Conclusions The findings that the KAM has a greater influence on femoral cartilage change and the KFM has a greater influence on tibial cartilage change provide new insight into the tibiofemoral variations in cartilage changes associated with walking kinetics. These results suggest that both KAM and KFM should be considered when designing disease interventions as well as when assessing the risk for OA progression. PMID:25211281

  7. Patterns in the knee flexion-extension moment profile during stair ascent and descent in patients with total knee arthroplasty.

    PubMed

    McClelland, Jodie A; Feller, Julian A; Menz, Hylton B; Webster, Kate E

    2014-06-01

    The aim of this study was to investigate the prevalence of abnormal knee biomechanical patterns in 40 patients with a modern TKA prosthesis, compared to 40 matched control participants when ascending and descending stairs. Fewer patients were able to ascend (65%) or descend stairs (53%) unassisted than controls (83%). Of the participants who could ascend and descend, cluster analysis classified most patients (up to 77%) as demonstrating a similar knee moment pattern as all controls. A small subgroup of patients who completed the tasks did so with distinctly abnormal biomechanics compared to other patients and controls. These findings suggest that recovery of normal stair climbing is possible. However, rehabilitation might be more effective if it were tailored to account for these differences between patients.

  8. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

    PubMed

    Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki

    2013-01-01

    Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone.

  9. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.

    PubMed

    Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy

    2014-11-01

    In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°. PMID:26192955

  10. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.

    PubMed

    Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy

    2014-11-01

    In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.

  11. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.

    PubMed

    Jenkyn, Thomas R; Hunt, Michael A; Jones, Ian C; Giffin, J Robert; Birmingham, Trevor B

    2008-01-01

    Altered gait kinematics and kinetics are observed in patients with medial compartment knee osteoarthritis. Although various kinematic adaptations are proposed to be compensatory mechanisms that unload the knee, the nature of these mechanisms is presently unclear. We hypothesized that an increased toe-out angle during early stance phase of gait shifts load away from the knee medial compartment, quantified as the external adduction moment about the knee. Specifically, we hypothesized that by externally rotating the lower limb anatomy, primarily about the hip joint, toe-out gait alters the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes and transforms a portion of knee adduction moment into flexion moment. To test this hypothesis, gait data from 180 subjects diagnosed with medial compartment knee osteoarthritis were examined using two frames of reference. The first frame was attached to the tibia (reporting actual toe-out) and the second frame was attached to the laboratory (simulating no-toe-out). Four measures were compared within subjects in both frames of reference: the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes, and the adduction and flexion components of the external knee moment. The mean toe-out angle was 11.4 degrees (S.D. 7.8 degrees , range -2.2 degrees to 28.4 degrees ). Toe-out resulted in significant reductions in the frontal plane lever arm (-6.7%) and the adduction moment (-11.7%) in early stance phase when compared to the simulated no-toe-out values. These reductions were coincident with significant increases in the sagittal plane lever arm (+33.7%) and flexion moment (+25.0%). Peak adduction lever arm and moment were also reduced significantly in late stance phase (by -22.9% and -34.4%, respectively) without a corresponding increase in sagittal plane lever arm or flexion moment. These results indicate that toe-out gait in patients

  12. Cartilage surface characterization by frictional dissipated energy during axially loaded knee flexion--an in vitro sheep model.

    PubMed

    Lorenz, Andrea; Rothstock, Stephan; Bobrowitsch, Evgenij; Beck, Alexander; Gruhler, Gerhard; Ipach, Ingmar; Leichtle, Ulf G; Wülker, Nikolaus; Walter, Christian

    2013-05-31

    Cartilage defects and osteoarthritis (OA) have an increasing incidence in the aging population. A wide range of treatment options are available. The introduction of each new treatment requires controlled, evidence based, histological and biomechanical studies to identify potential benefits. Especially for the biomechanical testing there is a lack of established methods which combine a physiologic testing environment of complete joints with the possibility of body-weight simulation. The current in-vitro study presents a new method for the measurement of friction properties of cartilage on cartilage in its individual joint environment including the synovial fluid. Seven sheep knee joints were cyclically flexed and extended under constant axial load with intact joint capsule using a 6° of freedom robotic system. During the cyclic motion, the flexion angle and the respective torque were recorded and the dissipated energy was calculated. Different mechanically induced cartilage defect sizes (16 mm², 50 mm², 200 mm²) were examined and compared to the intact situation at varying levels of the axial load. The introduced setup could significantly distinguish between most of the defect sizes for all load levels above 200 N. For these higher load levels, a high reproducibility was achieved (coefficient of variation between 4% and 17%). The proposed method simulates a natural environment for the analysis of cartilage on cartilage friction properties and is able to differentiate between different cartilage defect sizes. Therefore, it is considered as an innovative method for the testing of new treatment options for cartilage defects.

  13. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.

    PubMed

    Yeow, C H; Lee, Peter V S; Goh, James C H

    2009-10-01

    Ground reaction forces (GRF), knee flexion angles, angular velocities and joint powers are unknown at large landing heights, which are infeasible for laboratory testing. However, this information is important for understanding lower extremity injury mechanisms. We sought to determine regression relationships of landing height with these parameters during landing so as to facilitate estimation of these parameters at large landing heights. Five healthy male subjects performed landing tasks from heights of 0.15-1.05 m onto a force-plate. Motion capture system was used to obtain knee flexion angles during landing via passive markers placed on the lower body. An iterative regression model, involving simple linear/exponential/natural logarithmic functions, was used to fit regression equations to experimental data. Peak GRF followed an exponential regression relationship (R(2)=0.90-0.99, p<0.001; power=0.987-0.998). Peak GRF slope and impulse also had an exponential relationship (R(2)=0.90-0.96, p<0.001; power=0.980-0.997 and R(2)=0.90-0.99, p<0.001; power=0.990-1.000 respectively) with landing height. Knee flexion angle at initial contact and at peak GRF had an inverse-exponential regression relationship (R(2)=0.81-0.99, p<0.001-p=0.006; power=0.834-0.978 and R(2)=0.84-0.97, p<0.001-p=0.004; power=0.873-0.999 respectively). There was also an inverse-exponential relationship between peak knee flexion angular velocity and landing height (R(2)=0.86-0.96, p<0.001; power=0.935-0.994). Peak knee joint power demonstrated a substantial linear relationship (R(2)=0.98-1.00, p<0.001; power=0.990-1.000). The parameters analyzed in this study are highly dependent on landing height. The exponential increase in peak GRF parameters and the relatively slower increase in knee flexion angles, angular velocities and joint power may synergistically lead to an exacerbated lower extremity injury risk at large landing heights.

  14. Peak torque and average power at flexion/extension of the shoulder and knee when using a mouth guard in adults with mild midline discrepancy.

    PubMed

    Lee, Sang-Yeol; Hong, Min-Ho; Choi, Seung-Jun

    2014-07-01

    [Purpose] This study was conducted to investigate the changes in torque and power during flexion and extension of the shoulder and the knee joints caused by midline correction using mouth guards made from different materials in adults with mild midline discrepancy. [Subjects] The subjects of this study were males (n=12) in their 20s who showed a 3-5 mm difference between the midlines of the upper and lower teeth but had normal masticatory function. [Methods] The torque and average power of the lower limb and upper limb were measured during flexion and extension according to various types of mouth guard. [Results] There were significant differences in relative torque and average power between three conditions (no mouth guard, soft-type mouth guard, and hard-type mouth guard) at shoulder flexion and extension. There were no significant differences in relative torque and average power between the three conditions at knee flexion and extension. [Conclusions] These results suggest that use of a mouth guard is a method by which people with a mild midline discrepancy can improve the stability of the entire body.

  15. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    PubMed Central

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Introduction Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Trial

  16. Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: a cross-sectional comparison 3 years post surgery.

    PubMed

    Ageberg, Eva; Roos, Harald P; Silbernagel, Karin Grävare; Thomeé, Roland; Roos, Ewa M

    2009-02-01

    Hamstring muscles play a major role in knee-joint stabilization after anterior cruciate ligament (ACL) injury. Weakness of the knee extensors after ACL reconstruction with patellar tendon (PT) graft, and in the knee flexors after reconstruction with hamstring tendons (HT) graft has been observed up to 2 years post surgery, but not later. In these studies, isokinetic muscle torque was used. However, muscle power has been suggested to be a more sensitive and sport-specific measures of strength. The aim was to study quadriceps and hamstring muscle power in patients with ACL injury treated with surgical reconstruction with PT or HT grafts at a mean of 3 years after surgery. Twenty subjects with PT and 16 subjects with HT grafts (mean age at follow up 30 years, range 20-39, 25% women), who were all included in a prospective study and followed the same goal-based rehabilitation protocol for at least 4 months, were assessed with reliable, valid, and responsive tests of quadriceps and hamstring muscle power at 3 years (SD 0.9, range 2-5) after surgery. The mean difference between legs (injured minus uninjured), the hamstring to quadriceps (H:Q, hamstring divided by quadriceps) ratio, and the limb symmetry index (LSI, injured leg divided by uninjured and multiplied by 100) value, were used for comparisons between the groups (analysis of variance). The mean difference between the injured and uninjured legs was greater in the HT than in the PT group for knee flexion power (-21.3 vs. 7.7 W, p = 0.001). Patients with HT graft had lower H:Q ratio in the injured leg than the patients with PT graft (0.63 vs. 0.77, p = 0.012). They also had lower LSI for knee flexion power than those in the PT group (88 vs. 106%, p < 0.001). No differences were found between the groups for knee extension power. The lower hamstring muscle power, and the lower hamstring to quadriceps ratio in the HT graft group than in the PT graft group 3 years (range 2-5) after ACL reconstruction, reflect imbalance

  17. Preliminary Tests of a Practical Fuzzy FES Controller Based on Cycle-to-Cycle Control in the Knee Flexion and Extension Control

    NASA Astrophysics Data System (ADS)

    Watanabe, Takashi; Masuko, Tomoya; Arifin, Achmad

    The fuzzy controller based on cycle-to-cycle control with output value adjustment factors (OAF) was developed for restoring gait of paralyzed subjects by using functional electrical stimulation (FES). Results of maximum knee flexion and extension controls with neurologically intact subjects suggested that the OAFs would be effective in reaching the target within small number of cycles and in reducing the error after reaching the target. Oscillating responses between cycles were also suppressed. The fuzzy controller was expected to be examined to optimize the OAFs with more subjects including paralyzed patients for clinical application.

  18. A Novel Medial Soft Tissue Release Method for Varus Deformity during Total Knee Arthroplasty: Femoral Origin Release of the Medial Collateral Ligament

    PubMed Central

    Lee, Seung-Yup; Yang, Jae-Hyuk; Lee, Yong-In

    2016-01-01

    Introduction Numerous methods of medial soft tissue release for severe varus deformity during total knee arthroplasty (TKA) have been reported. These include tibial stripping of the superficial medial collateral ligament (MCL), pie-crusting technique, and medial epicondylar osteotomy. However, there are inherent disadvantages in these techniques. Authors hereby present a novel quantitative method: femoral origin release of the medial collateral ligament (FORM). Surgical Technique For medial tightness remaining even after the release of the deep MCL and semimembranosus, the FORM is initiated with identification of the femoral insertion area of the MCL with the knee in flexion. Starting from the most posterior part of the femoral insertion, one third of the MCL femoral insertion is released from its attachment. If necessary, further sequential medial release is performed. Materials and Methods Seventeen knees that underwent the FORM were evaluated for radiological and clinical outcomes. Results Regardless of the extent of the FORM, no knees showed residual valgus instability at 24 weeks after surgery. Conclusions As the FORM is performed in a stepwise manner, fine adjustment during medial release might be beneficial to prevent inadvertent over-release of the medial structures of the knee. PMID:27274473

  19. Modified Aglietti procedure (supracondylar femoral osteotomy) for correction of the post-rachitic valgus deformity of the knee in adolescents – A short case series

    PubMed Central

    Agarwal, Sharat

    2013-01-01

    Introduction Supracondylar femoral osteotomy is the time tested method, used for correcting the angular (varus & valgus) deformities at the knee. Traditionally, Coventry type of femoral osteotomy is performed. Here, a medial or lateral based wedge of bone is removed or an open wedge osteotomy is made & subsequently the space is filled with the bone graft to achieve the desired correction. This osteotomy is subsequently stabilized with Kirschner wires or plate & screws. Later the limb is externally supported in brace or plaster cast till osteotomy unites. Here we present a case series of 10 cases, where we have analyzed the efficacy of Aglietti procedure for achieving normal limb alignment with good patient satisfaction and subsequent knee function as a method of femoral supracondylar osteotomy for correcting the valgus deformity at the knee. Short series results are also encouraging with regard to the operating time, per-operative blood loss, postoperative stability of osteotomy, early starting of postoperative rehabilitation due to good stability at osteotomy & subsequent functional outcome in relation to final range of motion (ROM) – flexion after 6 months of surgery. Case series presentation Ten valgus adolescent knees were operated in 7 patients by the Aglietti procedure for correcting the angular deformity at the knee. The results were analyzed taking into consideration the desired correction to achieve normal limb alignment, operating time, blood loss during surgery estimated by the number of surgical mops used, stability of the osteotomy in the postoperative period & ultimate range of motion (ROM) obtained at the end of 6 months after the surgery. Results The age of the patients taken up in the study were in the range of 12–16 years. Females predominated (n = 5) against 2 males. The time taken for the procedure ranged from 40 to 50 min. The size of the surgical mops used was 15 × 20 cm. 1–2 surgical mops used per patient. The range of flexion

  20. Kinematic evaluation of the finger's interphalangeal joints coupling mechanism--variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations.

    PubMed

    Leijnse, J N A L; Quesada, P M; Spoor, C W

    2010-08-26

    The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study's aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date.

  1. Active knee joint flexibility and sports activity.

    PubMed

    Hahn, T; Foldspang, A; Vestergaard, E; Ingemann-Hansen, T

    1999-04-01

    The aim of the study was to estimate active knee flexion and active knee extension in athletes and to investigate the potential association of each to different types of sports activity. Active knee extension and active knee flexion was measured in 339 athletes. Active knee extension was significantly higher in women than in men and significantly positively associated with weekly hours of swimming and weekly hours of competitive gymnastics. Active knee flexion was significantly positively associated with participation in basketball, and significantly negatively associated with age and weekly hours of soccer, European team handball and swimming. The results point to sport-specific adaptation of active knee flexion and active knee extension.

  2. Accuracy of implant positioning for minimally invasive total knee arthroplasty in patients with severe varus deformity.

    PubMed

    Niki, Yasuo; Matsumoto, Hideo; Otani, Toshiro; Enomoto, Hiroyuki; Toyama, Yoshiaki; Suda, Yasunori

    2010-04-01

    Minimally invasive surgery (MIS) in total knee arthroplasty (TKA) reportedly yields decreased patient morbidity and a rapid return of function, but how much deformity can be accepted for MIS-TKA remains unclear. This study investigated 238 knees from 218 consecutive patients who underwent MIS-TKA. Patients were divided into groups with tibiofemoral mechanical axis (TFM) 195 degrees or greater and TFM less than 195 degrees, then clinical and radiographic results were compared. Similar improvements in knee score at 3 months postoperatively were obtained in the both groups, whereas radiographic accuracy of the coronal alignment in the TFM >or=195 degrees group was inferior to that in TFM <195 degrees group. Postoperative TFM was significantly worsened in patients with lateral bowing angle of the femoral shaft (LBFS) 4 degrees or greater, and 53% of patients in the TFM >or=195 degrees group displayed LBFS 4 degrees or greater, explaining the inferior radiographic accuracy in this group compared with the TFM <195 degrees group. These results indicate that use of MIS techniques decreases radiographic accuracy, particularly in patients with severe genu varum and increased LBFS. PMID:20347714

  3. Validation of a novel smartphone accelerometer-based knee goniometer.

    PubMed

    Ockendon, Matthew; Gilbert, Robin E

    2012-09-01

    Loss of full knee extension following anterior cruciate ligament surgery has been shown to impair knee function. However, there can be significant difficulties in accurately and reproducibly measuring a fixed flexion of the knee. We studied the interobserver and the intraobserver reliabilities of a novel, smartphone accelerometer-based, knee goniometer and compared it with a long-armed conventional goniometer for the assessment of fixed flexion knee deformity. Five healthy male volunteers (age range 30 to 40 years) were studied. Measurements of knee flexion angle were made with a telescopic-armed goniometer (Lafayette Instrument, Lafayette, IN) and compared with measurements using the smartphone (iPhone 3GS, Apple Inc., Cupertino, CA) knee goniometer using a novel trigonometric technique based on tibial inclination. Bland-Altman analysis of validity and reliability including statistical analysis of correlation by Pearson's method was undertaken. The iPhone goniometer had an interobserver correlation (r) of 0.994 compared with 0.952 for the Lafayette. The intraobserver correlation was r = 0.982 for the iPhone (compared with 0.927). The datasets from the two instruments correlate closely (r = 0.947) are proportional and have mean difference of only -0.4 degrees (SD 3.86 degrees). The Lafayette goniometer had an intraobserver reliability +/- 9.6 degrees. The interobserver reliability was +/- 8.4 degrees. By comparison the iPhone had an interobserver reliability +/- 2.7 degrees and an intraobserver reliability +/- 4.6 degrees. We found the iPhone goniometer to be a reliable tool for the measurement of subtle knee flexion in the clinic setting. PMID:23150162

  4. Non-invasive quantification of lower limb mechanical alignment in flexion

    PubMed Central

    Deakin, Angela; Fogg, Quentin A.; Picard, Frederic

    2014-01-01

    (coefficient ≤2°) was observed until 40° flexion; however, beyond 50° flexion, the repeatability coefficient was >3°. As was the case with precision, agreement between the invasive and non-invasive systems was satisfactory in extension and worsened with flexion. Mean limits of agreement between the invasive and non-invasive system using fabric strapping to assess MFTA were 3° (range: 2.3–3.8°) with no stress applied and 3.9° (range: 2.8–5.2°) with varus and valgus stress. Using rubber strapping, the corresponding values were 4.4° (range: 2.8–8.5°) with no stress applied, 5.5° (range: 3.3–9.0°) with varus stress, and 5.6° (range: 3.3–11.9°) with valgus stress. Discussion Acceptable precision and accuracy may be possible when measuring knee kinematics in early flexion using a non-invasive system; however, we do not believe passive trackers should be mounted with rubber strapping such as was used in this study. Flexing the knee appears to decrease the precision and accuracy of the system. The functions of this new software using image-free navigation technology have many potential clinical applications, including assessment of bony and soft tissue deformity, pre-operative planning, and post-operative evaluation, as well as in further pure research comparing kinematics of the normal and pathological knee. PMID:24856249

  5. Custom Knee Device for Knee Contractures After Internal Femoral Lengthening.

    PubMed

    Bhave, Anil; Shabtai, Lior; Ong, Peck-Hoon; Standard, Shawn C; Paley, Dror; Herzenberg, John E

    2015-07-01

    The development of knee flexion contractures is among the most common problems and complications associated with lengthening the femur with an internal device or external fixator. Conservative treatment strategies include physical therapy, serial casting, and low-load prolonged stretching with commercially available splinting systems. The authors developed an individually molded, low-cost custom knee device with polyester synthetic conformable casting material to treat knee flexion contractures. The goal of this study was to evaluate the results of treatment with a custom knee device and specialized physical therapy in patients who had knee flexion contracture during femoral lengthening with an intramedullary lengthening femoral nail. This retrospective study included 23 patients (27 limbs) who underwent femoral lengthening with an internal device for the treatment of limb length discrepancy. All patients had a knee flexion contracture raging from 10° to 90° during the lengthening process and were treated with a custom knee device and specialized physical therapy. The average flexion contracture before treatment was 36°. The mean amount of lengthening was 5.4 cm. After an average of 3.8 weeks of use of the custom knee device, only 2 of 27 limbs (7.5%) had not achieved complete resolution of the flexion contracture. The average final extension was 1.4°. Only 7 of 27 limbs (26%) required additional soft tissue release. The custom knee device is an inexpensive and effective method for treating knee flexion contracture after lengthening with an internal device.

  6. Isokinetic torque levels in hemophiliac knee musculature.

    PubMed

    Strickler, E M; Greene, W B

    1984-12-01

    The purposes of this study were to 1) measure peak torques generated by knee extensors and flexors in hemophilia patients; 2) describe flexor to extensor; 3) record the point in the arc of motion where peak torque was achieved; 4) correlate results with age, degree of hemophilic arthropathy, and presence of flexion contracture; and 5) compare results with reports on healthy subjects. Forty-seven patients (94 knees) with severe hemophilia were tested with a Cybex II isokinetic dynamometer at a speed of 30 degrees per second. Height, weight, thigh girths, and passive knee range of motion were recorded. Standing roentgenograms of the knee were evaluated to assess degree of arthropathy. Subjects were divided into groups by age and degree of arthropathy. Descriptive statistics were generated for all groups. Average peak extensor and flexor torque was similar for adolescents and adults. Increasing degree of arthropathy was associated with significant decreases in both extensor and flexor torque, an increase in flexor to extensor ratios and increasing knee flexion contractures. Across all groups, flexor to extensor ratios were abnormally high, particularly in patients with type IV arthropathy. The point in arc of motion where peak torques occurred did not differ significantly across groups and compared favorably with measures reported in the literature. For all ages, mean peak extensor and flexor torques were less than values reported in the literature for healthy subjects. Results of this study demonstrate the profound decrease in torque produced by knee musculature in hemophilia patients, particularly those with more severe arthropathy and knee flexion deformity.

  7. Patterns of knee osteoarthritis in Arabian and American knees.

    PubMed

    Hodge, W Andrew; Harman, Melinda K; Banks, Scott A

    2009-04-01

    This study illustrates differences in the cartilage degeneration in osteoarthritic knees in patients with more frequent hyperflexion activities of daily living compared with Western patients. Proximal tibial articular cartilage wear and cruciate ligament condition were assessed in Saudi Arabian and North American patients with varus osteoarthritis undergoing total knee arthroplasty. In anterior cruciate ligament (ACL) intact knees, there were significant differences in wear location, with a clearly more anterior pattern in Saudi Arabian knees. Complete ACL deficiency occurred in 25% of North American knees but only 14% of Saudi Arabian knees. These ACL-deficient knees showed the most severe cartilage wear in both groups and posterior medial wear patterns. Biomechanical descriptions of knee flexion and axial rotation during kneeling or squatting are consistent with the more pronounced anteromedial and posterolateral cartilage wear patterns observed on the Saudi Arabian knees. These observations provide insight into altered knee mechanics in 2 culturally different populations with different demands on knee flexion.

  8. Assessment of Knee Cartilage Stress Distribution and Deformation Using Motion Capture System and Wearable Sensors for Force Ratio Detection.

    PubMed

    Mijailovic, N; Vulovic, R; Milankovic, I; Radakovic, R; Filipovic, N; Peulic, A

    2015-01-01

    Knowledge about the knee cartilage deformation ratio as well as the knee cartilage stress distribution is of particular importance in clinical studies due to the fact that these represent some of the basic indicators of cartilage state and that they also provide information about joint cartilage wear so medical doctors can predict when it is necessary to perform surgery on a patient. In this research, we apply various kinds of sensors such as a system of infrared cameras and reflective markers, three-axis accelerometer, and force plate. The fluorescent marker and accelerometers are placed on the patient's hip, knee, and ankle, respectively. During a normal walk we are recording the space position of markers, acceleration, and ground reaction force by force plate. Measured data are included in the biomechanical model of the knee joint. Geometry for this model is defined from CT images. This model includes the impact of ground reaction forces, contact force between femur and tibia, patient body weight, ligaments, and muscle forces. The boundary conditions are created for the finite element method in order to noninvasively determine the cartilage stress distribution. PMID:26417382

  9. Correction of coronal plane deformities around the knee using a tension band plate in children younger than 10 years

    PubMed Central

    Kulkarni, Ruta M; Ilyas Rushnaiwala, Faizaan M; Kulkarni, GS; Negandhi, Rajiv; Kulkarni, Milind G; Kulkarni, Sunil G

    2015-01-01

    Background: Guided growth through temporary hemiepiphysiodesis has gained acceptance as the preferred primary treatment in treating pediatric lower limb deformities as it is minimally invasive with a lesser morbidity than the traditional osteotomy. The tension band plate is the most recent development in implants used for temporary hemiepiphysiodesis. Our aim was to determine its safety and efficacy in correcting coronal plane deformities around the knee in children younger than 10 years. Materials and Methods: A total of 24 children under the age of 10 were operated for coronal plane deformities around the knee with a single extra periosteal tension band plate and two nonlocking screws. All the children had a pathological deformity for which a detailed preoperative work-up was carried out to ascertain the cause of the deformity and rule out physiological ones. The average age at hemiepiphysiodesis was 5 years 3 months (range: 2 years to 9 years 1 month). Results: The plates were inserted for an average of 15.625 months (range: 7 months to 29 months). All the patients showed improvement in the mechanical axis. Two patients showed partial correction. Two cases of screw loosening were observed. In the genu valgum group, the tibiofemoral angle improved from a preoperative mean of 19.89° valgus (range: 10° valgus to 40° valgus) to 5.72° valgus (range: 2° varus to 10° valgus). In patients with genu varum the tibiofemoral angle improved from a mean of 28.27° varus (range: 13° varus to 41° varus) to 1.59° valgus (range: 0-8° valgus). Conclusion: Temporary hemiepiphysiodesis through the application of the tension band plate is an effective method to correct coronal plane deformities around the knee with minimal complications. Its ease and accuracy of insertion has extended the indication of temporary hemiepiphysiodesis to patients younger than 10 years and across a wide variety of diagnosis including pathological physis, which were traditionally out of the

  10. Preliminary analysis of knee stress in Full Extension Landing

    PubMed Central

    Makinejad, Majid Davoodi; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Bayat, Mehdi

    2013-01-01

    OBJECTIVE: This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height. METHODS: The impact time and loads were measured via inverse dynamic analysis of free landing without knee flexion from three different heights (25, 50 and 75 cm), using five subjects with an average body mass index of 18.8. Three-dimensional data were developed from computed tomography scans and were reprocessed with modeling software before being imported and analyzed by finite element analysis software. The whole leg was considered to be a fixed middle-hinged structure, while impact loads were applied to the femur in an upward direction. RESULTS: Straight landing exerted an enormous amount of pressure on the knee joint as a result of the body's inability to utilize the lower extremity muscles, thereby maximizing the threat of injury when the load exceeds the height-safety threshold. CONCLUSIONS: The researchers conclude that extended-knee landing results in serious deformation of the meniscus and cartilage and increases the risk of bone-to-bone contact and serious knee injury when the load exceeds the threshold safety height. This risk is considerably greater than the risk of injury associated with walking downhill or flexion landing activities. PMID:24141832

  11. Partial trisomy 1p (1p36.22-->pter) and partial monosomy 9p (9p22.2-->pter) associated with achalasia, flexion deformity of the fingers and epilepsy in a girl.

    PubMed

    Chen, C P; Lin, S P; Lee, C C; Town, D D; Wang, W

    2006-01-01

    We report on a 12-year-old girl presenting with mental retardation, trigonocephaly, midface hypoplasia, upward-slanting palpebral fissures, arched eyebrows, bilateral epicanthal folds, hypertelorism, a flattened nasal bridge, a short nose, anteverted nares, a long philtrum, a small mouth, micrognathia, low-set ears, a short neck, long digits, flexion deformity of the fingers of the hands, hypoplasia of the labia majora, hyperplasia of the labia minora, flat feet, dysphagia, frequent regurgitation, prominent esophageal dilation, and achalasia. Seizures were noted since 5 years of age. Cytogenetic analysis of her peripheral blood revealed a karyotype of 46,XX, der(9)t(1;9)(p36.22;p22.2)pat. Achalasia, an uncommon esophageal motor disorder, has not been previously described in association with either a deletion of 9p or a duplication of 1p.

  12. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability.

    PubMed

    Gustafson, Jonathan A; Gorman, Shannon; Fitzgerald, G Kelley; Farrokhi, Shawn

    2016-01-01

    Increased walking knee joint stiffness has been reported in patients with knee osteoarthritis (OA) as a compensatory strategy to improve knee joint stability. However, presence of episodic self-reported knee instability in a large subgroup of patients with knee OA may be a sign of inadequate walking knee joint stiffness. The objective of this work was to evaluate the differences in walking knee joint stiffness in patients with knee OA with and without self-reported instability and examine the relationship between walking knee joint stiffness with quadriceps strength, knee joint laxity, and varus knee malalignment. Overground biomechanical data at a self-selected gait velocity was collected for 35 individuals with knee OA without self-reported instability (stable group) and 17 individuals with knee OA and episodic self-reported instability (unstable group). Knee joint stiffness was calculated during the weight-acceptance phase of gait as the change in the external knee joint moment divided by the change in the knee flexion angle. The unstable group walked with lower knee joint stiffness (p=0.01), mainly due to smaller heel-contact knee flexion angles (p<0.01) and greater knee flexion excursions (p<0.01) compared to their knee stable counterparts. No significant relationships were observed between walking knee joint stiffness and quadriceps strength, knee joint laxity or varus knee malalignment. Reduced walking knee joint stiffness appears to be associated with episodic knee instability and independent of quadriceps muscle weakness, knee joint laxity or varus malalignment. Further investigations of the temporal relationship between self-reported knee joint instability and walking knee joint stiffness are warranted.

  13. Crouch gait changes after planovalgus foot deformity correction in ambulatory children with cerebral palsy.

    PubMed

    Kadhim, Muayad; Miller, Freeman

    2014-02-01

    Ambulatory children with cerebral palsy (CP) may present with several gait patterns due to muscular spasticity, commonly with crouch gait. Several factors may contribute to continuous knee flexion during gait, including hamstring and gastrocnemius contracture. In planovalgus foot deformity, the combination of heel equinus, talonavicular joint dislocation, midfoot break and external tibial torsion also contribute to crouch gait as part of lever arm dysfunction. In this retrospective cohort study, we assessed 21 children with CP (34 feet) who underwent planovalgus foot correction as a single level surgery. Fifteen feet underwent subtalar fusion and 19 feet had lateral calcaneal lengthening. Patients who underwent knee, hip or pelvis surgeries were excluded from the study. The aim was to examine the changes in gait pattern and the correlation between the changes of knee flexion at stance phase with the other kinematic and kinetic parameters after foot surgery. Post surgery change of Maximum knee extension at stance (MKE-dif) was the outcome of interest. The magnitude of change in MKE after surgery increased (less crouch after surgery) in patients who had milder preoperative planovalgus feet and higher preoperative ankle maximum dorsiflexion at stance and ankle power. The gain of knee extension after surgery correlated with correction of ankle hyperdorsiflexion and with increase of knee extension at initial contact and knee power. Patients with high preoperative ankle maximum dorsiflexion may benefit from surgical foot deformity correction to achieve decreased ankle dorsiflexion with no knee surgical intervention.

  14. Restoration of Elbow Flexion.

    PubMed

    Loeffler, Bryan J; Lewis, Daniel R

    2016-08-01

    Active elbow flexion is required to position the hand in space, and loss of this function is debilitating. Nerve transfers or nerve grafts to restore elbow flexion may be options when the target muscle is viable, but in delayed reconstruction when the biceps and brachialis are atrophied or damaged, muscle transfer options should be considered. Muscle transfer options are discussed with attention to the advantages and disadvantages of each transfer option. PMID:27387075

  15. Immediate effect of Masai Barefoot Technology shoes on knee joint moments in women with knee osteoarthritis.

    PubMed

    Tateuchi, Hiroshige; Taniguchi, Masashi; Takagi, Yui; Goto, Yusuke; Otsuka, Naoki; Koyama, Yumiko; Kobayashi, Masashi; Ichihashi, Noriaki

    2014-01-01

    Footwear modification can beneficially alter knee loading in patients with knee osteoarthritis. This study evaluated the effect of Masai Barefoot Technology shoes on reductions in external knee moments in patients with knee osteoarthritis. Three-dimensional motion analysis was used to examine the effect of Masai Barefoot Technology versus control shoes on the knee adduction and flexion moments in 17 women (mean age, 63.6 years) with radiographically confirmed knee osteoarthritis. The lateral and anterior trunk lean values, knee flexion and adduction angles, and ground reaction force were also evaluated. The influence of the original walking pattern on the changes in knee moments with Masai Barefoot Technology shoes was evaluated. The knee flexion moment in early stance was significantly reduced while walking with the Masai Barefoot Technology shoes (0.25±0.14Nm/kgm) as compared with walking with control shoes (0.30±0.19 Nm/kgm); whereas the knee adduction moment showed no changes. Masai Barefoot Technology shoes did not increase compensatory lateral and anterior trunk lean. The degree of knee flexion moment in the original walking pattern with control shoes was correlated directly with its reduction when wearing Masai Barefoot Technology shoes by multiple linear regression analysis (adjusted R2=0.44, P<0.01). Masai Barefoot Technology shoes reduced the knee flexion moment during walking without increasing the compensatory trunk lean and may therefore reduce external knee loading in women with knee osteoarthritis.

  16. Importance of the different posterolateral knee static stabilizers: biomechanical study

    PubMed Central

    Lasmar, Rodrigo Campos Pace; Marques de Almeida, Adriano; Serbino, José Wilson; da Mota Albuquerque, Roberto Freire; Hernandez, Arnaldo José

    2010-01-01

    PURPOSE The purpose of this study was to evaluate the relative importance of the different static stabilizers of the posterolateral corner of the knee in cadavers. METHODS Tests were performed with the application of a varus and external rotation force to the knee in extension at 30 and 60 degrees of flexion using 10 cadaver knees. The forces were applied initially to an intact knee and then repeated after a selective sectioning of the ligaments into the following: section of the lateral collateral ligament; section of the lateral collateral ligament and the popliteofibular complex; and section of the lateral collateral ligament, the popliteofibular complex and the posterolateral capsule. The parameters studied were the angular deformity and stiffness when the knees were submitted to a 15 Newton-meter varus torque and a 6 Newton-meter external tibial torque. Statistical analysis was performed using the ANOVA (Analysis of Variance) and Tukey’s tests. RESULTS AND CONCLUSION Our findings showed that the lateral collateral ligament was important in varus stability at 0, 30 and 60 degrees. The popliteofibular complex was the most important structure for external rotation stability at all angles of flexion and was also important for varus stability at 30 and 60 degrees. The posterolateral capsule was important for varus stability at 0 and 30 degrees and for external rotation stability in extension. Level of evidence: Level IV (cadaver study). PMID:20454502

  17. How crouch gait can dynamically induce stiff-knee gait.

    PubMed

    van der Krogt, Marjolein M; Bregman, Daan J J; Wisse, Martijn; Doorenbosch, Caroline A M; Harlaar, Jaap; Collins, Steven H

    2010-04-01

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on excessive knee muscle activity during (pre)swing, but the passive dynamics of the limbs may also have an important effect. To examine the effects of a crouched posture on swing knee flexion, we developed a forward-dynamic model of human walking with a passive swing knee, capable of stable cyclic walking for a range of stance knee crouch angles. As crouch angle during stance was increased, the knee naturally flexed much less during swing, resulting in a 'stiff-knee' gait pattern and reduced foot clearance. Reduced swing knee flexion was primarily due to altered gravitational moments around the joints during initial swing. We also considered the effects of increased push-off strength and swing hip flexion torque, which both increased swing knee flexion, but the effect of crouch angle was dominant. These findings demonstrate that decreased knee flexion during swing can occur purely as the dynamical result of crouch, rather than from altered muscle function or pathoneurological control alone.

  18. Correction of static axial alignment in children with knee varus or valgus deformities through guided growth: Does it also correct dynamic frontal plane moments during walking?

    PubMed

    Böhm, Harald; Stief, Felix; Sander, Klaus; Hösl, Matthias; Döderlein, Leonhard

    2015-09-01

    Malaligned knees are predisposed to the development and progression of unicompartmental degenerations because of the excessive load placed on one side of the knee. Therefore, guided growth in skeletally immature patients is recommended. Indication for correction of varus/valgus deformities are based on static weight bearing radiographs. However, the dynamic knee abduction moment during walking showed only a weak correlation to malalignment determined by static radiographs. Therefore, the aim of the study was to measure the effects of guided growth on the normalization of frontal plane knee joint moments during walking. 15 legs of 8 patients (11-15 years) with idiopathic axial varus or valgus malalignment were analyzed. 16 typically developed peers served as controls. Instrumented gait analysis and clinical assessment were performed the day before implantation and explantation of eight-plates. Correlation between static mechanical tibiofemoral axis angle (MAA) and dynamic frontal plane knee joint moments and their change by guided growth were performed. The changes in dynamic knee moment in the frontal plane following guided growth showed high and significant correlation to the changes in static MAA (R=0.97, p<0.001). Contrary to the correlation of the changes, there was no correlation between static and dynamic measures in both sessions. In consequence two patients that had a natural knee moment before treatment showed a more pathological one after treatment. In conclusion, the changes in the dynamic load situation during walking can be predicted from the changes in static alignment. If pre-surgical gait analysis reveals a natural load situation, despite a static varus or valgus deformity, the intervention must be critically discussed.

  19. Disturbed Paraspinal Reflex Following Prolonged Flexion-Relaxation and Recovery

    PubMed Central

    Rogers, Ellen L.; Granata, Kevin P.

    2006-01-01

    Study Design. Repeated measures experimental study of the effect of flexion-relaxation, recovery, and gender on paraspinal reflex dynamics. Objective. To determine the effect of prolonged flexion-relaxation and recovery time on reflex behavior in human subjects. Summary of Background Data. Prolonged spinal flexion has been shown to disturb the paraspinal reflex activity in both animals and human beings. Laxity in passive tissues of the spine from flexion strain may contribute to desensitization of mechanoreceptors. Animal studies indicate that recovery of reflexes may take up to several hours. Little is known about human paraspinal reflex behavior following flexion tasks or the recovery of reflex behavior following the flexion tasks. Methods. A total of 25 subjects performed static flexionrelaxation tasks. Paraspinal muscle reflexes were recorded before and immediately after flexion-relaxation and after a recovery period. Reflexes were quantified from systems identification analyses of electromyographic response in relation to pseudorandom force disturbances applied to the trunk. Results. Trunk angle measured during flexion-relaxation postures was significantly higher following static flexion-relaxation tasks (P < 0.001), indicating creep deformation of passive supporting structures in the trunk. Reflex response was diminished following flexion-relaxation (P < 0.029) and failed to recover to baseline levels during 16 minutes of recovery. Conclusion. Reduced reflex may indicate that the spine is less stable following prolonged flexion-relaxation and, therefore, susceptible to injury. The absence of recovery in reflex after a substantial time indicates that increased low back pain risk from flexion-relaxation may persist after the end of the flexion task. PMID:16582860

  20. Open Knee: Open Source Modeling and Simulation in Knee Biomechanics.

    PubMed

    Erdemir, Ahmet

    2016-02-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical functions of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor-intensive reproduction of model development steps can be avoided. Interested parties can immediately utilize readily available models for scientific discovery and clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes the detailed anatomical representation of the joint's major tissue structures and their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next-generation knee models is noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  1. Anterior cruciate ligament ganglion causing flexion restriction: a case report and review of literature

    PubMed Central

    Koh, Thean Howe Bryan; Lee, Keng Thiam

    2016-01-01

    Ganglion cysts originating from the anterior cruciate ligament (ACL) are uncommon. Often asymptomatic, they infrequently present with non-specific symptoms such as knee pain, stiffness, clicks, locking or restriction of knee extension. However, the patient we report presented with knee flexion restriction. A 37-year-old Chinese gentleman, with no history of knee trauma, presented with left knee pain. Left knee range of motion (ROM) was from 0 to 110 degrees. Magnetic resonance imaging (MRI) scan revealed a 1.5 cm × 3.3 cm × 1.7 cm cyst located in the intercondylar region arising from the ACL and extending predominantly posteriorly. Arthroscopy confirmed an intrasubstance ACL ganglion cyst, which was extending posteriorly. Complete excision of the cyst was performed. At 1-year follow-up, the patient regained knee flexion of 130 degrees. We describe one of the largest ACL ganglion cysts. Such cysts often extend anteriorly and impinge onto the roof of the intercondylar notch during knee extension, thus restricting extension. The restriction in knee motion in our patient was in flexion instead; this was because the cyst took an unusual course of extension predominantly in the posterior direction. Although rare, it must be included as a possible differential diagnosis when patients present with such knee symptoms. PMID:27386493

  2. Comparison of knee gait kinematics of workers exposed to knee straining posture to those of non-knee straining workers.

    PubMed

    Gaudreault, Nathaly; Hagemeister, Nicola; Poitras, Stéphane; de Guise, Jacques A

    2013-06-01

    Workers exposed to knee straining postures, such as kneeling and squatting, may present modifications in knee gait kinematics that can make them vulnerable to osteoarthritis. In this study, knee kinematics of workers exposed to occupational knee straining postures (KS workers) were compared to those of non-knee straining (non-KS) workers. Eighteen KS workers and 20 non-KS workers participated in the study. Three-dimensional gait kinematic data were recorded at the knee using an electromagnetic motion tracking system. The following parameters were extracted from flexion/extension, adduction/abduction and internal/external rotation angle data and used for group comparisons: knee angle at initial foot contact, peak angles, minimal angles and angle range during the entire gait cycle. Group comparisons were performed with Student t-tests. In the sagittal plane, KS workers had a greater knee flexion angle at initial foot contact, a lower peak knee flexion angle during the swing phase and a lower angle range than non-KS workers (p<0.05). In the frontal plane, all parameters indicated that KS workers had their knees more adducted than non-KS workers. External/internal rotation range was greater for KS workers. This study provides new knowledge on work related to KS postures and knee kinematics. The results support the concept that KS workers might exhibit knee kinematics that are different from those of non-KS workers.

  3. Patient function after a posterior stabilizing total knee arthroplasty: cam-post engagement and knee kinematics.

    PubMed

    Suggs, Jeremy F; Hanson, George R; Park, Sang Eun; Moynihan, Angela L; Li, Guoan

    2008-03-01

    Even though posterior substituting total knee arthroplasty has been widely used in surgery, how the cam-post mechanism (posterior substituting mechanism) affects knee joint kinematics and function in patients is not known. The objective of the present study was to investigate posterior femoral translation, internal tibial rotation, tibiofemoral contact, and cam-post engagement of total knee arthroplasty patients during in vivo weight-bearing flexion. Twenty-four knees with a PS TKA were investigated while performing a single leg weight-bearing lunge from full extension to maximum flexion as images were recorded using a dual fluoroscopic system. The in vivo knee position at each targeted flexion angle was reproduced using 3D TKA models and the fluoroscopic images. The kinematics of the knee was measured from the series of the total knee arthroplasty models. The cam-post engagement was determined when the surface model of the femoral cam overlapped with that of the tibial post. The mean maximum flexion angle for all the subjects was 112.5 +/- 13.1 degrees . The mean flexion angle where cam-post engagement was observed was 91.1 +/- 10.9 degrees . The femur moved anteriorly from 0 degrees to 30 degrees and posteriorly through the rest of the flexion range. The internal tibial rotation increased approximately 6 degrees from full extension to 90 degrees of flexion and decreased slightly with further flexion. Both the medial and lateral contact point moved posteriorly from 0 degrees to 30 degrees , remained relatively constant from 30 degrees to 90 degrees , and then moved further posterior from 90 degrees to maximum flexion. The in vivo cam-post engagement corresponded to increased posterior translation and reduced internal tibial rotation at high flexion of the posterior substituting total knee arthroplasty. The initial cam-post engagement was also mildly correlated with the maximum flexion angle of the knee (R = 0.51, p = 0.019). A later cam-post engagement might

  4. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait.

    PubMed

    Hatfield, Gillian L; Hubley-Kozey, Cheryl L; Astephen Wilson, Janie L; Dunbar, Michael J

    2011-02-01

    This study determined how total knee arthroplasty (TKA) altered knee motion and loading during gait. Three-dimensional kinematic and kinetic gait patterns of 42 patients with severe knee osteoarthritis were collected 1 week prior and 1-year post-TKA. Principal component analysis extracted major patterns of variability in the gait waveforms. Overall and midstance knee adduction moment magnitude decreased. Overall knee flexion angle magnitude increased due to an increase during swing. Increases in the early stance knee flexion moment and late stance knee extension moment were found, indicating improved impact attenuation and function. A decrease in the early stance knee external rotation moment indicated alteration in the typical rotation mechanism. Most changes moved toward an asymptomatic pattern and would be considered improvements in motion, function, and loading.

  5. The influence of joint line position on knee stability after condylar knee arthroplasty.

    PubMed

    Martin, J W; Whiteside, L A

    1990-10-01

    Using a special knee-testing device, ten knees obtained at autopsy were subjected to varus-valgus, anterior-posterior, and flexion-rotation analysis in the intact state and after total knee arthroplasty. The ten knees showed no significant change in stability after knee replacement when the joint line was maintained in its natural position. When the femoral component was repositioned 5 mm proximally and 5 mm anteriorly, a significant increase in laxity occurred during midflexion. When the joint line was shifted 5 mm distal and 5 mm posterior to its anatomic location, significant tightening occurred in midrange of motion. Coupled rotation of the tibia with knee flexion was decreased after surgery in all knees with no specific relationship to joint line position. Coupled rotation with varus-valgus testing, however, remained within the normal range through the first 30 degrees of flexion only when the joint line was restored to its normal anatomic position. Stability in condylar knee arthroplasty is in part dependent on position of the joint line. Surgical techniques that rely on restoring the flexion and extension gap without regard to joint line position may result in alteration of varus-valgus or anterior-posterior displacement in midrange flexion. PMID:2208849

  6. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion.

    PubMed

    Saito, Akira; Akima, Hiroshi

    2015-01-01

    Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230-240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.

  7. Deconditioned Knee: The Effectiveness of a Rehabilitation Program that Restores Normal Knee Motion to Improve Symptoms and Function

    PubMed Central

    Biggs, Angela; Gray, Tinker

    2007-01-01

    Background Knee pain can cause a deconditioned knee. Deconditioned is defined as causing one to lose physical fitness. Therefore, a deconditioned knee is defined as a painful syndrome caused by anatomical or functional abnormalities that result in a knee flexion contracture (functional loss of knee extension), decreased strength, and decreased function. To date, no published studies exist examining treatment for a deconditioned knee. Objective To determine the effectiveness of a rehabilitation program focused on increasing range of motion for patients with a deconditioned knee. Methods Fifty patients (mean age 53.2 years) enrolled in the study. Objective evaluation included radiographs, knee range of motion, and isokinetic strength testing. The International Knee Documentation Committee (IKDC) subjective questionnaire was used to measure symptoms and function. Patients were given a rehabilitation program to increase knee extension (including hyperextension) and flexion equal to the normal knee, after which patients were instructed in leg strengthening exercises. Results Knee extension significantly improved from a mean deficit of 10° to 3° and knee flexion significantly improved from a mean deficit of 19° to 9°. The IKDC survey scores significantly improved from a mean of 34.5 points to 70.5 points 1 year after beginning treatment. The IKDC subjective pain frequency and severity scores were significantly improved. Conclusions A rehabilitation program that improves knee range of motion can relieve pain and improve function for patients with a deconditioned knee. PMID:21522205

  8. Validating Dual Fluoroscopy System Capabilities for Determining In-Vivo Knee Joint Soft Tissue Deformation: A Strategy for Registration Error Management.

    PubMed

    Sharma, Gulshan B; Kuntze, Gregor; Kukulski, Diane; Ronsky, Janet L

    2015-07-16

    Knee osteoarthritis (OA) causes structural and mechanical changes within tibiofemoral (TF) cartilage affecting tissue load deformation behavior. Quantifying in-vivo TF soft tissue deformations in healthy and early OA may provide a novel biomechanical marker, sensitive to alterations occurring prior to radiographic change. Dual Fluoroscopy (DF) allows accurate in-vivo TF soft tissue deformation assessment but requires validation. In-vivo healthy and early OA TF cartilage deforms 0.3-1.2mm during static standing full body-weight loading. Our aim was to establish minimum detectable displacement (MDD) for femoral translation in a DF system using a marker-based and markerless approach with variable image intensifier magnifications. An instrumented frame allowed controlled femur specimen translations. Bone positions were reconstructed from DF data using centroids of affixed steel beads (marker-based) and 2D-3D bone feature registration (markerless). Statistical analyses included independent samples t-tests and reliability analysis. Markerless measurements by three trained operators had large variations making it prudent to have an appropriate error management strategy when performing 2D-3D registration. Marker-based MDD improved with image resolution and was 0.05 mm at 3.2 LP/mm (LP: line pairs). Markerless MDD at 3.2 LP/mm was 0.08 mm. Average femur and tibia 2D-3D registrations yielded excellent reliability (84.4%). Therefore, DF images acquired at resolution greater than 3.2 LP/mm would be capable for determining accurate and reliable in-vivo healthy and early OA TF soft tissue deformation. This study provides a registration error management strategy for in-vivo TF soft tissue deformation assessment that could be applied for future clinical applications to establish non-invasive biomechanical markers for early OA diagnosis.

  9. Forces and moments on the knee during kneeling and squatting.

    PubMed

    Pollard, Jonisha P; Porter, William L; Redfern, Mark S

    2011-08-01

    Euler angle decomposition and inverse dynamics were used to determine the knee angles and net forces and moments applied to the tibia during kneeling and squatting with and without kneepads for 10 subjects in four postures: squatting (Squat), kneeling on the right knee (One Knee), bilateral kneeling near full flexion (Near Full) and bilateral kneeling near 90° flexion (Near 90). Kneepads affected the knee flexion (p = .002), medial forces (p = .035), and internal rotation moments (p = .006). Squat created loading conditions that had higher varus (p < .001) and resultant moments (p = .027) than kneeling. One Knee resulted in the highest force magnitudes and net moments (p < .001) of the kneeling postures. Thigh-calf and heel-gluteus contact forces decreased the flexion moment on average by 48% during Squat and Near Full.

  10. Knee Brace Would Lock And Unlock Automatically

    NASA Technical Reports Server (NTRS)

    Myers, Neill; Forbes, John; Shadoan, Mike; Baker, Kevin

    1995-01-01

    Proposed knee brace designed to aid rehabilitation of person who suffered some muscle damage in leg. Not limited to locking in straight-leg position and, instead, locks at any bend angle. Does not prevent knee from bearing weight. Instead, knee brace allows knee to bear weight and locks only when foot and lower leg bear weight. Thus, brace prevents flexion that wearer desired to prevent but could not prevent because of weakened muscles. Knee bends freely to exercise knee-related muscles. Knee brace strapped at upper end to leg above knee, and anchored at lower end by stirrup under foot. Joint mechanism (identical mechanisms used in left and right assemblies) allows knee joint to flex freely except when weight applied to heel.

  11. Influences of trunk flexion on mechanical energy flow in the lower extremities during gait

    PubMed Central

    Takeda, Takuya; Anan, Masaya; Takahashi, Makoto; Ogata, Yuta; Tanimoto, Kenji; Shinkoda, Koichi

    2016-01-01

    [Purpose] The time-series waveforms of mechanical energy generation, absorption, and transfer through the joints indicate how movements are produced and controlled. Previous studies have used these waveforms to evaluate and describe the efficiency of human movements. The purpose of this study was to examine the influence of trunk flexion on mechanical energy flow in the lower extremities during gait. [Subjects and Methods] The subjects were 8 healthy young males (mean age, 21.8 ± 1.3 years, mean height, 170.5 ± 6.8 cm, and mean weight, 60.2 ± 6.8 kg). Subjects walked at a self-selected gait speed under 2 conditions: normal gait (condition N), and gait with trunk flexion formed with a brace to simulate spinal curvature (condition TF). The data collected from initial contact to the mid-stance of gait was analyzed. [Results] There were no significant differences between the 2 conditions in the mechanical energy flow in the knee joint and negative mechanical work in the knee joint. However, the positive mechanical work of the knee joint under condition TF was significantly less than that under condition N. [Conclusion] Trunk flexion led to knee flexion in a standing posture. Thus, a strategy of moving of center of mass upward by knee extension using less mechanical energy was selected during gait in the trunk flexed posture. PMID:27313351

  12. Influences of trunk flexion on mechanical energy flow in the lower extremities during gait.

    PubMed

    Takeda, Takuya; Anan, Masaya; Takahashi, Makoto; Ogata, Yuta; Tanimoto, Kenji; Shinkoda, Koichi

    2016-05-01

    [Purpose] The time-series waveforms of mechanical energy generation, absorption, and transfer through the joints indicate how movements are produced and controlled. Previous studies have used these waveforms to evaluate and describe the efficiency of human movements. The purpose of this study was to examine the influence of trunk flexion on mechanical energy flow in the lower extremities during gait. [Subjects and Methods] The subjects were 8 healthy young males (mean age, 21.8 ± 1.3 years, mean height, 170.5 ± 6.8 cm, and mean weight, 60.2 ± 6.8 kg). Subjects walked at a self-selected gait speed under 2 conditions: normal gait (condition N), and gait with trunk flexion formed with a brace to simulate spinal curvature (condition TF). The data collected from initial contact to the mid-stance of gait was analyzed. [Results] There were no significant differences between the 2 conditions in the mechanical energy flow in the knee joint and negative mechanical work in the knee joint. However, the positive mechanical work of the knee joint under condition TF was significantly less than that under condition N. [Conclusion] Trunk flexion led to knee flexion in a standing posture. Thus, a strategy of moving of center of mass upward by knee extension using less mechanical energy was selected during gait in the trunk flexed posture.

  13. Knee pain

    MedlinePlus

    Pain - knee ... Knee pain can have different causes. Being overweight puts you at greater risk for knee problems. Overusing your knee can trigger knee problems that cause pain. If you have a history of arthritis, it ...

  14. Knee closure in total knee replacement: a randomized prospective trial.

    PubMed

    Masri, B A; Laskin, R S; Windsor, R E; Haas, S B

    1996-10-01

    A randomized prospective study of 75 total knee replacements in 64 patients who were randomized to capsular closure with the knee in full extension or in flexion was done. Thirty-one knees received a posterior cruciate ligament retaining prosthesis and 44 knees received a posterior stabilized prosthesis. Preoperatively, there was no significant difference between the groups, and patients were stratified by surgeon and type of prosthesis. Postoperatively, all patients were evaluated by a physical therapist who did not know the type of prosthesis the patient received. In addition to the range of motion obtained at discharge; the number of days required to achieve unassisted transfer; the number of days required to achieve assisted and unassisted use of a walker, cane, and stairs; and the number of days to discharge from the hospital were recorded. All patients were also evaluated at 2 to 3 months postoperatively, and the Knee Society clinical rating system scores were compared. There was no statistically significant difference in any of the early rehabilitation parameters or in the 2- to 3-month followup data. Moreover, there was no statistically significant difference in the rate of complications. With stratification according to the type of prosthesis used or the surgeon performing the operation, there was still no statistically significant difference in any of the studied parameters. It was therefore concluded that the degree of knee flexion at the time of capsular closure in total knee replacement has no effect on early rehabilitation after total knee replacement.

  15. An improved OpenSim gait model with multiple degrees of freedom knee joint and knee ligaments.

    PubMed

    Xu, Hang; Bloswick, Donald; Merryweather, Andrew

    2015-08-01

    Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.

  16. Knee Muscular Control During Jump Landing in Multidirections

    PubMed Central

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Materials and Methods Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A ViconTM 612 workstation collected the kinematic data. An electromyography was synchronized with the ViconTM Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Results Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing. Conclusions A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention. PMID:27625758

  17. Mobile Sensor Application for Kinematic Detection of the Knees

    PubMed Central

    Suputtitada, Areerat; Khovidhungij, Watcharapong

    2015-01-01

    Objective To correctly measure the knee joint angle, this study utilized a Qualisys motion capture system and also used it as the reference to assess the validity of the study's Inertial Measurement Unit (IMU) system that consisted of four IMU sensors and the Knee Angle Recorder software. The validity was evaluated by the root mean square (RMS) of different angles and the intraclass correlation coefficient (ICC) values between the Qualisys system and the IMU system. Methods Four functional knee movement tests for ten healthy participants were investigated, which were the knee flexion test, the hip and knee flexion test, the forward step test and the leg abduction test, and the walking test. Results The outcomes of the knee flexion test, the hip and knee flexion test, the forward step test, and the walking test showed that the RMS of different angles were less than 6°. The ICC values were in the range of 0.84 to 0.99. However, the leg abduction test showed a poor correlation in the measurement of the knee abduction-adduction movement. Conclusion The IMU system used in this study is a new good method to measure the knee flexion-extension movement. PMID:26361597

  18. Knee Muscular Control During Jump Landing in Multidirections

    PubMed Central

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Materials and Methods Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A ViconTM 612 workstation collected the kinematic data. An electromyography was synchronized with the ViconTM Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Results Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing. Conclusions A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  19. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    PubMed Central

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  20. [Knee endoprosthesis: sports orthopedics possibilities and limitations].

    PubMed

    Kuster, M S; Grob, K; Gächter, A

    2000-08-01

    Many patients would like to resume some sport activities after total knee replacement; however, most recommendations are based on subjective opinion rather than scientific evidence. The following paper presents a literature review of sports after total knee replacement and includes recommendations which are based on biomechanical laws. Most total knee designs show increased conformity near full extension. Beyond a certain knee flexion angle, the conformity ratio decreases due to a reduced femoral radius. Therefore, these designs accept higher loads near full extension than in flexion. In order to recommend suitable physical activities after total knee replacement, both the load and the knee flexion angle of the peak load must be considered. It has been shown that power walking and cycling produce the lowest polyethylene inlay stress of a total knee replacement and seem to be the least demanding endurance activities. Jogging and downhill walking show high inlay stress levels and should be avoided. Hence, for mountain hiking, patients are advised to avoid descents or at least use skipoles and walk slowly downhill to reduce the load on the knee joint. It must also be mentioned that any activity represents additional wear, which may affect the long-term results of total knee replacements. Further clinical studies are necessary to validate the biomechanical investigations. PMID:11013918

  1. Structure, Sex, and Strength and Knee and Hip Kinematics During Landing

    PubMed Central

    Howard, Jennifer S; Fazio, Melisa A.; Mattacola, Carl G.; Uhl, Timothy L.; Jacobs, Cale A.

    2011-01-01

    Context: Researchers have observed that medial knee collapse is a mechanism of knee injury. Lower extremity alignment, sex, and strength have been cited as contributing to landing mechanics. Objective: To determine the relationship among measurements of asymmetry of unilateral hip rotation (AUHR); mobility of the foot, which we described as relative arch deformity (RAD); hip abduction–external rotation strength; sex; and me-dial collapse of the knee during a single-leg jump landing. We hypothesized that AUHR and RAD would be positively correlated with movements often associated with medial collapse of the knee, including hip adduction and internal rotation excursions and knee abduction and rotation excursions. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty women and 15 men (age = 21 ± 2 years, height = 171.7 ± 9.5 cm, mass = 68.4 ± 9.5 kg) who had no history of surgery or recent injury and who participated in regular physical activity volunteered. Interventions : Participants performed 3 double-leg forward jumps with a single-leg landing. Three-dimensional kinematic data were sampled at 100 Hz using an electromagnetic tracking system. We evaluated AUHR and RAD on the preferred leg and evaluated isometric peak hip abductor–external rotation torque. We assessed AUHR by calculating the difference between internal and external hip rotation in the prone position (AUHR = internal rotation – external rotation). We evaluated RAD using the Arch Height Index Measurement System. Correlations and linear regression analyses were used to assess relationships among AUHR, RAD, sex, peak hip abduction–external rotation torque, and kinematic variables for 3-dimensional motion of the hip and knee. Main Outcome Measure(s): The dependent variables were joint angles at contact and joint excursions between contact and peak knee flexion. Results: We found that AUHR was correlated with hip adduction excursion (R = 0

  2. Surface marker cluster translation, rotation, scaling and deformation: Their contribution to soft tissue artefact and impact on knee joint kinematics.

    PubMed

    Benoit, D L; Damsgaard, M; Andersen, M S

    2015-07-16

    When recording human movement with stereophotogrammetry, skin deformation and displacement (soft tissue artefact; STA) inhibits surface markers' ability to validly represent the movement of the underlying bone. To resolve this issue, the components of marker motions which contribute to STA must be understood. The purpose of this study is to describe and quantify which components of this marker motion (cluster translation, rotation, scaling and deformation) contribute to STA during the stance phase of walking, a cutting manoeuvre, and one-legged hops. In vivo bone pin-based tibio-femoral kinematics of six healthy subjects were used to study skin marker-based STA. To quantify how total cluster translation, rotation, scaling and deformation contribute to STA, a resizable and deformable cluster model was constructed. STA was found to be greater in the thigh than the shank during all three movements. We found that the non-rigid (i.e. scaling and deformation) movements contribute very little to the overall amount of error, rendering surface marker optimisation methods aimed at minimising this component superfluous. The results of the current study indicate that procedures designed to account for cluster translation and rotation during human movement are required to correctly represent the motion of body segments, however reducing marker cluster scaling and deformation will have little effect on STA. PMID:25935684

  3. The effectiveness of posterior knee capsulotomies and knee extension osteotomies in crouched gait in children with cerebral palsy.

    PubMed

    Taylor, Daveda; Connor, Justin; Church, Chris; Lennon, Nancy; Henley, John; Niiler, Tim; Miller, Freeman

    2016-11-01

    Crouched gait is common in children with cerebral palsy (CP), and there are various treatment options. This study evaluated the effectiveness of single-event multilevel surgery including posterior knee capsulotomy or distal femoral extension osteotomy to correct knee flexion contracture in children with CP. Gait analyses were carried out to evaluate gait preoperatively and postoperatively. Significant improvements were found in physical examination and kinematic measures, which showed that children with CP and crouched gait who develop knee flexion contractures can be treated effectively using single-event multilevel surgery including a posterior knee capsulotomy or distal femoral extension osteotomy.

  4. Knee Replacement

    MedlinePlus

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  5. A dynamic multibody model of the physiological knee to predict internal loads during movement in gravitational field.

    PubMed

    Bersini, Simone; Sansone, Valerio; Frigo, Carlo A

    2016-01-01

    Obtaining tibio-femoral (TF) contact forces, ligament deformations and loads during daily life motor tasks would be useful to better understand the aetiopathogenesis of knee joint diseases or the effects of ligament reconstruction and knee arthroplasty. However, methods to obtain this information are either too simplified or too computationally demanding to be used for clinical application. A multibody dynamic model of the lower limb reproducing knee joint contact surfaces and ligaments was developed on the basis of magnetic resonance imaging. Several clinically relevant conditions were simulated, including resistance to hyperextension, varus-valgus stability, anterior-posterior drawer, loaded squat movement. Quadriceps force, ligament deformations and loads, and TF contact forces were computed. During anterior drawer test the anterior cruciate ligament (ACL) was maximally loaded when the knee was extended (392 N) while the posterior cruciate ligament (PCL) was much more stressed during posterior drawer when the knee was flexed (319 N). The simulated loaded squat revealed that the anterior fibres of ACL become inactive after 60° of flexion in conjunction with PCL anterior bundle activation, while most components of the collateral ligaments exhibit limited length changes. Maximum quadriceps and TF forces achieved 3.2 and 4.2 body weight, respectively. The possibility to easily manage model parameters and the low computational cost of each simulation represent key points of the present project. The obtained results are consistent with in vivo measurements, suggesting that the model can be used to simulate complex and clinically relevant exercises.

  6. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking.

    PubMed

    Andrysek, Jan; Klejman, Susan; Kooy, John

    2013-08-01

    The goal of this study was to investigate clinically relevant biomechanical conditions relating to the setup and alignment of knee-ankle-foot orthoses and the influence of these conditions on knee extension moments and orthotic stance control during gait. Knee moments were collected using an instrumented gait laboratory and concurrently a load transducer embedded at the knee-ankle-foot orthosis knee joint of four individuals with poliomyelitis. We found that knee extension moments were not typically produced in late stance-phase of gait. Adding a dorsiflexion stop at the orthotic ankle significantly decreased the knee flexion moments in late stance-phase, while slightly flexing the knee in stance-phase had a variable effect. The findings suggest that where users of orthoses have problems initiating swing-phase flexion with stance control orthoses, an ankle dorsiflexion stop may be used to enhance function. Furthermore, the use of stance control knee joints that lock while under flexion may contribute to more inconsistent unlocking of the stance control orthosis during gait.

  7. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.

    PubMed

    Guess, Trent M; Liu, Hongzeng; Bhashyam, Sampath; Thiagarajan, Ganesh

    2013-01-01

    Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions. PMID:21970765

  8. Prosthetic knee design by simulation

    SciTech Connect

    Hollerbach, K; Hollister, A

    1999-07-30

    Although 150,000 total knee replacement surgeries are performed annually in North America, current designs of knee prostheses have mechanical problems that include a limited range of motion, abnormal gait patterns, patellofemoral joint dysfunction, implant loosening or subsidence, and excessive wear. These problems fall into three categories: failure to reproduce normal joint kinematics, which results in altered limb function; bone-implant interface failure; and material failure. Modern computer technology can be used to design, prototype, and test new total knee implants. The design team uses the full range of CAD-CAM to design and produce implant prototypes for mechanical and clinical testing. Closer approximation of natural knee kinematics and kinetics is essential for improved patient function and diminished implant loads. Current knee replacement designs are based on 19th Century theories that the knee moves about a variable axis of rotation. Recent research has shown, however, that knee motion occurs about two fixed, offset axes of rotation. These aces are not perpendicular to the long axes of the bones or to each other, and the axes do not intersect. Bearing surfaces of mechanisms that move about axes of rotation are surfaces of revolution of those axes which advanced CAD technology can produce. Solids with surfaces of revolution for the two axes of rotation for the knee have been made using an HP9000 workstation and Structural Ideas Master Series CAD software at ArthroMotion. The implant's CAD model should closely replicate movements of the normal knee. The knee model will have a range of flexion-extension (FE) from -5 to 120 degrees. Movements include varus, valgus, internal and external rotation, as well as flexion and extension. The patellofemoral joint is aligned perpendicular to the FE axis and replicates the natural joint more closely than those of existing prostheses. The bearing surfaces will be more congruent than current designs and should

  9. Dynamic activity dependence of in vivo normal knee kinematics.

    PubMed

    Moro-oka, Taka-aki; Hamai, Satoshi; Miura, Hiromasa; Shimoto, Takeshi; Higaki, Hidehiko; Fregly, Benjamin J; Iwamoto, Yukihide; Banks, Scott A

    2008-04-01

    Dynamic knee kinematics were analyzed for normal knees in three activities, including two different types of maximum knee flexion. Continuous X-ray images of kneel, squat, and stair climb motions were taken using a large flat panel detector. CT-derived bone models were used for model registration-based 3D kinematic measurement. Three-dimensional joint kinematics and contact locations were determined using three methods: bone-fixed coordinate systems, interrogation of CT-based bone model surfaces, and interrogation of MR-based articular cartilage model surfaces. The femur exhibited gradual external rotation throughout the flexion range. Tibiofemoral contact exhibited external rotation, with contact locations translating posterior while maintaining 15 degrees to 20 degrees external rotation from 20 degrees to 80 degrees of flexion. From 80 degrees to maximum flexion, contact locations showed a medial pivot pattern. Kinematics based on bone-fixed coordinate systems differed from kinematics based on interrogation of CT and MR surfaces. Knee kinematics varied significantly by activity, especially in deep flexion. No posterior subluxation occurred for either femoral condyle in maximum knee flexion. Normal knees accommodate a range of motions during various activities while maintaining geometric joint congruency.

  10. In vivo motion of femoral condyles during weight-bearing flexion after anterior cruciate ligament rupture using biplane radiography.

    PubMed

    Chen, Kaining; Yin, Li; Cheng, Liangjun; Li, Chuan; Chen, Cheng; Yang, Liu

    2013-01-01

    The purpose of this study was to investigate in vivo three- dimensional tibiofemoral kinematics and femoral condylar motion in knees with anterior cruciate ligament (ACL) deficiency during a knee bend activity. Ten patients with unilateral ACL rupture were enrolled. Both the injured and contralateral normal knees were imaged using biplane radiography at extension and at 15°, 30°, 60°, 90°, and 120° of flexion. Bilateral knees were next scanned by computed tomography, from which bilateral three-dimensional knee models were created. The in vivo tibiofemoral motion at each flexion position was reproduced through image registration using the knee models and biplane radiographs. A joint coordinate system containing the geometric center axis of the femur was used to measure the tibiofemoral motion. In ACL deficiency, the lateral femoral condyle was located significantly more posteriorly at extension and at 15° (p < 0.05), whereas the medial condylar position was changed only slightly. This constituted greater posterior translation and external rotation of the femur relative to the tibia at extension and at 15° (p < 0.05). Furthermore, ACL deficiency led to a significantly reduced extent of posterior movement of the lateral condyle during flexion from 15° to 60° (p < 0.05). Coupled with an insignificant change in the motion of the medial condyle, the femur moved less posteriorly with reduced extent of external rotation during flexion from 15° to 60° in ACL deficiency (p < 0.05). The medial- lateral and proximal-distal translations of the medial and lateral condyles and the femoral adduction-abduction rotation were insignificantly changed after ACL deficiency. The results demonstrated that ACL deficiency primarily changed the anterior-posterior motion of the lateral condyle, producing not only posterior subluxation at low flexion positions but also reduced extent of posterior movement during flexion from 15° to 60°. Key PointsThree-dimensional tibiofemoral

  11. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    NASA Astrophysics Data System (ADS)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  12. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    PubMed Central

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment. PMID:26752228

  13. Effect of knee joint angle on side-to-side strength ratios.

    PubMed

    Krishnan, Chandramouli; Williams, Glenn N

    2014-10-01

    Isometric knee extensor and flexor strength are typically tested at different joint angles due to the differences in length-tension relationships of the quadriceps and hamstring muscles. The efficiency of strength testing can be improved if the same angle can be used to test both the knee extensor and flexor muscle groups. The aim of this study was to determine an optimal angle for isometric knee strength testing by examining the effect of knee angle on side-to-side peak torque ratios. Eighteen active young people (9 males and 9 females) participated in this study. Knee extensor and knee flexor strength were tested on both sides at 30°, 60°, and 90° of knee flexion. The effect of knee flexion angle on side-to-side peak torque ratios, raw torque values, and side-to-side flexor-to-extensor torque ratios were assessed. Side-to-side knee extensor peak torque ratios and knee flexor-to-extensor torque ratios differed significantly by knee flexion angle (p = 0.024 and p = 0.011, respectively), but side-to-side knee flexor peak torque ratios did not differ significantly (p = 0.311). When considering both side-to-side peak torque ratios and flexor-to-extensor torque ratios, the values were more symmetrical (i.e., closer to 100%) only at 60° of knee flexion. Our results indicate that both the knee flexors and the knee extensors can be tested clinically at 60° of knee flexion. Our results also indicate that the hamstrings can be tested at any of the 3 angles if the examiner is interested in side-to-side ratios rather than raw torque values. These results may facilitate more efficient and flexible clinical knee strength testing.

  14. Design and evaluation of an orthotic knee-extension assist.

    PubMed

    Spring, Alexander N; Kofman, Jonathan; Lemaire, Edward D

    2012-09-01

    Individuals with quadriceps muscle weakness often have difficulty generating the knee-extension moments required to complete common mobility tasks. A new device that provides knee-extension moments through a range of knee angles was designed to help individuals perform stand-to-sit and sit-to-stand tasks. The novel knee-extension assist (KEA) was designed as a modular component to be incorporated into existing knee-ankle-foot orthoses or used in a knee orthosis. During stand-to-sit, a set of springs is loaded as the knee flexes under bodyweight and the KEA thus provides a knee-extension moment that aids in achieving a smoothly controlled knee flexion. The springs can be locked in place at the end of knee flexion to prevent unwanted knee extension while the user is seated. The entire knee extension assist can be disengaged to allow free joint motion anytime the affected leg is unloaded. During sit-to-stand, the KEA assists knee extension by returning the energy stored in the springs as an extension moment. In mechanical testing of a prototype of the new KEA, a mean maximum extension moment of 42.9 ± 0.46 Nm was provided by the device during flexion and 28.4 ± 0.28 Nm during extension. A biomechanical evaluation with two able-bodied individuals demonstrated the effectiveness of the KEA in successfully assisting stand-to-sit and sit-to-stand tasks. During stand-to-sit, the KEA provided 82% and 75% of the total (muscle and KEA) knee-extension moment required by the braced leg for the task for the two subjects, respectively; and during sit-to-stand, the KEA provided 56% and 50% of the total knee-extension moment for the two subjects, respectively. This KEA performance exceeded 50% knee-extension moment assistance for a 70 kg person.

  15. Changes in the activity of trunk and hip extensor muscles during bridge exercises with variations in unilateral knee joint angle

    PubMed Central

    Kim, Juseung; Park, Minchul

    2016-01-01

    [Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles. PMID:27799688

  16. Post-traumatic knee stiffness: surgical techniques.

    PubMed

    Pujol, N; Boisrenoult, P; Beaufils, P

    2015-02-01

    Post-traumatic knee stiffness and loss of range of motion is a common complication of injuries to the knee area. The causes of post-traumatic knee stiffness can be divided into flexion contractures, extension contractures, and combined contractures. Post-traumatic stiffness can be due to the presence of dense intra-articular adhesions and/or fibrotic transformation of peri-articular structures. Various open and arthroscopic surgical treatments are possible. A precise diagnosis and understanding of the pathology is mandatory prior to any surgical treatment. Failure is imminent if all pathologies are not addressed correctly. From a general point of view, a flexion contracture is due to posterior adhesions and/or anterior impingement. On the other hand, extension contractures are due to anterior adhesions and/or posterior impingement. This overview will describe the different modern surgical techniques for treating post-traumatic knee stiffness. Any bony impingements must be treated before soft tissue release is performed. Intra-articular stiff knees with a loss of flexion can be treated by an anterior arthroscopic arthrolysis. Extra-articular pathology causing a flexion contracture can be treated by open or endoscopic quadriceps release. Extension contractures can be treated by arthroscopic or open posterior arthrolysis. Postoperative care (analgesia, rehabilitation) is essential to maintaining the range of motion obtained intra-operatively.

  17. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  18. Effects of 24-week Tai Chi exercise on the knee and ankle proprioception of older women.

    PubMed

    Chang, Shuwan; Zhou, Jihe; Hong, Youlian; Sun, Wei; Cong, Yan; Qin, Meiqin; Lian, Jianhua; Yao, Jian; Li, Weiping

    2016-01-01

    This study examined the effects of regular Tai Chi (TC) exercise on the kinaesthesia of the knee and ankle joints of older women. A total of 43 women aged 55-68 years participated in this study. In a 24-week study period, the TC group (n = 22) underwent an organized TC exercise, whereas the control group (n = 21) maintained a sedentary lifestyle. Customized instruments were used to measure the threshold for the detection of the passive motion of the knee and ankle joints. After 24 weeks, the TC group showed a significantly smaller threshold for the detection of passive motion of knee extension (31.4%, p = 0.009), knee flexion (27.0%, p = 0.044), and ankle dorsal flexion (28.9%, p = 0.014) than the control group. Other comparisons showed no significant differences. The 24-week TC exercise benefited the lower-limb kinaesthesia of the knee joint flexion and extension and ankle dorsal flexion.

  19. Squat exercise to estimate knee megaprosthesis rehabilitation: a pilot study

    PubMed Central

    Lovecchio, Nicola; Zago, Matteo; Sciumè, Luciana; Lopresti, Maurizio; Sforza, Chiarella

    2015-01-01

    [Purpose] This study evaluated a specific rehabilitation protocol using a half squat after total knee reconstruction with distal femur megaprosthesis and tibial allograft-prosthesis composite. [Subject and Methods] Squat execution was recorded by a three-dimensional system before and after a specific rehabilitation program on a 28-year-old patient. Squat duration, body center of mass trajectory, and vertical range of motion were determined. Step width and joint angles and symmetry (hip flexion, extension, and rotation, knee flexion, and ankle dorsal and plantar flexion) were estimated. Knee and hip joint symmetry was computed using a bilateral cyclogram technique. [Results] After rehabilitation, the squat duration was longer (75%), step width was similar, and vertical displacement was higher. Hip flexion increased by over 20%, and ankle dorsiflexion diminished by 14%. The knee had the highest symmetry gain (4.1–3.4%). Angle-angle plot subtended areas decreased from 108° to 40°2 (hip) and from 204° to 85°2 (knee), showing improvement in movement symmetry. [Conclusion] We concluded that the squat is an effective multifactorial exercise to estimate rehabilitation outcomes after megaprosthesis, also considering that compressive and shear forces are minimal up to 60–70° of knee flexion. PMID:26311992

  20. Squat exercise to estimate knee megaprosthesis rehabilitation: a pilot study.

    PubMed

    Lovecchio, Nicola; Zago, Matteo; Sciumè, Luciana; Lopresti, Maurizio; Sforza, Chiarella

    2015-07-01

    [Purpose] This study evaluated a specific rehabilitation protocol using a half squat after total knee reconstruction with distal femur megaprosthesis and tibial allograft-prosthesis composite. [Subject and Methods] Squat execution was recorded by a three-dimensional system before and after a specific rehabilitation program on a 28-year-old patient. Squat duration, body center of mass trajectory, and vertical range of motion were determined. Step width and joint angles and symmetry (hip flexion, extension, and rotation, knee flexion, and ankle dorsal and plantar flexion) were estimated. Knee and hip joint symmetry was computed using a bilateral cyclogram technique. [Results] After rehabilitation, the squat duration was longer (75%), step width was similar, and vertical displacement was higher. Hip flexion increased by over 20%, and ankle dorsiflexion diminished by 14%. The knee had the highest symmetry gain (4.1-3.4%). Angle-angle plot subtended areas decreased from 108° to 40°(2) (hip) and from 204° to 85°(2) (knee), showing improvement in movement symmetry. [Conclusion] We concluded that the squat is an effective multifactorial exercise to estimate rehabilitation outcomes after megaprosthesis, also considering that compressive and shear forces are minimal up to 60-70° of knee flexion.

  1. Total knee arthroplasty using subvastus approach in stiff knee: A retrospective analysis of 110 cases

    PubMed Central

    Shah, Nilen A; Patil, Hitendra Gulabrao; Vaishnav, Vinod O; Savale, Abhijit

    2016-01-01

    Background: Subvastus approach used in total knee arthroplasty (TKA) is known to produce an earlier recovery but is not commonly utilized for TKA when the preoperative range of motion (ROM) of the knee is limited. Subvastus approach is known for its ability to give earlier recovery due to less postoperative pain and early mobilization (due to rapid quadriceps recovery). Subvastus approach is considered as a relative contraindication for TKA in knees with limited ROM due to difficulty in exposure which can increase risk of complications such as patellar tendon avulsion or medial collateral injury. Short stature and obesity are also relative contraindications. Tarabichi successfully used subvastus approach in knees with limited preoperative ROM. However, there are no large series in literature with the experience of the subvatus approach in knees with limited preoperative ROM. We are presenting our experience of the subvastus approach for TKA in knees with limited ROM. Materials and Methods: We conducted retrospective analysis of patients with limited preoperative ROM (flexion ≤90°) of the knee who underwent TKA using subvastus approach and presenting the 2 years results. There were a total 84 patients (110 knees) with mean age 64 (range 49–79 years) years. The mean preoperative flexion was 72° (range 40°–90°) with a total ROM of 64° (range 36°–90°). Results: Postoperatively knee flexion improved by mean 38° (P < 0.05) which was significant as assed by Student's t- test. The mean knee society score improved from 36 (range 20–60) to 80 (range 70–90) postoperatively (P < 0.05). There was one case of partial avulsion of patellar tendon from the tibial tubercle. Conclusions: We concluded that satisfactory results of TKA can be obtained in knees with limited preoperative ROM using subvastus approach maintaining the advantages of early mobilization. PMID:27053806

  2. Knee Bracing: What Works?

    MedlinePlus

    MENU Return to Web version Knee Bracing: What Works? Knee Bracing: What Works? What are knee braces? Knee braces are supports ... have arthritis in their knees. Do knee braces work? Maybe. Companies that make knee braces claim that ...

  3. Fatigue effects on knee joint stability during two jump tasks in women.

    PubMed

    Ortiz, Alexis; Olson, Sharon L; Etnyre, Bruce; Trudelle-Jackson, Elaine E; Bartlett, William; Venegas-Rios, Heidi L

    2010-04-01

    Dynamic knee joint stability may be affected by the onset of metabolic fatigue during sports participation that could increase the risk for knee injury. The purpose of this investigation was to determine the effects of metabolic fatigue on knee muscle activation, peak knee joint angles, and peak knee internal moments in young women during 2 jumping tasks. Fifteen women (mean age: 24.6 +/- 2.6 years) participated in one nonfatigued session and one fatigued session. During both sessions, peak knee landing flexion and valgus joint angles, peak knee extension and varus/valgus internal moments, electromyographic (EMG) muscle activity of the quadriceps and hamstrings, and quadriceps/hamstring EMG cocontraction ratio were measured. The tasks consisted of a single-legged drop jump from a 40-cm box and a 20-cm, up-down, repeated hop task. The fatigued session included a Wingate anaerobic protocol followed by performance of the 2 tasks. Although participants exhibited greater knee injury-predisposing factors during the fatigued session, such as lesser knee flexion joint angles, greater knee valgus joint angles, and greater varus/valgus internal joint moments for both tasks, only knee flexion during the up-down task was statistically significant (p = 0.028). Metabolic fatigue may perhaps predispose young women to knee injuries by impairing dynamic knee joint stability. Training strength-endurance components and the ability to maintain control of body movements in either rested or fatigued situations might help reduce injuries in young women athletes. PMID:20300024

  4. Neonatal Marfan syndrome with congenital arachnodactyly, flexion contractures, and severe cardiac valve insufficiency.

    PubMed Central

    Buntinx, I M; Willems, P J; Spitaels, S E; Van Reempst, P J; De Paepe, A M; Dumon, J E

    1991-01-01

    We describe a male neonate with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, micrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and ocular abnormalities. Severe cardiac valve insufficiency and aortic dilatation resulted in cardiac failure and death 20 hours after birth. This case represents the severe end of the clinical spectrum of Marfan syndrome. As similar patients have been reported, they may represent a separate mutation. Images PMID:1856834

  5. WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR

    SciTech Connect

    Pires, S.

    2010-11-10

    Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.

  6. Displacement of the medial meniscus within the passive motion characteristics of the human knee joint: an RSA study in human cadaver knees.

    PubMed

    Tienen, T G; Buma, P; Scholten, J G F; van Kampen, A; Veth, R P H; Verdonschot, N

    2005-05-01

    The objective of this study was to validate an in vitro human cadaver knee-joint model for the evaluation of the meniscal movement during knee-joint flexion. The question was whether our model showed comparable meniscal displacements to those found in earlier meniscal movement studies in vivo. Furthermore, we determined the influence of tibial torque on the meniscal displacement during knee-joint flexion. Three tantalum beads were inserted in the medial meniscus of six human-cadaver joints. The knee joints were placed and loaded in a loading apparatus, and the movements of the beads were determined by means of RSA during knee-joint flexion and extension with and without internal tibial (IT) and external tibial (ET) torque. During flexion without tibial torque, all menisci moved in posterior and lateral direction. The anterior horn showed significantly greater excursions than the posterior horn in both posterior and lateral direction. Internal tibial torque caused an anterior displacement of the pathway on the tibial plateau. External tibial torque caused a posterior displacement of the pathway. External tibial torque restricted the meniscal displacement during the first 30 degrees of knee-joint flexion. The displacements of the meniscus in this experiment were similar to the displacements described in the in vivo MRI studies. Furthermore, the application of tibial torque confirmed the relative immobility of the posterior horn of the meniscus. During external tibial torque, the posterior displacement of the pathway on the tibial plateau during the first 30 degrees of flexion might be restricted by the attached knee-joint capsule or the femoral condyle. This model revealed representative meniscal displacements during simple knee-joint flexion and also during the outer limits of passive knee-joint motion.

  7. Effect of static stretching of muscles surrounding the knee on knee joint position sense

    PubMed Central

    Ghaffarinejad, Farahnaz; Taghizadeh, Shohreh; Mohammadi, Farshid

    2007-01-01

    Background Muscle stretching is widely used in sport training and in rehabilitation. Considering the important contribution of joint position sense (JPS) to knee joint stability and function, it is legitimate to question if stretching might alter the knee JPS. Objective To evaluate if a stretch regimen consisting of three 30 s stretches alters the knee JPS. Design and setting A blinded, randomised design with a washout time of 24 h was used. Subjects 39 healthy students (21 women, 18 men) volunteered to participate in this study. Methods and main outcome measures JPS was estimated by the ability to reproduce the two target positions (20° and 45° of flexion) in the dominant knee. The absolute angular error (AAE) was defined as the absolute difference between the target angle and the subject perceived angle of knee flexion. AAE values were measured before and immediately after the static stretch. Measurements were repeated three times. The static stretch comprised a 30 s stretch followed by a 30 s pause, three times for each muscle. Results The AAE decreased significantly after the stretching protocols for quadriceps (3.5 (1.3) vs 0.7 (2.4); p<0.001), hamstring (3.6 (2.2) vs 1.6 (3.1); p = 0.016) and adductors (3.7 (2.8) vs 1.7 (2.4); p = 0.016) in 45° of flexion, but no differences were found for values of the gastrocnemius and popliteus muscles in this angle and for the values of all muscles in 20° of flexion (p>0.05). Conclusion The accuracy of the knee JPS in 45° of flexion is improved subsequent to a static stretch regimen of quadriceps, hamstring and adductors in healthy subjects. PMID:17510229

  8. Kinematic analysis of anterior cruciate ligament reconstruction in total knee arthroplasty

    PubMed Central

    Liu, Hua-Wei; Ni, Ming; Zhang, Guo-Qiang; Li, Xiang; Chen, Hui; Zhang, Qiang; Chai, Wei; Zhou, Yong-Gang; Chen, Ji-Ying; Liu, Yu-Liang; Cheng, Cheng-Kung; Wang, Yan

    2016-01-01

    Background: This study aims to retain normal knee kinematics after knee replacement surgeries by reconstructing anterior cruciate ligament during total knee arthroplasty. Method: We use computational simulation tools to establish four dynamic knee models, including normal knee model, posterior cruciate ligament retaining knee model, posterior cruciate ligament substituting knee model, and anterior cruciate ligament reconstructing knee model. Our proposed method utilizes magnetic resonance images to reconstruct solid bones and attachments of ligaments, and assemble femoral and tibial components according representative literatures and operational specifications. Dynamic data of axial tibial rotation and femoral translation from full-extension to 135 were measured for analyzing the motion of knee models. Findings: The computational simulation results show that comparing with the posterior cruciate ligament retained knee model and the posterior cruciate ligament substituted knee model, reconstructing anterior cruciate ligament improves the posterior movement of the lateral condyle, medial condyle and tibial internal rotation through a full range of flexion. The maximum posterior translations of the lateral condyle, medial condyle and tibial internal rotation of the anterior cruciate ligament reconstructed knee are 15.3 mm, 4.6 mm and 20.6 at 135 of flexion. Interpretation: Reconstructing anterior cruciate ligament in total knee arthroplasty has been approved to be an more efficient way of maintaining normal knee kinematics comparing to posterior cruciate ligament retained and posterior cruciate ligament substituted total knee arthroplasty. PMID:27347334

  9. Gait Using Pneumatic Brace for End-Stage Knee Osteoarthritis.

    PubMed

    Kapadia, Bhaveen H; Cherian, Jeffrey Jai; Starr, Roland; Chughtai, Morad; Mont, Michael A; Harwin, Steven F; Bhave, Anil

    2016-04-01

    More than 20 million individuals in the United States are affected by knee osteoarthritis (OA), which can lead to altered biomechanics and excessive joint loading. The use of an unloader pneumatic brace with extension assist has been proposed as a nonoperative treatment modality that may improve gait mechanics and correct knee malalignment. We assessed the following parameters in patients who have knee OA treated with and without a brace: (1) changes in temporospatial parameters in gait; (2) knee range of motion, knee extension at heel strike, and foot placement; (3) knee joint moments and impulse; and (4) changes in dynamic stiffness and rate of change of knee flexion during midstance to terminal stance. This 2:1 prospective, randomized, single-blinded trial evaluated 36 patients (24 brace and 12 matching). OA knee patients were randomized to receive either a pneumatic unloader brace or a standard nonoperative treatment regimen as the matching cohort for a 3-month period. They underwent evaluation of gait parameters using a three-dimensional gait analysis system at their initial appointment and at 3 months follow-up. All the testing, pre- and postbracing were performed without wearing the brace to examine for retained effects. Treatment with the brace led to significant improvements versus standard treatment in various gait parameters. Patients in the brace group had improvements in walking speed, knee extension at heel strike, total range of motion, knee joint forces, and rate of knee flexion from midstance to terminal stance when compared with the matching cohort. Knee OA patients who used a pneumatic unloader brace for 3 months for at least 3 hours per day had significant improvements various gait parameters when compared with a standard nonoperative therapy cohort. Braced patients demonstrated gait-modifying affects when not wearing the brace. These results are encouraging and suggest that this device represents a promising treatment modality for knee OA that

  10. Knee Injuries

    MedlinePlus

    ... Sprains A sprain means you've stretched or torn a ligament. Common knee sprains usually involve damage ... A strain means you've partly or completely torn a muscle or tendon. With knee strains, you ...

  11. Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system.

    PubMed

    Casino, Daniela; Zaffagnini, Stefano; Martelli, Sandra; Lopomo, Nicola; Bignozzi, Simone; Iacono, Francesco; Russo, Alessandro; Marcacci, Maurilio

    2009-04-01

    Interest in the kinematics of reconstructed knees has increased since it was shown that the alteration of knee motion could lead to abnormal wear and damage to soft tissues. We performed intraoperative kinematic measurements using a navigation system to study knee kinematics before and after posterior substituting rotating platform total knee arthroplasty (TKA). We verified intraoperatively (1) if varus/valgus (VV) laxity and anterior/posterior (AP) laxity were restored after TKA; (2) if TKA induced abnormal femoral rollback; and (3) how tibial axial rotation was influenced by TKA throughout the range of flexion. We found that TKA improved alignment in preoperative osteoarthritic varus knees which became neutral after surgery and maintained a neutral alignment in neutral knees. The VV stability at 0 degrees was restored while AP laxity at 90 degrees significantly increased after TKA. Following TKA, the femur had an abnormal anterior translation up to 60 degrees of flexion, followed by a small rollback of 12 +/- 5 mm. TKA influenced the tibia rotation pattern during flexion, but not the total amount of internal/external rotation throughout whole range of flexion, which was preserved after TKA (6 degrees +/- 5 degrees ). This study showed that the protocol proposed might be useful to adjust knee stability at time zero and that knee kinematic outcome during total knee replacement can be monitored by a navigation system.

  12. Total knee replacement in the fixed valgus deformity using a lateral approach: role of the automatic iliotibial band release for a successful balancing.

    PubMed

    Boyer, P; Boublil, D; Magrino, B; Massin, P; Huten, D

    2009-12-01

    The purpose of this work was to document eleven years of experience in knee replacement for fixed knee valgus through a lateral approach with special emphasis on the balancing procedures. At a mean follow-up of seven years, only one revision for sepsis was required in this series of 63 knee replacements. The mean knee score improved from 37 (range 20-45) to 91 (range 65-100) at the last review (p < 0.01) while the function score increased from 29.5 (range 0-50) to 78.7 (range 10-100) (p = 0.01). The mean mechanical axis (HKA) was 14.7 degrees of valgus preoperatively and 1 degrees of valgus postoperatively. After the iliotibial band was automatically released in the approach, only four of 63 knees required additional release for tightness in extension. These results underline the appeal of the lateral approach with the automatic release of the iliotibial band. If required, additional ligament release is recommended step-by-step after bone section to avoid postoperative instability.

  13. The effect of different types of insoles or shoe modifications on medial loading of the knee in persons with medial knee osteoarthritis: a randomised trial.

    PubMed

    Jones, Richard K; Chapman, Graham J; Parkes, Matthew J; Forsythe, Laura; Felson, David T

    2015-11-01

    Many conservative treatments exist for medial knee osteoarthritis (OA) which aims to reduce the external knee adduction moment (EKAM). The objective of this study was to determine the difference between different shoes and lateral wedge insoles on EKAM, knee adduction angular impulse (KAAI), external knee flexion moment, pain, and comfort when walking in individuals with medial knee OA. Seventy individuals with medial knee OA underwent three-dimensional walking gait analysis in five conditions (barefoot, control shoe, typical wedge, supported wedge, and mobility shoe) with pain and comfort recorded concurrently. The change in EKAM, KAAI, external knee flexion moment, pain, and comfort were assessed using multiple linear regressions and pairwise comparisons. Compared with the control shoe, lateral wedge insoles and barefoot walking significantly reduced early stance EKAM and KAAI. The mobility shoe showed no effect. A significant reduction in latter stance EKAM was seen in the lateral wedge insoles compared to the other conditions, with only the barefoot condition reducing the external knee flexion moment. However, the mobility shoe showed significant immediate knee pain reduction and improved comfort scores. Different lateral wedge insoles show comparable reductions in medial knee loading and in our study, the mobility shoe did not affect medial loading.

  14. The effect of different types of insoles or shoe modifications on medial loading of the knee in persons with medial knee osteoarthritis: a randomised trial

    PubMed Central

    Chapman, Graham J.; Parkes, Matthew J.; Forsythe, Laura.; Felson, David T.

    2015-01-01

    ABSTRACT Many conservative treatments exist for medial knee osteoarthritis (OA) which aims to reduce the external knee adduction moment (EKAM). The objective of this study was to determine the difference between different shoes and lateral wedge insoles on EKAM, knee adduction angular impulse (KAAI), external knee flexion moment, pain, and comfort when walking in individuals with medial knee OA. Seventy individuals with medial knee OA underwent three‐dimensional walking gait analysis in five conditions (barefoot, control shoe, typical wedge, supported wedge, and mobility shoe) with pain and comfort recorded concurrently. The change in EKAM, KAAI, external knee flexion moment, pain, and comfort were assessed using multiple linear regressions and pairwise comparisons. Compared with the control shoe, lateral wedge insoles and barefoot walking significantly reduced early stance EKAM and KAAI. The mobility shoe showed no effect. A significant reduction in latter stance EKAM was seen in the lateral wedge insoles compared to the other conditions, with only the barefoot condition reducing the external knee flexion moment. However, the mobility shoe showed significant immediate knee pain reduction and improved comfort scores. Different lateral wedge insoles show comparable reductions in medial knee loading and in our study, the mobility shoe did not affect medial loading. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 33:1646–1654, 2015. PMID:25991385

  15. A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke

    PubMed Central

    Sulzer, James S.; Roiz, Ronald A.; Peshkin, Michael A.; Patton, James L.

    2012-01-01

    Many of those who survive a stroke develop a gait disability known as stiff-knee gait (SKG). Characterized by reduced knee flexion angle during swing, people with SKG walk with poor energy efficiency and asymmetry due to the compensatory mechanisms required to clear the foot. Previous modeling studies have shown that knee flexion activity directly before the foot leaves the ground, and this should result in improved knee flexion angle during swing. The goal of this research is to physically test this hypothesis using robotic intervention. We developed a device that is capable of assisting knee flexion torque before swing but feels imperceptible (transparent) for the rest of the gait cycle. This device uses sheathed Bowden cable to control the deflection of a compliant torsional spring in a configuration known as a Series Elastic Remote Knee Actuator (SERKA). In this investigation, we describe the design and evaluation of SERKA, which includes a pilot experiment on stroke subjects. SERKA could supply a substantial torque (12 N· m) in less than 20 ms, with a maximum torque of 41 N·m. The device resisted knee flexion imperceptibly when desired, at less than 1 N·m rms torque during normal gait. With the remote location of the actuator, the user experiences a mass of only 1.2 kg on the knee. We found that the device was capable of increasing both peak knee flexion angle and velocity during gait in stroke subjects. Thus, the SERKA is a valid experimental device that selectively alters knee kinetics and kinematics in gait after stroke. PMID:22563305

  16. Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation.

    PubMed

    Casino, Daniela; Martelli, Sandra; Zaffagnini, Stefano; Lopomo, Nicola; Iacono, Francesco; Bignozzi, Simone; Visani, Andrea; Marcacci, Maurilio

    2009-02-01

    Surgical navigation systems are currently used to guide the surgeon in the correct alignment of the implant. The aim of this study was to expand the use of navigation systems by proposing a surgical protocol for intraoperative kinematics evaluations during knee arthroplasty. The protocol was evaluated on 20 patients, half undergoing unicondylar knee arthroplasty (UKA) and half undergoing posterior-substituting, rotating-platform total knee arthroplasty (TKA). The protocol includes a simple acquisition procedure and an original elaboration methodology. Kinematic tests were performed before and after surgery and included varus/valgus stress at 0 and 30 degrees and passive range of motion. Both UKA and TKA improved varus/valgus stability in extension and preserved the total magnitude of screw-home motion during flexion. Moreover, compared to preoperative conditions, values assumed by tibial axial rotation during flexion in TKA knees were more similar to the rotating patterns of UKA knees. The analysis of the anteroposterior displacement of the knee compartments confirmed that the two prostheses did not produce medial pivoting, but achieved a postoperative normal behavior. These results demonstrated that proposed intraoperative kinematics evaluations by a navigation system provided new information on the functional outcome of the reconstruction useful to restore knee kinematics during surgery.

  17. Variable stiffness actuated prosthetic knee to restore knee buckling during stance: a modeling study.

    PubMed

    Wentink, E C; Koopman, H F J M; Stramigioli, S; Rietman, J S; Veltink, P H

    2013-06-01

    Most modern intelligent knee prosthesis use dampers to modulate dynamic behavior and prevent excessive knee flexion, but they dissipate energy and do not assist in knee extension. Energy efficient variable stiffness control (VSA) can reduce the energy consumption yet effectively modulate the dynamic behavior and use stored energy during flexion to assist in subsequent extension. A principle design of energy efficient VSA in a prosthetic knee is proposed and analyzed for the specific case of rejection of a disturbed stance phase. The concept is based on the principle that the output stiffness of a spring can be changed without changing the energy stored in the elastic elements of the spring. The usability of this concept to control a prosthetic knee is evaluated using a model. Part of the stance phase of the human leg was modeled by a double pendulum. Specifically the rejection of a common disturbance of transfemoral prosthetic gait, an unlocked knee at heel strike, was evaluated. The ranges of spring stiffnesses were determined such that the angular characteristics of a normal stance phase were preserved, but disturbances could also be rejected. The simulations predicted that energy efficient VSA can be useful for the control of prosthetic knees. PMID:23000012

  18. A Study of Knee Joint Kinematics and Mechanics using a Human FE Model.

    PubMed

    Kitagawa, Yuichi; Hasegawa, Junji; Yasuki, Tsuyoshi; Iwamoto, Masami; Miki, Kazuo

    2005-11-01

    Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so

  19. Electromyographic analysis of hip and knee musculature during running.

    PubMed

    Montgomery, W H; Pink, M; Perry, J

    1994-01-01

    The purpose of this study was to describe the firing pattern of 11 hip and knee muscles during running. Thirty recreational runners volunteered to run at 3 different paces with indwelling electromyographic electrodes while being filmed at 100 frames per second. Results demonstrated that medial and lateral vasti muscles acted together for knee extension during terminal swing and loading response, possibly providing a patella stabilizing role. The vastus intermedius muscle functioned with the other vasti, plus eccentrically controlled knee flexion during swing phase. The rectus femoris muscle fired with the vastus intermedius muscle and assisted the iliacus muscle with hip flexion. The hamstrings fired primarily to eccentrically control hip flexion. The adductor magnus, tensor fascia lata, and gluteus maximus muscles afforded pelvic stabilization while assisting with hip flexion and extension. Forward propulsion was provided mainly by hip flexion and knee extension, which is contrary to the view that posterior calf muscles provide propulsion during toe off. Faster running paces lead to increased activity in the muscles. This may lead to more injuries, primarily in the muscles that were contracting eccentrically.

  20. An above-knee prosthesis with a system of energy recovery: a technical note.

    PubMed

    Farber, B S; Jacobson, J S

    1995-11-01

    Knee flexion to 24 degrees during early stance transforms kinetic energy into potential energy of a total center of mass (TCM) position. Flexion is controlled by the musculoligamentous apparatus. Reproduction of such flexion in a new single-axis prosthesis knee unit has minimized the metabolic energy cost to the patient by a more favorable use of gravity acting upon the prosthetic segments and the body as well as of inertia. Potential energy is stored in the spring shock absorber of the knee unit. The coefficient of energy recovery increased by 30% in comparison with a conventional above-knee prosthesis. Energy costs to the patient decrease an average of 35% during gait with the new prosthesis. The same amount of unloading during walking is typical of an intact limb. The knee unit mechanism has a link set on the axle, thus providing two joints with a common axis: a) the main joint for knee flexion to 70 degrees during swing phase and flexion to 135 degrees during sitting; b) the second joint for bending at the beginning of stance phase. Compared with conventional units, gait with the new unit displays several functional advantages: 1) normal knee kinematics with movement of a TCM along a trajectory that contributes to an easy rollover of the foot and smooth and continuous translation of the body; 2) shock absorption during early stance prevents impact from the anterior brim of the socket; 3) at mid-stance, the increase of the TCM position accumulates potential energy that results in a significant increase of the push-off force; 4) during rapid gait, the unit provides adequate resistance to knee flexion; 5) location of the joint axis in front of the line of gravity loads the prosthesis in standing, making possible unimpeded carrying of the prosthesis over the support, the lengths of the prosthetic and the intact limb being equal; in addition, it facilitates flexion before the beginning of the swing phase. Production of the units began in 1992.

  1. A kinetic and kinematic analysis of the effect of stochastic resonance electrical stimulation and knee sleeve during gait in osteoarthritis of the knee.

    PubMed

    Collins, Amber; Blackburn, Troy; Olcott, Chris; Jordan, Joanne M; Yu, Bing; Weinhold, Paul

    2014-02-01

    Extended use of knee sleeves in populations at risk for knee osteoarthritis progression has shown functional and quality of life benefits; however, additional comprehensive kinematic and kinetic analyses are needed to determine possible physical mechanisms of these benefits which may be due to the sleeve's ability to enhance knee proprioception. A novel means of extending these enhancements may be through stochastic resonance stimulation. Our goal was to determine whether the use of a knee sleeve alone or combined with stochastic resonance electrical stimulation improves knee mechanics in knee osteoarthritis. Gait kinetics and kinematics were assessed in subjects with medial knee osteoarthritis when presented with four conditions: control1, no electrical stimulation/sleeve, 75% threshold stimulation/sleeve, and control2. An increase in knee flexion angle throughout stance and a decrease in flexion moment occurring immediately after initial contact were seen in the stimulation/sleeve and sleeve alone conditions; however, these treatment conditions did not affect the knee adduction angle and internal knee abduction moment during weight acceptance. No differences were found between the sleeve alone and the stochastic resonance with sleeve conditions. A knee sleeve can improve sagittal-plane knee kinematics and kinetics, although adding the current configuration of stochastic resonance did not enhance these effects.

  2. Improving lensing cluster mass estimate with flexion

    NASA Astrophysics Data System (ADS)

    Cardone, V. F.; Vicinanza, M.; Er, X.; Maoli, R.; Scaramella, R.

    2016-11-01

    Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile, as inferred from the statistics of ellipticity of background galaxies, allows us to probe the cluster intermediate and outer regions, thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, i.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal-to- noise (S/N) ratio also varying the cluster mass, redshift, and ellipticity. It turns out that the error on the cluster mass may be reduced up to a factor of ˜2 for reasonable values of the flexion S/N ratio. As a general result, we get that the improvement in mass accuracy is larger for more flattened haloes, but it extracting general trends is difficult because of the many parameters at play. We nevertheless find that flexion is as efficient as magnification to increase the accuracy in both mass and concentration determination.

  3. Use of a turndown quadriceps tendon flap for rupture of the patellar tendon after total knee arthroplasty.

    PubMed

    Lin, Po-Chun; Wang, Jun-Wen

    2007-09-01

    Patellar tendon rupture is a devastating complication after total knee arthroplasty. The results of surgical treatment of this complication were discouraging in most of the reports. We describe a case of rupture of patellar tendon 7 weeks after total knee arthroplasty treated with a turndown quadriceps flap and circumferential wiring. Two years and 6 months after operation, the patient had no extension lag of the knee and knee flexion to 110 degrees .

  4. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator.

    PubMed

    Halloran, Jason P; Clary, Chadd W; Maletsky, Lorin P; Taylor, Mark; Petrella, Anthony J; Rullkoetter, Paul J

    2010-08-01

    Evaluating total knee replacement kinematics and contact pressure distributions is an important element of preclinical assessment of implant designs. Although physical testing is essential in the evaluation process, validated computational models can augment these experiments and efficiently evaluate perturbations of the design or surgical variables. The objective of the present study was to perform an initial kinematic verification of a dynamic finite element model of the Kansas knee simulator by comparing predicted tibio- and patellofemoral kinematics with experimental measurements during force-controlled gait simulation. A current semiconstrained, cruciate-retaining, fixed-bearing implant mounted in aluminum fixtures was utilized. An explicit finite element model of the simulator was developed from measured physical properties of the machine, and loading conditions were created from the measured experimental feedback data. The explicit finite element model allows both rigid body and fully deformable solutions to be chosen based on the application of interest. Six degrees-of-freedom kinematics were compared for both tibio- and patellofemoral joints during gait loading, with an average root mean square (rms) translational error of 1.1 mm and rotational rms error of 1.3 deg. Model sensitivity to interface friction and damping present in the experimental joints was also evaluated and served as a secondary goal of this paper. Modifying the metal-polyethylene coefficient of friction from 0.1 to 0.01 varied the patellar flexion-extension and tibiofemoral anterior-posterior predictions by 7 deg and 2 mm, respectively, while other kinematic outputs were largely insensitive. PMID:20670059

  5. Highly conforming polyethylene inlays reduce the in vivo variability of knee joint kinematics after total knee arthroplasty.

    PubMed

    Daniilidis, Kiriakos; Skwara, Adrian; Vieth, Volker; Fuchs-Winkelmann, Susanne; Heindel, Walter; Stückmann, Volker; Tibesku, Carsten O

    2012-08-01

    The use of highly conforming polyethylene inlays in total knee arthroplasty (TKA) provides improved anteroposterior stability. The aim of this fluoroscopic study was to investigate the in vivo kinematics during unloaded and loaded active extension with a highly conforming inlay and a flat inlay after cruciate retaining (CR) total knee arthroplasty (TKA). Thirty one patients (50 knees) received a fixed-bearing cruciate retaining total knee arthroplasty (Genesis II, Smith & Nephew, Schenefeld, Germany) for primary knee osteoarthritis. Twenty two of them received a flat polyethylene inlay (PE), nine a deep dished PE and 19 were in the control group (physiological knees). The mean age at the time of surgery was 62 years. Dynamic examination with fluoroscopy was performed to assess the "patella tendon angle" in relation to the knee flexion angle (measure of anteroposterior translation) and the "kinematic index" (measure of reproducibility). Fluoroscopy was performed under active extension and flexion, during unloaded movement, and under full weight bearing, simulated by step climbing. No significant difference was observed between both types of polyethylene inlay designs and the physiological knee during unloaded movement. Anteroposterior (AP) instability was found during weight-bearing movement. The deep-dish inlay resulted in lower AP translation and a non-physiological rollback. Neither inlay types could restore physiological kinematics of the knee. Despite the fact that deep dished inlays reduce the AP translation, centralisation of contact pressure results in non-physiological rollback. The influence of kinematic pattern variability on clinical results warrants further investigation.

  6. Gender differences among sagittal plane knee kinematic and ground reaction force characteristics during a rapid sprint and cut maneuver.

    PubMed

    James, C Roger; Sizer, Phillip S; Starch, David W; Lockhart, Thurmon E; Slauterbeck, James

    2004-03-01

    Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz). Differences (p < . 05) were observed between groups for knee flexion at contact and GRF at maximum knee flexion. Women averaged 5.8 degrees less flexion at contact and 1.0 N. (kg x m x s(-1))(-1) greater GRF at maximum flexion. Knee range of motion and peak GRF variables were not significantly different, but women had greater values. Women exhibited technique characteristics believed to increase ACL injury risk, but men exhibiting similar characteristics were also observed and could also be at risk.

  7. [Physical examination of the knee after trauma].

    PubMed

    Rommers, G M; de Jongh, Tjeerd O H; van der Sluis, Corry K; Dekker, Rienk

    2011-01-01

    The practice guideline 'Traumatic knee complaints' from the Dutch College of General Practitioners is aimed at differentiating between intra-articular and extra-articular lesions. The diagnosis is based mainly on a combination of patient history and a limited physical examination of the knee. Specific tests for hydrarthrosis, injuries to the collateral or cruciate ligaments, and meniscal pathology have only a low diagnostic accuracy. Few reliable studies have been conducted into the diagnostic value of specific tests; most studies employed poor methodology, had considerable inter-observer variation and produced widely heterogenous results. Inspection of the knee can provide information regarding the presence of fluids in the knee (hydrarthrosis or haemarthrosis). A restricted active range of movement in flexion and extension may indicate osteoarthritis or arthritis.

  8. Preclinical evaluation method for total knees designed to restore normal knee mechanics.

    PubMed

    Walker, Peter S; Heller, Yonah; Cleary, David J; Yildirim, Gokce

    2011-01-01

    The objective was to develop a simple, rapid, and low-cost method for evaluating proposed new total knee arthroplasty (TKA) models and then to evaluate 3 different TKA models with different kinematic characteristics. A "desktop" knee testing rig was used to apply forces and moments over a full flexion range, representing a spectrum of positions and activities; and the positions of the femur on the tibia were measured. The average neutral path of motion (for compressive force only) and the laxities about the neutral path (for superimposed shear and torque) were determined from 8 knee specimens to be used as a benchmark for the TKA evaluations. A typical posterior-stabilized TKA did not display the normal external femoral rotation with flexion and also showed abnormal anterior sliding on the medial side. A medial-pivot type of guided-motion design showed medial stability comparable to anatomical but still did not produce external femoral rotation and posterior lateral displacement with flexion. The addition of a central cam-post produced the rotation and displacement but only after 75° of flexion. It was concluded that the test method satisfied the objective and could be used as a design tool for evaluating new and existing designs, as well as for formulating a TKA with anatomical characteristics.

  9. Total knee replacement with and without patellar resurfacing: a prospective, randomised trial using the profix total knee system.

    PubMed

    Smith, A J; Wood, D J; Li, M-G

    2008-01-01

    We have examined the differences in clinical outcome of total knee replacement (TKR) with and without patellar resurfacing in a prospective, randomised study of 181 osteoarthritic knees in 142 patients using the Profix total knee system which has a femoral component with features considered to be anatomical and a domed patellar implant. The procedures were carried out between February 1998 and November 2002. A total of 159 TKRs in 142 patients were available for review at a mean of four years (3 to 7). The patients and the clinical evaluator were blinded in this prospective study. Evaluation was undertaken annually by an independent observer using the knee pain scale and the Knee Society clinical rating system. Specific evaluation of anterior knee pain, stair-climbing and rising from a seated to a standing position was also undertaken. No benefit was shown of TKR with patellar resurfacing over that without resurfacing with respect to any of the measured outcomes. In 22 of 73 knees (30.1%) with and 18 of 86 knees (20.9%) without patellar resurfacing there was some degree of anterior knee pain (p = 0.183). No revisions related to the patellofemoral joint were performed in either group. Only one TKR in each group underwent a re-operation related to the patellofemoral joint. A significant association between knee flexion contracture and anterior knee pain was observed in those knees with patellar resurfacing (p = 0.006). PMID:18160498

  10. Improvements in knee biomechanics during walking are associated with increased physical activity after total knee arthroplasty.

    PubMed

    Arnold, John B; Mackintosh, Shylie; Olds, Timothy S; Jones, Sara; Thewlis, Dominic

    2015-12-01

    Total knee arthroplasty (TKA) in people with knee osteoarthritis increases knee-specific and general physical function, but it has not been established if there is a relationship between changes in these elements of functional ability. This study investigated changes and relationships between knee biomechanics during walking, physical activity, and use of time after TKA. Fifteen people awaiting TKA underwent 3D gait analysis before and six months after surgery. Physical activity and use of time were determined in free-living conditions from a high resolution 24-h activity recall. After surgery, participants displayed significant improvements in sagittal plane knee biomechanics and improved their physical activity profiles, standing for 105 more minutes (p=0.001) and performing 64 min more inside chores on average per day (p=0.008). Changes in sagittal plane knee range of motion (ROM) and peak knee flexion positively correlated with changes in total daily energy expenditure, time spent undertaking moderate to vigorous physical activity, inside chores and passive transport (r=0.52-0.66, p=0.005-0.047). Restoration of knee function occurs in parallel and is associated with improvements in physical activity and use of time after TKA. Increased functional knee ROM is required to support improvements in total and context specific physical activity.

  11. The effect of short-term resistance training on hip and knee kinematics during vertical drop jumps.

    PubMed

    McCurdy, Kevin; Walker, John; Saxe, Joseph; Woods, Jonathan

    2012-05-01

    The purpose of this study was to determine the effect of a weight-bearing free weight resistance training program alone on knee flexion, hip flexion, and knee valgus during unilateral and bilateral drop jump tasks. Twenty-nine young adult females with previous athletic experience were randomly divided into a control (n = 16) and a resistance training (n = 13) groups. The resistance training group completed 8 weeks of lower extremity, weight-bearing exercises using free weights, whereas the control group did not train. A pre- and posttest was conducted to measure knee valgus, knee flexion, and hip flexion during unilateral (30 cm) and bilateral (60 cm) vertical drop jumps for maximum height. Joint angles were determined using 3-dimensional electromagnetic tracking sensors (MotionMonitor; Innovative Sports Training, Inc., Chicago, IL, USA). Initial training intensity for the bilateral squat was 50% of the subject's 1 repetition maximum (RM), which increased 5% each week to 85% during the final week. Sets and repetitions ranged from 2 to 4 and from 4 to 12, respectively. The training loads for all other exercises (lunge, step-up, unilateral squat, and Romanian deadlift) increased from 15RM to 6RM from the initial to the final week. A repeated measures analysis of variance was used to determine differences in the hip and knee joint angles. No significant differences for knee valgus and hip flexion measures were found between the groups after training; however, knee flexion angle significantly increased in the training group from the pretest (77.2 ± 4.1°) to posttest (83.2 ± 3.7°) during the bilateral drop jump. No significant changes occurred during the unilateral drop jump. Bilateral measures for knee flexion, hip flexion, and knee valgus were significantly (p < 0.05) greater than the unilateral measures during the drop jump task, which indicate an increased risk for anterior cruciate ligament (ACL) injury during unilateral drop jumps. The data support that the

  12. Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle.

    PubMed

    Becker, R; Awiszus, F

    2001-05-01

    The purpose of this study was to investigate the influence of different angles of the knee joint on voluntary activation of the quadriceps muscle, estimating the ability of a subject to activate a muscle maximally by means of voluntary contraction. Isometric torque measurement was performed on 6 healthy subjects in 5 degrees intervals between 30 degrees and 90 degrees of knee joint flexion. Superimposed twitches at maximal voluntary contraction (MVC) and at a level of 60% and 40% of the MVC were applied and the voluntary activation estimated. At between 30 degrees and 75 degrees of knee flexion, the maximal extension torque increased at an average rate of 2.67 +/- 0.6 Nm/degree, followed by a decline with further flexion. However, throughout the joint-angle range tested, voluntary activation increased on average by 0.37%/degree with a maximum at 90 degrees of flexion. Due to the influence of joint position it is not possible to generalize results obtained at the knee joint angle of 90 degrees of flexion, which is usually used for the quadriceps twitch-interpolation technique. Consequently, it is useful to investigate voluntary activation deficits in knee joint disorders at a range of knee joint angles that includes, in particular, the more extended joint angles used frequently during daily activity.

  13. In vivo determination of total knee arthroplasty kinematics

    SciTech Connect

    Komistek, Richard D; Mahfouz, Mohamed R; Bertin, Kim; Rosenberg, Aaron; Kennedy, William

    2008-01-01

    The objective of this study was to determine if consistent posterior femoral rollback of an asymmetrical posterior cruciate retaining (PCR) total knee arthroplasty was mostly influenced by the implant design, surgical technique, or presence of a well-functioning posterior cruciate ligament (PCL). Three-dimensional femorotibial kinematics was determined for 80 subjects implanted by 3 surgeons, and each subject was evaluated under fluoroscopic surveillance during a deep knee bend. All subjects in this present study having an intact PCL had a well-functioning PCR knee and experienced normal kinematic patterns, although less in magnitude than the normal knee. In addition, a surprising finding was that, on average, subjects without a PCL still achieved posterior femoral rollback from full extension to maximum knee flexion. The findings in this study revealed that implant design did contribute to the normal kinematics demonstrated by subjects having this asymmetrical PCR total knee arthroplasty.

  14. Stiff-knee gait in cerebral palsy: how do patients adapt to uneven ground?

    PubMed

    Böhm, Harald; Hösl, Matthias; Schwameder, Hermann; Döderlein, Leonhard

    2014-04-01

    Patients with cerebral palsy frequently experience foot dragging and tripping during walking due to reduced toe clearance mostly caused by a lack of adequate knee flexion in swing (stiff-knee gait). The aim of this study was to investigate adaptive mechanism to an uneven surface in stiff-knee walkers with cerebral palsy. Sixteen patients with bilateral cerebral palsy, GMFCS I-II and stiff-knee gait, mean age 14.1 (SD=6.2) years, were compared to 13 healthy controls with mean age 13.5 (SD=4.8) years. Gait analysis including EMG was performed under even and uneven surface conditions. Similar strategies to improve leg clearance were found in patients as well as in controls. Both adapted with significantly reduced speed and cadence, increased outward foot rotation, knee and hip flexion as well as anterior pelvic tilt. Therefore cerebral palsy and stiff-knee gait did not affect the adaptation capacity on the uneven surface. On the uneven surface an average increase in knee flexion of 7° (SD=3°) and 12° (SD=5°) was observed in controls and patients with cerebral palsy, respectively. Although rectus femoris activity was increased in patients with cerebral palsy, they were able to increase their knee flexion during swing. The results of this study suggest that walking on uneven surface has the potential to improve knee flexion in stiff-knee walkers. Therefore training on uneven surface could be used as a conservative treatment regime alone, in combination with Botulinum neurotoxin or in the rehabilitation of surgery.

  15. Effect of knee angle on quadriceps strength and activation after anterior cruciate ligament reconstruction

    PubMed Central

    Theuerkauf, Paul

    2015-01-01

    Quadriceps strength and activation deficits after anterior cruciate ligament (ACL) injury or surgery are typically evaluated at joint positions that are biomechanically advantageous to the quadriceps muscle. However, the effect of knee joint position and the associated changes in muscle length on strength and activation is currently unknown in this population. Here, we examined the effect of knee angle on quadriceps strength, activation, and electrically evoked torque in individuals with ACL reconstruction. Furthermore, we evaluated whether knee angle mediated the relationship between quadriceps weakness and functional performance after ACL reconstruction. Knee strength and activation were tested bilaterally at 90° and 45° of knee flexion in 11 subjects with ACL reconstruction using an interpolated triplet technique. The magnitude of electrically evoked torque at rest was used to quantify peripheral muscle contractile property changes, and the single-leg hop for distance test was used to evaluate functional performance. The results indicated that although quadriceps strength deficits were similar between knee angles, voluntary activation deficits were significantly higher in the reconstructed leg at 45° of knee flexion. On the contrary, the side-to-side evoked torque at rest ratio [i.e., (reconstructed/nonreconstructed) × 100] was significantly lower at 90° than at 45° of knee flexion. The association between quadriceps strength and functional performance was stronger at 45° of knee flexion. The results provide novel evidence that quadriceps activation is selectively affected at 45° of knee flexion and emphasize the importance of assessing quadriceps strength and activation at this position when feasible because it better captures activation deficits. PMID:25997949

  16. Effect of knee angle on quadriceps strength and activation after anterior cruciate ligament reconstruction.

    PubMed

    Krishnan, Chandramouli; Theuerkauf, Paul

    2015-08-01

    Quadriceps strength and activation deficits after anterior cruciate ligament (ACL) injury or surgery are typically evaluated at joint positions that are biomechanically advantageous to the quadriceps muscle. However, the effect of knee joint position and the associated changes in muscle length on strength and activation is currently unknown in this population. Here, we examined the effect of knee angle on quadriceps strength, activation, and electrically evoked torque in individuals with ACL reconstruction. Furthermore, we evaluated whether knee angle mediated the relationship between quadriceps weakness and functional performance after ACL reconstruction. Knee strength and activation were tested bilaterally at 90° and 45° of knee flexion in 11 subjects with ACL reconstruction using an interpolated triplet technique. The magnitude of electrically evoked torque at rest was used to quantify peripheral muscle contractile property changes, and the single-leg hop for distance test was used to evaluate functional performance. The results indicated that although quadriceps strength deficits were similar between knee angles, voluntary activation deficits were significantly higher in the reconstructed leg at 45° of knee flexion. On the contrary, the side-to-side evoked torque at rest ratio [i.e., (reconstructed/nonreconstructed) × 100] was significantly lower at 90° than at 45° of knee flexion. The association between quadriceps strength and functional performance was stronger at 45° of knee flexion. The results provide novel evidence that quadriceps activation is selectively affected at 45° of knee flexion and emphasize the importance of assessing quadriceps strength and activation at this position when feasible because it better captures activation deficits.

  17. Flexion-type Salter II fracture of the proximal tibia. Proposed mechanism of injury and two case studies.

    PubMed

    Blanks, R H; Lester, D K; Shaw, B A

    1994-04-01

    An uncommon fracture of the proximal tibial epiphysis is described in two cases. A flexion-type Salter II fracture of the proximal tibia resulting from a partially closed physis can be reduced easily and appears to have no long-lasting effects. Radiographic review of the adolescent knees showed that physeal closure of the proximal tibial epiphysis proceeds from posterior to anterior, thereby making this particular fracture more likely during this phase of development.

  18. The SIGN nail for knee fusion: technique and clinical results

    PubMed Central

    Anderson, Duane Ray; Anderson, Lucas Aaron; Haller, Justin M.; Feyissa, Abebe Chala

    2016-01-01

    Purpose: Evaluate the efficacy of using the SIGN nail for instrumented knee fusion. Methods: Six consecutive patients (seven knees, three males) with an average age of 30.5 years (range, 18–50 years) underwent a knee arthrodesis with SIGN nail (mean follow-up 10.7 months; range, 8–14 months). Diagnoses included tuberculosis (two knees), congenital knee dislocation in two knees (one patient), bacterial septic arthritis (one knee), malunited spontaneous fusion (one knee), and severe gout with 90° flexion contracture (one knee). The nail was inserted through an anteromedial entry point on the femur and full weightbearing was permitted immediately. Results: All knees had clinical and radiographic evidence of fusion at final follow-up and none required further surgery. Four of six patients ambulated without assistive device, and all patients reported improved overall physical function. There were no post-operative complications. Conclusion: The technique described utilizing the SIGN nail is both safe and effective for knee arthrodesis and useful for austere environments with limited fluoroscopy and implant options. PMID:27163095

  19. Early recovery after fast-track Oxford unicompartmental knee arthroplasty

    PubMed Central

    2012-01-01

    Background and purpose After total knee arthroplasty with conventional surgical approach, more than half of the quadriceps extension strength is lost in the first postoperative month. Unicompartmental knee arthroplasty (UKA) operated with minimally invasive surgery (MIS) results in less operative trauma. We investigated changes in leg-extension power (LEP) in the first month after MIS Oxford UKA and its relation to pain, knee motion, functional performance, and knee function. Patients and methods In 35 consecutive Oxford UKA patients, LEP was measured 1 week before and 1 month after surgery together with knee motion, knee swelling, the 30-second chair-stand test, and Oxford knee score. Assessment of knee pain at rest and walking was done using a visual analog scale. Results 30 patients were discharged on the day after surgery, and 5 on the second day after surgery. LEP and functional performance reached the preoperative level after 1 month. Only slight postoperative knee swelling was observed with rapid restoration of knee flexion and function. A high level of pain during the first postoperative night and day fell considerably thereafter. None of the patients needed physiotherapy supervision in the first month after discharge. Interpretation Fast-track MIS Oxford UKA with discharge on the day after surgery is safe and leads to early recovery of knee motion and strength even when no physiotherapy is used. PMID:22313368

  20. A prospective study on knee proprioception after meniscal allograft transplantation.

    PubMed

    Thijs, Y; Witvrouw, E; Evens, B; Coorevits, P; Almqvist, F; Verdonk, R

    2007-06-01

    The meniscus plays an important role in the proprioceptive ability of the knee joint. The aim of this prospective study was to assess the short-term influence of a meniscus replacement on the proprioception of the knee. Fourteen patients who had undergone a fresh meniscal allograft transplantation between May 2001 and June 2003 were tested pre-operatively and 6 months post-operatively. Disability regarding pain, stiffness and functionality of the affected knee during daily activities was measured by the Western Ontario and McMaster Universities Arthritis (WOMAC) scale. The knee joint position sense was assessed using the Biodex System 3 isokinetic dynamometer. The results of the WOMAC scale showed no significant differences concerning pain, stiffness or knee function between the pre- and post-operative condition of the knee. Assessment of the knee joint position sense at a reference point of 70 degrees of knee flexion revealed a significant improvement of the proprioception of the operated knee at 6 months after surgery compared with the pre-operative condition. The results of this study suggest that although no significant improvement of pain and functionality of the operated knee occurred at this short-term follow-up period, a meniscal allograft transplantation seems to have a significant positive effect on the joint position sense of the previously meniscectomised knee.

  1. Load-dependent variations in knee kinematics measured with dynamic MRI.

    PubMed

    Westphal, Christopher J; Schmitz, Anne; Reeder, Scott B; Thelen, Darryl G

    2013-08-01

    Subtle changes in knee kinematics may substantially alter cartilage contact patterns and moment generating capacities of soft tissues. The objective of this study was to use dynamic magnetic resonance imaging (MRI) to measure the influence of the timing of quadriceps loading on in vivo tibiofemoral and patellofemoral kinematics. We tested the hypothesis that load-dependent changes in knee kinematics would alter both the finite helical axis of the tibiofemoral joint and the moment arm of the patellar tendon. Eight healthy young adults were positioned supine in a MRI-compatible device that could impose either elastic or inertial loads on the lower leg in response to cyclic knee flexion-extension. The elastic loading condition induced concentric quadriceps contractions with knee extension, while an inertial loading condition induced eccentric quadriceps contractions with knee flexion. Peak internal knee extension moments ranged from 23 to 33 N m, which is comparable to loadings seen in normal walking. We found that anterior tibia translation, superior patella glide, and anterior patella translation were reduced by an average of 5.1, 5.7 and 2.9 mm when quadriceps loading coincided with knee flexion rather than knee extension. These kinematic variations induced a distal shift in the finite helical axis of the tibiofemoral joint and a reduction in the patellar tendon moment arm. We conclude that it may be important to consider such load-dependent changes in knee kinematics when using models to ascertain soft tissue and cartilage loading during functional tasks such as gait.

  2. Total Knee Arthroplasty Designed to Accommodate the Presence or Absence of the Posterior Cruciate Ligament

    PubMed Central

    Harman, Melinda K.; Bonin, Stephanie J.; Leslie, Chris J.; Banks, Scott A.; Hodge, W. Andrew

    2014-01-01

    Evidence for selecting the same total knee arthroplasty prosthesis whether the posterior cruciate ligament (PCL) is retained or resected is rarely documented. This study reports prospective midterm clinical, radiographic, and functional outcomes of a fixed-bearing design implanted using two different surgical techniques. The PCL was completely retained in 116 knees and completely resected in 43 knees. For the entire cohort, clinical knee (96 ± 7) and function (92 ± 13) scores and radiographic outcomes were good to excellent for 84% of patients after 5–10 years in vivo. Range of motion averaged 124° ± 9°, with 126 knees exhibiting ≥120° flexion. Small differences in average knee flexion and function scores were noted, with the PCL-resected group exhibiting an average of 5° more flexion but an average function score that was 7 points lower compared to the PCL-retained group. Fluoroscopic analysis of 33 knees revealed stable tibiofemoral translations. This study demonstrates that a TKA articular design with progressive congruency in the lateral compartment can provide for femoral condyle rollback in maximal flexion activities and achieve good clinical and functional performance in patients with PCL-retained and PCL-resected TKA. This TKA design proved suitable for use with either surgical technique, providing surgeons with the choice of maintaining or sacrificing the PCL. PMID:25374697

  3. Sagittal plane balancing in the total knee arthroplasty.

    PubMed

    Manson, Theodore T; Khanuja, Harpal S; Jacobs, Michael A; Hungerford, Marc W

    2009-01-01

    Postoperative stiffness or instability may result from a total knee arthroplasty imbalanced in the sagittal plane. Total knee arthroplasty instrumentation systems differ in the basic strategies used to assure this balance. In an anterior referencing system, changes in femoral size affect flexion gap tightness, and femoral size selection is paramount to assure sagittal plane balance. Conversely, in posterior referencing systems, femoral size changes do not affect the flexion gap but, rather, influence femoral component-patella articulation. Flexion/extension gap systems use calibrated spacer blocks to ensure gap balance but do not guarantee midrange stability; if used incorrectly, they may cause component malposition and joint line elevation. The authors reviewed the strengths and weaknesses of system types and provided system-specific troubleshooting guidelines for clinicians addressing intraoperative sagittal plane imbalance.

  4. Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: implications for strength diagnostics.

    PubMed

    Hahn, Daniel

    2011-06-01

    The purpose of this study was to evaluate whether and how isometric multijoint leg extension strength can be used to assess athletes' muscular capability within the scope of strength diagnosis. External reaction forces (Fext) and kinematics were measured (n = 18) during maximal isometric contractions in a seated leg press at 8 distinct joint angle configurations ranging from 30 to 100° knee flexion. In addition, muscle activation of rectus femoris, vastus medialis, biceps femoris c.l., gastrocnemius medialis, and tibialis anterior was obtained using surface electromyography (EMG). Joint torques for hip, knee, and ankle joints were computed by inverse dynamics. The results showed that unilateral Fext decreased significantly from 3,369 ± 575 N at 30° knee flexion to 1,015 ± 152 N at 100° knee flexion. Despite maximum voluntary effort, excitation of all muscles as measured by EMG root mean square changed with knee flexion angles. Moreover, correlations showed that above-average Fext at low knee flexion is not necessarily associated with above-average Fext at great knee flexion and vice versa. Similarly, it is not possible to deduce high joint torques from high Fext just as above-average joint torques in 1 joint do not signify above-average torques in another joint. From these findings, it is concluded that an evaluation of muscular capability by means of Fext as measured for multijoint leg extension is strongly limited. As practical recommendation, we suggest analyzing multijoint leg extension strength at 3 distinct knee flexion angles or at discipline-specific joint angles. In addition, a careful evaluation of muscular capacity based on measured Fext can be done for knee flexion angles ≥ 80°. For further and detailed analysis of single muscle groups, the use of inverse dynamic modeling is recommended.

  5. The effect of modern total knee arthroplasty on muscle balance at the knee.

    PubMed

    Buford, William L; Ivey, F; Loveland, Dustin M; Flowers, Christopher W

    2009-01-01

    Total Knee Arthroplasty (TKA) may affect the muscles operating at the flexion/extension (FE) or internal /external rotation (IE) axes. This study tested the hypothesis that a modern posterior stabilizing TKA will change the mechanical balance of the knee joint by altering the moment arms of muscles acting about two separate axes of rotation. Moment arms were determined for the normal knee, the knee after resection of the Anterior Cruciate Ligament (the ACL - knee) and the knee after a PCL-sacrificing TKA. Five fresh cadaver hemi pelvis specimens were used with 5 posterior stabilizing prostheses (a single model available from one manufacturer). Moment arms for the individual muscle tendons were multiplied by the muscle's tension fraction (fractional physiological cross-sectional area [PCSA]) to estimate its potential for moment production relative to the other muscles at the knee, and this value was labeled as the muscle's moment potential. Unlike earlier studies that looked at TKA across many manufacturers' types, this study concluded that there were no significant differences in muscle balance when comparing the intact knee and the posterior stabilized TKA.

  6. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Hutchins, Stephen W

    2013-03-01

    Ankle-foot orthoses (AFOs) can improve gait in patients with hemiplegia. However, it is anecdotally known that excessive plantarflexion resistance of an AFO could induce undesired knee flexion at early stance. The aim of this study was to systematically investigate the effect of varying the degrees of plantarflexion resistance of an AFO on knee flexion angles at early stance in five subjects with chronic stroke who demonstrated two clear knee flexion peaks at early stance and swing. Each subject wore an experimental AFO constructed with an oil-damper type ankle joint and was instructed to walk at their self-selected walking speed under five plantarflexion resistance conditions. The sagittal plane ankle and knee joint kinematics and gait speed were analyzed using a 3-D Motion Analysis System. A number of significant differences (P<0.005) in maximum knee flexion angles at early stance amongst different plantarflexion resistance conditions were revealed. The knee flexion angle was 23.80 (3.25) degrees under the free hinge joint condition (condition 1), while that was 26.09 (3.79) degrees under the largest resistance condition (condition 5). It was therefore demonstrated that increasing the plantarflexion resistance of an AFO would induce more knee flexion at early stance phase in patients with stroke.

  7. An examination of ankle, knee, and hip torque production in individuals with chronic ankle instability.

    PubMed

    Gribble, Phillip A; Robinson, Richard H

    2009-03-01

    There is some debate in the literature as to whether strength deficits exist at the ankle in individuals with chronic ankle instability (CAI). Additionally, there is evidence to suggest that knee and hip performance is altered in those with CAI. Therefore, the purpose of this study was to determine whether CAI is associated with deficits in ankle, knee, and hip torque. Fifteen subjects with unilateral CAI and fifteen subjects with healthy ankles participated. Subjects reported to the laboratory for one session during which the torque production of ankle plantar flexion/dorsiflexion, knee flexion/extension, and hip flexion/extension were measured with an isokinetic device. Subjects performed 5 maximum-effort repetitions of a concentric/concentric protocol at 60 degrees .s for both extremities. Average peak torque (APT) values were calculated. The subjects with CAI demonstrated significantly less APT production for knee flexion (F1,28 = 5.40; p = 0.03) and extension (F1,28 = 5.34; p = 0.03). Subjects with CAI exhibited significantly less APT for ankle plantar flexion in the injured limb compared with their noninjured limb (F1,28 = 6.51; p = 0.02). No significant difference in ankle dorsiflexion or hip flexion/extension APT production existed between the 2 groups. Individuals with CAI, in addition to deficits in ankle plantar flexion torque, had deficits in knee flexor and extensor torque, suggesting that distal joint instability may lead to knee joint neuromuscular adaptations. There were no similar deficits at the hip. Future research should determine what implications this has for prevention and rehabilitation of lower-extremity injury. Clinicians may need to consider including rehabilitation efforts to address these deficits when rehabilitating patients with CAI.

  8. Patient-Specific Computer Model of Dynamic Squatting after Total Knee Arthroplasty

    PubMed Central

    Mizu-uchi, Hideki; Colwell, Clifford W.; Flores-Hernandez, Cesar; Fregly, Benjamin J.; Matsuda, Shuichi; D’Lima, Darryl D.

    2015-01-01

    Knee forces are highly relevant to performance after total knee arthroplasty especially during high flexion activities such as squatting. We constructed subject-specific models of two patients implanted with instrumented knee prosthesis that measured knee forces in vivo. In vivo peak forces ranged from 2.2 to 2.3 times bodyweight but peaked at different flexion angles based on the type of squatting activity. Our model predicted tibiofemoral contact force with reasonable accuracy in both subjects. This model can be a very useful tool to predict the effect of surgical techniques and component alignment on contact forces. In addition, this model could be used for implant design development, to enhance knee function, to predict forces generated during other activities, and for predicting clinical outcomes. PMID:25662671

  9. Effects of Cervical Flexion on the Flexion-relaxation Ratio during Smartphone Use

    PubMed Central

    Shin, HyeonHui; Kim, KyeongMi

    2014-01-01

    [Purpose] The purpose of this study was to measure the cervical flexion-relaxation ratio (FRR) and intensity of neck pain and identify the differences according to postures adopted while using smartphones. [Subjects] Fifteen healthy adults with no neck pain, spinal trauma, or history cervical surgery participated in this study. [Methods] The activity of the cervical erector spinae muscle was recorded while performing a standardized cervical flexion-extension movement in three phases (flexion, sustained full flexion, extension). And neck pain intensity was recorded using a visual analog scale (VAS) with values between 0 and 10. Postures held while using a smartphone are distinguished between desk postures and lap postures. The FRR was calculated by dividing the maximal muscle activation during the extension phase by average activation during the complete flexion phase. [Results] No significant differences were found in the FRR between desk posture, lap posture, and baseline, though the intensity of the neck pain increased in the lap posture. [Conclusion] The FRR could be a significant criterion of neuromuscular impairment in chronic neck pain or lumbar pain patients, but it is impossible to distinguish neck pain that is caused by performing task for a short time. Prolonged lap posture might cause neck pain, so the use of smartphones for a long time in this posture should be avoided. PMID:25540493

  10. Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee.

    PubMed

    Nishino, Katsutoshi; Omori, Go; Koga, Yoshio; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji; Tanaka, Masaei; Arakawa, Masaaki

    2015-07-01

    We recently developed a new method for three-dimensional evaluation of mechanical factors affecting knee joint in order to help identify factors that contribute to the progression of knee osteoarthritis (KOA). This study aimed to verify the clinical validity of our method by evaluating knee joint dynamics during gait. Subjects were 41 individuals (14 normal knees; 8 mild KOAs; 19 severe KOAs). The positions of skin markers attached to the body were captured during gait, and bi-planar X-ray images of the lower extremities were obtained in standing position. The positional relationship between the markers and femorotibial bones was determined from the X-ray images. Combining this relationship with gait capture allowed for the estimation of relative movement between femorotibial bones. We also calculated the point of intersection of loading axis of knee on the tibial proximal surface (LAK point) to analyze knee joint dynamics. Knee flexion range in subjects with severe KOA during gait was significantly smaller than that in those with normal knees (p=0.011), and knee adduction in those with severe KOA was significantly larger than in those with mild KOA (p<0.000). LAK point was locally loaded on the medial compartment of the tibial surface as KOA progressed, with LAK point of subjects with severe KOA rapidly shifting medially during loading response. Local loading and medial shear force were applied to the tibial surface during stance phase as medial KOA progressed. Our findings suggest that our method is useful for the quantitative evaluation of mechanical factors that affect KOA progression.

  11. Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee.

    PubMed

    Nishino, Katsutoshi; Omori, Go; Koga, Yoshio; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji; Tanaka, Masaei; Arakawa, Masaaki

    2015-07-01

    We recently developed a new method for three-dimensional evaluation of mechanical factors affecting knee joint in order to help identify factors that contribute to the progression of knee osteoarthritis (KOA). This study aimed to verify the clinical validity of our method by evaluating knee joint dynamics during gait. Subjects were 41 individuals (14 normal knees; 8 mild KOAs; 19 severe KOAs). The positions of skin markers attached to the body were captured during gait, and bi-planar X-ray images of the lower extremities were obtained in standing position. The positional relationship between the markers and femorotibial bones was determined from the X-ray images. Combining this relationship with gait capture allowed for the estimation of relative movement between femorotibial bones. We also calculated the point of intersection of loading axis of knee on the tibial proximal surface (LAK point) to analyze knee joint dynamics. Knee flexion range in subjects with severe KOA during gait was significantly smaller than that in those with normal knees (p=0.011), and knee adduction in those with severe KOA was significantly larger than in those with mild KOA (p<0.000). LAK point was locally loaded on the medial compartment of the tibial surface as KOA progressed, with LAK point of subjects with severe KOA rapidly shifting medially during loading response. Local loading and medial shear force were applied to the tibial surface during stance phase as medial KOA progressed. Our findings suggest that our method is useful for the quantitative evaluation of mechanical factors that affect KOA progression. PMID:26002602

  12. Runner's Knee

    MedlinePlus

    ... Over the summer he bought a pair of running shoes and took up jogging. He started with ... bending the knee — when walking, kneeling, squatting, or running, for example. Walking or running downhill or even ...

  13. Knee Dislocations

    PubMed Central

    Schenck, Robert C.; Richter, Dustin L.; Wascher, Daniel C.

    2014-01-01

    Background: Traumatic knee dislocation is becoming more prevalent because of improved recognition and increased exposure to high-energy trauma, but long-term results are lacking. Purpose: To present 2 cases with minimum 20-year follow-up and a review of the literature to illustrate some of the fundamental principles in the management of the dislocated knee. Study Design: Review and case reports. Methods: Two patients with knee dislocations who underwent multiligamentous knee reconstruction were reviewed, with a minimum 20-year follow-up. These patients were brought back for a clinical evaluation using both subjective and objective measures. Subjective measures include the following scales: Lysholm, Tegner activity, visual analog scale (VAS), Short Form–36 (SF-36), International Knee Documentation Committee (IKDC), and a psychosocial questionnaire. Objective measures included ligamentous examination, radiographic evaluation (including Telos stress radiographs), and physical therapy assessment of function and stability. Results: The mean follow-up was 22 years. One patient had a vascular injury requiring repair prior to ligament reconstruction. The average assessment scores were as follows: SF-36 physical health, 52; SF-36 mental health, 59; Lysholm, 92; IKDC, 86.5; VAS involved, 10.5 mm; and VAS uninvolved, 2.5 mm. Both patients had excellent stability and were functioning at high levels of activity for their age (eg, hiking, skydiving). Both patients had radiographic signs of arthritis, which lowered 1 subject’s IKDC score to “C.” Conclusion: Knee dislocations have rare long-term excellent results, and most intermediate-term studies show fair to good functional results. By following fundamental principles in the management of a dislocated knee, patients can be given the opportunity to function at high levels. Hopefully, continued advances in the evaluation and treatment of knee dislocations will improve the long-term outcomes for these patients in the

  14. Knee Injuries and Disorders

    MedlinePlus

    Your knee joint is made up of bone, cartilage, ligaments and fluid. Muscles and tendons help the knee joint move. When any of these structures is hurt or diseased, you have knee problems. Knee problems can cause pain and difficulty ...

  15. A magnetorheological fluid-based controllable active knee brace

    NASA Astrophysics Data System (ADS)

    Ahmadkhanlou, Farzad; Zite, Jamaal L.; Washington, Gregory N.

    2007-04-01

    High customization costs and reduction of natural mobility put current rehabilitative knee braces at a disadvantage. A resolution to this problem is to integrate a Magnetorheological (MR) fluid-based joint into the system. A MR joint will allow patients to apply and control a resistive torque to knee flexion and extension. The resistance torque can also be continuously adjusted as a function of extension angle and patient strength (or as a function of time), which is currently impossible with state of the art rehabilitative knee braces. A novel MR fluid-based controllable knee brace is designed and prototyped in this research. The device exhibits large resistive torque in the on-state and low resistance in the offstate. The controllable variable stiffness, compactness, and portability of the system make it a proper alternative to current rehabilitative knee braces.

  16. Interpolation function for approximating knee joint behavior in human gait

    NASA Astrophysics Data System (ADS)

    Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan

    2013-10-01

    Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.

  17. Knee extension torque variability after exercise in ACL reconstructed knees.

    PubMed

    Goetschius, John; Kuenze, Christopher M; Hart, Joseph M

    2015-08-01

    The purpose of this study was to compare knee extension torque variability in patients with ACL reconstructed knees before and after exercise. Thirty two patients with an ACL reconstructed knee (ACL-R group) and 32 healthy controls (control group) completed measures of maximal isometric knee extension torque (90° flexion) at baseline and following a 30-min exercise protocol (post-exercise). Exercise included 30-min of repeated cycles of inclined treadmill walking and hopping tasks. Dependent variables were the coefficient of variation (CV) and raw-change in CV (ΔCV): CV = (torque standard deviation/torque mean x 100), ΔCV = (post-exercise - baseline). There was a group-by-time interaction (p = 0.03) on CV. The ACL-R group demonstrated greater CV than the control group at baseline (ACL-R = 1.07 ± 0.55, control = 0.79 ± 0.42, p = 0.03) and post-exercise (ACL-R = 1.60 ± 0.91, control = 0.94 ± 0.41, p = 0.001). ΔCV was greater (p = 0.03) in the ACL-R group (0.52 ± 0.82) than control group (0.15 ± 0.46). CV significantly increased from baseline to post-exercise (p = 0.001) in the ACL-R group, while the control group did not (p = 0.06). The ACL-R group demonstrated greater knee extension torque variability than the control group. Exercise increased torque variability more in the ACL-R group than control group.

  18. Posterior femoral translation in medial pivot total knee arthroplasty of posterior cruciate ligament retaining type

    PubMed Central

    Cho, Su Hyun; Cho, Hyung Lae; Lee, Soo Ho; Jin, Hong Ki

    2013-01-01

    Purpose To report clinical results and demonstrate posterior femoral translation (PFT) in medial pivot total knee arthroplasty (TKA) of posterior cruciate ligament (PCL) retaining type. Materials and methods A prospective study was performed upon thirty consecutive subjects who were operated on with medial pivot TKA of PCL retaining type between March 2009 and March 2010 and had been followed up for at least 2 years. Clinically, the knee society knee score and function score were used. In full extension and active flexion lateral radiograph, anteroposterior (AP) condylar position and magnitude of PFT was determined. Results At last follow-up, the mean knee society knee score and function score improved significantly compared to preoperative scores. The AP condylar positions were consistently posterior to midline throughout the entire range of flexion. The PFTs averaged 0.31 (±0.12) of half length of tibial base plate and were greater in higher flexion cases (r = 0.56, p = 0.0012). There were no cases having either component migration or radiolucent line wider than 2 mm except for one case showing instability related to trauma. Conclusions In medial pivot TKA of PCL retaining type, clinical outcomes were satisfactory and posterior femoral translations were consistently observed during progressive flexions of knees at two- to three-year follow-up. PMID:24403754

  19. Contact stresses with an unresurfaced patella in total knee arthroplasty: the effect of femoral component design.

    PubMed

    Matsuda, S; Ishinishi, T; Whiteside, L A

    2000-03-01

    Compressive contact stresses between the patella and the anterior femur were measured with a digital electronic sensor before and after total knee arthroplasty (TKA) in 10 cadaver knee specimens. Contact stresses were measured first in normal knees, then after TKA with the Insall-Burstein Total Condylar, Miller Galante II, Ortholoc II, Porous Coated Anatomic, and Profix knee prostheses implanted without resurfacing the patella. The Insall-Burstein, Miller-Galante II, and Ortholoc II prostheses had significantly higher contact stresses than the normal knee throughout the flexion arc. The Porous Coated Anatomic, which has a smooth patellar groove, maintained contact area as in the normal knee and did not have significantly higher contact stresses at flexion angles <90 degrees. At flexion angles > or =105 degrees, patellofemoral contact occurred in two small areas as the patella encountered the intercondylar notch in all components except the Profix. The Profix maintained full contact and low compressive stresses throughout the full flexion arc because of its posteriorly extended patellar groove. Design features of the patellofemoral portion of TKA components are important factors that affect contact stresses in the patellofemoral joint. These features likely will affect the clinical results of TKA with an unresurfaced patella. PMID:10741365

  20. Reduced knee hyperextension after wearing a robotic knee orthosis during gait training--a case study.

    PubMed

    Mao, Yurong; Lo, Wai Leung; Xu, Guangqing; Li, Leonard Sheungwai; Li, Le; Huang, Dongfeng

    2015-01-01

    This case study describes the effects of a wearable dynamic knee orthosis to supplement walking training in a patient suffering knee hyperextension. The subject was a 57-year old female who was 3.5 years post-brain tumor surgery. She was presented with impaired right lower extremity muscle performance, increased lower extremity muscle tension, and right knee hyperextension. She reported pain at the right knee joint and tibialis anterior after 10 minutes of over-ground walk. Fifteen one-hour sessions of gait training with robotic knee orthosis (RKO) were provided an over 3 weeks period. The subject demonstrated improvement with right lower limb kinematic and kinetic measures of gait. Peak flexion degree and moment increased (from -4.99° to 13.47°, and from 0.18 Nm/kg to 0.20 Nm/kg respectively).Extension peak moment decreased from 1.03 Nm/kg to 0.53 Nm/kg. Knee joint force decreased from 0.68 N to 0.45 N. Ground reaction force (GRF) reduced from 11.06N to 10.11N. Berg Balance Scale (BBS) improved from 45/56 to 51/56. No difference was observed in Fugl-Meyer Assessment of the Lower limb (FMA-LE) scores. Gait training that integrates an intention-based RKO for correcting knee hyperextension can be clinically effective. The persistence and generalizability of these results need to be further investigated.

  1. Genu Recurvatum Deformity in a Child due to Salter Harris Type V Fracture of the Proximal Tibial Physis Treated with High Tibial Dome Osteotomy.

    PubMed

    Beslikas, Theodoros; Christodoulou, Andreas; Chytas, Anastasios; Gigis, Ioannis; Christoforidis, John

    2012-01-01

    Salter-Harris type V fracture is a very rare injury in the immature skeleton. In most cases, it remains undiagnosed and untreated. We report a case of genu recurvatum deformity in a 15-year-old boy caused by a Salter-Harris type V fracture of the proximal tibial physis. The initial X-ray did not reveal fracture. One year after injury, genu recurvatum deformity was detected associated with significant restriction of knee flexion and limp length discrepancy (2 cm) as well as medial and posterior instability of the joint. Further imaging studies revealed anterior bone bridge of the proximal tibial physis. The deformity was treated with a high tibial dome osteotomy combined with a tibial tubercle osteotomy stabilized with malleolar screws and a cast. Two years after surgery, the patient gained functional knee mobility without clinical instability. Firstly, this case highlights the importance of early identification of this rare lesion (Salter-Harris type V fracture) and, secondly, provides an alternative method of treatment for genu recurvatum deformity.

  2. Rehabilitation after ACL Injury: A Fluoroscopic Study on the Effects of Type of Exercise on the Knee Sagittal Plane Arthrokinematics

    PubMed Central

    Norouzi, Sadegh; Esfandiarpour, Fateme; Shakourirad, Ali; Salehi, Reza; Akbar, Mohammad; Farahmand, Farzam

    2013-01-01

    A safe rehabilitation exercise for anterior cruciate ligament (ACL) injuries needs to be compatible with the normal knee arthrokinematics to avoid abnormal loading on the joint structures. The objective of this study was to measure the amount of the anterior tibial translation (ATT) of the ACL-deficient knees during selective open and closed kinetic chain exercises. The intact and injured knees of fourteen male subjects with unilateral ACL injury were imaged using uniplanar fluoroscopy, while the subjects performed forward lunge and unloaded/loaded open kinetic knee extension exercises. The ATTs were measured from fluoroscopic images, as the distance between the tibial and femoral reference points, at seven knee flexion angles, from 0° to 90°. No significant differences were found between the ATTs of the ACL-deficient and intact knees at all flexion angles during forward lunge and unloaded open kinetic knee extension (P < 0.05). During loaded open kinetic knee extension, however, the ATTs of the ACL deficient knees were significantly larger than those of the intact knees at 0° (P = 0.002) and 15° (P = 0.012). It was suggested that the forward lunge, as a weight-bearing closed kinetic chain exercise, provides a safer approach for developing muscle strength and functional stability in rehabilitation program of ACL-deficient knees, in comparison with open kinetic knee extension exercise. PMID:24066288

  3. Rehabilitation after ACL injury: a fluoroscopic study on the effects of type of exercise on the knee sagittal plane arthrokinematics.

    PubMed

    Norouzi, Sadegh; Esfandiarpour, Fateme; Shakourirad, Ali; Salehi, Reza; Akbar, Mohammad; Farahmand, Farzam

    2013-01-01

    A safe rehabilitation exercise for anterior cruciate ligament (ACL) injuries needs to be compatible with the normal knee arthrokinematics to avoid abnormal loading on the joint structures. The objective of this study was to measure the amount of the anterior tibial translation (ATT) of the ACL-deficient knees during selective open and closed kinetic chain exercises. The intact and injured knees of fourteen male subjects with unilateral ACL injury were imaged using uniplanar fluoroscopy, while the subjects performed forward lunge and unloaded/loaded open kinetic knee extension exercises. The ATTs were measured from fluoroscopic images, as the distance between the tibial and femoral reference points, at seven knee flexion angles, from 0° to 90°. No significant differences were found between the ATTs of the ACL-deficient and intact knees at all flexion angles during forward lunge and unloaded open kinetic knee extension (P < 0.05). During loaded open kinetic knee extension, however, the ATTs of the ACL deficient knees were significantly larger than those of the intact knees at 0° (P = 0.002) and 15° (P = 0.012). It was suggested that the forward lunge, as a weight-bearing closed kinetic chain exercise, provides a safer approach for developing muscle strength and functional stability in rehabilitation program of ACL-deficient knees, in comparison with open kinetic knee extension exercise. PMID:24066288

  4. ACL mismatch reconstructions: influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics.

    PubMed

    Herbort, Mirco; Lenschow, Simon; Fu, Freddie H; Petersen, Wolf; Zantop, Thore

    2010-11-01

    To evaluate the influence of tibial and femoral tunnel position in ACL reconstruction on knee kinematics, we compared ACL reconstruction with a tibial and femoral tunnel in anteromedial (AM-AM reconstruction) and in posterolateral footprint (PL-PL reconstruction) with a reconstruction technique with tibial posterolateral and femoral anteromedial tunnel placement (PL-AM reconstruction). In 9 fresh-frozen human cadaveric knees, the knee kinematics under simulated Lachman (134 N anterior tibial load) and a simulated pivot shift test (10 N/m valgus and 4 N/m internal tibial torque) were determined at 0°, 30°, 60°, and 90° of flexion. Kinematics were recorded for intact, ACL-deficient, and single-bundle ACL reconstructed knees using three different reconstruction strategies in randomized order: (1) PL-AM, (2) AM-AM and (3) PL-PL reconstructions. Under simulated Lachman test, single-bundle PL-AM reconstruction and PL-PL reconstructions both showed significantly increased anterior tibial translation (ATT) at 60° and 90° when compared to the intact knee. At all flexion angles, AM-AM reconstruction did not show any statistical significant differences in ATT compared to the intact knee. Under simulated pivot shift, PL-AM reconstruction resulted in significantly higher ATT at 0°, 30°, and 60° knee flexion and AM-AM reconstructions showed significantly higher ATT at 30° compared to the intact knee. PL-PL reconstructions did not show any significant differences to the intact knee. AM-AM reconstructions restore the intact knee kinematics more closely when compared to a PL-AM technique resembling a transtibial approach. PL-PL reconstructions showed increased ATT at higher flexion angles, however, secured the rotational stability at all flexion angles. Due to the independent tibial and femoral tunnel location, a medial portal technique may be superior to a transtibial approach. PMID:20461359

  5. A new method to measure post-traumatic joint contractures in the rabbit knee.

    PubMed

    Hildebrand, Kevin A; Holmberg, Michael; Shrive, Nigel

    2003-12-01

    A new device and method to measure rabbit knee joint angles are described. The method was used to measure rabbit knee joint angles in normal specimens and in knee joints with obvious contractures. The custom-designed and manufactured gripping device has two clamps. The femoral clamp sits on a pinion gear that is driven by a rack attached to a materials testing system. A 100 N load cell in series with the rack gives force feedback. The tibial clamp is attached to a rotatory potentiometer. The system allows the knee joint multiple degrees-of-freedom (DOF). There are two independent DOF (compression-distraction and internal-external rotation) and two coupled motions (medial-lateral translation coupled with varus-valgus rotation; anterior-posterior translation coupled with flexion-extension rotation). Knee joint extension-flexion motion is measured, which is a combination of the materials testing system displacement (converted to degrees of motion) and the potentiometer values (calibrated to degrees). Internal frictional forces were determined to be at maximum 2% of measured loading. Two separate experiments were performed to evaluate rabbit knees. First, normal right and left pairs of knees from four New Zealand White (NZW) rabbits were subjected to cyclic loading. An extension torque of 0.2 Nm was applied to each knee. The average change in knee joint extension from the first to the fifth cycle was 1.9 deg +/- 1.5 deg (mean +/- sd) with a total of 49 tests of these eight knees. The maximum extension of the four left knees (tested 23 times) was 14.6 deg +/- 7.1 deg, and of the four right knees (tested 26 times) was 12.0 deg +/- 10.9 deg. There was no significant difference in the maximum extension between normal left and right knees. In the second experiment, nine skeletally mature NZW rabbits had stable fractures of the femoral condyles of the right knee that were immobilized for five, six or 10 weeks. The left knee served as an unoperated control. Loss of knee joint

  6. What Symptoms Are More Important for Korean Patients in Knee Osteoarthritis? Development and Validation of the Korean Knee Score

    PubMed Central

    Ha, Jeong Ku; Kim, Jin Goo; Wang, Joon Ho

    2012-01-01

    Purpose The purpose of this study was to develop and validate a novel knee evaluation instrument, the Korean Knee Score (KKS), to reflect a floor life style with high knee flexion. In addition, we aimed to assess the importance of high knee flexion activity for Korean patients. Materials and Methods The KKS was developed following the guidelines of the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine. During development step, generated items were asked to 50 patients to determine importance and obtain an impact score for each item. A total of 634 patients were included in the validation survey. Results Forty one items were generated and impact scores of each item about floor life style were higher than other items. The KKS exhibited excellent reliability (intraclass correlation coefficient=0.931) and strong internal consistency (Cronbach's α=0.973). The content validity was good, with no ceiling or floor effect. The construct, convergent, and divergent validities were good. Moderate responsiveness was evident, with a standardized response mean of 0.74. Conclusions The KKS, has good validity, reliability, and responsiveness. The KKS includes items for floor life style, which are thought more important for Korean patients. The KKS can be used as a good evaluation questionnaire for Korean knee osteoarthritis patients. PMID:22977792

  7. The effect of knee braces on lateral impact loading of the knee.

    PubMed

    Baker, B E; VanHanswyk, E; Bogosian, S P; Werner, F W; Murphy, D

    1989-01-01

    Disruption of the medial supporting structures of the knee occurs commonly in contact sports such as American football and lacrosse. A limited number of clinical and laboratory studies currently document the effectiveness of bracing. The purpose of this project was to determine if commercially available bracing could be shown to produce objective evidence of medial stabilization of the knee. Our model involves the use of a cadaver lower extremity with a fixed foot and suspended femur with a free knee and a lateral impact load applied simulating a clipping injury. Force transducers were placed on the ACL and medial collateral ligament (MCL) and an electrogoniometer was attached to the extremity. The prophylactic braces studied had a limited capacity to protect the MCL from direct lateral stress with the knee in full extension. In flexion or with a change in direction of the load, the protective effect is greatly reduced. The functional braces had a capacity to limit abduction and rotational stresses on the MCL in flexion and extension. PMID:2757126

  8. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test.

    PubMed

    Vigotsky, Andrew D; Lehman, Gregory J; Contreras, Bret; Beardsley, Chris; Chung, Bryan; Feser, Erin H

    2015-01-01

    Background. Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test. Methods. Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated. Results. Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson's r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = -1.39° (-5.53, +2.75); t(22) = -0.70; p = 0.4933; Cohen's d = - 0.15 (-0.58, 0.29)) or rectus femoris length (change = -0.005 (-0.013, +0.003); t(22) = -1.30; p = 0.2070; Cohen's d = - 0.27 (-0.70, 0.16)) were not due to chance alone. Conclusions. Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol.

  9. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test.

    PubMed

    Vigotsky, Andrew D; Lehman, Gregory J; Contreras, Bret; Beardsley, Chris; Chung, Bryan; Feser, Erin H

    2015-01-01

    Background. Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test. Methods. Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated. Results. Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson's r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = -1.39° (-5.53, +2.75); t(22) = -0.70; p = 0.4933; Cohen's d = - 0.15 (-0.58, 0.29)) or rectus femoris length (change = -0.005 (-0.013, +0.003); t(22) = -1.30; p = 0.2070; Cohen's d = - 0.27 (-0.70, 0.16)) were not due to chance alone. Conclusions. Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol. PMID:26421244

  10. Relationship between muscle volume and contractile properties of the human knee extensors.

    PubMed

    Behrens, Martin; Brown, Niklas; Bollinger, Robert; Bubeck, Dieter; Mau-Moeller, Anett; Weippert, Matthias; Zschorlich, Volker; Bruhn, Sven; Alt, Wilfried

    2016-01-01

    The present study was designed to investigate the relationship between volume and electrically evoked twitch properties of the quadriceps muscle. Supramaximal single and doublet stimulation of the femoral nerve was used to assess contractile properties at 45° and 80° knee flexion. Muscle volume was measured using a 1.5-Tesla magnetic resonance imaging scanner. Quadriceps muscle volume was only significantly correlated (r = 0.629) with peak twitch torque induced by doublet stimulation at 80° but not at 45° knee flexion.

  11. Perioperative Rehabilitation Using a Knee Extension Device and Arthroscopic Debridement in the Treatment of Arthrofibrosis

    PubMed Central

    Biggs-Kinzer, Angie; Murphy, Brian; Shelbourne, K. Donald; Urch, Scott

    2010-01-01

    Background: Arthrofibrosis is a postoperative complication of intra-articular knee surgery that can be difficult to treat. Evidence suggests that maximizing knee range of motion may improve outcomes in patients with arthrofibrosis who undergo arthroscopic debridement. Hypothesis: Patients who achieve greater knee range of motion will have better subjective scores. Study Design: Retrospective case series analysis. Methods: A review of records was performed for 33 patients with arthrofibrosis who underwent knee arthroscopy and scar resection coupled with perioperative rehabilitation to maximize knee range of motion. Patient demographics and preoperative and postoperative range of motion measurements were extracted from the records. The International Knee Documentation Committee (IKDC) Subjective Knee Form was administered to assess pain, activity, and knee function. Patients performed a preoperative and postoperative rehabilitation program utilizing a knee extension device to maximize knee extension. Results: According to the IKDC range of motion criteria, 27 of 33 patients achieved normal knee extension, and 14 of 33 achieved normal knee flexion at a mean of 8.6 months after surgery. Patients with normal knee motion had a mean IKDC Subjective Knee Form score of 72.6 ± 13.6, which was significantly higher than patients who did not achieve normal motion (P = .04). Overall, mean IKDC Subjective Knee Form scores improved from 45.3 ± 16.7 preoperatively to 67.1 ± 18.0 postoperatively (P < .01) at a mean of 14.7 months after surgery. Conclusions: Perioperative rehabilitation that emphasizes restoration of normal knee range of motion appears to improve outcomes in patients with arthrofibrosis who undergo arthroscopic scar resection. In support of our hypothesis, patients who achieved greater knee range of motion had better subjective knee scores. PMID:23015970

  12. Effect of femoral component design on unresurfaced patellas in knee arthroplasty.

    PubMed

    Whiteside, Leo A; Nakamura, Takashi

    2003-05-01

    Three total knee designs were evaluated to test the hypothesis that femoral component design affects the clinical and mechanical functions of the unresurfaced patella after total knee arthroplasty. Patients with the Ortholoc II, Advantim, and Profix femoral components were followed up for as many as 14 years and revision rate, anterior knee pain, and generalized knee pain were compared. A laboratory protocol was devised to evaluate pressure in the patellofemoral joint of knees from cadavers with a pressure-sensitive transducer using the same three designs at various degrees of knee flexion. Thirty Ortholoc II knee components were followed up for 14 years. Nineteen patients (63%) had severe anterior knee pain and 15 patients (50%) had reoperation to resurface the patella within 2 years. Two hundred one patients (222 knees) with Advantim components were followed up for 10 years and 305 patients (330 knees) with Profix components were followed up for 5 years. No patients with these two knee designs had severe anterior knee pain or reoperation for patellar resurfacing. A significantly higher rate of mild anterior knee pain was seen in the patients with Advantim components than in the patients with Profix components. No apparent relationship was seen between the severity of patellar wear found at the time of surgery and the incidence of anterior knee pain. Patients with rheumatoid arthritis receiving either the Advantim or Profix knee component performed as well as patients with osteoarthritis when the patella was not resurfaced. Pressure was significantly higher in the patellofemoral joints of the laboratory knee specimens with Ortholoc II components than in the specimens with either the Advantim or Profix components. The specimens with Advantim components had significantly higher pressure than did the specimens with normal knees, and the specimens with Profix components differed little from those with normal knees. PMID:12771830

  13. Effects of ankle foot orthosis in stiff knee gait in adults with hemiplegia.

    PubMed

    Gatti, Marcelo Andrés; Freixes, Orestes; Fernández, Sergio Anibal; Rivas, Maria Elisa; Crespo, Marcos; Waldman, Silvina V; Olmos, Lisandro Emilio

    2012-10-11

    Stroke survivors present a less efficient gait compared to healthy subjects due to abnormal knee flexion during the swing phase of gait, associated with spasticity of the rectus femoris muscle and overactivity of the ankle plantarflexors. It is relevant to understand the effect of the ankle foot orthosis (AFO) on gait in individuals with plantarflexor spasticity. The aim of this study was to compare the knee kinematics with an AFO/footwear combination and barefoot in post-stroke subjects with plantarflexor spasticity. Ten subjects with chronic hemiplegia were measured. Two kinematic variables were assessed during the swing phase of the paretic limb: knee flexion angle at toeoff and peak knee flexion angle. We also analyzed gait speed and step length of the non-paretic limb. All variables were obtained with and without the orthosis. Kinematic data were acquired using a motion capture system (ELITE). Subjects wearing an AFO showed significant improvements in gait speed (0.62 m/s (0.08 SD) vs. 0.47 m/s (0.13 SD) (p=0.007)), step length of the non-paretic limb (42 cm (5.9 SD) vs. 33.5 cm (6.6 SD) (p=0.005)) and peak knee flexion angle during the swing phase: 30.7° (14.1° SD) vs. 26.3° (11.7° SD) p=0.005. No significant differences were obtained in the knee flexion angle at toeoff between no AFO and AFO conditions. We described benefits with AFO/footwear use in the kinematics of the knee, the step length of the non-paretic limb, and the gait velocity in hemiplegic subjects after mild to moderate stroke. We conclude that the use of an AFO can improve the gait pattern and increase velocity in these subjects.

  14. Predicting Functional Performance and Range of Motion Outcomes After Total Knee Arthroplasty

    PubMed Central

    Bade, Michael J.; Kittelson, John M.; Kohrt, Wendy M.; Stevens-Lapsley, Jennifer E.

    2015-01-01

    Objective The aim of this study was to assess the predictive value of functional performance and range of motion measures on outcomes after total knee arthroplasty. Design This is a secondary analysis of two pooled prospective randomized controlled trials. Sixty-four subjects (32 men and 32 women) with end-stage knee osteoarthritis scheduled to undergo primary total knee arthroplasty were enrolled. Active knee flexion and extension range of motion, Timed Up and Go (TUG) test time, and 6-min walk test distance were assessed. Results Preoperative measures of knee flexion and extension were predictive of long-term flexion (β = 0.44, P < 0.001) and extension (β = 0.46, P < 0.001). Acute measures of knee flexion and extension were not predictive of long-term flexion (β= 0.09, P = 0.26) or extension (β = 0.04, P = 0.76). Preoperative TUG performance was predictive of long-term 6-min walk performance (β = −21, P < 0.001). Acute TUG performance was predictive of long-term functional performance on the 6-min walk test, after adjusting for the effects of sex and age (P = 0.02); however, once adjusted for preoperative TUG performance, acute TUG was no longer related to long-term 6-min walk performance (P = 0.65). Conclusions Acute postoperative measures of knee range of motion are of limited prognostic value, although preoperative measures have some prognostic value. However, acute measures of functional performance are of useful prognostic value, especially when preoperative functional performance data are unavailable. PMID:24508937

  15. The role of the popliteus tendon in total knee arthroplasty: a cadaveric study

    PubMed Central

    COTTINO, UMBERTO; BRUZZONE, MATTEO; ROSSO, FEDERICA; DETTONI, FEDERICO; BONASIA, DAVIDE EDOARDO; ROSSI, ROBERTO

    2015-01-01

    Purpose this study was conducted to investigate the influence of the popliteus tendon (PT) on the static stability of total knee arthroplasty (TKA). Methods twenty knees were used. In 10 right knees, a cruciate-retaining (CR) TKA trial prosthesis was implanted; in the other ten knees (left knees), the posterior cruciate ligament was cut and a posterior substitution (PS) TKA trial prosthesis was implanted. Lamina spreaders were set at 100 N of tension, one on the medial and one on the lateral articular space. Gaps were then measured with a caliper before and after PT sectioning. Results the correlation between femoral dimensions and popliteus insertion distance from articular surfaces was measured with the Pearson correlation index and considered significant. In the CR-TKA group, medial and lateral gap measurements showed a significant increase after PT sectioning both in flexion and in extension. In the PS-TKA group, lateral gap measurements showed a significant increase after PT sectioning both in flexion and in extension, while the medial gap measurements increased significantly only in flexion. Conclusions PT sectioning destabilized both the lateral and the medial aspects of the knee. A greater effect was observed in the lateral compartment. The most statistically reliable effect was observed with the knee in flexion. In addition, we observed that preserving the PCL does not prevent lateral gap opening after PT sectioning. Clinical relevance PT should always be preserved when performing a TKA, because its resection can affect gap balancing, in flexion and in extension. Type of study controlled laboratory study. PMID:26151034

  16. Analysis of knee-joint forces during flexed-knee stance.

    PubMed

    Perry, J; Antonelli, D; Ford, W

    1975-10-01

    Using an instrumented cadaver lower extremity, the forces in the quadriceps, patella, and tibia during flexed-knee stance were measured and the calculated and experimental data were found to correlate with an average discrepancy of 6 per cent. The quadriceps force required to stabilize the knee was 75 per cent of the load on the femoral head at 15 degrees of knee flexion, 210 per cent at 30 degrees, and 410 per cent at 60 degrees. Stresses at the tibiofemoral and patellofemoral joint surfaces increased in similar fashion. The quadriceps force was equivalent to 20 per cent of average maximum quadriceps strength at 15 degrees and to 50 per cent at 30 degrees, as determined from torque tests on five normal subjects.

  17. Wing Flexion and Aerodynamics Performance of Insect Free Flights

    NASA Astrophysics Data System (ADS)

    Dong, Haibo; Liang, Zongxian; Ren, Yan

    2010-11-01

    Wing flexion in flapping flight is a hallmark of insect flight. It is widely thought that wing flexibility and wing deformation would potentially provide new aerodynamic mechanisms of aerodynamic force productions over completely rigid wings. However, there are lack of literatures on studying fluid dynamics of freely flying insects due to the presence of complex shaped moving boundaries in the flow domain. In this work, a computational study of freely flying insects is being conducted. High resolution, high speed videos of freely flying dragonflies and damselflies is obtained and used as a basis for developing high fidelity geometrical models of the dragonfly body and wings. 3D surface reconstruction technologies are used to obtain wing topologies and kinematics. The wing motions are highly complex and a number of different strategies including singular vector decomposition of the wing kinematics are used to examine the various kinematical features and their impact on the wing performance. Simulations are carried out to examine the aerodynamic performance of all four wings and understand the wake structures of such wings.

  18. Closed Reduction of “Irreducible” Posterolateral Knee Dislocation - A Case Report

    PubMed Central

    Tateda, Satoshi; Takahashi, Atsushi; Aizawa, Toshimi; Umehara, Jutaro

    2016-01-01

    Introduction: Posterolateral rotary knee dislocation is a rare orthopedic injury that is considered to be irreducible by closed reduction because of soft tissue incarceration. Here, we present a case of posterolateral rotary knee dislocation, which was reduced by closed manipulation. Case report: The patientwas a 33-year-old man who sustained a twisting injury to his right knee that was diagnosed as posterolateral rotary knee dislocation by plain radiographs and the characteristic physical finding known as a dimple sign. Under general anesthesia, the knee dislocation was reduced by closed manipulation with internal rotation of the lower leg at knee flexion and reproduced by valgus and external rotation stress. There were was complete tear of posterior cruciate ligament, and partial tear of the anterior cruciate ligament which were not reconstructed. The medial collateral ligament that was detached from the femoral footprint was repaired. One year postoperatively, the range of motion was 0–145°. There was no knee symptom and no ligament instability. Conclusion: This is the first report of a successful closed reduction for posterolateral knee dislocation. The mechanism of dislocation was considered valgus and external rotation stress during knee flexion. PMID:27299118

  19. The effect of mechanical massage on early outcome after total knee arthroplasty: a pilot study.

    PubMed

    Kim, Sun Mi; Kim, Sang-Rim; Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young

    2015-11-01

    [Purpose] The aim of this study was to evaluate the efficacy of mechanical massage via Endermologie(®) after total knee arthroplasty in reducing edema and pain and improving knee range of motion, in the early postoperative period. [Subjects and Methods] Eighteen patients with knee edema following total knee arthroplasty were randomly assigned to the intervention group (n=8) or the control group (n=10). The intervention group received mechanical massage therapy using Endermologie(®) and the control group received conventional physical therapy for 20 minutes a day, 5 times a week from the seventh day postsurgery. Clinical assessments included active knee flexion and extension range of motion, knee pain using a numeric rating scale, the operated limb circumference, the soft tissue cross-sectional area using ultrasonography, the extracelluar fluid volume, and single frequency bioimpedance analysis at 5 kHz using bioelectrical impedance spectroscopy. [Results] Both groups showed significant reduction in edema and pain, and improvement in active knee flexion at the end of treatment. There were no significant inter-group differences before or after treatment. [Conclusion] Mechanical massage could be an alternative way of managing knee edema after total knee arthroplasty in early postoperative recovery.

  20. The effect of mechanical massage on early outcome after total knee arthroplasty: a pilot study

    PubMed Central

    Kim, Sun Mi; Kim, Sang-Rim; Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young

    2015-01-01

    [Purpose] The aim of this study was to evaluate the efficacy of mechanical massage via Endermologie® after total knee arthroplasty in reducing edema and pain and improving knee range of motion, in the early postoperative period. [Subjects and Methods] Eighteen patients with knee edema following total knee arthroplasty were randomly assigned to the intervention group (n=8) or the control group (n=10). The intervention group received mechanical massage therapy using Endermologie® and the control group received conventional physical therapy for 20 minutes a day, 5 times a week from the seventh day postsurgery. Clinical assessments included active knee flexion and extension range of motion, knee pain using a numeric rating scale, the operated limb circumference, the soft tissue cross-sectional area using ultrasonography, the extracelluar fluid volume, and single frequency bioimpedance analysis at 5 kHz using bioelectrical impedance spectroscopy. [Results] Both groups showed significant reduction in edema and pain, and improvement in active knee flexion at the end of treatment. There were no significant inter-group differences before or after treatment. [Conclusion] Mechanical massage could be an alternative way of managing knee edema after total knee arthroplasty in early postoperative recovery. PMID:26696709

  1. A cadaver knee simulator to evaluate the biomechanics of rectus femoris transfer.

    PubMed

    Anderson, Michael C; Brown, Nicholas A T; Bachus, Kent N; Macwilliams, Bruce A

    2009-07-01

    A cadaver knee simulator has been developed to model surgical transfer of the rectus femoris. The simulator allows knee specimens six degrees of freedom and is capable of modeling both the swing and stance phases of human gait. Experiments were conducted using a mechanical hinge analog of the knee to verify that time, flexion angle, and knee extension force measurements recorded when using the simulator were not influenced by its design or operation. A ballistic double pendulum model was used to model the swing phase of gait, and the contributions of hip and ankle torques and hamstrings cocontraction were included when modeling the stance phase of gait. When modeling swing, range of motion and time to peak knee flexion in swing for the hinge knee were similar to those of in vivo test subjects. Measurements of hinge knee extension force when modeling stance under various biomechanical conditions matched those predicted using an analytical model. Future studies using cadaver knee specimens will apply techniques described in this paper to further our understanding of changes in knee biomechanics caused by rectus femoris transfer surgery. PMID:19403312

  2. Rotating platform knees did not improve patellar tracking: a prospective, randomized study of 240 primary total knee arthroplasties.

    PubMed

    Pagnano, Mark W; Trousdale, Robert T; Stuart, Michael J; Hanssen, Arlen D; Jacofsky, David J

    2004-11-01

    Renewed interest in mobile-bearing total knee replacement designs has been generated by the concept of self alignment and the suggestion that those designs can accommodate small mismatches in the rotational position of the tibial and femoral components. Self alignment might improve patellar tracking, decrease the prevalence of lateral retinacular release and postoperative patellar tilt or subluxation, improve knee flexion, and improve patellofemoral function during daily activities such as stair climbing. This prospective randomized study of 240 patients used a single posterior-stabilized femoral component and included three groups of 80 patients: an all-polyethylene group, a modular metal-backed group, and a rotating platform tibia group. The prevalence of lateral retinacular release was 3.8% in each group. The prevalence of patellar tilt was 5% (all-polyethylene group), 7% (modular metal-backed group), and 11% (rotating platform group). Preoperative motion was not significantly different and both the 3-month flexion (112 degrees , 110 degrees , and 108 degrees ) and 1-year flexion (116 degrees , 117 degrees , and 115 degrees ) were not significantly different among the all-polyethylene, modular metal-backed, and rotating platform groups, respectively. Preoperative stair climbing scores were not significantly different and both the 3-month (38, 41, and 35 points) and 1-year (44, 46, and 42 points) scores were not significantly different. In this prospective randomized study, the rotating platform knee design did not decrease the prevalence of lateral retinacular release or patellar tilt or subluxation and did not increase knee flexion or improve stair climbing ability at 3 months or at 1 year postoperatively when compared with a posterior-stabilized, fixed-bearing knee.

  3. [Jumper's knee].

    PubMed

    Hagner, W; Sosnowski, S; Kaziński, W; Frankowski, S

    1993-01-01

    A series of 30 athletes aged about 16 years on an average, exposed to activities putting a strain on the patellar tendon during training has been examined. They were involved in competitive sports for 3 years on an average. In 27 per cent of them jumpers knee symptoms have been found.

  4. Jumper's knee.

    PubMed

    Ferretti, A; Ippolito, E; Mariani, P; Puddu, G

    1983-01-01

    Jumper's knee (patellar or quadriceps tendon tendonitis) is found in a high number of athletes, especially in volleyball and basketball players. Conservative treatment (rest, stretching, physical therapy and antiinflammatory drugs) is usually successful. The athletes often recover completely and resume their sports activity. The purpose of this study is to present the histologic findings and our surgical repair of 18 knees of patients who underwent surgery after failure of conservative treatment. Histologic findings confirm that the so-called "jumper's knee" is a pathology localized at the bone-tendon junction. In all cases the following abnormalities were found: pseudocystic cavities at the borderline between mineralized fibrocartilage and bone, disappearance of the "blue line," increased thickness of the insertional fibrocartilage with myxomatous and hyaline metaplasia, mineralization, and ossification of the fibrocartilage far from the "blue line." Abnormalities of the patellar tendon were observed only in one patient who received local injection of corticosteroids. Eleven of the 18 surgically treated knees obtained a satisfactory result with complete resumption of sports activity.

  5. Role of gastrocnemius activation in knee joint biomechanics: gastrocnemius acts as an ACL antagonist.

    PubMed

    Adouni, M; Shirazi-Adl, A; Marouane, H

    2016-01-01

    Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics-kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°-90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.

  6. Fabella Syndrome as an Uncommon Cause of Posterolateral Knee Pain after Total Knee Arthroplasty: A Case Report and Review of the Literature

    PubMed Central

    Okano, Eriko; Yanai, Takaji; Kohyama, Sho; Kanamori, Akihiro; Yamazaki, Masashi; Tanaka, Toshikazu

    2016-01-01

    The fabella is a sesamoid bone that is located in the lateral head of the gastrocnemius muscle and has been identified on magnetic resonance imaging in 31% of Japanese people. In the present case, a 65-year-old woman experienced posterolateral knee pain, accompanied by a clicking “sound” during active knee flexion, after undergoing total knee arthroplasty for knee osteoarthritis. Eight months of conservative therapy failed to produce an improvement, with progressive osteoarthritic change of the fabella identified on plain radiography. Based on this evidence, a diagnosis of fabella syndrome was made and the patient underwent a fabellectomy. Fabellectomy provided immediate resolution of posterolateral knee pain and the clicking sound with knee flexion, with the patient remaining symptom-free 18 months after fabellectomy and with no limitations in knee function. Fabellectomy eliminated symptoms in all of five case reports that have been previously published and is regarded as an effective first choice for treating fabella syndrome after total knee arthroplasty. PMID:27418991

  7. Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses.

    PubMed

    Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C

    2016-06-01

    Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses.

  8. Muscle activation and knee biomechanics during squatting and lunging after lower extremity fatigue in healthy young women.

    PubMed

    Longpré, Heather S; Acker, Stacey M; Maly, Monica R

    2015-02-01

    Muscle activations and knee joint loads were compared during squatting and lunging before and after lower extremity neuromuscular fatigue. Electromyographic activations of the rectus femoris, vastus lateralis and biceps femoris, and the external knee adduction and flexion moments were collected on 25 healthy women (mean age 23.5 years, BMI of 23.7 kg/m(2)) during squatting and lunging. Participants were fatigued through sets of 50 isotonic knee extensions and flexions, with resistance set at 50% of the peak torque achieved during a maximum voluntary isometric contraction. Fatigue was defined as a decrease in peak isometric knee extension or flexion torque ≥25% from baseline. Co-activation indices were calculated between rectus femoris and biceps femoris; and between vastus lateralis and biceps femoris. Fatigue decreased peak isometric extension and flexion torques (p<0.05), mean vastus lateralis activation during squatting and lunging (p<0.05), and knee adduction and flexion moments during lunging (p<0.05). Quadriceps activations were greater during lunging than squatting (p<0.05). Thus, fatigue altered the recruitment strategy of the quadriceps during squatting and lunging. Lunging challenges quadriceps activation more than squatting in healthy, young women.

  9. Dynamic knee stability estimated by finite helical axis methods during functional performance approximately twenty years after anterior cruciate ligament injury.

    PubMed

    Grip, Helena; Tengman, Eva; Häger, Charlotte K

    2015-07-16

    Finite helical axis (FHA) measures of the knee joint during weight-bearing tasks may capture dynamic knee stability following Anterior Cruciate Ligament (ACL) injury. The aim was to investigate dynamic knee stability during two-leg squat (TLS) and one-leg side hop (SH) in a long-term follow-up of ACL injury, and to examine correlations with knee laxity (KT-1000), osteoarthritis (OA, Kellgren-Lawrence) and knee function (Lysholm score). Participants were injured 17-28 years ago and then treated with surgery (n=33, ACLR) or physiotherapy only (n=37, ACLPT) and healthy-knee controls (n=33) were tested. Movements were registered with an optical motion capture system. We computed three FHA inclination angles, its' Anterior-Posterior (A-P) position, and an index quantifying directional changes (DI), during stepwise knee flexion intervals of ∼15°. Injured knees were less stable compared to healthy controls' and to contralateral non-injured knees, regardless of treatment: the A-P intersection was more anterior (indicating a more anterior positioning of tibia relative to femur) positively correlating with high laxity/low knee function, and during SH, the FHA was more inclined relative to the flexion-extension axis, possibly due to reduced rotational stability. During the TLS, A-P intersection was more anterior in the non-injured knee than the injured, and DI was higher, probably related to higher load on the non-injured knee. ACLR had less anterior A-P intersection than ACLPT, suggesting that surgery enhanced stability, although rotational stability may remain reduced. More anterior A-P intersection and greater inclination between the FHA and the knee flexion-extension axis best revealed reduced dynamic stability ∼23 years post-injury.

  10. Dynamic knee stability estimated by finite helical axis methods during functional performance approximately twenty years after anterior cruciate ligament injury.

    PubMed

    Grip, Helena; Tengman, Eva; Häger, Charlotte K

    2015-07-16

    Finite helical axis (FHA) measures of the knee joint during weight-bearing tasks may capture dynamic knee stability following Anterior Cruciate Ligament (ACL) injury. The aim was to investigate dynamic knee stability during two-leg squat (TLS) and one-leg side hop (SH) in a long-term follow-up of ACL injury, and to examine correlations with knee laxity (KT-1000), osteoarthritis (OA, Kellgren-Lawrence) and knee function (Lysholm score). Participants were injured 17-28 years ago and then treated with surgery (n=33, ACLR) or physiotherapy only (n=37, ACLPT) and healthy-knee controls (n=33) were tested. Movements were registered with an optical motion capture system. We computed three FHA inclination angles, its' Anterior-Posterior (A-P) position, and an index quantifying directional changes (DI), during stepwise knee flexion intervals of ∼15°. Injured knees were less stable compared to healthy controls' and to contralateral non-injured knees, regardless of treatment: the A-P intersection was more anterior (indicating a more anterior positioning of tibia relative to femur) positively correlating with high laxity/low knee function, and during SH, the FHA was more inclined relative to the flexion-extension axis, possibly due to reduced rotational stability. During the TLS, A-P intersection was more anterior in the non-injured knee than the injured, and DI was higher, probably related to higher load on the non-injured knee. ACLR had less anterior A-P intersection than ACLPT, suggesting that surgery enhanced stability, although rotational stability may remain reduced. More anterior A-P intersection and greater inclination between the FHA and the knee flexion-extension axis best revealed reduced dynamic stability ∼23 years post-injury. PMID:25935685

  11. Tibial tubercle osteotomy for exposure of the difficult total knee arthroplasty.

    PubMed

    Whiteside, L A; Ohl, M D

    1990-11-01

    Tibial tubercle osteotomy provides a safe and reliable means of extensile exposure of the knee. A technique was developed using a long osteoperiosteal segment including the tibial tubercle and upper tibial crest leaving lateral muscular attachments intact to this bone fragment. The bone fragment was reattached to its bed with two cobalt-chromium wires passed through the fragment and through the medial tibial cortex. The procedure was used in 71 knees to expose the joint for total knee arthroplasty, and the follow-up period was one to five years. All healed uneventfully, and no significant complications occurred. Mean postoperative flexion was 97 degrees. No extension lag occurred, and mean flexion contracture was 2.5 degrees. Excellent exposure can be achieved by means of a viable bone flap below the knee. Early rehabilitation and weight bearing can be done with low potential for complications. PMID:2225644

  12. Congenital dislocation of the knee.

    PubMed

    Ko, J Y; Shih, C H; Wenger, D R

    1999-01-01

    Between February 1988 and June 1995, 24 congenital dislocations of the knee joints (17 patients) were reduced with closed methods including immediate reduction, serial casting, or traction in patients from 10 min to 26 days old. At an average follow-up of 4 years and 10 months, an excellent or good result was achieved if there were no associated anomalies. Fair or poor results were the result of delayed treatment or associated musculoskeletal anomalies including arthrogryposis multiplex congenita or Larsen's syndrome. Routine check of the hip dislocation is suggested. Diagnosis with manual testing was difficult, and other methods such as radiography or sonography were suggested in combination to detect hip dysplasia. The dislocated knee should be reduced before treating the hip dislocation. Concomitant treatment of the congenital dislocation of the knee and the hip with Pavlik harness provided satisfactory results. When late, progressive, genu valgus deformity occurred because of global instability of the knee and asymmetric physeal growth, reconstruction of the medial structures of the knee and prolonged bracing provided good results. PMID:10088699

  13. NAVIGATION IN TOTAL KNEE ARTHROPLASTY

    PubMed Central

    da Mota e Albuquerque, Roberto Freire

    2015-01-01

    Navigation was the most significant advance in instrumentation for total knee arthroplasty over the last decade. It provides surgeons with a precision tool for carrying out surgery, with the possibility of intraoperative simulation and objective control over various anatomical and surgical parameters and references. Since the first systems, which were basically used to control the alignment of bone cutting referenced to the mechanical axis of the lower limb, many other surgical steps have been incorporated, such as component rotation, ligament balancing and arranging the symmetry of flexion and extension spaces, among others. Its efficacy as a precision tool with an effective capacity for promoting better alignment of the lower-limb axis has been widely proven in the literature, but the real value of optimized alignment and the impact of navigation on clinical results and the longevity of arthroplasty have yet to be established. PMID:27026979

  14. Biomechanical Analysis of Stair Descent in Patients with Knee Osteoarthritis

    PubMed Central

    Igawa, Tatsuya; Katsuhira, Junji

    2014-01-01

    [Purpose] The purposes of this study were to investigate the lower extremity joint kinematics and kinetics of patients with the knee osteoarthritis (knee OA) during stair descent and clarify the biomechanical factors related to their difficulty in stair descent. [Subjects and Methods] Eight healthy elderly persons and four knee OA patients participated in this study. A 3-D motion analysis system and force plates were employed to measure lower extremity joint angles, ranges of motion, joint moments, joint powers, and ratios of contribution for the joint powers while descending stairs. [Results] Knee joint flexion angle, extension moment, and negative power during the early stance phase in the knee OA group were smaller than those in the healthy subjects group. However, no significant changes in these parameters in the ankle joint were observed between the two subject groups. [Conclusion] Knee OA patients could not use the knee joint to absorb impact during the early stance phase of stair descent. Hence, they might compensate for the roles played by the intact knee joint by mainly using ipsilateral ankle kinematics and kinetics. PMID:24926119

  15. Biomechanical analysis of stair descent in patients with knee osteoarthritis.

    PubMed

    Igawa, Tatsuya; Katsuhira, Junji

    2014-05-01

    [Purpose] The purposes of this study were to investigate the lower extremity joint kinematics and kinetics of patients with the knee osteoarthritis (knee OA) during stair descent and clarify the biomechanical factors related to their difficulty in stair descent. [Subjects and Methods] Eight healthy elderly persons and four knee OA patients participated in this study. A 3-D motion analysis system and force plates were employed to measure lower extremity joint angles, ranges of motion, joint moments, joint powers, and ratios of contribution for the joint powers while descending stairs. [Results] Knee joint flexion angle, extension moment, and negative power during the early stance phase in the knee OA group were smaller than those in the healthy subjects group. However, no significant changes in these parameters in the ankle joint were observed between the two subject groups. [Conclusion] Knee OA patients could not use the knee joint to absorb impact during the early stance phase of stair descent. Hence, they might compensate for the roles played by the intact knee joint by mainly using ipsilateral ankle kinematics and kinetics.

  16. Chondropathia patellae and knee muscle control. An electromyographic study.

    PubMed

    Hess, T; Gleitz, M; Egert, S; Hopf, T

    1996-01-01

    The activity of knee-related muscles was registered via exercising on a bicycle ergometer by 17 patients with clinically diagnosed chondropathia patellae. M. quadriceps activity was shorter and the hamstring activity longer in the chondropathy group compared with a matched healthy control group. The changes in m. quadriceps occurred to an almost equal extent in lateral and medial sections. In five patients with unilateral complaints, the electromyographic changes were nevertheless noted on both sides. The study shows that chondropathia patellae involves a change in muscle control affecting not only the knee extensors but also the hamstrings. Through the changed innervation pattern the coactivation phase, i.e. the phase of simultaneous activation of knee flexors and extensors at the end of the extension phase, takes place at a higher angle of flexion. Physiotherapy should involve all knee-related muscles and should include not only isometric but also dynamic exercises.

  17. Computer-assisted navigation in knee arthroplasty: a critical appraisal.

    PubMed

    Venkatesan, Muralidharan; Mahadevan, Devendra; Ashford, Robert U

    2013-10-01

    The purpose of this review was to appraise the use of computer-assisted navigation in total knee arthroplasty and to assess whether this technology has improved clinical outcomes. Studies were identified through searches in MEDLINE, Embase, and PubMed. Numerous studies have shown improved leg and component alignment using navigation systems. However, the better alignment achieved in navigated knee arthroplasty has not been shown to lead to better clinical outcomes. Navigated knee arthroplasty had lower calculated blood loss and lower incidence of fat embolism compared with conventional knee arthroplasty using intramedullary jigs. It may be most valued when dealing with complex knee deformities, revision surgery, or minimally invasive surgery. Navigated knee arthroplasty, however, is only cost-effective in centers with a high volume of joint replacements. Overall, computer-assisted navigated knee arthroplasty provides some advantages over conventional surgery, but its clinical benefits to date are unclear and remain to be defined on a larger scale.

  18. Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction.

    PubMed

    Bryant, Adam L; Kelly, Jason; Hohmann, Erik

    2008-01-01

    The objective of this research was to examine the dynamic restraint mechanism by establishing the neuromuscular characteristics of lower extremity muscles in anterior cruciate ligament reconstruction (ACLR) subjects. This study also investigated neuromuscular variables that relate to post-ACLR functional outcome. Thirteen patients having undergone ACLR using the bone patella tendon bone graft at least 6 months prior participated in this study. Knee functionality (0- to 100-point scale) was rated using the Cincinnati Knee Rating System. The median frequency of the electromyographic (EMG) recordings from the vastus medialis (VM) and vastus lateralis (VL) muscles together with the isokinetic quadriceps torque generated in 10 degrees intervals between 80 degrees and 10 degrees knee flexion was determined for the noninvolved and involved limbs. Lower limb musculotendinous stiffness was also assessed for the noninvolved and involved limbs. Limb symmetry indexes were calculated for each of the physiological measures. Compared to the noninvolved limb, the median frequency of the EMG from the involved limb VM and VL muscles was significantly lower as was the quadriceps torque generated at the seven knee flexion intervals. In contrast, musculotendinous stiffness was significantly higher in the involved lower limb compared to the noninvolved limb. Significant, moderate correlations were identified between knee functionality and symmetry indexes for all variables except for the isokinetic quadriceps torque produced between 80 degrees -70 degrees and 20 degrees -10 degrees knee flexion. More functional ACLR subjects demonstrated enhanced motor unit recruitment reflective of less quadriceps muscle fiber atrophy together with increased quadriceps strength and musculotendinous stiffness of the lower limb musculature.

  19. Cruciate Retaining Versus Cruciate Stabilising Total Knee Arthroplasty – A Prospective Randomised Kinematic Study

    PubMed Central

    Godwin, T L; Bayan, A

    2016-01-01

    Objective: While there is a large body of research in regards to cruciate retaining(CR) and cruciate sacrificing total condylar knee replacement, the literature is spars in regards to highly conforming polyetheylene such as the triatholon cruciate stabilising tibial insert (CS).The aim was to determine whether there is a difference in the range of motion, kinematics as well as the functional outcome for Triathlon CS and CR TKJR. Methods: A single hospital consecutive series of one surgeon between 2011 and 2013 were enrolled. Kinematic data recorded prospectively at the time of surgery utilizing imageless navigation included preoperative and post-replacement extension, gravity flexion, passive flexion and rotation. Intraoperative femoral and tibial cuts and definitive implants were also recorded. Statistically analysis performed to compare CS and CR TKJR range of motion, deformity correction, and rotation pre and post-operatively. Oxford functional scores were obtained at the final follow up. 124 patients were randomised to 71 CS and 53 CR TKJR. The demographics were comparable between the two groups. Results: No significant difference was found between the groups’ preoperative range of motion. The net gain in extension for the CS group was 5.65 degrees (4.14-7.17) and for CR 5.64 degrees (4.24-7.04, p=0.99) with no significant difference shown. Post-operative gravity flexion significantly increased in CS TKJR with 129.01 degrees (127.37130.66) compared with 126.35 degrees (124.39-128.30, p =0.04) for CR. A weak positive correlation was shown between the size of distal femoral cut and post-operative extension for both CS and CR TKJR. A weak positive correlation was also shown for the difference between the intraoperative cuts (tibial and femoral) and the size of the implants used, in relation to post-operative extension. Post-operative oxford scores at average of 3.4 year follow up comparable between groups. Conclusion: The kinematics of CS and CR TKJR are

  20. Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque.

    PubMed

    Pincivero, Danny M; Salfetnikov, Yuliya; Campy, Robert M; Coelho, Alan J

    2004-11-01

    The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.

  1. Knee microfracture surgery

    MedlinePlus

    ... knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc . 2010 Apr;18(4):519-27. Hurst JM, Steadman JR, O'Brien L, Rodkey WG, Briggs KK. Rehabilitation following microfracture for chondral injury in the knee. ...

  2. A miniature tension sensor to measure surgical suture tension of deformable musculoskeletal tissues during joint motion.

    PubMed

    Kiriyama, Yoshimori; Matsumoto, Hideo; Toyama, Yoshiaki; Nagura, Takeo

    2014-02-01

    The aim of this study was to develop a new suture tension sensor for musculoskeletal soft tissue that shows deformation or movements. The suture tension sensor was 10 mm in size, which was small enough to avoid conflicting with the adjacent sensor. Furthermore, the sensor had good linearity up to a tension of 50 N, which is equivalent to the breaking strength of a size 1 absorbable suture defined by the United States Pharmacopeia. The design and mechanism were analyzed using a finite element model prior to developing the actual sensor. Based on the analysis, adequate material was selected, and the output linearity was confirmed and compared with the simulated result. To evaluate practical application, the incision of the skin and capsule were sutured during simulated total knee arthroplasty. When conventional surgery and minimally invasive surgery were performed, suture tensions were compared. In minimally invasive surgery, the distal portion of the knee was dissected, and the proximal portion of the knee was dissected additionally in conventional surgery. In the skin suturing, the maximum tension was 4.4 N, and this tension was independent of the sensor location. In contrast, the sensor suturing the capsule in the distal portion had a tension of 4.4 N in minimally invasive surgery, while the proximal sensor had a tension of 44 N in conventional surgery. The suture tensions increased nonlinearly and were dependent on the knee flexion angle. Furthermore, the tension changes showed hysteresis. This miniature tension sensor may help establish the optimal suturing method with adequate tension to ensure wound healing and early recovery.

  3. Isokinetic strength training in below-knee amputees.

    PubMed

    Klingenstierna, U; Renström, P; Grimby, G; Morelli, B

    1990-01-01

    Eight below-knee amputees performed isokinetic training of knee extensor- and knee-flexor muscles for a period of 8-12 weeks at angular velocities of 60 degrees/s, 180 degrees/s and 240 degrees/s. Before and after training isokinetic and isometric knee extensor/flexor strength was measured. Muscle biopsies were taken from the vastus lateralis and the cross-sectional area of the thigh muscles was measured with computerized tomography. Peak torque of the amputated leg increased significantly in all knee-extension tests and in knee-flexion at 180 degrees/s, and in the non-amputated leg in extension at 180 degrees/s, 240 degrees/s and for isometric strength at 60 degrees knee angle. Knee-flexion strength increased at 240 degrees/s. The cross-sectional area of the muscle fibers increased in the amputated leg in all patients except one. There was no significant increase in the non-amputated leg which also was trained. The quotient between the cross-sectional areas of type II and type I fibers increased from 1.04 to 1.20 in the amputated leg, demonstrating an increase specially in the type II fibers. There was no difference in the non-amputated leg. The cross-sectional area of the thigh muscles did not show any significant change in either leg. The patients estimated their ability to walk after training to more than double the distance compared to before training. They could also manage better without walking aids. The increase in strength and the synchronous increase in the size of type II (fast twitch) fibers indicate that the training model has activated also these motor units which probably have not been given as much training earlier. PMID:2326608

  4. Characterising knee motion and laxity in a testing machine for application to total knee evaluation.

    PubMed

    Walker, Peter S; Arno, Sally; Borukhoy, Ilya; Bell, Christopher P

    2015-10-15

    The goal of this study was to determine knee motions in specimens under combined input forces over a full range of flexion, so that the various flexion angles and loading combinations encountered in functional conditions would be contained. The purpose was that the data would act as a benchmark for the evaluation of TKR designs using the same testing methodology. We measured the neutral path of motion and laxity about the neutral path. The femur was flexed in a continuous movement, rather than at discrete flexion angles, using optical tracking. The motion of the femoral circular axis relative to the tibia was determined, as well as the contact patches on the tibial surfaces. The neutral path of motion was independent of compressive load, and consisted of a relatively constant medial contact and steady posterior displacement laterally, in agreement with previous studies. The anterior-posterior laxities of the lateral and medial condyles were similar whether AP forces or torques were applied. The lateral laxity was predominantly anterior with respect to the neutral path, while on the medial side, the laxity was less than lateral and predominantly posterior of the neutral path. Contact on the anterior surface of the medial tibial plateau only occurred in some cases in 5° hyperextension and at 0° flex when an anterior femoral shear or an external femoral torque were applied. The method can be regarded as a development of the ASTM constraint standard, with the addition of the benchmark, for the evaluation of total knee designs. PMID:26315916

  5. Weak lensing goes bananas: what flexion really measures

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Er, X.

    2008-07-01

    In weak gravitational lensing, the image distortion caused by shear measures the projected tidal gravitational field of the deflecting mass distribution. To lowest order, the shear is proportional to the mean image ellipticity. If the image sizes are not small compared to the scale over which the shear varies, higher-order distortions occur, called flexion. For ordinary weak lensing, the observable quantity is not the shear, but the reduced shear, owing to the mass-sheet degeneracy. Likewise, the flexion itself is unobservable. Instead, higher-order image distortions measure the reduced flexion, i.e., derivatives of the reduced shear. We derive the corresponding lens equation in terms of the reduced flexion and calculate the resulting relation between brightness moments of source and image. Assuming an isotropic distribution of source orientations, estimates for the reduced shear and flexion are obtained and then tested with simulations. In particular, the presence of flexion affects the determination of the reduced shear. The results of these simulations yield the amount of bias of the estimators as a function of the shear and flexion. We point out and quantify a fundamental limitation of the flexion formalism in terms of the product of reduced flexion and source size. If this product increases above the derived threshold, multiple images of the source are formed locally, and the formalism breaks down. Finally, we show how a general (reduced) flexion field can be decomposed into its four components. Two of them are due to a shear field, carrying an E- and B-mode in general. The other two components do not correspond to a shear field, and they can also be split up into corresponding E- and B-modes.

  6. Effects of added elastic tubes on open-chain knee extensor strength training.

    PubMed

    Melo, Mónica de Oliveira; Brodt, Guilherme Auler; Gomes, Lara Elena; Candotti, Cláudia Tarragô; La Torre, Marcelo; Loss, Jefferson Fagundes

    2013-06-01

    Attaching elastic tubes (ETs) to resistance training machines can affect the exercise load profile. The purpose of this study was to assess the training effects of added ETs, which were strategically attached to provide additional loads only during the deceleration phase of the knee extension exercise. Twenty-two healthy participants, assigned to either an experimental group (with ETs) or a control group (without ETs), participated in a 12-week strength-training program using a knee extension exercise machine. The acceleration effects were quantified and a method of attaching the ETs to the knee extension machine was developed. The effects of the added ETs were analysed by testing dynamic and isometric maximum contractions at four knee flexion angles (10 degrees, 30 degrees, 50 degrees, and 80 degrees). Analyses of covariance with the initial values as the covariate were used to examine the ETeffects. A greater increase in isometric maximum strength was found in the experimental group than in the control group at knee flexion angles of 10 degrees [effect size (ES) = 2.25] and 30 degrees (ES = 1.18). No significant difference in the dynamic maximum strength was found between the groups. The use of ETs increased strength at smaller knee flexion angles with quadriceps that were relatively short. PMID:23898691

  7. Effect of submaximal repetitive exercise on knee coactivation in young and middle-aged women.

    PubMed

    Hodder, Joanne N; Plashkes, Tova E; Franklin, Regan A; Hickey, Heather K; Maly, Monica R

    2014-04-01

    Coactivation of the knee extensors and flexors increases knee joint contact forces, which may lead to degradation of the articular surfaces. This study investigated the effect of neuromuscular fatigue induced by submaximal, repetitive, dynamic contractions on coactivation of knee musculature in young and middle-aged women. Data from 10 young women (24.6±1.8 years) and 8 middle-aged women (55.4±4.2 years) were analyzed. Measures included peak knee extension and flexion torques and the average amplitude of surface electromyography of rectus femoris and biceps femoris. Coactivation ratios were calculated from these activations. To induce fatigue, participants completed up to ten sets of 50 concentric knee extension and flexion contractions at 60°/s. A two-factor analysis of variance was used to determine the effect of age and fatigue. The young group showed higher peak torque compared with the middle-aged group (P<.001). During flexion, biceps femoris activity increased after fatigue when both groups were considered together (P=.018). During extension, biceps femoris activity was higher in the middle-aged than young group (P=.043). Middle-aged women exhibited a trend for greater coactivation during knee extension compared with young women (P=.066). This coactivation likely contributed to extension torque decrements in middle-aged women.

  8. In-vivo three-dimensional knee kinematics during daily activities in dogs.

    PubMed

    Kim, Stanley E; Jones, Stephen C; Lewis, Daniel D; Banks, Scott A; Conrad, Bryan P; Tremolada, Giovanni; Abbasi, Abdullah Z; Coggeshall, Jason D; Pozzi, Antonio

    2015-11-01

    The canine knee is morphologically similar to the human knee and thus dogs have been used in experimental models to study human knee pathology. To date, there is limited data of normal canine 3D knee kinematics during daily activities. The objective of this study was to characterize 3D in-vivo femorotibial kinematics in normal dogs during commonly performed daily activities. Using single-plane fluoroscopy, six normal dogs were imaged performing walk, trot, sit, and stair ascent activities. CT-generated bone models were used for kinematic measurement using a 3D-to-2D model registration technique. Increasing knee flexion angle was typically associated with increasing tibial internal rotation, abduction and anterior translation during all four activities. The precise relationship between flexion angle and these movements varied both within and between activities. Significant differences in axial rotation and coronal angulation were found at the same flexion angle during different phases of the walk and trot. This was also found with anterior tibial translation during the trot only. Normal canine knees accommodate motion in all planes; precise kinematics within this envelope of motion are activity dependent. This data establishes the characteristics of normal 3D femorotibial joint kinematics in dogs that can be used as a comparison for future studies. PMID:25982776

  9. Design and development of an unconstrained dynamic knee simulator.

    PubMed

    McLean, C A; Ahmed, A M

    1993-05-01

    A dynamic knee simulator has been developed to allow in-vitro investigation of the mechanical response of the joint corresponding to dynamic functional activities, e.g., walking. In the simulator, the controlled inputs are the time-histories of three parameters of a given dynamic activity: the flexion angle, and the flexion/extension moment and tibial axial force components of the foot-to-floor reaction. A combination of stepping motors and electro-hydraulic actuators is used to apply to a knee specimen, simultaneously and independently, the specified load and/or displacement inputs while allowing unconstrained relative motion between the joint members. Satisfactory performance of the simulator has been established for walking gait conditions based on measurements on three fresh-frozen specimens.

  10. The effect of knee joint angle on torque control.

    PubMed

    Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T

    2010-01-01

    The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque.

  11. Single bundle anterior cruciate reconstruction does not restore normal knee kinematics at six months: an upright MRI study.

    PubMed

    Nicholson, J A; Sutherland, A G; Smith, F W

    2011-10-01

    Abnormal knee kinematics following reconstruction of the anterior cruciate ligament may exist despite an apparent resolution of tibial laxity and functional benefit. We performed upright, weight-bearing MR scans of both knees in the sagittal plane at different angles of flexion to determine the kinematics of the knee following unilateral reconstruction (n = 12). The uninjured knee acted as a control. Scans were performed pre-operatively and at three and six months post-operatively. Anteroposterior tibial laxity was determined using an arthrometer and patient function by validated questionnaires before and after reconstruction. In all the knees with deficient anterior cruciate ligaments, the tibial plateau was displaced anteriorly and internally rotated relative to the femur when compared with the control contralateral knee, particularly in extension and early flexion (mean lateral compartment displacement: extension 7.9 mm (sd 4.8), p = 0.002 and 30° flexion 5.1 mm (sd 3.6), p = 0.004). In all ten patients underwent post-operative scans. Reconstruction reduced the subluxation of the lateral tibial plateau at three months, with resolution of anterior displacement in early flexion, but not in extension (p = 0.015). At six months, the reconstructed knee again showed anterior subluxation in both the lateral (mean: extension 4.2 mm (sd 4.2), p = 0.021 and 30° flexion 3.2 mm (sd 3.3), p = 0.024) and medial compartments (extension, p = 0.049). Our results show that despite improvement in laxity and functional benefit, abnormal knee kinematics remain at six months and actually deteriorate from three to six months following reconstruction of the anterior cruciate ligament.

  12. Kinematic and dynamic analysis of an anatomically based knee joint.

    PubMed

    Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper presents a knee-joint model to provide a better understanding on the interaction between natural joints and artificial mechanisms for design and control of rehabilitation exoskeletons. The anatomically based knee model relaxes several commonly made assumptions that approximate a human knee as engineering pin-joint in exoskeleton design. Based on published MRI data, we formulate the kinematics of a knee-joint and compare three mathematical approximations; one model bases on two sequential circles rolling a flat plane; and the other two are mathematically differentiable ellipses-based models with and without sliding at the contact. The ellipses-based model taking sliding contact into accounts shows that the rolling-sliding ratio of a knee-joint is not a constant but has an average value consistent with published measurements. This knee-joint kinematics leads to a physically more accurate contact-point trajectory than methods based on multiple circles or lines, and provides a basis to derive a knee-joint kinetic model upon which the effects of a planar exoskeleton mechanism on the internal joint forces and torque during flexion can be numerically investigated. Two different knee-joint kinetic models (pin-joint approximation and anatomically based model) are compared against a condition with no exoskeleton. The leg and exoskeleton form a closed kinematic chain that has a significant effect on the joint forces in the knee. Human knee is more tolerant than pin-joint in negotiating around a singularity but its internal forces increase with the exoskeleton mass-to-length ratio. An oversimplifying pin-joint approximation cannot capture the finite change in the knee forces due to the singularity effect.

  13. Orientation of tendons in vivo with active and passive knee muscles.

    PubMed

    Aalbersberg, Sietske; Kingma, Idsart; Ronsky, Janet L; Frayne, Richard; van Dieën, Jaap H

    2005-09-01

    Tendon orientations in knee models are often taken from cadaver studies. The aim of this study was to investigate the effect of muscle activation on tendon orientation in vivo. Magnetic resonance imaging (MRI) images of the knee were made during relaxation and isometric knee extensions and flexions with 0 degrees , 15 degrees and 30 degrees of knee joint flexion. For six tendons, the orientation angles in sagittal and frontal plane were calculated. In the sagittal plane, muscle activation pulled the patellar tendon to a more vertical orientation and the semitendinosus and sartorius tendons to a more posterior orientation. In the frontal plane, the semitendinosus had a less lateral orientation, the biceps femoris a more medial orientation and the patellar tendon less medial orientation in loaded compared to unloaded conditions. The knee joint angle also influenced the tendon orientations. In the sagittal plane, the patellar tendon had a more anterior orientation near full extension and the biceps femoris had an anterior orientation with 0 degrees and 15 degrees flexions and neutral with 30 degrees flexions. Within 0 degrees to 30 degrees of flexion, the biceps femoris cannot produce a posterior shear force and the anterior angle of the patellar tendon is always larger than the hamstring tendons. Therefore, co-contraction of the hamstring and quadriceps is unlikely to reduce anterior shear forces in knee angles up to 30 degrees . Finally, inter-individual variation in tendon angles was large. This suggests that the amount of shear force produced and the potential to counteract shear forces by co-contraction is subject-specific. PMID:16023464

  14. The relationship between leg preference and knee mechanics during sidestepping in collegiate female footballers.

    PubMed

    Brown, Scott R; Wang, Henry; Dickin, D Clark; Weiss, Kaitlyn J

    2014-11-01

    This study examined the relationship between leg preference and knee mechanics in females during sidestepping. Three-dimensional data were recorded on 16 female collegiate footballers during a planned 45° sidestep manoeuvre with their preferred and non-preferred kicking leg. Knee kinematics and kinetics during initial contact, weight acceptance, peak push-off, and final push-off phases of sidestepping were analysed in both legs. The preferred leg showed trivial to small increases (ES = 0.19-0.36) in knee flexion angle at initial contact, weight acceptance, and peak push-off, and small increases (ES = 0.21-0.34) in peak power production and peak knee extension velocity. The non-preferred leg showed a trivial increase (ES = 0.10) in knee abduction angle during weight acceptance; small to moderate increases (ES = 0.22-0.64) in knee internal rotation angle at weight acceptance, peak push-off, and final push-off; a small increase (ES = 0.22) in knee abductor moment; and trivial increases (ES = 0.09-0.14) in peak power absorption and peak knee flexion velocity. The results of this study show that differences do exist between the preferred and non-preferred leg in females. The findings of this study will increase the knowledge base of anterior cruciate ligament injury in females and can aid in the design of more appropriate neuromuscular, plyometric, and strength training protocols for injury prevention.

  15. The relationship between leg preference and knee mechanics during sidestepping in collegiate female footballers.

    PubMed

    Brown, Scott R; Wang, Henry; Dickin, D Clark; Weiss, Kaitlyn J

    2014-11-01

    This study examined the relationship between leg preference and knee mechanics in females during sidestepping. Three-dimensional data were recorded on 16 female collegiate footballers during a planned 45° sidestep manoeuvre with their preferred and non-preferred kicking leg. Knee kinematics and kinetics during initial contact, weight acceptance, peak push-off, and final push-off phases of sidestepping were analysed in both legs. The preferred leg showed trivial to small increases (ES = 0.19-0.36) in knee flexion angle at initial contact, weight acceptance, and peak push-off, and small increases (ES = 0.21-0.34) in peak power production and peak knee extension velocity. The non-preferred leg showed a trivial increase (ES = 0.10) in knee abduction angle during weight acceptance; small to moderate increases (ES = 0.22-0.64) in knee internal rotation angle at weight acceptance, peak push-off, and final push-off; a small increase (ES = 0.22) in knee abductor moment; and trivial increases (ES = 0.09-0.14) in peak power absorption and peak knee flexion velocity. The results of this study show that differences do exist between the preferred and non-preferred leg in females. The findings of this study will increase the knowledge base of anterior cruciate ligament injury in females and can aid in the design of more appropriate neuromuscular, plyometric, and strength training protocols for injury prevention. PMID:25204331

  16. Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis

    PubMed Central

    To, Curtis S.; Kobetic, Rudi; Bulea, Thomas C.; Audu, Musa L.; Schnellenberger, John R.; Pinault, Gilles; Triolo, Ronald J.

    2014-01-01

    A hydraulic stance control knee mechanism (SCKM) was developed to fully support the knee against flexion during stance and allow uninhibited motion during swing for individuals with paraplegia using functional neuromuscular stimulation (FNS) for gait assistance. The SCKM was optimized for maximum locking torque for body-weight support and minimum resistance when allowing for free knee motion. Ipsilateral and contralateral position and force feedback were used to control the SCKM. Through bench and nondisabled testing, the SCKM was shown to be capable of supporting up to 70 N-m, require no more than 13% of the torque achievable with FNS to facilitate free motion, and responsively and repeatedly unlock under an applied flexion knee torque of up to 49 N-m. Preliminary tests of the SCKM with an individual with paraplegia demonstrated that it could support the body and maintain knee extension during stance without the stimulation of the knee extensor muscles. This was achieved without adversely affecting gait, and knee stability was comparable to gait assisted by knee extensor stimulation during stance. PMID:21938668

  17. Growth changes in internal and craniofacial flexion measurements.

    PubMed

    May, R; Sheffer, D B

    1999-09-01

    Growth changes in both internal and craniofacial flexion angles are presented for Pan troglodytes, Gorilla gorilla, and modern humans. The internal flexion angle (IFA) was measured from lateral radiographs, and the craniofacial flexion angle (CFA) was calculated from coordinate data. Stage of dental development is used as a baseline for examination of growth changes and nonparametric correlations between flexion angles and dental development stage are tested for significance. In Gorilla, the IFA increases during growth. The IFA is relatively stable in Pan and modern humans. Pan and Gorilla display an increase in the CFA. However, this angle decreases during growth in modern humans. Flexion angles were derived from coordinate data collected for several early hominid crania. Measurements for two robust australopithecine crania indicate strong internal flexion. It has been suggested that cerebellar expansion in this group may relate to derived features of the posterior cranial base. In general, australopithecine crania exhibit craniofacial flexion intermediate between great apes and modern humans. The "archaic" Homo sapiens specimen from Kabwe is most similar to modern humans. PMID:10490467

  18. Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty

    PubMed Central

    Lenssen, Anton F; van Dam, Ellen M; Crijns, Yvonne HF; Verhey, Mark; Geesink, Ruud JT; van den Brandt, Piet A; de Bie, Rob A

    2007-01-01

    Background The objective of the present study was to assess interobserver reproducibility (in terms of reliability and agreement) of active and passive measurements of knee RoM using a long arm goniometer, performed by trained physical therapists in a clinical setting in total knee arthroplasty patients, within the first four days after surgery. Methods Test-retest analysis Setting: University hospital departments of orthopaedics and physical therapy Participants: Two experienced physical therapists assessed 30 patients, three days after total knee arthroplasty. Main outcome measure: RoM measurement using a long-arm (50 cm) goniometer Agreement was calculated as the mean difference between observers ± 95% CI of this mean difference. The intraclass correlation coefficient (ICC) was calculated as a measure of reliability, based on two-way random effects analysis of variance. Results The lowest level of agreement was that for measurement of passive flexion with the patient in supine position (mean difference 1.4°; limits of agreement 16.2° to 19° for the difference between the two observers. The highest levels of agreement were found for measurement of passive flexion with the patient in sitting position and for measurement of passive extension (mean difference 2.7°; limits of agreement -6.7 to 12.1 and mean difference 2.2°; limits of agreement -6.2 to 10.6 degrees, respectively). The ability to differentiate between subjects ranged from 0.62 for measurement of passive extension to 0.89 for measurements of active flexion (ICC values). Conclusion Interobserver agreement for flexion as well as extension was only fair. When two different observers assess the same patients in the acute phase after total knee arthroplasty using a long arm goniometer, differences in RoM of less than eight degrees cannot be distinguished from measurement error. Reliability was found to be acceptable for comparison on group level, but poor for individual comparisons over time. PMID

  19. Wrist flexion strength after excision of the pisiform bone.

    PubMed

    Arner, M; Hagberg, L

    1984-01-01

    Diseases of the pisiform triquetral (P-T) joint and the pisiform itself are often treated with excision of the pisiform bone. The flexor carpi ulnaris (FCU) tendon inserts on the volar aspect of the pisiform, suggesting a loss of strength in wrist flexion following excision of the bone. Isometric and dynamic, isokinetical measurements were made using a strain-gauge dynamometer (Cybex II). Slight postoperative reduction of wrist flexion strength, compared with the contralateral wrist, was noted but not of clinical significance. It is concluded that one should not refrain from excision of the pisiform bone for fear of considerable strength loss in wrist joint flexion.

  20. Load-Dependent Variations in Knee Kinematics Measured with Dynamic MRI

    PubMed Central

    Westphal, Christopher; Schmitz, Anne; Reeder, Scott B.; Thelen, Darryl G.

    2013-01-01

    Subtle changes in knee kinematics may substantially alter cartilage contact patterns and moment generating capacities of soft tissues. The objective of this study was to use dynamic magnetic resonance imaging (MRI) to measure the influence of the timing of quadriceps loading on in vivo tibiofemoral and patellofemoral kinematics. We tested the hypothesis that load-dependent changes in knee kinematics would alter both the finite helical axis of the tibiofemoral joint and the moment arm of the patellar tendon. Eight healthy young adults were positioned supine in a MRI-compatible device that could impose either elastic or inertial loads on the lower leg in response to cyclic knee flexion-extension. The elastic loading condition induced concentric quadriceps contractions with knee extension, while an inertial loading condition induced eccentric quadriceps contractions with knee flexion. Peak internal knee extension moments ranged from 23–33 Nm, which is comparable to loadings seen in normal walking. We found that anterior tibia translation, superior patella glide, and anterior patella translation were reduced by an average of 5.1 mm, 5.8 mm and 2.9 mm when quadriceps loading coincided with knee flexion rather than knee extension. These kinematic variations induced a distal shift in the finite helical axis of the tibiofemoral joint and a reduction in the patellar tendon moment arm. We conclude that it may be important to consider such load-dependent changes in knee kinematics when using models to ascertain soft tissue and cartilage loading during functional tasks such as gait. PMID:23806309

  1. Knee Extensor and Flexor Torque Development with Concentric and Eccentric Isokinetic Training

    ERIC Educational Resources Information Center

    Miller, Larry E.; Pierson, Lee M.; Nickols-Richardson, Sharon M.; Wootten, David F.; Selmon, Serah E.; Ramp, Warren K.; Herbert, William G.

    2006-01-01

    This study assessed muscular torque and rate of torque development following concentric (CON) or eccentric (ECC) isokinetic training. Thirty-eight women were randomly assigned to either CON or ECC training groups. Training consisted of knee extension and flexion of the nondominant leg three times per week for 20 weeks (SD = 1). Eccentric training…

  2. In vivo imaging of superficial femoral artery (SFA) stents for deformation analysis

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Schneider, A.; Keck, B.; Bennett, N. R.; Fahrig, R.

    2008-03-01

    A high-resolution (198 μm) C-arm CT imaging system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) was optimized for imaging superficial femoral artery (SFA) stents in humans. The SFA is susceptible to the development of atherosclerotic lesions. These are typically treated with angioplasty and stent deployment. However, these stents can have a fracture rate as high as 35%. Fracture is usually accompanied by restenosis and reocclusion. The exact cause of breakage is unknown and is hypothesized to result from deforming forces due to hip and knee flexion. Imaging was performed with the leg placed in both straight and bent positions. Projection images obtained during 20 s scans with ~200° of rotation of the C-arm were back-projected to obtain 3D volumes. Using a semi-automatic software algorithm developed in-house, the stent centerlines were found and ellipses were fitted to the slice normals. Image quality was adequate for calculations in 11/13 subjects. Bending the leg was found to shorten the stents in 10/11 cases with the maximum change being 9% (12 mm in a 133 mm stent), and extend the stent in one case by 1.6%. The maximum eccentricity change was 36% with a bend angle of 72° in a case where the stent extended behind the knee.

  3. Change in knee kinematics during gait after eccentric isokinetic training for quadriceps in subjects submitted to anterior cruciate ligament reconstruction.

    PubMed

    Coury, H J C G; Brasileiro, J S; Salvini, T F; Poletto, P R; Carnaz, L; Hansson, G A

    2006-11-01

    Knee kinematics after anterior cruciate ligament (ACL) reconstruction is of interest in studies evaluating the effect of training programs. Many studies have addressed knee flexion/extension but not valgus/varus movements. Considering that joint stability is a major concern in ACL reconstruction surgery, movements occurring in the frontal plane of the knee also deserve attention. Knee extensor torque was analyzed by an isokinetic dynamometer and the angular amplitudes and velocities of flexion/extension and valgus/varus movements were analyzed by goniometry during gait 9 months after ACL reconstruction. The analysis was repeated after 3 months of eccentric isokinetic training of the quadriceps in five patients. The gait pattern was also recorded for 10 healthy controls. The knee extensor torque and flexion/extension range of movement during gait increased significantly after training. However, an unexpectedly increased valgus, most pronounced during the swing phase, which may imply adverse effects on the knee, was also observed in the ACL reconstructed knee. The recorded valgus angles may however be overestimated due to crosstalk. Thus, the extent of the increased valgus, as well as the mechanisms involved and the functional and clinical implications, need clarification before eccentric training after ACL reconstruction can be generally recommended.

  4. The effects of a prophylactic knee brace and two neoprene knee sleeves on the performance of healthy athletes: a crossover randomized controlled trial.

    PubMed

    Mortaza, Niyousha; Ebrahimi, Ismail; Jamshidi, Ali Ashraf; Abdollah, Vahid; Kamali, Mohammad; Abas, Wan Abu Bakar Wan; Osman, Noor Azuan Abu

    2012-01-01

    Knee injury is one of the major problems in sports medicine, and the use of prophylactic knee braces is an attempt to reduce the occurrence and/or severity of injuries to the knee joint ligament(s) without inhibiting knee mobility. The aim of the present study was to examine the effect of one recently designed prophylactic knee brace and two neoprene knee sleeves upon performance of healthy athletes. Thirty-one healthy male athletes (age = 21.2 ± 1.5) volunteered as participants to examine the effect of prophylactic knee brace/sleeves on performance using isokinetic and functional tests. All subjects were tested in four conditions in a random order: 1. nonbraced (control) 2. using a neoprene knee sleeve 3. using a knee sleeve with four bilateral metal supports and 4. using a prophylactic knee brace. The study design was a crossover, randomized, controlled trial. Subjects completed single leg vertical jump, cross-over hop, and the isokinetic knee flexion and extension (at 60, 180, 300°/sec). Data were collected from the above tests and analyzed for jump height, cross-over hop distance, peak torque to body weight ratio and average power, respectively. Comparisons of these variables in the four testing conditions revealed no statistically significant difference (p>0.05). The selected prophylactic brace/sleeves did not significantly inhibit athletic performance which might verify that their structure and design have caused no complication in the normal function of the knee joint. Moreover, it could be speculated that, if the brace or the sleeves had any limiting effect, our young healthy athletic subjects were well able to generate a mean peak torque large enough to overcome this possible restriction. Further studies are suggested to investigate the long term effect of these prophylactic knee brace and sleeves as well as their possible effect on the adjacent joints to the knee.

  5. The Effects of a Prophylactic Knee Brace and Two Neoprene Knee Sleeves on the Performance of Healthy Athletes: A Crossover Randomized Controlled Trial

    PubMed Central

    Mortaza, Niyousha; Ebrahimi, Ismail; Jamshidi, Ali Ashraf; Abdollah, Vahid; Kamali, Mohammad; Abas, Wan Abu Bakar Wan; Osman, Noor Azuan Abu

    2012-01-01

    Knee injury is one of the major problems in sports medicine, and the use of prophylactic knee braces is an attempt to reduce the occurrence and/or severity of injuries to the knee joint ligament(s) without inhibiting knee mobility. The aim of the present study was to examine the effect of one recently designed prophylactic knee brace and two neoprene knee sleeves upon performance of healthy athletes. Thirty-one healthy male athletes (age = 21.2±1.5) volunteered as participants to examine the effect of prophylactic knee brace/sleeves on performance using isokinetic and functional tests. All subjects were tested in four conditions in a random order: 1. nonbraced (control) 2. using a neoprene knee sleeve 3. using a knee sleeve with four bilateral metal supports and 4. using a prophylactic knee brace. The study design was a crossover, randomized, controlled trial. Subjects completed single leg vertical jump, cross-over hop, and the isokinetic knee flexion and extension (at 60, 180, 300°/sec). Data were collected from the above tests and analyzed for jump height, cross-over hop distance, peak torque to body weight ratio and average power, respectively. Comparisons of these variables in the four testing conditions revealed no statistically significant difference (p>0.05). The selected prophylactic brace/sleeves did not significantly inhibit athletic performance which might verify that their structure and design have caused no complication in the normal function of the knee joint. Moreover, it could be speculated that, if the brace or the sleeves had any limiting effect, our young healthy athletic subjects were well able to generate a mean peak torque large enough to overcome this possible restriction. Further studies are suggested to investigate the long term effect of these prophylactic knee brace and sleeves as well as their possible effect on the adjacent joints to the knee. PMID:23185549

  6. Motion analysis of knee joint using dynamic volume images

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Kohno, Takahiro; Suzuki, Masahiko; Moriya, Hideshige; Mori, Sin-ichiro; Endo, Masahiro

    2006-03-01

    Acquisition and analysis of three-dimensional movement of knee joint is desired in orthopedic surgery. We have developed two methods to obtain dynamic volume images of knee joint. One is a 2D/3D registration method combining a bi-plane dynamic X-ray fluoroscopy and a static three-dimensional CT, the other is a method using so-called 4D-CT that uses a cone-beam and a wide 2D detector. In this paper, we present two analyses of knee joint movement obtained by these methods: (1) transition of the nearest points between femur and tibia (2) principal component analysis (PCA) of six parameters representing the three dimensional movement of knee. As a preprocessing for the analysis, at first the femur and tibia regions are extracted from volume data at each time frame and then the registration of the tibia between different frames by an affine transformation consisting of rotation and translation are performed. The same transformation is applied femur as well. Using those image data, the movement of femur relative to tibia can be analyzed. Six movement parameters of femur consisting of three translation parameters and three rotation parameters are obtained from those images. In the analysis (1), axis of each bone is first found and then the flexion angle of the knee joint is calculated. For each flexion angle, the minimum distance between femur and tibia and the location giving the minimum distance are found in both lateral condyle and medial condyle. As a result, it was observed that the movement of lateral condyle is larger than medial condyle. In the analysis (2), it was found that the movement of the knee can be represented by the first three principal components with precision of 99.58% and those three components seem to strongly relate to three major movements of femur in the knee bend known in orthopedic surgery.

  7. Spastic wrist flexion in cerebral palsy. Pronator teres versus flexor carpi ulnaris transfer

    PubMed Central

    Bisneto, Edgard de Novaes França; Rizzi, Nivea; Setani, Eliana Ogassawara; Casagrande, Livia; Fonseca, Joseane; Fortes, Glaucia

    2015-01-01

    OBJECTIVE: Analize data on patients submitted to transfer of the pronator teres (PT) or the flexor carpi ulnaris (FCB) to the extensor carpi radialis longus/brevis (ECRL/B) in order to correct flexed wrist deformity in patients with cerebral palsy. METHOD: Patients were divided into two groups: PT group and FCU group to ECRL/B. The results were evaluated by goniometry and by the functional hand test (FHT). RESULTS: Goniometry showed a statistically significant difference in favor of FCU transfer. There was no statistically significant difference regarding FHT. CONCLUSION: Both transfers PT and FCU to ECRB are good options to correct wrist flexion deformity in cerebral palsy. Level of Evidence III, Non-randomized Controlled Cohort/Follow-Up Study. PMID:26207093

  8. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.

    PubMed

    Beyaert, C; Grumillier, C; Martinet, N; Paysant, J; André, J-M

    2008-08-01

    This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6 degrees of internal rotation (IR) or by 6 degrees of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0-K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10-35%, p<0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism.

  9. Multibody dynamic simulation of knee contact mechanics

    PubMed Central

    Bei, Yanhong; Fregly, Benjamin J.

    2006-01-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115

  10. Does dragonfly's abdomen flexion help with fast turning maneuvers?

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Li, Chengyu; Dong, Haibo; Flow Simulation Research Group Team

    2013-11-01

    Dragonflies are able to achieve fast turning maneuvers during take-off flights. Both asymmetric wing flapping and abdomen flexion have been observed during the fast turning. It's widely thought that the asymmetric wing beats are responsible of producing the aerodynamic moment needed for the body rotation. However, the dynamic effect of the abdomen flexion is not clear yet. In this study, an integrated experimental and computational approach is used to study the underlying dynamic effect of dragonfly abdomen flexion. It's found that dragonfly abdomen tended to bend towards the same side as the body reorienting to. Quantitative analysis have shown that during take-off turning maneuver the abdomen flexion can modulate the arm of force by changing the position of the center of mass relative to the thorax. As a result, roll and yaw moments produced by the wing flapping can be enhanced. This work is supported by NSF CBET-1313217. This work is supported by NSF CBET-1313217.

  11. Serial elongation-derotation-flexion casting for children with early-onset scoliosis

    PubMed Central

    Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie

    2015-01-01

    Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089

  12. Non-invasive, non-radiological quantification of anteroposterior knee joint ligamentous laxity

    PubMed Central

    Russell, D. F.; Deakin, A. H.; Fogg, Q. A.; Picard, F.

    2013-01-01

    Objectives We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7. PMID:24184443

  13. Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee.

    PubMed

    Koo, Seungbum; Rylander, Jonathan H; Andriacchi, Thomas P

    2011-04-29

    The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2 ± 9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD, 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R(2)=0.41, p<0.01). The natural knee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis.

  14. Aerodynamics of dynamic wing flexion in translating wings

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Cheng, Bo; Sane, Sanjay P.; Deng, Xinyan

    2015-06-01

    We conducted a systematic experimental study to investigate the aerodynamic effects of active trailing-edge flexion on a high-aspect-ratio wing translating from rest at a high angle of attack. We varied the timing and speed of the trailing-edge flexion and measured the resulting aerodynamic effects using a combination of direct force measurements and two-dimensional PIV flow measurements. The results indicated that the force and flow characteristics depend strongly on the timing of flexion, but relatively weakly on its speed. This is because the force and vortical flow structure are more sensitive to the timing of flexion relative to the shedding of starting vortex and leading-edge vortex. When the trailing-edge flexion occurred slightly before the starting vortex was shed, the lift production was greatly improved with the instantaneous peak lift increased by 54 % and averaged lift increased by 21 % compared with the pre-flexed case where the trailing-edge flexed before wing translation. However, when the trailing-edge flexed during or slightly after the leading-edge vortex shedding, the lift was significantly reduced by the disturbed development of leading-edge vortex. The force measurement results also imply that the trailing-edge flexion prior to wing translation does not augment lift but increases drag, thus resulting in a lower lift-drag ratio as compared to the case of flat wing.

  15. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  16. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    NASA Astrophysics Data System (ADS)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  17. Knee Control and Jump-Landing Technique in Young Basketball and Floorball Players.

    PubMed

    Leppänen, M; Pasanen, K; Kulmala, J-P; Kujala, U M; Krosshaug, T; Kannus, P; Perttunen, J; Vasankari, T; Parkkari, J

    2016-04-01

    Poor knee alignment is associated with increased loading of the joints, ligaments and tendons, and may increase the risk of injury. The study purpose was to compare differences in knee kinematics between basketball and floorball players during a vertical drop jump (VDJ) task. We wanted to investigate whether basketball players, whose sport includes frequent jump-landings, exhibited better knee control compared with floorball players, whose sport involves less jumping. Complete data was obtained from 173 basketball and 141 floorball players. Peak knee valgus and flexion angles during the VDJ were analyzed by 3D motion analysis.Larger knee valgus angles were observed among basketball players (- 3.2°, 95%CI -4.5 to - 2.0) compared with floorball players (- 0.9°, 95%CI -2.3 to 0.6) (P=0.022). Basketball players landed with a decreased peak knee flexion angle (83.1°, 95%CI 81.4 to 84.8) compared with floorball players (86.5°, 95%CI 84.6 to 88.4) (P=0.016). There were no significant differences in height, weight or BMI between basketball and floorball players. Female athletes exhibited significantly greater valgus angles than males. This study revealed that proper knee control during jump-landing does not seem to develop in young athletes simply by playing the sport, despite the fact that jump-landings occur frequently in practice and games. PMID:26701826

  18. Knee Control and Jump-Landing Technique in Young Basketball and Floorball Players.

    PubMed

    Leppänen, M; Pasanen, K; Kulmala, J-P; Kujala, U M; Krosshaug, T; Kannus, P; Perttunen, J; Vasankari, T; Parkkari, J

    2016-04-01

    Poor knee alignment is associated with increased loading of the joints, ligaments and tendons, and may increase the risk of injury. The study purpose was to compare differences in knee kinematics between basketball and floorball players during a vertical drop jump (VDJ) task. We wanted to investigate whether basketball players, whose sport includes frequent jump-landings, exhibited better knee control compared with floorball players, whose sport involves less jumping. Complete data was obtained from 173 basketball and 141 floorball players. Peak knee valgus and flexion angles during the VDJ were analyzed by 3D motion analysis.Larger knee valgus angles were observed among basketball players (- 3.2°, 95%CI -4.5 to - 2.0) compared with floorball players (- 0.9°, 95%CI -2.3 to 0.6) (P=0.022). Basketball players landed with a decreased peak knee flexion angle (83.1°, 95%CI 81.4 to 84.8) compared with floorball players (86.5°, 95%CI 84.6 to 88.4) (P=0.016). There were no significant differences in height, weight or BMI between basketball and floorball players. Female athletes exhibited significantly greater valgus angles than males. This study revealed that proper knee control during jump-landing does not seem to develop in young athletes simply by playing the sport, despite the fact that jump-landings occur frequently in practice and games.

  19. Relationship between improvements in physical measures and patient satisfaction in rehabilitation after total knee arthroplasty.

    PubMed

    Nazzal, Mahmoud I; Bashaireh, Khaldoon H; Alomari, Mahmoud A; Nazzal, Mohammad S; Maayah, Mikhled F; Mesmar, Mohammad

    2012-06-01

    The aim of this study was to examine patient satisfaction with rehabilitation after total knee arthroplasty (TKA). Fifty-six patients, aged 45-77 years, were enrolled in a post-TKA comprehensive therapy program focusing on knee strengthening and functional activities. The program lasted 3 months and was conducted for 1 h, twice a day, 5 days per week. Pain scores, number of steps climbed (STp), and maximum walked distance (MWD) were determined before the operation and 3 months after cessation of the rehabilitation program. In addition, knee-flexion range of motion (ROM) was measured before the surgery and immediately, 2 weeks and 3 months after the surgery. Pain decreased whereas MWD and STp increased at 3 months postoperation. In addition, the magnitude of improvement in STp correlated positively with the magnitude of change in MWD and pain. There was a significant increase in knee-flexion ROM at 2 weeks and 3 months postoperation compared with preoperation. The patient age also correlated positively with the magnitude of improvement in knee-flexion ROM after 2 weeks and 3 months of therapy. Improvements in MWD and STp were greater and pain was less, among the satisfied patients compared with unsatisfied ones. The results of this study further confirm the importance of therapy for osteoarthritis patients after TKA. In addition, as older patients are less conditioned, they seem to be more inclined to improvement in functionality with rehabilitation. Satisfied patients seem to achieve larger improvements in functional capacity and pain measures.

  20. Electromyographic analysis of the knee during jump landing in male and female athletes.

    PubMed

    Urabe, Yukio; Kobayashi, Risa; Sumida, Sachiko; Tanaka, Kosuke; Yoshida, Nami; Nishiwaki, Gaston Ariel; Tsutsumi, Eriko; Ochi, Mitsuo

    2005-04-01

    Many noncontact anterior cruciate ligament (ACL) injuries in female athletes occur at foot strike during jump landing when the knee is extended. This study was undertaken to determine the activation level of the quadriceps and hamstring muscles electromyographically. Fifteen healthy volunteers (eight women and seven men), all of whom were collegiate basketball players, participated in the study. The maximum voluntary contraction (MVC) of the vastus medialis (VM) at a knee flexion angle of 15-45 degrees was significantly higher in women than in men. There was no significant difference in overall mean hamstring activity in men and women over the same knee flexion range. However, when the knee flexion angle was 15 degrees , 20 degrees , and 25 degrees , hamstring activity was significantly lower in female athletes. These results suggest that female athletes have a higher risk of ACL injury during jump landing due to increased anterior tibial translation force with quadriceps muscle activity. Female athletes require greater hamstring activation, and it is suggested that exercising this muscle will increase its activity when the knee is extended, thus preventing ACL injury during actual sport motions.

  1. Effect of ACL graft material on anterior knee force during simulated in vivo ovine motion applied to the porcine knee: An in vitro examination of force during 2000 cycles.

    PubMed

    Boguszewski, Daniel V; Wagner, Christopher T; Butler, David L; Shearn, Jason T

    2015-12-01

    This study determined how anterior cruciate ligament (ACL) reconstruction affected the magnitude and temporal patterns of anterior knee force and internal knee moment during 2000 cycles of simulated gait. Porcine knees were tested using a six degree-of-freedom robot, examining three porcine allograft materials compared with the native ACL. Reconstructions were performed using: (1) bone-patellar tendon-bone allograft (BPTB), (2) reconstructive porcine tissue matrix (RTM), or (3) an RTM-polymer hybrid construct (Hybrid). Forces and moments were measured over the entire gait cycle and contrasted at heel strike, mid stance, toe off, and peak flexion. The Hybrid construct performed the best, as magnitude and temporal changes in both anterior knee force and internal knee moment were not different from the native ACL knee. Conversely, the RTM knees showed greater loss in anterior knee force during 2000 cycles than the native ACL knee at heel strike and toe off, with an average force loss of 46%. BPTB knees performed the least favorably, with significant loss in anterior knee force at all key points and an average force loss of 61%. This is clinically relevant, as increases in post-operative knee laxity are believed to play a role in graft failure and early onset osteoarthritis. PMID:26134453

  2. Biomechanical measures of knee joint mobilization

    PubMed Central

    Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C

    2011-01-01

    Background and purpose The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Methods Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial–lateral and inferior glide) at two grades (Maitland’s grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC3,1) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Results Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial–lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial–lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Discussion and conclusion Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent. PMID:22851879

  3. The effect of foot progression angle on knee joint compression force during walking.

    PubMed

    Koblauch, Henrik; Heilskov-Hansen, Thomas; Alkjær, Tine; Simonsen, Erik B; Henriksen, Marius

    2013-06-01

    It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment compression force increased during external foot rotation and the lateral knee joint compartment compression force increased during internal foot rotation. The increases in joint loads may be a result of increased knee flexion angles. Further, these data suggest that the frontal plane knee joint moment is not a valid surrogate measure for knee joint compression forces but rather indicates the medial- to-lateral load distribution.

  4. Effect of kinesio taping on the isokinetic muscle function in football athletes with a knee injury.

    PubMed

    Hong, SoonKwon; Shim, JeMyung; Kim, SungJoong; Namkoong, Seung; Roh, HyoLyun

    2016-01-01

    [Purpose] The purpose of this study was to determine the difference in isokinetic muscle function in football athletes with a knee injury with and without kinesio taping. [Subjects] The subjects for this study were 10 football athletes (males) with a knee injury. [Methods] Measurements were performed by using Cybex dynamometer under uniform motion before and after the application of kinesio tape to the quadriceps and hamstring muscle. Maximal concentric knee extension and flexion at three angular velocities (60°/s, 120°/s, and 180°/s) were measured. [Results] A significant difference was found in peak torque and total work of the flexion at 120°/s and 180°/s, as well as in the average power of extension at 180°/s. [Conclusion] Though it is not the main therapy for muscle function in football athletes with injury, kinesio taping was an effective adjunct therapy.

  5. Effect of kinesio taping on the isokinetic muscle function in football athletes with a knee injury

    PubMed Central

    Hong, SoonKwon; Shim, JeMyung; Kim, SungJoong; Namkoong, Seung; Roh, HyoLyun

    2016-01-01

    [Purpose] The purpose of this study was to determine the difference in isokinetic muscle function in football athletes with a knee injury with and without kinesio taping. [Subjects] The subjects for this study were 10 football athletes (males) with a knee injury. [Methods] Measurements were performed by using Cybex dynamometer under uniform motion before and after the application of kinesio tape to the quadriceps and hamstring muscle. Maximal concentric knee extension and flexion at three angular velocities (60°/s, 120°/s, and 180°/s) were measured. [Results] A significant difference was found in peak torque and total work of the flexion at 120°/s and 180°/s, as well as in the average power of extension at 180°/s. [Conclusion] Though it is not the main therapy for muscle function in football athletes with injury, kinesio taping was an effective adjunct therapy. PMID:26957761

  6. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers.

    PubMed

    Pamuk, Uluç; Karakuzu, Agah; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2016-10-01

    Muscle fiber direction strain provides invaluable information for characterizing muscle function. However, methods to study this for human muscles in vivo are lacking. Using magnetic resonance (MR) imaging based deformation analyses and diffusion tensor (DT) imaging based tractography combined, we aimed to assess muscle fiber direction local tissue deformations within the human medial gastrocnemius (GM) muscle. Healthy female subjects (n=5, age=27±1 years) were positioned prone within the MR scanner in a relaxed state with the ankle angle fixed at 90°. The knee was brought to flexion (140.8±3.0°) (undeformed state). Sets of 3D high resolution MR, and DT images were acquired. This protocol was repeated at extended knee joint position (177.0±1.0°) (deformed state). Tractography and Demons nonrigid registration algorithm was utilized to calculate local deformations along muscle fascicles. Undeformed state images were also transformed by a synthetic rigid body motion to calculate strain errors. Mean strain errors were significantly smaller then mean fiber direction strains (lengthening: 0.2±0.1% vs. 8.7±8.5%; shortening: 3.3±0.9% vs. 7.5±4.6%). Shortening and lengthening (up to 23.3% and 116.7%, respectively) occurs simultaneously along individual fascicles despite imposed GM lengthening. Along-fiber shear strains confirm the presence of much shearing between fascicles. Mean fiber direction strains of different tracts also show non-uniform distribution. Inhomogeneity of fiber strain indicates epimuscular myofascial force transmission. We conclude that MR and DT imaging analyses combined provide a powerful tool for quantifying deformation along human muscle fibers in vivo. This can help substantially achieving a better understanding of normal and pathological muscle function and mechanisms of treatment techniques. PMID:27429070

  7. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers.

    PubMed

    Pamuk, Uluç; Karakuzu, Agah; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2016-10-01

    Muscle fiber direction strain provides invaluable information for characterizing muscle function. However, methods to study this for human muscles in vivo are lacking. Using magnetic resonance (MR) imaging based deformation analyses and diffusion tensor (DT) imaging based tractography combined, we aimed to assess muscle fiber direction local tissue deformations within the human medial gastrocnemius (GM) muscle. Healthy female subjects (n=5, age=27±1 years) were positioned prone within the MR scanner in a relaxed state with the ankle angle fixed at 90°. The knee was brought to flexion (140.8±3.0°) (undeformed state). Sets of 3D high resolution MR, and DT images were acquired. This protocol was repeated at extended knee joint position (177.0±1.0°) (deformed state). Tractography and Demons nonrigid registration algorithm was utilized to calculate local deformations along muscle fascicles. Undeformed state images were also transformed by a synthetic rigid body motion to calculate strain errors. Mean strain errors were significantly smaller then mean fiber direction strains (lengthening: 0.2±0.1% vs. 8.7±8.5%; shortening: 3.3±0.9% vs. 7.5±4.6%). Shortening and lengthening (up to 23.3% and 116.7%, respectively) occurs simultaneously along individual fascicles despite imposed GM lengthening. Along-fiber shear strains confirm the presence of much shearing between fascicles. Mean fiber direction strains of different tracts also show non-uniform distribution. Inhomogeneity of fiber strain indicates epimuscular myofascial force transmission. We conclude that MR and DT imaging analyses combined provide a powerful tool for quantifying deformation along human muscle fibers in vivo. This can help substantially achieving a better understanding of normal and pathological muscle function and mechanisms of treatment techniques.

  8. Knee and ankle joint torque-angle relationships of multi-joint leg extension.

    PubMed

    Hahn, Daniel; Olvermann, Matthias; Richtberg, Jan; Seiberl, Wolfgang; Schwirtz, Ansgar

    2011-07-28

    The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.

  9. Achieving ligament stability and correct rotational alignment of the femur in knee arthroplasty: a study using the Medial Pivot knee.

    PubMed

    Shakespeare, David; Kinzel, Vera; Ledger, Michael

    2005-12-01

    In a series of 90 Medial Pivot arthroplasties rotational alignment of the femur was achieved by provisionally reconstructing the lateral side of the joint and tensioning the medial side with feeler gauges. Axial CT scans were employed to measure the rotational alignment relative to surgical epicondylar axis. In valgus knees the cutting block was externally rotated to adjust for posterolateral bone loss. The mean rotational alignment of the femur was 0.6 degrees of external rotation (S.D. 1.3, range 3 degrees of ER to 4 degrees of IR). The mean laxity of the medial ligament was 1 mm in flexion (SD 1, range 0-5 mm) and 0.5 mm in flexion (S.D. 0.5, range 0-2 mm) In those knees in which the medial ligament had been released the CT alignment was perfect, but when internally rotated against the hip 3-4 mm of gapping was noted. In valgus knees the mean rotation of the femoral component was 0.8 degrees of internal rotation (S.D. 1.5, range 1 degrees of IR to 4 degrees of ER). In spite of externally rotating the cutting block there was still a tendency to internally rotate the femur in some knees. This simple technique achieves the two goals of ligament stability and correct rotational alignment in a high proportion of cases. It may be applicable to any instrument system which employs posterior referencing.

  10. Correlation between trochlear groove depth and patellar position during open and closed kinetic chain exercises in subjects with anterior knee pain.

    PubMed

    Felicio, Lílian Ramiro; Saad, Marcelo Camargo; Liporaci, Rogério Ferreira; Baffa, Augusto do Prado; dos Santos, Antônio Carlos; Bevilaqua-Grossi, Débora

    2012-07-01

    The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions. PMID:22890436

  11. Design and Characterization of a Novel Knee Articulation Mechanism

    NASA Astrophysics Data System (ADS)

    Olinski, M.; Gronowicz, A.; Handke, A.; Ceccarelli, M.

    2016-08-01

    The paper is focused on designing a novel controllable and adjustable mechanism for reproducing human knee joint's complex motion by taking into account the flexion/extension movement in the sagittal plane, in combination with roll and slide. Main requirements for a knee rehabilitation supporting device are specified by researching the knee's anatomy and already existing mechanisms. A three degree of freedom (3 DOF) system (four-bar like linkage with controlled variable lengths of rockers) is synthesised to perform the reference path of instantaneous centre of rotation (ICR). Finally, a preliminary design of the adaptive mechanism is elaborated and a numerical model is built in Adams. Numerical results are derived from simulations that are presented to evaluate the accuracy of the reproduced movement and the mechanism's capabilities.

  12. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings

    PubMed Central

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A.; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    Purpose The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Methods Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. Results The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). Conclusion This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an

  13. Anterior knee pain: an update of physical therapy.

    PubMed

    Werner, Suzanne

    2014-10-01

    Anterior knee pain is one of the most common knee problems in physically active individuals. The reason for anterior knee pain has been suggested to be multifactorial with patella abnormalities or extensor mechanism disorder leading to patellar malalignment during flexion and extension of the knee joint. Some patients complain mostly of non-specific knee pain, while others report patellar instability problems. The patients present with a variety of symptoms and clinical findings, meaning that a thorough clinical examination is the key for optimal treatment. Weakness of the quadriceps muscle, especially during eccentric contractions, is usually present in the majority of anterior knee pain patients. However, irrespective of whether pain or instability is the major problem, hypotrophy and reduced activity of the vastus medialis are often found, which result in an imbalance between vastus medialis and vastus lateralis. This imbalance needs to be corrected before quadriceps exercises are started. The non-operative rehabilitation protocol should be divided into different phases based on the patient's progress. The goal of the first phase is to reduce pain and swelling, improve the balance between vastus medialis and vastus lateralis, restore normal gait, and decrease loading of the patello-femoral joint. The second phase should include improvement of postural control and coordination of the lower extremity, increase of quadriceps strength and when needed hip muscle strength, and restore good knee function. The patient should be encouraged to return to or to start with a suitable regular physical exercise. Therefore, the third phase should include functional exercises. Towards the end of the treatment, single-leg functional tests and functional knee scores should be used for evaluating clinical outcome. A non-operative treatment of patients with anterior knee pain should be tried for at least 3 months before considering other treatment options.

  14. Clinical and Biomechanical Evaluations of Staged Bilateral Total Knee Arthroplasty Patients with Two Different Implant Designs

    PubMed Central

    Renaud, Alexandre; Fuentes, Alexandre; Hagemeister, Nicola; Lavigne, Martin; Vendittoli, Pascal-André

    2016-01-01

    Background: Various implants of total knee arthroplasty (TKA) are used in clinical practice and each presents specific design characteristics. No implant managed this day to reproduce perfectly the biomechanics of the natural knee during gait. Objectives: We therefore asked whether (1) differences in tridimensional (3D) kinematic data during gait could be observed in two different designs of TKA on the same patients, (2) if those gait kinematic data are comparable with those of asymptomatic knees and (3) if difference in clinical subjective scores can be observed between the two TKA designs on the same patient. Methods: We performed knee kinematic analysis on 15 patients (30 TKAs) with two different TKA implant designs (Nexgen, Zimmer and Triathlon, Stryker) on each knee and on 25 asymptomatic subjects (35 knees). Clinical evaluation included range of motion, weight bearing radiographs, questionnaire of joint perception, KOOS, WOMAC and SF-12. Results: Comparison between TKAs and asymptomatic knees revealed that asymptomatic knees had significantly less knee flexion at initial contact (p < 0.04) and more flexion for most of the swing phase (p between 0.004 and 0.04). Asymptomatic knees also had less varus at loading response, during stance phase and during most of the swing phase (p between 0.001 - 0.05). Transverse plane analysis showed a tendency for asymptomatic knees to be more in internal rotation during stance phase (p 0.02 - 0.04). Comparing both TKA designs, NexgenTM implant had significantly more flexion at the end of swing phase (p = 0.04) compared to knees with the TriathlonTM implant. In frontal plane, from initial contact to maximum mid stance angle and between the mean mid stance angle and initial contact NexgenTM TKA had significantly more adduction (varus, p =0.02 – 0.03). Clinical scores of both TKAs did not have significant difference. Conclusions: TKA with the tested implants did not reproduce natural knee kinematics during gait. In our cohort

  15. The Rotaflex total knee replacement--a 5 year review.

    PubMed

    Williams, R L; Jones, A

    1997-06-01

    We report the results of a retrospective analysis of 43 patients who received 56 Rotaflex total knee arthroplasties, with a mean follow-up of 55.7 months. The British Orthopaedic Association (BOA) knee assessment protocol was used in evaluating the clinical results. Two patients could not receive post-operative scores. In the remaining 54 knees, the mean pre-operative score was 25.6, improving to 30.8 post-operatively. Ten knees showed a decrease in knee score, two were unchanged and 42 improved. The greatest improvements were in pain relief and maximum flexion. Wound infection and dehiscences were common, the latter requiring further surgery in five cases. Later, there were eight fractures involving the prosthesis, seven dislocated or subluxed patellae, two deep infections and three cases of severe aseptic loosening. A common feature was severe patellar wear, due to the design fault of an absent femoral groove. The high rate of complications and poor functional result of the Rotaflex knee preclude its use in current practice.

  16. Study of Wearable Knee Assistive Instruments for Walk Rehabilitation

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Nakamura, Masahiro; Ito, Noritaka; Fujimoto, Hiroshi; Horikuchi, Kenichi; Wakabayashi, Shojiro; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka

    A wearable Knee Assistive Instrument for the walk rehabilitation was newly developed. Especially, this system aimed at supporting the rehabilitation for the post-TKA (Total Knee Arthroplasty) which is a popular surgery for aging people. This system consisted of an assisting mechanism for the knee joint, a hip joint support system and a foot pressure sensor system. The driving system of this robot consisted of a CPU board which generated the walking pattern, a Li-ion battery, DC motors with motor drivers, contact sensors to detect the state of foot and potentiometers to detect the hip joint angle. The control method was proposed to reproduce complex motion of knee joint as much as possible, and to increase hip or knee flexion angle. Especially, this method used the timing that heel left from the floor. This method included that the lower limb was raised to prevent a subject's fall. Also, the prototype of knee assisting system was tested. It was confirmed that the assisting system is useful.

  17. [Development and validation of a dynamic model of the knee].

    PubMed

    Mabit, C; Geais, L; Blanchard, B; Elbaroudi, F; Guingand, O

    2007-10-01

    The authors report the methodology of the construction of a multibody model of the knee and the validation of the kinematics of the modelled knee. The construction of the model includes: the rigid bodies represented by osseous components (femur, tibia, fibula, patella), the ligamentous structures (collateral ligaments, patellar ligament, cruciates ligaments), the muscular part represented by the quadriceps. Morphological data were acquired through 3D CT scans for the bones and a biometrical study of the ligaments (insertions, orientation, length, section). Ligament biomechanics was modelled as bilinear springs (in compression the tightness is null; in traction it is a function of length, section and Young modulus of elasticity). The quadriceps was modelled as a sliding channel with a translatory servocommand. Contacts at the interfaces (femur/patella; femur/tibia) were evaluated according to the index of penetration (distance D) between two bodies where effort was: Dx10(5) N/mm(2)). The model was tested simulating a symmetrical kneeling (800 N body weight) and required a ground link modelled as a ball and socket joint. The model was developed under ADAMS software. The validation of the kinematics of the modelled knee was provided according to the data of Wilson et al. who have shown that (i) in normal knees, internal/external rotation, abduction/adduction and all three components of translation are coupled to flexion angle both in passive flexion and extension; (ii) the tibia rotates internally as the knee is flexed. The consistency of the coupled motions support the model's premise that passive knee motion is guided by isometric fascicles in anterior and posterior cruciates, by the medial collateral ligament and by articular contact in the medial and lateral compartments. The main curves (internal/external rotations; posterior/anterior translation) of the model conforms with the framework of Wilson.

  18. Evaluation of Knee Ligament Mechanics Using Computational Models.

    PubMed

    Guess, Trent M; Razu, Swithin; Jahandar, Hamidreza

    2016-02-01

    The steady maturation of computational biomechanics is providing the musculoskeletal health community with exciting avenues for enhancing orthopedic practice and rehabilitation. Computational knee models deliver tools that may improve the efficiency and outcomes of orthopedic research and methods through analysis of virtual surgeries and devices. They also provide insight into the interaction of knee structures and can predict what cannot be directly measured such as loading on our cartilage and ligaments during movement. This project created subject-specific computational knee models of two young adult females using magnetic resonance imaging-derived knee geometries and passive leg motion measured by a motion capture system. The knee models produced passive ligament lengthening patterns similar to experimental measurements available in the literature. The models also predicted cruciate ligament forces during passive flexion with and without applying anterior-posterior tibia forces that were similar to experimental measurements available in the literature. The biomechanics of the posterior oblique ligament (POL) and the anterior cruciate ligament bundles during combined tibia internal-external rotation torque and anterior-posterior forces through deep flexion were then examined. The study showed that the central arm of the POL: (1) produces a maximum constraining force when the knee is at full extension, (2) constrains internal tibial rotation at extension, and (3) constrains posterior tibial translation at extension. The POL reinforces the constraint of the anterior cruciate ligament to internal rotation at extension and provides constraint for posterior tibial translation at extension, a position where the posterior cruciate ligament provides minimal posterior translation constraint.

  19. Preoperative Planning in Primary Total Knee Arthroplasty.

    PubMed

    Tanzer, Michael; Makhdom, Asim M

    2016-04-01

    Preoperative planning is of paramount importance in primary total knee arthroplasty. A thorough preoperative analysis helps the surgeon envision the operation, anticipate any potential issues, and minimize the risk of premature implant failure. Obtaining a thorough history is critical for appropriate patient selection. The physical examination should evaluate the integrity of the soft tissues, the neurovascular status, range of motion, limb deformity, and the status of the collateral ligaments to help determine the soft-tissue balancing and constraint strategy required. Standard radiographs, with a known magnification, should be obtained for preoperative total knee arthroplasty templating. Routine standing AP, lateral, and skyline radiographs of the knee can help the surgeon plan the bone cuts and tibial slope as well as the implant size and position at the time of surgery. In certain circumstances, such as severe coronal deformities, bone deficiencies, and/or extra-articular deformities, additional measures are frequently necessary to successfully reconstruct the knee. Constrained implants, metal augments, and bone graft must be part of the surgeon's armamentarium. PMID:26990712

  20. Unique Anatomic Feature of the Posterior Cruciate Ligament in Knees Associated With Osteochondritis Dissecans

    PubMed Central

    Ishikawa, Masakazu; Adachi, Nobuo; Yoshikawa, Masahiro; Nakamae, Atsuo; Nakasa, Tomoyuki; Ikuta, Yasunari; Hayashi, Seiju; Deie, Masataka; Ochi, Mitsuo

    2016-01-01

    Background: Osteochondritis dissecans (OCD) of the knee is a disorder in juveniles and young adults; however, its etiology still remains unclear. For OCD at the medial femoral condyle (MFC), it is sometimes observed that the lesion has a connection with fibers of the posterior cruciate ligament (PCL). Although this could be important information related to the etiology of MFC OCD, there is no report examining an association between the MFC OCD and the PCL anatomy. Purpose: To investigate the anatomic features of knees associated with MFC OCD, focusing especially on the femoral attachment of the PCL, and to compare them with knees associated with lateral femoral condyle (LFC) OCD and non-OCD lesions. Study Design: Case-control study; Level of evidence, 3. Methods: We retrospectively reviewed 39 patients (46 knees) with OCD lesions who had undergone surgical treatment. Using magnetic resonance imaging (MRI) scans, the PCL attachment at the lateral wall of the MFC was measured on the coronal sections, and the knee flexion angle was also measured on the sagittal sections. As with non-OCD knees, we reviewed and analyzed 25 knees with anterior cruciate ligament (ACL) injuries and 16 knees with meniscal injuries. Results: MRIs revealed that the femoral PCL footprint was located in a significantly more distal position in the patients with MFC OCD compared with patients with LFC OCD and ACL and meniscal injuries. There was no significant difference in knee flexion angle among the 4 groups. Conclusion: The PCL in patients with MFC OCD attached more distally at the lateral aspect of the MFC compared with knees with LFC OCD and ACL and meniscal injuries. PMID:27294170

  1. Reliability of principal components and discrete parameters of knee angle and moment gait waveforms in individuals with moderate knee osteoarthritis.

    PubMed

    Robbins, Shawn M; Astephen Wilson, Janie L; Rutherford, Derek J; Hubley-Kozey, Cheryl L

    2013-07-01

    Gait measures are used to evaluate change in patients with knee osteoarthritis (OA), but reliability has not been fully established in this population. This study examined test-retest reliability of knee angle and moment gait waveform characteristics captured using discrete parameters and principal component analysis (PCA) in individuals with moderate knee OA. Participants (n=20) underwent three-dimensional gait analysis on two occasions. Motion and force data were captured using two camera banks, infrared light emitting diodes and force plate during self-selected walking. Knee angle and moment waveforms were calculated and analyzed using discrete parameters and by identifying waveform characteristics using PCA. Intraclass correlation coefficients (ICC2,k) examined test-retest reliability of discrete parameters and PCA derived scores (PC-scores). ICC2,k values ranged from 0.57 to 0.93 for discrete parameters, 0.52-0.86 for knee angle PC-scores and 0.30-0.94 for the knee moment PC-scores. However, 10 of 13 discrete parameters, six of nine knee angle PC-scores and seven of nine knee moment PC-scores had ICC2,k values greater than or equal to 0.70. Discrete parameters and PC-scores from flexion angles and adduction moments had the highest ICC2,k values while adduction angles, rotation angles, and rotation moments had the lowest. Most knee angle and moment waveform characteristics demonstrated ICC2,k values that could be interpreted as acceptable. Caution should be used when examining adduction and rotation angle magnitudes and early/mid-stance rotation moment magnitudes due to lower ICC2,k values.

  2. Uncertainty of knee joint muscle activity during knee joint torque exertion: the significance of controlling adjacent joint torque.

    PubMed

    Nozaki, Daichi; Nakazawa, Kimitaka; Akai, Masami

    2005-09-01

    In the single-joint torque exertion task, which has been widely used to control muscle activity, only the relevant joint torque is specified. However, the neglect of the neighboring joint could make the procedure unreliable, considering our previous result that even monoarticular muscle activity level is indefinite without specifying the adjacent joint torque. Here we examined the amount of hip joint torque generated with knee joint torque and its influence on the activity of the knee joint muscles. Twelve healthy subjects were requested to exert various levels of isometric knee joint torque. The knee and hip joint torques were obtained by using a custom-made device. Because no information about hip joint torque was provided to the subjects, the hip joint torque measured here was a secondary one associated with the task. The amount of hip joint torque varied among subjects, indicating that they adopted various strategies to achieve the task. In some subjects, there was a considerable internal variability in the hip joint torque. Such variability was not negligible, because the knee joint muscle activity level with respect to the knee joint torque, as quantified by surface electromyography (EMG), changed significantly when the subjects were requested to change the strategy. This change occurred in a very systematic manner: in the case of the knee extension, as the hip flexion torque was larger, the activity of mono- and biarticular knee extensors decreased and increased, respectively. These results indicate that the conventional single knee joint torque exertion has the drawback that the intersubject and/or intertrial variability is inevitable in the relative contribution among mono- and biarticular muscles because of the uncertainty of the hip joint torque. We discuss that the viewpoint that both joint torques need to be considered will bring insights into various controversial problems such as the shape of the EMG-force relationship, neural factors that help

  3. Extrinsic versus intrinsic hand muscle dominance in finger flexion.

    PubMed

    Al-Sukaini, A; Singh, H P; Dias, J J

    2016-05-01

    This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18-74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted. PMID:26744509

  4. Effects of Football Collars on Cervical Hyperextension and Lateral Flexion

    PubMed Central

    Gorden, Jeffery A.; Swanik, C. Buz; Swanik, Kathleen A.

    2003-01-01

    Objectives: To evaluate the effectiveness of 3 football collars in reducing cervical range of motion. Design and Setting: A repeated-measures design in a controlled laboratory setting. Subjects: Fifteen male National Collegiate Athletic Association Division I varsity football athletes. Measurements: Cervical hyperextension and lateral flexion were measured with video analysis. Subjects underwent 5 testing conditions: standard football helmet, standard helmet and shoulder pads, and standard pads with the addition of the Cowboy Collar, A-Force Neck Collar, or a foam neck roll. Subjects performed motions both actively and passively. Results: All 3 collars reduced hyperextension when compared with the helmet and shoulder pads alone (P < .05); in addition, the Cowboy Collar was superior to the foam neck roll (P < .05) in reducing hyperextension. No collar reduced passive lateral flexion when compared with the helmet and shoulder pads, but the foam neck roll permitted significantly less active lateral flexion (P < .01) than the other 3 brace conditions. Conclusions: In a laboratory setting, cervical hyperextension can be controlled through the use of various cervical collars. Cervical lateral flexion (a more common cause of burners in a scholastic population) cannot be controlled with any of the cervical collars tested. Moreover, foam collars may impede active lateral flexion while not providing additional protection when loaded. These results are limited in that they were produced in a controlled situation as opposed to active football play. PMID:14608429

  5. Anatomic Versus Mechanically Aligned Total Knee Arthroplasty for Unicompartmental Knee Arthroplasty Revision

    PubMed Central

    Toliopoulos, Panagiota; LeBlanc, Marc-Andre; Hutt, Jonathan; Lavigne, Martin; Desmeules, Francois; Vendittoli, Pascal-Andre

    2016-01-01

    Objectives: The purpose of this study was to compare the intra-operative benefits and the clinical outcomes from kinematic or mechanical alignment for total knee arthroplasty (TKA) in patients undergoing revision of failed unicompartmental kneel arthroplasty (UKA) to TKA. Methods: Ten revisions were performed with a kinematic alignment technique and 11 with a mechanical alignment. Measurements of the hip-knee-ankle angle (HKA), the lateral distal femoral angle (LDFA), and the medial proximal tibial angle (MPTA) were performed using long-leg radiographs. The need for augments, stems, and constrained inserts was compared between groups. Clinical outcomes were compared using the WOMAC score along with maximum distance walked as well as knee range of motion obtained prior to discharge. All data was obtained by a retrospective review of patient files. Results: The kinematic group required less augments, stems, and constrained inserts than the mechanical group and thinner polyethylene bearings. There were significant differences in the lateral distal femoral angle (LDFA) and the medial proximal tibial angle (MPTA) between the two groups (p<0.05). The mean WOMAC score obtained at discharge was better in the kinematic group as was mean knee flexion. At last follow up of 34 months for the kinematic group and 58 months for the mechanical group, no orthopedic complications or reoperations were recorded. Conclusion: Although this study has a small patient cohort, our results suggest that kinematic alignment for TKA after UKA revision is an attractive method. Further studies are warranted. PMID:27563365

  6. The use of knee braces, part 1: Prophylactic knee braces in contact sports.

    PubMed

    Najibi, Soheil; Albright, John P

    2005-04-01

    Surrogate knee model biomechanical studies have indicated that off-the-shelf braces provide 20% to 30% greater resistance to a lateral blow when the knee is in full extension. Custom functional braces doubled the protective effects and proved effective with the knee in some flexion. Although functional performance studies are not consistent, preventive knee braces may slow straight-ahead sprint speed, cause early fatigue, and increase muscular relaxation pressures, energy expenditure, blood lactate levels, maximal torque output, oxygen consumption, and heart rate. Two epidemiologic studies have been performed. At West Point, a randomized control study of 71 injuries in 1396 cadets indicated knee brace effectiveness with a statistically higher rate of injury in the control group (3.4/1000 exposures) than in the braced group (1.5/1000 exposures), with the most significance for medial collateral ligament sprains in defensive players. The Big Ten Conference conducted a descriptive study of 100 medial collateral ligament sprains among 987 players in different positions, strings, and types of session. Brace-wear tendency varied directly with the unbraced player counterpart's risk of medial collateral ligament sprain, with the nonplayer linemen experiencing both the greatest risk of unbraced practice session injury (0.0801 injuries/1000 exposures) and the highest incidence of brace wear (85%). During practices, there was a nonsignificant but very consistent reduction in injury rate for braced players in every position and string. During games, there was also a reduced rate for linemen and the linebacker/tight end group. The study concluded that although the issue is not closed, preventive knee braces appear to offer some protection to the medial collateral ligament from a contact injury involving a valgus blow, but there may be negative effects on performance level, leg cramping, and fatigue symptoms. PMID:15788733

  7. Microprocessor prosthetic knees.

    PubMed

    Berry, Dale

    2006-02-01

    This article traces the development of microprocessor prosthetic knees from early research in the 1970s to the present. Read about how microprocessor knees work, functional options, patient selection, and the future of this prosthetic.

  8. Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at any Fixation Angle

    PubMed Central

    Schon, Jason; Brady, Alex; Moatshe, Gilbert; Cruz, Raphael; Chahla, Jorge; Dornan, Grant; Turnbull, Travis L.; Engebretsen, Lars

    2016-01-01

    Objectives: Anterior cruciate ligament (ACL) tears are one of the most common injuries among athletes. However, the ability to fully restore rotational stability with ACL reconstruction (ACLR) remains a challenge because up to 25% of patients may present with a residual pivot shift following surgery. Advocacy for reconstruction of the anterolateral ligament (ALL) is rapidly increasing because biomechanical studies have reported that the ALL is a significant contributor to internal rotational stability of the knee. Although several graft fixation angles for the anatomic ALL reconstruction (ALLR) have been reported in literature, none have been biomechanically validated. Therefore, the purpose of this study was to assess the effect of ALLR graft fixation angle on knee joint kinematics in the clinically relevant setting of a concomitant ACLR. The goal was to find the optimal knee flexion angle for fixation of the ALLR graft that would most accurately restore native knee kinematics without introducing overconstraint to the knee. It was hypothesized that all fixation angles would significantly reduce rotational laxity compared to the sectioned ALL state and that fixation at 30° would best reproduce native joint kinematics. Methods: Eight non-paired fresh-frozen human cadaveric knees with no prior injury, surgical history, or gross anatomic abnormality were evaluated with a 6 degree-of-freedom robotic system. Each specimen underwent a full kinematic assessment in each of the following states: 1) intact, 2) anatomic single-bundle (SB) ACLR with intact ALL, 3) anatomic SB ACLR with sectioned ALL, 4) 7 anatomic SB ACLR and ALLR states utilizing ALL graft fixation knee flexion angles of 0°, 15°, 30°, 45°, 60°, 75° and 90°, and 5) sectioned ACL and ALL. Internal rotation during a 5 N-m internal rotation torque and anterior displacement during an 88 N anterior load were recorded at 15° intervals between 0° and 120° of knee flexion. Axial plane displacement and

  9. Anticipatory postural adjustments during cutting manoeuvres in football and their consequences for knee injury risk.

    PubMed

    Mornieux, Guillaume; Gehring, Dominic; Fürst, Patrick; Gollhofer, Albert

    2014-01-01

    Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement. Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact. With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009). Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs. PMID:24742137

  10. Knee arthroscopy - discharge

    MedlinePlus

    ... retinacular release - discharge; Synovectomy - discharge; Patellar debridement - discharge; Meniscus repair - discharge; Lateral release - discharge; Collateral ligament repair - discharge; Knee surgery - ...

  11. Kinematic motion of the anterior cruciate ligament deficient knee during functionally high and low demanding tasks.

    PubMed

    Takeda, Kentaro; Hasegawa, Takayuki; Kiriyama, Yoshimori; Matsumoto, Hideo; Otani, Toshiro; Toyama, Yoshiaki; Nagura, Takeo

    2014-07-18

    The purpose of this study was to determine whether mechanical adaptations were present in patients with anterior cruciate ligament (ACL)-deficient knees during high-demand activities. Twenty-two subjects with unilateral ACL deficiency (11 males and 11 females, 19.6 months after injury) performed five different activities at a comfortable speed (level walking, ascending and descending steps, jogging, jogging to a 90-degree side cutting toward the opposite direction of the tested side). Three-dimensional knee kinematics for the ACL-deficient knees and uninjured contralateral knees were evaluated using the Point Cluster Technique. There was no significant difference in knee flexion angle, but an offset toward the knee in less valgus and more external tibial rotation was observed in the ACL-deficient knee. The tendency was more obvious in high demand motions, and a significant difference was clearly observed in the side cutting motions. These motion patterns, with the knee in less valgus and more external tibial rotation, are proposed to be an adaptive movement to avoid pivot shift dynamically, and reveal evidence in support of a dynamic adaptive motion occurring in ACL-deficient knees.

  12. Characteristics of flexed knee gait and functional outcome of a patient who underwent knee reconstruction with a hingeless prosthesis for bone tumor resection: a case report with gait analysis and comparison with healthy subjects.

    PubMed

    Okita, Y; Tatematsu, N; Nagai, K; Nakayama, T; Nakamata, T; Okamoto, T; Toguchida, J; Ichihashi, N; Tsuboyama, T

    2013-07-09

    We report on a patient after knee reconstruction for osteosarcoma in the distal femur using a hingeless prosthesis K-MAX KNEE system K-5 who walked without ipsilateral knee extension in the latter half of the stance phase (flexed knee gait). We evaluated the patient using three-dimensional gait analysis and isokinetic knee strength measurement, and compared the patient with five healthy subjects. The Musculoskeletal Tumor Society (MSTS) score was also used for evaluation. The patient kept his operated knee flexed during mid stance. The maximal ankle plantarflexion internal moment was lower on the ipsilateral side than on the contralateral side, and lower than in the healthy subjects. The negative ankle power during the stance phase was generally stronger on the ipsilateral side than on the contralateral side, and also in the healthy subjects. Unusual contralateral hip flexion occurred after the initial contact, indicating increased joint load on the ipsilateral ankle and the contralateral hip. The ratios of the peak knee extension/flexion torque were 0.7 on the ipsilateral side, 1.9 on the contralateral side, and 1.7 in the healthy subjects. The MSTS score of the patient was 23/30 (76.6%). Flexed knee gait might account for the reduction of ipsilateral hip flexion and ankle plantarflexion moment during the late stance phase. These results suggest the importance of focusing more on the ipsilateral ankle joint and the contralateral hip joint to maintain the function of the entire limb joints of the patients with flexed knee gait.

  13. Characteristics of flexed knee gait and functional outcome of a patient who underwent knee reconstruction with a hingeless prosthesis for bone tumor resection: a case report with gait analysis and comparison with healthy subjects.

    PubMed

    Okita, Y; Tatematsu, N; Nagai, K; Nakayama, T; Nakamata, T; Okamoto, T; Toguchida, J; Ichihashi, N; Tsuboyama, T

    2013-12-01

    We report on a patient after knee reconstruction for osteosarcoma in the distal femur using a hingeless prosthesis K-MAX KNEE system K-5 who walked without ipsilateral knee extension in the latter half of the stance phase (flexed knee gait). We evaluated the patient using three-dimensional gait analysis and isokinetic knee strength measurement, and compared the patient with five healthy subjects. The Musculoskeletal Tumor Society (MSTS) score was also used for evaluation. The patient kept his operated knee flexed during mid stance. The maximal ankle plantarflexion internal moment was lower on the ipsilateral side than on the contralateral side, and lower than in the healthy subjects. The negative ankle power during the stance phase was generally stronger on the ipsilateral side than on the contralateral side, and also in the healthy subjects. Unusual contralateral hip flexion occurred after the initial contact, indicating increased joint load on the ipsilateral ankle and the contralateral hip. The ratios of the peak knee extension/flexion torque were 0.7 on the ipsilateral side, 1.9 on the contralateral side, and 1.7 in the healthy subjects. The MSTS score of the patient was 23/30 (76.6%). Flexed knee gait might account for the reduction of ipsilateral hip flexion and ankle plantarflexion moment during the late stance phase. These results suggest the importance of focusing more on the ipsilateral ankle joint and the contralateral hip joint to maintain the function of the entire limb joints of the patients with flexed knee gait.

  14. The effectiveness of voluntary modifications of gait pattern to reduce the knee adduction moment.

    PubMed

    van den Noort, Josien C; Schaffers, Ilse; Snijders, Jasper; Harlaar, Jaap

    2013-06-01

    It has been suggested to use gait modifications in the retraining of patients with knee osteoarthritis (OA), in order to reduce the external knee adduction moment (KAdM). This study focused on the effect of walking speed, foot position and trunk sway, and on the 3D knee moments. Gait analyses of fourteen healthy volunteers were performed in a gait laboratory. Subjects walked at three different speeds in their normal gait pattern, as well as with toe-in and toe-out gait and with medio-lateral trunk sway at a self-selected speed. Fast walking speed increased the KAdM (17-30%) and flexion moment (32%). A slower walking speed did not decrease the KAdM. Toe-in mainly decreased the KAdM (45%) and the transverse moment (38%) during early stance. Toe-out decreased the KAdM during late stance (56%), but increased the KAdM during early stance and midstance (21-24%), due to decreased endorotation of the hip with knee flexion. Trunk sway decreased the KAdM during early stance and midstance (31-33%). Gait modifications mainly affected the KAdM, but changes in sagittal and transverse knee moments and kinematics were also observed. This indicates that, when estimating knee load, taking only the frontal plane kinetics into consideration may lead to erroneous simplifications. No conclusive beneficial effects were found in any of the gait modifications throughout the entire stance phase.

  15. Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking

    PubMed Central

    Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.

    2013-01-01

    Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662

  16. The difficult primary total knee arthroplasty: a review.

    PubMed

    Baldini, A; Castellani, L; Traverso, F; Balatri, A; Balato, G; Franceschini, V

    2015-10-01

    Primary total knee arthroplasty (TKA) is a reliable procedure with reproducible long-term results. Nevertheless, there are conditions related to the type of patient or local conditions of the knee that can make it a difficult procedure. The most common scenarios that make it difficult are discussed in this review. These include patients with many previous operations and incisions, and those with severe coronal deformities, genu recurvatum, a stiff knee, extra-articular deformities and those who have previously undergone osteotomy around the knee and those with chronic dislocation of the patella. Each condition is analysed according to the characteristics of the patient, the pre-operative planning and the reported outcomes. When approaching the difficult primary TKA surgeons should use a systematic approach, which begins with the review of the existing literature for each specific clinical situation.

  17. Knee joint loading during lineman-specific movements in American football players.

    PubMed

    Lambach, Rebecca L; Young, Jay W; Flanigan, David C; Siston, Robert A; Chaudhari, Ajit M

    2015-06-01

    Linemen are at high risk for knee cartilage injuries and osteoarthritis. High-intensity movements from squatting positions (eg, 3-point stance) may produce high joint loads, increasing the risk for cartilage damage. We hypothesized that knee moments and joint reaction forces during lineman-specific activities would be greater than during walking or jogging. Data were collected using standard motion analysis techniques. Fifteen NCAA linemen (mean ± SD: height = 1.86 ± 0.07 m, mass = 121.45 ± 12.78 kg) walked, jogged, and performed 3 unloaded lineman-specific blocking movements from a 3-point stance. External 3-dimensional knee moments and joint reaction forces were calculated using inverse dynamics equations. MANOVA with subsequent univariate ANOVA and post hoc Tukey comparisons were used to determine differences in peak kinetic variables and the flexion angles at which they occurred. All peak moments and joint reaction forces were significantly higher during jogging than during all blocking drills (all P < .001). Peak moments occurred at average knee flexion angles > 70° during blocking versus < 44° in walking or jogging. The magnitude of moments and joint reaction forces when initiating movement from a 3-point stance do not appear to increase risk for cartilage damage, but the high flexion angles at which they occur may increase risk on the posterior femoral condyles. PMID:25536366

  18. Knee joint loading during lineman-specific movements in American football players.

    PubMed

    Lambach, Rebecca L; Young, Jay W; Flanigan, David C; Siston, Robert A; Chaudhari, Ajit M

    2015-06-01

    Linemen are at high risk for knee cartilage injuries and osteoarthritis. High-intensity movements from squatting positions (eg, 3-point stance) may produce high joint loads, increasing the risk for cartilage damage. We hypothesized that knee moments and joint reaction forces during lineman-specific activities would be greater than during walking or jogging. Data were collected using standard motion analysis techniques. Fifteen NCAA linemen (mean ± SD: height = 1.86 ± 0.07 m, mass = 121.45 ± 12.78 kg) walked, jogged, and performed 3 unloaded lineman-specific blocking movements from a 3-point stance. External 3-dimensional knee moments and joint reaction forces were calculated using inverse dynamics equations. MANOVA with subsequent univariate ANOVA and post hoc Tukey comparisons were used to determine differences in peak kinetic variables and the flexion angles at which they occurred. All peak moments and joint reaction forces were significantly higher during jogging than during all blocking drills (all P < .001). Peak moments occurred at average knee flexion angles > 70° during blocking versus < 44° in walking or jogging. The magnitude of moments and joint reaction forces when initiating movement from a 3-point stance do not appear to increase risk for cartilage damage, but the high flexion angles at which they occur may increase risk on the posterior femoral condyles.

  19. Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis.

    PubMed

    Fitzpatrick, Clare K; Baldwin, Mark A; Clary, Chadd W; Maletsky, Lorin P; Rullkoetter, Paul J

    2014-01-01

    Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional-integral-derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip-ankle anterior-posterior (A-P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial-lateral load distribution or varus-valgus torque, internal-external torque, A-P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.

  20. Physical examination and in vivo kinematics in two posterior cruciate ligament retaining total knee arthroplasty designs.

    PubMed

    Ploegmakers, M J M; Ginsel, B; Meijerink, H J; de Rooy, J W; de Waal Malefijt, M C; Verdonschot, N; Banks, S A

    2010-06-01

    The aim of this study was to investigate anteroposterior instability in the CKS and the PFC total knee arthroplasty (TKA) designs. Physical examinations, including VAS, IKS and WOMAC were performed in combination with a detailed fluoroscopic measurement technique for three-dimensional kinematic assessment of TKA design function. Anteroposterior instability rated with the IKS was not significantly different (p=0.34), but patients with a CKS design showed more limitations according to the WOMAC joint stiffness total score, and for items regarding higher flexion activities in the WOMAC score for knee disability. Kinematic analyses showed that the CKS design tended to have more anterior sliding of the femur on the tibia during mid- and deep flexion activities. The sliding distance was larger at the medial than at the lateral side. This phenomenon has also been described for posterior cruciate ligament deficient knees. Furthermore, the CKS design showed a significantly lower range of tibial rotation (p<0.05) from maximum extension to maximum flexion during deep knee bend activities. Kinematic differences can be ascribed to posterior cruciate ligament deficiency/laxity or differences in TKA designs.

  1. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    PubMed Central

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during

  2. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  3. Flexion contractures associated with a malignant neoplasm: 'A paraneoplastic syndrome?'.

    PubMed

    Eekhoff, E M; van der Lubbe, P A; Breedveld, F C

    1998-01-01

    A 71-year-old man developed polyarthritis and, subsequently, severe flexion contractures of multiple joints, particularly the joints of the hands. Eighteen months after developing this disease a parailiacal lymph node metastasis of an unknown primary cancer was found. We suggest that this patient's history, dominated by contractures that resembled the 'palmar fasciitis and polyarthritis syndrome', should be considered as a paraneoplastic syndrome.

  4. Prior Knowledge Improves Decoding of Finger Flexion from Electrocorticographic Signals

    PubMed Central

    Wang, Z.; Ji, Q.; Miller, K. J.; Schalk, Gerwin

    2011-01-01

    Brain–computer interfaces (BCIs) use brain signals to convey a user’s intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG) recordings from the surface of the brain in humans can give information about kinematic parameters (e.g., hand velocity or finger flexion). The decoding approaches in these studies usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information about the target movement parameter. In this paper, we incorporate prior knowledge using a Bayesian decoding method, and use it to decode finger flexion from ECoG signals. Specifically, we exploit the constraints that govern finger flexion and incorporate these constraints in the construction, structure, and the probabilistic functions of the prior model of a switched non-parametric dynamic system (SNDS). Given a measurement model resulting from a traditional linear regression method, we decoded finger flexion using posterior estimation that combined the prior and measurement models. Our results show that the application of the Bayesian decoding model, which incorporates prior knowledge, improves decoding performance compared to the application of a linear regression model, which does not incorporate prior knowledge. Thus, the results presented in this paper may ultimately lead to neurally controlled hand prostheses with full fine-grained finger articulation. PMID:22144944

  5. Soft tissue artifact evaluation of the cervical spine in motion patterns of flexion and lateral bending: a preliminary study.

    PubMed

    Wang, Jiajia; Lui, Zhongwen; Qian, Zhihui; Ren, Luquan

    2016-01-01

    Background. Soft tissue artifact (STA) is increasingly becoming a focus of research as the skin marker method is widely employed in motion capture technique. At present, medical imaging methods provide reliable ways to investigate the cervical STA. Among these approaches, magnetic resonance imaging (MRI) is a highly preferred tool because of its low radiation. Methods. In the study, the 3D spatial location of vertebral landmarks and corresponding skin markers of the spinous processes of the second (C2), fifth (C5), and sixth (C6) cervical levels during flexion and lateral bending were investigated. A series of static postures were scanned using MRI. Skin deformation was obtained by the Mimics software. Results. Results shows that during flexion, the maximum skin deformation occurs at C6, in the superior-inferior (Z) direction. Upon lateral bending, the maximum skin displacement occurs at C2 level, in the left-right (Y) direction. The result presents variability of soft tissue in the terms of direction and magnitude, which is consistent with the prevailing opinion. Discussion. The results testified variability of cervical STA. Future studies involving large ranges of subject classification, such as age, sex, height, gravity, and etc. should be performed to completely verify the existing hypothesis on human cervical skin deformation.

  6. Soft tissue artifact evaluation of the cervical spine in motion patterns of flexion and lateral bending: a preliminary study

    PubMed Central

    Wang, Jiajia; Lui, Zhongwen; Ren, Luquan

    2016-01-01

    Background. Soft tissue artifact (STA) is increasingly becoming a focus of research as the skin marker method is widely employed in motion capture technique. At present, medical imaging methods provide reliable ways to investigate the cervical STA. Among these approaches, magnetic resonance imaging (MRI) is a highly preferred tool because of its low radiation. Methods. In the study, the 3D spatial location of vertebral landmarks and corresponding skin markers of the spinous processes of the second (C2), fifth (C5), and sixth (C6) cervical levels during flexion and lateral bending were investigated. A series of static postures were scanned using MRI. Skin deformation was obtained by the Mimics software. Results. Results shows that during flexion, the maximum skin deformation occurs at C6, in the superior–inferior (Z) direction. Upon lateral bending, the maximum skin displacement occurs at C2 level, in the left–right (Y) direction. The result presents variability of soft tissue in the terms of direction and magnitude, which is consistent with the prevailing opinion. Discussion. The results testified variability of cervical STA. Future studies involving large ranges of subject classification, such as age, sex, height, gravity, and etc. should be performed to completely verify the existing hypothesis on human cervical skin deformation. PMID:27069821

  7. Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study.

    PubMed

    Bonsfills, N; Gómez-Barrena, E; Raygoza, J J; Núñez, A

    2008-10-01

    Ligamentomuscular and muscular stretch reflexes are known to contribute to knee joint stability. After anterior cruciate ligament (ACL) injury, a more intense and adjusted muscular response is required to maintain joint stability, but this neuromuscular control of the knee has not been clearly proved. The aim of the study is to record electromyography (EMG) signal and muscular fibre length variations in quadriceps and hamstrings of the knee with and without ACL, and to analyze and integrate the ligament strain and the muscular reaction to forced anterior tibial translation (ATT). In 17 knees from 12 cats, EMG electrodes and ultrasonomicrometry crystals were inserted into four main periarticular muscles, with strain gauges on periarticular ligament insertions. Their output signal was compared before and after ACL surgical section in series of ATT (at 90 degrees and 30 degrees knee flexion), and also during knee flexion and extension. Linear regression analysis was performed between the EMG signal and muscular fibre length variations, and between the EMG signal and the strain on ligament insertions, in the search of this reflex neuromuscular response. In the ACL deficient knees, the studied muscles showed a poor adjustment to motion of EMG firing, inversely to controls. The muscle stretch reflexes showed poorer correlation with post-peak EMG activity than the ligaments. ATT control depended mainly on hamstrings activity in control knees, whereas in unstable knees, quadriceps activity was associated with more tibial translation. Acute ACL-deficient knees showed poor neuromuscular control with weak ligamentomuscular reflexes and no muscular stretch reflexes, suggesting the ineffectiveness of acute muscular reaction to provide early mechanical knee stabilization after injury.

  8. Comparisons of knee and ankle joint angles and ground reaction force according to functional differences during single-leg drop landing

    PubMed Central

    Kim, Kewwan; Jeon, Kyoungkyu

    2016-01-01

    [Purpose] The purpose of this study was to determine potential predictors of functional instability of the knee and ankle joints during single-leg drop landing based on the prior history of injury. [Subjects and Methods] The subjects were 24 collegiate soccer players without pain or dysfunction. To compare the differences between the stable and unstable sides during single-leg drop landing, 8 motion analysis cameras and a force plate were used. The Cortex 4 software was used for a biomechanical analysis of 3 events. An independent t-test was used for statistical comparison between both sides; p<0.05 indicated significance. [Results] The knee joint movements showed gradual flexion in the sagittal plane. The unstable-side ankle joint showed plantar flexion of approximately 2° relative to the stable side. In the coronal plane, the unstable-side knee joint differed from the stable side in its tendency for valgus movement. The unstable-side ankle joint showed contrasting movement compared with the stable side, and the difference was significant. Regarding the vertical ground reaction force, the stable side showed maximum knee flexion that was approximately 0.1 BW lower than that of the unstable side. [Conclusion] Increasing the flexion angle of the knee joint can help prevent injury during landing. PMID:27190444

  9. Position-Specific Hip and Knee Kinematics in NCAA Football Athletes

    PubMed Central

    Deneweth, Jessica M.; Pomeroy, Shannon M.; Russell, Jason R.; McLean, Scott G.; Zernicke, Ronald F.; Bedi, Asheesh; Goulet, Grant C.

    2014-01-01

    Background: Femoroacetabular impingement is a debilitating hip condition commonly affecting athletes playing American football. The condition is associated with reduced hip range of motion; however, little is known about the range-of-motion demands of football athletes. This knowledge is critical to effective management of this condition. Purpose: To (1) develop a normative database of game-like hip and knee kinematics used by football athletes and (2) analyze kinematic data by playing position. The hypothesis was that kinematics would be similar between running backs and defensive backs and between wide receivers and quarterbacks, and that linemen would perform the activities with the most erect lower limb posture. Study Design: Descriptive laboratory study. Methods: Forty National Collegiate Athletic Association (NCAA) football athletes, representing 5 playing positions (quarterback, defensive back, running back, wide receiver, offensive lineman), executed game-like maneuvers while lower body kinematics were recorded via optical motion capture. Passive hip range of motion at 90° of hip flexion was assessed using a goniometer. Passive range of motion, athlete physical dimensions, hip function, and hip and knee rotations were submitted to 1-way analysis of variance to test for differences between playing positions. Correlations between maximal hip and knee kinematics and maximal hip kinematics and passive range of motion were also computed. Results: Hip and knee kinematics were similar across positions. Significant differences arose with linemen, who used lower maximal knee flexion (mean ± SD, 45.04° ± 7.27°) compared with running backs (61.20° ± 6.07°; P < .001) and wide receivers (54.67° ± 6.97°; P = .048) during the cut. No significant differences were found among positions for hip passive range of motion (overall means: 102° ± 15° [flexion]; 25° ± 9° [internal rotation]; 25° ± 8° [external rotation]). Several maximal hip measures were found

  10. Knee Joint Dysfunctions That Influence Gait in Cerebrovascular Injury

    PubMed Central

    Lucareli, Paulo Roberto Garcia; Greve, Julia Maria D’Andrea

    2008-01-01

    INTRODUCTION There is still no consensus among different specialists on the subject of kinematic variation during the hemiparetic gait, including the main changes that take place during the gait cycle and whether the gait velocity changes the patterns of joint mobility. One of the most frequently discussed joints is the knee. OBJECTIVES This study aims to evaluate the variables found in the angular kinematics of knee joint, and to describe the alterations found in the hemiparetic gait resulting from cerebrovascular injury. METHODS This study included 66 adult patients of both genders with a diagnosis of either right or left hemiparesis resulting from ischemic cerebrovascular injury. All the participants underwent three-dimensional gait evaluation, an the angular kinematics of the joint knee were selected for analysis. RESULTS The results were distributed into four groups formed based on the median of the gait speed and the side of hemiparesis. CONCLUSIONS The relevant clinical characteristics included the important mechanisms of loading response in the stance, knee hyperextension in single stance, and reduction of the peak flexion and movement amplitude of the knee in the swing phase. These mechanisms should be taken into account when choosing the best treatment. We believe that the findings presented here may aid in preventing the occurrence of the problems found, and also in identifying the origin of these problems. PMID:18719753

  11. Measurement of fatigue in knee flexor and extensor muscles.

    PubMed

    Kawabata, Y; Senda, M; Oka, T; Yagata, Y; Takahara, Y; Nagashima, H; Inoue, H

    2000-04-01

    In order to examine fatigue of the knee flexor and extensor muscles and to investigate the characteristics of muscular fatigue in different sports, a Cybex machine was used to measure muscle fatigue and recovery during isokinetic knee flexion and extension. Eighteen baseball players, 12 soccer players and 13 marathon runners were studied. Each subject was tested in the sitting position and made to perform 50 consecutive right knee bends and stretches at maximum strength. This was done 3 times with an interval of 10 min between each series. The peak torque to body weight ratio and the fatigue rate were determined in each case. In all subjects, the peak torque to body weight ratio was higher for extensors than flexors. Over the 3 trials, the fatigue rate of extensors showed little change, while that of flexors had a tendency to increase. In each subject, knee extensors showed a high fatigue rate but a quick recovery, while knee flexors showed a low fatigue rate but a slow recovery. As the marathon runners had the smallest fatigue rates for both flexors and extensors, we concluded that marathon runners had more stamina than baseball players and soccer players.

  12. Knee Joint Loading during Gait in Healthy Controls and Individuals with Knee Osteoarthritis

    PubMed Central

    Kumar, Deepak; Manal, Kurt T.; Rudolph, Katherine S.

    2013-01-01

    Objective People with knee osteoarthritis (OA) are thought to walk with high loads at the knee which are yet to be quantfied using modeling techniques that account for subject specific EMG patterns, kinematics and kinetics. The objective was to estimate medial and lateral loading for people with knee OA and controls using an approach that is sensitive to subject specific muscle activation patterns. Methods 16 OA and 12 control (C) subjects walked while kinematic, kinetic and EMG data were collected. Muscle forces were calculated using an EMG-Driven model and loading was calculated by balancing the external moments with internal muscle and contact forces Results OA subjects walked slower and had greater laxity, static and dynamic varus alignment, less flexion and greater knee adduction moment (KAM). Loading (normalized to body weight) was no different between the groups but OA subjects had greater absolute medial load than controls and maintained a greater %total load on the medial compartment. These patterns were associated with body mass, sagittal and frontal plane moments, static alignment and close to signficance for dynamic alignment. Lateral compartment unloading during mid-late stance was observed in 50% of OA subjects. Conclusions Loading for control subjects was similar to data from instrumented prostheses. Knee OA subjects had high medial contact loads in early stance and half of the OA cohort demonstared lateral compartment lift-off. Results suggest that interventions aimed at reducing body weight and dynamic malalignment might be effective in reducing medial compartment loading and establishing normal medio-lateral load sharing patterns. PMID:23182814

  13. Risk factors for poor hip flexion after total hip arthroplasty for the treatment of ankylosing spondylitis a multivariate analysis.

    PubMed

    Zhang, Liang; Yang, Dejin; Yin, Xinghua; Zhou, Yixin

    2014-09-01

    The purpose of this study is to investigate the clinical and radiographic results of total hip arthroplasty (THA) for the treatment of ankylosing spondylitis (AS) and to evaluate the effects of patient, prosthesis design, and surgical technique-related risk factors on postoperative functional results. We retrospectively reviewed the clinical and radiographic results of THA performed in 167 hips for 100 patients with AS. The average follow-up period was 54.8 months (range, 32-129 months). The hip passive-flexion arc averaged only 0 ° (0-40.0 °) before surgery, compared with 100.0 ° (85.0-110.0 °) at the most recent follow-up examination (P < 0.001). Multivariate regression demonstrated that significant variables for postoperative hip flexion were degree of preoperative flexion contracture, preoperative level of C-reactive protein, use of a 32-mm femoral head, and postoperative heterotopic ossification. In patients with AS with severe pain, limited motion and posture, as well as deformity, the overall outcomes after THA were found to be favorable with an encouraging midterm prosthetic survivorship, a low complication rate and a high level of patients' satisfaction. It seemed these patients were particularly predisposed to relative poor range of motion of the involved hips after THA which was closely related to patients' satisfaction. The surgeons should pay careful attention to all possible risk factors perioperatively and develop a comprehensive treatment regimen.

  14. A purpose-built dynamometer to objectively measure static and dynamic knee torque.

    PubMed

    Ugbolue, U C; Kaliarntas, K T; Wearing, S C; Rowe, P J

    2011-05-01

    This paper reports the development of a purpose-built knee dynamometer (PBKD) to evaluate passive range of motion (ROM) and isometric muscle strength measurements of the knee. The PBKD uses a TorqSense rotary torque transducer and objectively measures isometric knee muscle strength in a valid and reliable manner and passive resistance to motion through range. The device and all associated instrumentation underwent dynamic and static calibration to ensure consistent and accurate measurements were obtained in terms of knee joint angular position, passive torque measures, and isometric torque measures. Eleven healthy male participants performed a knee flexion and extension task designed to evaluate knee function. The validation of the PBKD entailed measuring the consistency of measurement and accuracy of measurement. Accuracy of the PBKD was determined by comparing peak isometric muscle strength measurements against a KIN-COM machine. No significant differences were observed both passively and isometrically between cycles and between trials. This device can have widespread applications within the rehabilitation and clinical environment and could be used as a functional outcome measuring tool to distinguish pathological from non-pathological knees. The presented preliminary results indicate that reliable and accurate measurements of knee ROM and muscle strength can be obtained.

  15. Older Adults without Radiographic Knee Osteoarthritis: Knee Alignment and Knee Range of Motion

    PubMed Central

    Fahlman, Lissa; Sangeorzan, Emmeline; Chheda, Nimisha; Lambright, Daphne

    2014-01-01

    This study describes knee alignment and active knee range of motion (ROM) in a community-based group of 78-year old adults (n = 143) who did not have radiographic evidence of knee osteoarthritis in either knee (KL < 2). Although knee malalignment is a risk factor for knee osteoarthritis, most women and men had either valgus or varus alignments. Notably, no men were valgus in both knees. Women with both knees valgus had significantly greater body mass index (P > 0.001) than women with varus or straight knees. Men and women with valgus or varus knee alignments had generally lower ROM than individuals with both knees straight. In summary, this study highlights the complex relationships among knee alignment, ROM, body mass index, and gender in elderly adults without radiographic knee osteoarthritis. PMID:24453501

  16. Older Adults without Radiographic Knee Osteoarthritis: Knee Alignment and Knee Range of Motion.

    PubMed

    Fahlman, Lissa; Sangeorzan, Emmeline; Chheda, Nimisha; Lambright, Daphne

    2014-01-12

    This study describes knee alignment and active knee range of motion (ROM) in a community-based group of 78-year old adults (n = 143) who did not have radiographic evidence of knee osteoarthritis in either knee (KL < 2). Although knee malalignment is a risk factor for knee osteoarthritis, most women and men had either valgus or varus alignments. Notably, no men were valgus in both knees. Women with both knees valgus had significantly greater body mass index (P > 0.001) than women with varus or straight knees. Men and women with valgus or varus knee alignments had generally lower ROM than individuals with both knees straight. In summary, this study highlights the complex relationships among knee alignment, ROM, body mass index, and gender in elderly adults without radiographic knee osteoarthritis.

  17. Evidence based factors influencing outcome of arthroscopy in osteoarthritis of the knee.

    PubMed

    Dearing, Jonathan; Nutton, Richard W

    2008-06-01

    Arthroscopy continues to be widely used in the management of knee osteoarthritis despite concerns regarding its effectiveness. The Scottish Arthroplasty Project has demonstrated a three-fold variation in rates of arthroscopy for osteoarthritis of the knee across different regions of Scotland. This has clear ramifications for the utilisation of finite health care resources. In light of such variations in national clinical practice this review identifies the evidence based factors which permit identification of patients who will obtain sustained benefit from arthroscopic treatment of knee osteoarthritis. Such a patient should have symptoms of short duration affecting the medial compartment of the knee, have localised tenderness at the medial joint line, mechanical symptoms and positive findings on meniscal stress testing. There should be neither significant mechanical malalignment nor flexion contracture, there should be preservation of the joint space on radiographs and the patient should not be obese. If these criteria are fulfilled the likelihood for long lasting reduction in symptoms is increased. PMID:18378147

  18. A comparison of lower-body flexibility, strength, and knee stability between karate athletes and active controls.

    PubMed

    Probst, Manuel M; Fletcher, Richard; Seelig, Dayna S

    2007-05-01

    The purposes of this study were to compare the lower-body flexibility, strength, and knee stability of karate athletes against that of non-karate controls and to determine whether regular karate training results in adaptations that may result in an increased risk for knee injury. Flexibility measurements included knee flexion and extension, hip flexion and extension, hip internal and external rotation, and foot inversion and eversion. Nine karate athletes (4 women and 5 men, age = 24.3 +/- 6.7 years) and 15 active, non-karate controls (7 women and 8 men, age = 22.1 +/- 3.2 years) participated. No subjects reported recent knee surgery or chronic or acute knee pain. Concentric quadriceps and hamstrings strength and endurance were measured using a Biodex II isokinetic dynamometer at 60 degrees .s(-1) and 180 degrees .s(-1). Eccentric strength was measured at 150 degrees .s(-1) and 250 ft-lb (339 N.m). Knee stability was measured via varus and valgus stress and anterior drawer testing. Karate athletes demonstrated a significantly greater right hip flexion (p knees between the karate and control groups. The results indicate that this group of karate athletes may have demonstrated sport-specific adaptations in certain flexibility and strength measurements, but they showed no increased risk for knee injury.

  19. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities.

    PubMed

    Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M

    2013-05-01

    The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. PMID:22922096

  20. Medial opening wedge high tibial osteotomy alters knee moments in multiple planes during walking and stair ascent.

    PubMed

    Leitch, Kristyn M; Birmingham, Trevor B; Dunning, Cynthia E; Giffin, J Robert

    2015-07-01

    Medial opening wedge high tibial osteotomy is a surgical procedure intended to redistribute loads on the knee in patients with medial compartment knee osteoarthritis (OA). The surgery may affect moments in multiple planes during ambulation, with potential beneficial or detrimental effects on joint loads. The objective of this study was to investigate three-dimensional external knee moments before and after medial opening wedge high tibial osteotomy during level walking and during stair ascent. Fourteen patients with varus alignment and osteoarthritis primarily affecting the medial compartment of the tibiofemoral joint were assessed. Three-dimensional motion analyses during level walking and stair ascent was evaluated using inverse dynamics before, 6 and 12 months after surgery. Mean changes at 12 months suggested decreases in the peak knee adduction, flexion and internal rotation moments, with standardized response means ranging from 0.15 to 2.54. These decreases were observed despite increases in speed. Changes in alignment were associated with changes in the adduction and internal rotation moments, but not the flexion moment. Both pre- and postoperatively, the peak knee adduction moment was significantly lower (p=0.001) during stair ascent than during level walking, while the flexion and internal rotation moments were significantly higher (p<0.01). There were no changes in the knee moments on the non-surgical limb. Medial opening wedge high tibial osteotomy is associated with sustained (12 months) changes in knee moments in all three planes of motion during ambulation, suggesting substantial alterations of the loads on the knee during ambulation.

  1. Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae.

    PubMed

    Park, San-Seong; Choi, Bo-Ram

    2016-06-01

    [Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population.

  2. Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae.

    PubMed

    Park, San-Seong; Choi, Bo-Ram

    2016-06-01

    [Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population. PMID:27390399

  3. Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae

    PubMed Central

    Park, San-seong; Choi, Bo-ram

    2016-01-01

    [Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population. PMID:27390399

  4. Loading of the knee joint during activities of daily living measured in vivo in five subjects.

    PubMed

    Kutzner, I; Heinlein, B; Graichen, F; Bender, A; Rohlmann, A; Halder, A; Beier, A; Bergmann, G

    2010-08-10

    Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living. Average peak resultant forces, in percent of body weight, were highest during stair descending (346% BW), followed by stair ascending (316% BW), level walking (261% BW), one legged stance (259% BW), knee bending (253% BW), standing up (246% BW), sitting down (225% BW) and two legged stance (107% BW). Peak shear forces were about 10-20 times smaller than the axial force. Resultant forces acted almost vertically on the tibial plateau even during high flexion. Highest moments acted in the frontal plane with a typical peak to peak range -2.91% BWm (adduction moment) to 1.61% BWm (abduction moment) throughout all activities. Peak flexion/extension moments ranged between -0.44% BWm (extension moment) and 3.16% BWm (flexion moment). Peak external/internal torques lay between -1.1% BWm (internal torque) and 0.53% BWm (external torque). The knee joint is highly loaded during daily life. In general, resultant contact forces during dynamic activities were lower than the ones predicted by many mathematical models, but lay in a similar range as measured in vivo by others. Some of the observed load components were much higher than those currently applied when testing knee implants.

  5. Does joint line elevation after revision knee arthroplasty affect tibio-femoral kinematics, contact pressure or collateral ligament lengths? An in vitro analysis

    PubMed Central

    Kowalczewski, Jacek B.; Chevalier, Yan; Okon, Tomasz; Innocenti, Bernardo; Bellemans, Johan

    2015-01-01

    Introduction Correct restoration of the joint line is generally considered as crucial when performing total knee arthroplasty (TKA). During revision knee arthroplasty however, elevation of the joint line occurs frequently. The general belief is that this negatively affects the clinical outcome, but the reasons are still not well understood. Material and methods In this cadaveric in vitro study the biomechanical consequences of joint line elevation were investigated using a previously validated cadaver model simulating active deep knee squats and passive flexion-extension cycles. Knee specimens were sequentially tested after total knee arthroplasty with joint line restoration and after 4 mm joint line elevation. Results The tibia rotated internally with increasing knee flexion during both passive and squatting motion (range: 17° and 7° respectively). Joint line elevation of 4 mm did not make a statistically significant difference. During passive motion, the tibia tended to become slightly more adducted with increasing knee flexion (range: 2°), while it went into slighlty less adduction during squatting (range: –2°). Neither of both trends was influenced by joint line elevation. Also anteroposterior translation of the femoral condyle centres was not affected by joint line elevation, although there was a tendency for a small posterior shift (of about 3 mm) during squatting after joint line elevation. In terms of kinetics, ligaments lengths and length changes, tibiofemoral contact pressures and quadriceps forces all showed the same patterns before and joint line elevation. No statistically significant changes could be detected. Conclusions Our study suggests that joint line elevation by 4 mm in revision total knee arthroplasty does not cause significant kinematic and kinetic differences during passive flexion/extension movement and squatting in the tibio-femoral joint, nor does it affect the elongation patterns of collateral ligaments. Therefore, clinical

  6. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test

    PubMed Central

    Lehman, Gregory J.; Contreras, Bret; Beardsley, Chris; Chung, Bryan; Feser, Erin H.

    2015-01-01

    Background. Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test. Methods. Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated. Results. Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson’s r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = −1.39° (−5.53, +2.75); t(22) = −0.70; p = 0.4933; Cohen’s d = − 0.15 (−0.58, 0.29)) or rectus femoris length (change = −0.005 (−0.013, +0.003); t(22) = −1.30; p = 0.2070; Cohen’s d = − 0.27 (−0.70, 0.16)) were not due to chance alone. Conclusions. Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol. PMID:26421244

  7. Diverse range of fixed positional deformities and bone growth restraint provoked by flaccid paralysis in embryonic chicks

    PubMed Central

    Lamb, Katherine J; Lewthwaite, Jo C; Lin, Jean-Pierre; Simon, Dominic; Kavanagh, Emma; Wheeler-Jones, Caroline P D; Pitsillides, Andrew A

    2003-01-01

    Pancuronium bromide (PB) is used in neonates and pregnant women to induce limp, flaccid paralysis in order to allow mechanical ventilation during intensive care. Such non-depolarizing neuromuscular blocking drugs are administered to 0.1% of all human births in the UK. In this study, we examined PB effects on skeletal development in chick embryos. PB treatment produced skeletal deformities associated with significant reduction in longitudinal growth of all appendicular elements. This was associated with greater cartilage to bone ratios, indicating a preferential reduction in osteogenesis. PB also increased the incidence of knee joint flexion and tibiotarsal joint hyperextension. In addition to limb, spinal and craniofacial deformities, flaccid immobility appears to convert the normal geometric pattern of weight gain to a simple arithmetic accretion. This novel study highlights the potentially harmful effects of pharmacologically induced flaccid immobility on chick embryonic skeletal development. Whilst in ovo avian development clearly differs from human, our findings may have implications for the fetus, premature and term neonate receiving such non-depolarizing neuromuscular blocking drugs. PMID:14632633

  8. The effect of knee joint angle on plantar flexor power in young and old men.

    PubMed

    Dalton, Brian H; Allen, Matti D; Power, Geoffrey A; Vandervoort, Anthony A; Rice, Charles L

    2014-04-01

    Human adult aging is associated with a loss of strength, contractile velocity and hence, power. The principal plantar flexors, consisting of the bi-articular gastrocnemeii and the mono-articular soleus, appear to be affected differently by the aging process. However, the age-related effect of knee joint angle on the torque-angular velocity relationship and power production of this functionally important muscle group is unknown. The purpose was to determine whether flexing the knee, thereby reducing the gastrocnemius contribution to plantar flexion, would exacerbate the age-related decrements in plantar flexion power, or shift the torque-angular velocity relationship differently in older compared with young men. Neuromuscular properties were recorded from 10 young (~25 y) and 10 old (~78 y) men with the knee extended (170°) and flexed (90°), in a randomized order. Participants performed maximal voluntary isometric contractions (MVCs), followed by maximal velocity-dependent shortening contractions at pre-set loads, ranging from 15 to 75% MVC. The young men were ~20-25% stronger, ~12% faster and ~30% more powerful than the old for both knee angles (P<0.05). In both age groups, isometric MVC torque was ~17% greater in the extended than flexed knee position, with no differences in voluntary activation (>95%). The young men produced 7-12% faster angular velocities in the extended knee position for loads ≤30% MVC, but no differences at higher loads; whereas there were no detectable differences in angular velocity between knee positions in the old across all relative loads. For both knee angles, young men produced peak power at 43.3±9.0% MVC, whereas the old men produced peak power at 54.8±7.9% MVC. These data indicate that the young, who have faster contracting muscles compared with the old, can rely more on velocity than torque for generating maximal power.

  9. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee.

    PubMed

    Wilk, K E; Romaniello, W T; Soscia, S M; Arrigo, C A; Andrews, J R

    1994-08-01

    It is important to examine the functional relationships between commonly performed clinical tests and to resolve inconsistencies in previous investigative results. The purpose of this study was to determine if a correlation exists between three commonly performed clinical tests: isokinetic isolated knee concentric muscular testing, the single-leg hop test, and the subjective knee score in anterior cruciate ligament reconstructed knees. To determine if a relationship exists would be beneficial to clinicians in determining patient progression, treatment modification, and return-to-sport objective parameters. Several investigators have analyzed two of these parameters, but no one has investigated three parameters to date. Additionally, this study explored the concept of limb acceleration and deceleration during high-speed isokinetics and its relationship to function. Fifty patients were randomly selected (29 males) with a mean age of 23.7 years (range 15-52). The subjects completed a subjective knee score questionnaire that rated symptoms (pain, swelling, giving way) and specific sport function and completed an overall knee score assessment. The patients were then evaluated performing three one-legged functional tests: 1) hop for distance, 2) timed hop, and 3) cross-over triple hop. Isokinetic testing was performed on a Biodex dynamometer at 180, 300, and 450 degrees/sec for knee extension/flexion. The patients' mean value of the self-assessed knee rating was 86 points. Sixty-four percent of the patients exhibited normal limb symmetry (within 85%) on all three single-leg hop tests. Sixteen percent exhibited quadriceps strength at least 90% of the contralateral limb isokinetically. A positive correlation was noted between isokinetic knee extension peak torque (180, 300 degrees/sec) and subjective knee scores, and the three hop tests (p < 0.001). A statistical trend was noted between knee extension acceleration and deceleration range at 180 and 300 degrees/sec for the

  10. Knee Kinematics is Altered Post-Fatigue While Performing a Crossover Task

    PubMed Central

    Cortes, Nelson; Greska, Eric; Ambegaonkar, Jatin P.; Kollock, Roger O.; Caswell, Shane V.; Onate, James A.

    2013-01-01

    Purpose To examine the effect of a sequential fatigue protocol on lower extremity biomechanics during a crossover cutting task in female soccer players. Methods Eighteen female collegiate soccer players alternated between a fatigue protocol and two consecutive unanticipated crossover trials until fatigue was reached. Lower extremity biomechanics were evaluated during the crossover using a 3D motion capture system and two force plates. Repeated measures ANOVAs analyzed differences between three sequential stages of fatigue (pre, 50%, 100%) for each dependent variable (α=0.05). Results Knee flexion angles at initial contact (IC) for pre- (−32±9°) and 50% (−29±11°) were significantly higher than at 100% fatigue (−22±9°) (p<0.001 and p=0.015, respectively). Knee adduction angles at IC for pre- (9±5°) and 50% (8±4°) were significantly higher (p=0.006 and p=0.049, respectively) than at 100% fatigue (6±4°). Conclusions Fatigue altered sagittal and frontal knee kinematics after 50% fatigue whereupon participants had diminished knee control at initial contact. Interventions should attempt to reduce the negative effects of fatigue on lower extremity biomechanics by promotion appropriate frontal plane alignment, and increased knee flexion during fatigue status. PMID:24045915

  11. Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy.

    PubMed

    Damiano, Diane L; Laws, Edward; Carmines, Dave V; Abel, Mark F

    2006-01-01

    This study investigated the effects of spasticity in the hamstrings and quadriceps muscles on gait parameters including temporal spatial measures, knee position, excursion and angular velocity in 25 children with spastic diplegic cerebral palsy (CP) as compared to 17 age-matched peers. While subjects were instructed to relax, an isokinetic device alternately flexed and extended the left knee at one of the three constant velocities 30 degrees/s, 60 degrees/s and 120 degrees/s, while surface electromyography (EMG) electrodes over the biceps femoris and the rectus femoris recorded muscle activity. Patients then participated in 3D gait analysis at a self-selected speed. Results showed that, those with CP who exhibited heightened stretch responses (spasticity) in both muscles, had significantly slower knee angular velocities during the swing phase of gait as compared to those with and without CP who did not exhibit stretch responses at the joint and the tested speeds. The measured amount (torque) of the resistance to passive flexion or extension was not related to gait parameters in subjects with CP; however, the rate of change in resistance torque per unit angle change (stiffness) at the fastest test speed of 120 degrees/s showed weak to moderate relationships with knee angular velocity and motion during gait. For the subset of seven patients with CP who subsequently underwent a selective dorsal rhizotomy, knee angular extension and flexion velocity increased post-operatively, suggesting some degree of causality between spasticity and movement speed.

  12. Reconstruction of the Posterolateral Corner After Sequential Sectioning Restores Knee Kinematics

    PubMed Central

    Plaweski, Stephane; Belvisi, Baptiste; Moreau-Gaudry, Alexandre

    2015-01-01

    Background: Various surgical techniques to treat posterolateral knee instability have been described. To date, the recommended treatment is an anatomic form of reconstruction in which the 3 key structures of the posterolateral corner (PLC) are addressed: the popliteofibular ligament, the popliteus tendon, and the lateral collateral ligament. Purpose/Hypothesis: The purpose of this study was to identify the role of each key structure of the PLC in kinematics of the knee and to biomechanically analyze a single-graft, fibular-based reconstruction that replicates the femoral insertions of the lateral collateral ligament and popliteus to repair the PLC. The hypothesis was that knee kinematics can be reasonably restored using a single graft with a 2-strand “modified Larson” technique. Study Design: Descriptive laboratory study. Methods: Eight fresh-frozen cadaveric knees were used in this study. We conducted sequential sectioning of the popliteofibular ligament (PFL) and then subsequently the popliteal tendon (PT), the lateral collateral ligament (LCL), and the anterior cruciate ligament (ACL). We then reconstructed the ACL first and then the posterolateral corner using the modified Larson technique. A surgical navigation system was used to measure varus laxity and external rotation at 0°, 30°, 60°, and 90° with a 9.8-N·m varus stress and 5-N·m external rotation force applied to the tibia. Results: In extension, varus laxity increased only after the sectioning of the lateral collateral ligament. At 30° of flexion, external rotation in varus and translation of the lateral tibial plateau increased after the isolated popliteofibular ligament section. From 60° to 90° of flexion, translation and mobility of the lateral plateau section increased after sectioning of the PFL. After reconstruction, we observed a restoration of external varus rotation in extension and translation of the lateral tibial plateau at 90° of flexion. This technique provided kinematics

  13. A biomechanical approach to interpreting magnetic resonance imaging of knee injuries.

    PubMed

    Sheehan, Scott E; Khurana, Bharti; Gaviola, Glenn; Davis, Kirkland W

    2014-11-01

    This article discusses common injury mechanisms and the subsequent constellation of magnetic resonance (MR) imaging findings in the knee following trauma in the context of instability, as distinguished by the degree of knee flexion and tibial rotation at the time of initial injury, in addition to the direction and magnitude of the responsible force vectors. Using 3-dimensional imaging, common injury mechanisms are illustrated and correlated with MR imaging findings of the resulting osteochondral, ligamentous, meniscal, and musculotendinous lesions. The most common classification and grading systems for these individual lesions and their subsequent treatment implications are discussed. PMID:25442026

  14. Management of flexion distraction injuries to the thoracolumbar spine.

    PubMed

    Lopez, Alejandro J; Scheer, Justin K; Smith, Zachary A; Dahdaleh, Nader S

    2015-12-01

    We present an updated overview of the literature regarding the management of flexion distraction injuries (FDI). FDI are unstable fractures of the thoracolumbar spine, which require surgical management by long segment open fusion or minimally invasive posterior fixation with pedicle screws. While associated with concomitant intra-abdominal injuries that may delay operative stabilization, FDI frequently involve reversible spinal cord injuries and rapid correction is indicated. Modern biomechanical studies have identified valuable prognostic indicators that may be elucidated from determining the mechanism of injury, including the degree of flexion and presence of compression at the time of injury. An improved understanding of FDI will contribute to more appropriate diagnoses and treatment of these fractures.

  15. Modern prosthetic knee mechanisms.

    PubMed

    Michael, J W

    1999-04-01

    The plethora of presently available prosthetic knee components can be divided into two groups based on how they are controlled: recent innovations that incorporate an onboard computer and the more familiar purely mechanical devices. These categories then can be subdivided into generic functional classes based on the degree of stance phase stability and swing phase responsiveness offered by each type of knee mechanism. This article summarizes the key advantages and limitations of available prosthetic knee systems and suggests a simple method to match the biomechanical capabilities of specific prosthetic knee components to the individual functional capabilities and goals of the person with an amputated limb.

  16. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    PubMed

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. PMID:27155332

  17. Weak gravitational shear and flexion with polar shapelets

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Rowe, Barnaby; Refregier, Alexandre; Bacon, David J.; Bergé, Joel

    2007-09-01

    We derive expressions, in terms of `polar shapelets', for the image distortion operations associated with weak gravitational lensing. Shear causes galaxy shapes to become elongated, and is sensitive to the second derivative of the projected gravitational potential along their line of sight; flexion bends galaxy shapes into arcs, and is sensitive to the third derivative. Polar shapelets provide a natural representation, in which both shear and flexion transformations are compact. Through this tool, we understand progress in several weak lensing methods. We then exploit various symmetries of shapelets to construct a range of shear estimators with useful properties. Through an analogous investigation, we also explore several flexion estimators. In particular, some of the estimators can be measured simultaneously and independently for every galaxy, and will provide unique checks for systematics in future weak lensing analyses. Using simulated images from the Shear TEsting Programme, we show that we can recover input shears with no significant bias. A complete software package to parametrize astronomical images in terms of polar shapelets, and to perform a full weak lensing analysis, is available on the Internet.

  18. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    PubMed

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.

  19. Diagnosis, Causes and Treatments of Instability Following Total Knee Arthroplasty

    PubMed Central

    Chang, Moon Jong; Lim, Hyungtae; Lee, Na Rae

    2014-01-01

    Instability following total knee arthroplasty is one of the major causes of revision surgery. In most cases, it can be prevented by using an appropriate prosthesis and a good surgical technique. Particular attention should be given to confirmation of diagnosis for which thorough history taking, complete physical examination and radiographic evaluation are needed. With regard to treatment, identification of the etiology of instability is crucial for establishing proper treatment plans; instability would persist without correction of the cause of the initial instability. For successful revision surgery, balanced medio-lateral and flexion-extension gaps should be achieved. Constrained or rotating-hinge total knee prosthesis should also be considered as an alternative option for certain subsets of patients with instability. PMID:24944970

  20. lower limbs kinematic assessment of the effect of a gym and hydrotherapy rehabilitation protocol after knee megaprosthesis: a case report

    PubMed Central

    Lovecchio, Nicola; Sciumè, Luciana; Zago, Matteo; Panella, Lorenzo; Lopresti, Maurizio; Sforza, Chiarella

    2016-01-01

    [Purpose] To quantitatively assess the effect of a personalized rehabilitation protocol after knee megaprosthesis. [Subject and Methods] The gait patterns of a 33-year-old male patient with knee synovial sarcoma were assessed by a computerized analysis before and after 40 rehabilitation sessions. [Results] The rehabilitation protocol improved the gait pattern. After rehabilitation, hip flexion was nearly symmetric, with normalized affected limb hip flexion, and improved ankle flexion. Ankle in/eversion was asymmetric and did not improve after physiotherapy. Before physiotherapy, the hip flexion on the affected side anticipated the movement but nearly normalized in the follow-up assessment. Hip abduction range of motion increased, with wider movements and good balance. Knee range of motion nearly symmetrized, but maintained an anticipated behavior, without shock absorption at heel-strike. [Conclusion] Instrumental gait analysis allowed us to gain evidence about the training and how to expand rehabilitative interventions to improve efficacy. In particular, we recommend quadriceps and gastrocnemius eccentric contraction training (to improve the shock absorption phase, preventing early failures of the prosthesis); one-leg standing performance (to improve the support phase of the affected limb); adductor strength training (to aid in hip control during the swing phase); and peroneus strength training (to increase ankle joint stabilization). PMID:27134413

  1. lower limbs kinematic assessment of the effect of a gym and hydrotherapy rehabilitation protocol after knee megaprosthesis: a case report.

    PubMed

    Lovecchio, Nicola; Sciumè, Luciana; Zago, Matteo; Panella, Lorenzo; Lopresti, Maurizio; Sforza, Chiarella

    2016-03-01

    [Purpose] To quantitatively assess the effect of a personalized rehabilitation protocol after knee megaprosthesis. [Subject and Methods] The gait patterns of a 33-year-old male patient with knee synovial sarcoma were assessed by a computerized analysis before and after 40 rehabilitation sessions. [Results] The rehabilitation protocol improved the gait pattern. After rehabilitation, hip flexion was nearly symmetric, with normalized affected limb hip flexion, and improved ankle flexion. Ankle in/eversion was asymmetric and did not improve after physiotherapy. Before physiotherapy, the hip flexion on the affected side anticipated the movement but nearly normalized in the follow-up assessment. Hip abduction range of motion increased, with wider movements and good balance. Knee range of motion nearly symmetrized, but maintained an anticipated behavior, without shock absorption at heel-strike. [Conclusion] Instrumental gait analysis allowed us to gain evidence about the training and how to expand rehabilitative interventions to improve efficacy. In particular, we recommend quadriceps and gastrocnemius eccentric contraction training (to improve the shock absorption phase, preventing early failures of the prosthesis); one-leg standing performance (to improve the support phase of the affected limb); adductor strength training (to aid in hip control during the swing phase); and peroneus strength training (to increase ankle joint stabilization). PMID:27134413

  2. lower limbs kinematic assessment of the effect of a gym and hydrotherapy rehabilitation protocol after knee megaprosthesis: a case report.

    PubMed

    Lovecchio, Nicola; Sciumè, Luciana; Zago, Matteo; Panella, Lorenzo; Lopresti, Maurizio; Sforza, Chiarella

    2016-03-01

    [Purpose] To quantitatively assess the effect of a personalized rehabilitation protocol after knee megaprosthesis. [Subject and Methods] The gait patterns of a 33-year-old male patient with knee synovial sarcoma were assessed by a computerized analysis before and after 40 rehabilitation sessions. [Results] The rehabilitation protocol improved the gait pattern. After rehabilitation, hip flexion was nearly symmetric, with normalized affected limb hip flexion, and improved ankle flexion. Ankle in/eversion was asymmetric and did not improve after physiotherapy. Before physiotherapy, the hip flexion on the affected side anticipated the movement but nearly normalized in the follow-up assessment. Hip abduction range of motion increased, with wider movements and good balance. Knee range of motion nearly symmetrized, but maintained an anticipated behavior, without shock absorption at heel-strike. [Conclusion] Instrumental gait analysis allowed us to gain evidence about the training and how to expand rehabilitative interventions to improve efficacy. In particular, we recommend quadriceps and gastrocnemius eccentric contraction training (to improve the shock absorption phase, preventing early failures of the prosthesis); one-leg standing performance (to improve the support phase of the affected limb); adductor strength training (to aid in hip control during the swing phase); and peroneus strength training (to increase ankle joint stabilization).

  3. Changes in Fatigue, Multiplanar Knee Laxity, and Landing Biomechanics During Intermittent Exercise

    PubMed Central

    Shultz, Sandra J.; Schmitz, Randy J.; Cone, John R.; Henson, Robert A.; Montgomery, Melissa M.; Pye, Michele L.; Tritsch, Amanda J.

    2015-01-01

    Context: Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. Objectives: To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Design: Descriptive laboratory study. Setting: Laboratory and gymnasium. Patients or Other Participants: A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. Intervention(s): A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. Main Outcome Measure(s): We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. Results: We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee

  4. Functional assessments of the knee joint biomechanics by using pendulum test in adults with Down syndrome.

    PubMed

    Casabona, Antonino; Valle, Maria Stella; Pisasale, Mariangela; Pantò, Maria Rosita; Cioni, Matteo

    2012-12-01

    In this study, we assessed kinematics and viscoelastic features of knee joint in adults with Down syndrome (DS) by means of the Wartenberg pendulum test. This test allows the measuring of the kinematics of the knee joint during passive pendular motion of leg under the influence of gravity. In addition, by a combination of kinematic and anthropometric data, pendulum test provides estimates of joint viscoelastic properties by computing damping and stiffness coefficients. To monitor the occurrences of muscle activation, the surface electromyogram (EMG) of muscle rectus femoris was recorded. The experimental protocol was performed in a group of 10 adults with DS compared with 10 control adults without DS. Joint motion amplitude, velocity, and acceleration of the leg during the first knee flexion significantly decreased in persons with DS with respect to those without DS. This behavior was associated with the activation of rectus femoris in subjects with DS that resulted in increasing of joint resistance shortly after the onset of the first leg flexion. The EMG bursts mostly occurred between 50 and 150 ms from the leg flexion onset. During the remaining cycles of pendular motion, persons with DS exhibited passive leg oscillations with low tonic EMG activity and reduced damping coefficient compared with control subjects. These results suggest that adults with DS might perform preprogrammed contractions to increase joint resistance and compensate for inherent joint instability occurring for quick and unpredictable perturbations. The reduction of damping coefficients observed during passive oscillations could be a predictor of muscle hypotonia.

  5. Effect of ultra-high molecular weight polyethylene thickness on contact mechanics in total knee replacement.

    PubMed

    El-Deen, M; García-Fiñana, M; Jin, Z M

    2006-10-01

    One of the important design parameters in current knee joint replacements is the thickness of the ultra-high molecular weight polyethylene (UHMWPE) tibial insert, yet there is no clear definition of the upper limit of the 'thick' polyethylene insert. Using one design knee implant and subjecting it to the physiological loads encountered throughout the gait cycle, measurements of the lengths of contact imprints generated were compared with the corresponding theoretical predictions for different insert thicknesses under the same applied load. Multiple regression analysis was applied to test whether the dimensions of contact imprints are influenced by UHMWPE thickness. Good agreement was obtained between the theoretical predictions and the experimental measurements of the dimensions of contact imprints when the knee was at 60 degrees flexion. Therefore, it was possible to estimate the contact pressure at the articulating surface using the theoretical model. Contact imprint dimensions increased with increasing applied load. Statistical analysis of the experimental data revealed that, at 0 degree flexion, the overall imprint dimensions increased as the UHMWPE thickness increased from 8 to 20 mm. However, the increment was not significant when the thickness subinterval 10-15 mm was considered. Furthermore, at 60 degrees flexion, thickness was not a significant factor for the overall imprint dimensions. No evidence was found from the data to suggest that an increment in polyethylene thickness over 10 mm would significantly reduce the contact imprint dimensions. These findings suggest that thicker inserts can be avoided, as they require unnecessary bone resection.

  6. Partial knee replacement

    MedlinePlus

    ... You will need to understand what surgery and recovery will be like. Partial knee arthroplasty may be a good choice if you have arthritis in only one side or part of the knee and: You are older, thin, and not very active. You do not ...

  7. Knee arthroscopy - series (image)

    MedlinePlus

    ... ligaments are among the ligaments of the knee joint. ... the joint (synovium), and the rest of the joint. Damaged tissues can be removed. Arthroscopy can also be used to help view the inside of the knee while ligaments or tendons are repaired from the outside.

  8. Preventing Knee Injuries

    MedlinePlus

    ... to tearing. Growth Plate Injuries, Fractures, and Dislocations Knee fractures rarely occur in childhood sports, but with any ... is the bump on the front of the knee where the patellar tendon attaches. Fractures to the growth plate in this area often ...

  9. Does the GMFCS level influence the improvement in knee range of motion after rectus femoris transfer in cerebral palsy?

    PubMed

    Blumetti, Francesco C; Morais Filho, Mauro C; Kawamura, Cátia M; Cardoso, Michelle O; Neves, Daniella L; Fujino, Marcelo H; Lopes, José Augusto F

    2015-09-01

    The aim of this study was to evaluate the influence of the Gross Motor Function Classification System (GMFCS) on the outcomes of rectus femoris transfer (RFT) for patients with cerebral palsy and stiff knee gait. We performed a retrospective review of patients seen at our gait laboratory from 1996 to 2013. Inclusion criteria were (i) spastic diplegic cerebral palsy, (ii) GMFCS levels I-III, (iii) reduced peak knee flexion in swing (PKFSw<55°), and (iv) patients who underwent orthopedic surgery with preoperative and postoperative gait analysis. Patients were divided into two groups according to whether they received a concurrent RFT or not at the time of surgery: non-RFT group (185 knees) and RFT group (123 knees). The primary outcome was the overall knee range of motion (KROM) derived from gait kinematics. The secondary outcomes were the PKFSw and the time of peak knee flexion in swing (tPKFSw). We observed a statistically significant improvement in KROM only for patients in the RFT group (P<0.001). However, PKFSw and tPKFSw improved in both groups after surgery (P<0.001 for all analyses). In the RFT group, the improvement in KROM was observed only for patients classified as GMFCS levels I and II. In the non-RFT group, no improvement in KROM was observed in any GMFCS level. In this study, patients at GMFCS levels I and II were more likely to benefit from the RFT procedure.

  10. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    PubMed

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension.

  11. Outcomes of Varus Valgus Constrained Versus Rotating-Hinge Implants in Total Knee Arthroplasty.

    PubMed

    Malcolm, Tennison L; Bederman, S Samuel; Schwarzkopf, Ran

    2016-01-01

    The stability of a total knee arthroplasty is determined by the ability of the prosthesis components in concert with supportive bone and soft tissue structures to sufficiently resist deforming forces transmitted across the knee joint. Constrained prostheses are used in unstable knees due to their ability to resist varus and valgus transformative forces across the knee. Constraint requires inherent rigidity, which can facilitate early implant failure. The purpose of this study was to describe the comparative indications for surgery and postoperative outcomes of varus valgus constrained knee (VVK) and rotating-hinge knee (RHK) total knee arthroplasty prostheses. Seven retrospective observational studies describing 544 VVK and 254 RHK patients with an average follow-up of 66 months (range, 7-197 months) were evaluated. Patients in both groups experienced similar failure rates (P=.74), ranges of motion (P=.81), and Knee Society function scores (P=.29). Average Knee Society knee scores were 4.2 points higher in VVK patients compared with RHK patients, indicating minimal mid-term clinical differences may exist (P<.0001). Absent collateral ligament support is an almost universal indication for RHK implantation vs VVK. Constrained device implantation is routinely guided by inherent stability of the knee, and, when performed, similar postoperative outcomes can be achieved with VVK and RHK prostheses.

  12. Surgical Anatomy of the Knee A Review of Common Open Approaches.

    PubMed

    Manning, Blaine T; Frank, Rachel M; Wetters, Nathan G; Bach, Bernard R; Rosenberg, Aaron G; Levine, Brett R

    2016-09-01

    Knee-related complaints are among the most commonly encountered conditions by orthopaedic surgeons. Knee pathology varies widely and includes arthritis, deformities, fractures, infections, neuromuscular disorders, oncologic diseases, and soft-tissue injury. While nonoperative treatment modalities (activity modification, medications, injections, and physical therapy) are typically used as primary interventions, surgical treatment may ultimately become necessary. The purpose of this review is to discuss the most common open approaches to the knee, with an emphasis on surgically relevant anatomy for each approach. Understanding of the anatomy of the knee joint and associated neurovascular structures is necessary in order to avoid intraoperative complications and optimize postoperative recovery. PMID:27620546

  13. Current surgical strategies for total arthroplasty in valgus knee

    PubMed Central

    Nikolopoulos, Dimitrios; Michos, Ioannis; Safos, George; Safos, Petros

    2015-01-01

    The majority of orthopaedic surgeons even currently agree that primary total arthroplasty in valgus knees with a deformity of more than ten degrees may prove challenging. The unique sets of bone and soft tissue abnormalities that must be addressed at the time of the operation make accurate axis restoration, component orientation and joint stability attainment a difficult task. Understanding the specific pathologic anatomic changes associated with the valgus knee is a prerequisite so as to select the proper surgical method, to optimize component position and restore soft-tissue balance. The purpose of this article is to review the valgus knee anatomical variations, to assess the best pre-operative planning and to evaluate how to choose the grade of constraint of the implant. It will also be underlying the up-to-date main approaches and surgical techniques be proposed in the English literature both for bone cuts and soft tissue management of valgus knees. PMID:26191494

  14. Sex Differences in Proximal Control of the Knee Joint

    PubMed Central

    Mendiguchia, Jurdan; Ford, Kevin R.; Quatman, Carmen E.; Alentorn-Geli, Eduard; Hewett, Timothy E.

    2014-01-01

    Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbopelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries. PMID:21688868

  15. Model-Based Estimation of Active Knee Stiffness

    PubMed Central

    Pfeifer, Serge; Hardegger, Michael; Vallery, Heike; List, Renate; Foresti, Mauro; Riener, Robert; Perreault, Eric J.

    2013-01-01

    Knee joint impedance varies substantially during physiological gait. Quantifying this modulation is critical for the design of transfemoral prostheses that aim to mimic physiological limb behavior. Conventional methods for quantifying joint impedance typically involve perturbing the joint in a controlled manner, and describing impedance as the dynamic relationship between applied perturbations and corresponding joint torques. These experimental techniques, however, are difficult to apply during locomotion without impeding natural movements. In this paper, we propose a method to estimate the elastic component of knee joint impedance that depends on muscle activation, often referred to as active knee stiffness. The method estimates stiffness using a musculoskeletal model of the leg and a model for activation-dependent short-range muscle stiffness. Muscle forces are estimated from measurements including limb kinematics, kinetics and muscle electromyograms. For isometric validation, we compare model estimates to measurements involving joint perturbations; measured stiffness is 17% lower than model estimates for extension, and 42% lower for flexion torques. We show that sensitivity of stiffness estimates to common approaches for estimating muscle force is small in isometric conditions. We also make initial estimates of how knee stiffness is modulated during gait, illustrating how this approach may be used to obtain parameters relevant to the design of transfemoral prostheses. PMID:22275672

  16. Iliotibial band syndrome: a common source of knee pain.

    PubMed

    Khaund, Razib; Flynn, Sharon H

    2005-04-15

    Iliotibial band syndrome is a common knee injury. The most common symptom is lateral knee pain caused by inflammation of the distal portion of the iliotibial band. The iliotibial band is a thick band of fascia that crosses the hip joint and extends distally to insert on the patella, tibia, and biceps femoris tendon. In some athletes, repetitive flexion and extension of the knee causes the distal iliotibial band to become irritated and inflamed resulting in diffuse lateral knee pain. Iliotibial band syndrome can cause significant morbidity and lead to cessation of exercise. Although iliotibial band syndrome is easily diagnosed clinically, it can be extremely challenging to treat. Treatment requires active patient participation and compliance with activity modification. Most patients respond to conservative treatment involving stretching of the iliotibial band, strengthening of the gluteus medius, and altering training regimens. Corticosteroid injections should be considered if visible swelling or pain with ambulation persists for more than three days after initiating treatment. A small percentage of patients are refractory to conservative treatment and may require surgical release of the iliotibial band.

  17. [Recovery from total knee arthroplasty through continuous passive motion].

    PubMed

    Sánchez Mayo, B; Rodríguez-Mansilla, J; González Sánchez, B

    2015-01-01

    The purpose of this study was to know the effects of continuous passive mobilization in patients who underwent total knee arthroplasty. A search strategy was developed to retrieve all clinical trials, written in English and/or Spanish, published in the electronic search databases PubMed, Cochrane Library Plus, Dialnet, CSIC and PEDro. The inclusion criteria were: clinical trials published from January 2000 until November 2014 in English or Spanish. Out of 537 clinical trials that were potentially relevant, a total of 12 were included in this review. The evaluation of 1,153 patients shows that there is no significant difference in improving the range of the joint, pain, balance, motion, healing and hospital stay using continuous passive mobilization against the regular physiotherapy treatment for total knee arthroplasty. The application of continuous passive mobilization in the long-term does not provide any benefit in terms of the breadth of the range of the joint, pain and improvement of standing and motion in comparison with conventional postoperative physiotherapy treatment in total knee arthroplasty. In the short term an improvement is obtained in the range of joint motion in knee flexion.

  18. [Recovery from total knee arthroplasty through continuous passive motion].

    PubMed

    Sánchez Mayo, B; Rodríguez-Mansilla, J; González Sánchez, B

    2015-01-01

    The purpose of this study was to know the effects of continuous passive mobilization in patients who underwent total knee arthroplasty. A search strategy was developed to retrieve all clinical trials, written in English and/or Spanish, published in the electronic search databases PubMed, Cochrane Library Plus, Dialnet, CSIC and PEDro. The inclusion criteria were: clinical trials published from January 2000 until November 2014 in English or Spanish. Out of 537 clinical trials that were potentially relevant, a total of 12 were included in this review. The evaluation of 1,153 patients shows that there is no significant difference in improving the range of the joint, pain, balance, motion, healing and hospital stay using continuous passive mobilization against the regular physiotherapy treatment for total knee arthroplasty. The application of continuous passive mobilization in the long-term does not provide any benefit in terms of the breadth of the range of the joint, pain and improvement of standing and motion in comparison with conventional postoperative physiotherapy treatment in total knee arthroplasty. In the short term an improvement is obtained in the range of joint motion in knee flexion. PMID:26486536

  19. Knee osteoarthritis image registration: data from the Osteoarthritis Initiative

    NASA Astrophysics Data System (ADS)

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-03-01

    Knee osteoarthritis is a very common disease, in early stages, changes in joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Based on a joint space reduction measurement, Kellgren-Lawrence grading scale, is a very extensive used tool to asses radiological OA knee x-ray images, based on information obtained from these assessments, the objective of this work is to correlate the Kellgren-Lawrence score to the bilateral asymmetry between knees. Using public data from the Osteoarthritis initiative (OAI), a set of images with different Kellgren-Lawrencescores were used to determine a relationship of Kellgren-Lawrence score and the bilateral asymmetry, in order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics, mutual information, correlation, and mean squared error where computed to correlate the deformation (mismatch) of the knees to the Kellgren-Lawrence score. Radiological information was evaluated and scored by OAI radiologist groups. The results of the study suggest an association between Radiological Kellgren-Lawrence score and image registration metrics, mutual information and correlation is higher in the early stages, and mean squared error is higher in advanced stages. This association can be helpful to develop a computer aided grading tool.

  20. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living.

    PubMed

    Fiacchi, Francesco; Zambianchi, Francesco; Digennaro, Vitantonio; Ricchiuto, Ippazio; Mugnai, Raffaele; Catani, Fabio

    2014-01-01

    Few studies exist describing unicompartmental osteoarthritic knee kinematics. Moreover, the role of the anterior cruciate ligament (ACL) in the determination of knee kinematics has not been fully described. The objective of the current study was to analyze the in vivo kinematics of knees with medial osteoarthritis (OA) and intact ACL during closed and open chained motion. Eight patients scheduled for UKA diagnosed with primary medial OA underwent knee CT-scans and video-fluoroscopy. Fluoroscopic analysis included stair climbing, chair rising and leg extension. Three-dimensional bone positions were obtained from each image by iterative procedures using a CAD-model-based shape-matching technique. Patterns of axial rotation and anterior-posterior (AP) motion of the medial and lateral femoral condyle were obtained with specific software. The femur reported an overall external rotation relative to the tibia from extension to flexion in all tasks. Average AP translation of the medial femoral condyle were smaller in open-chained tasks than in weight-bearing conditions. Average AP motion of the lateral femoral condyle reported an overall posterior translation with knee flexion. The absent natural "screw-home" mechanism and the lack of medial condyle posterior translation was explained by bone-cartilage defects and meniscal degeneration. Relevant findings were the kinematic pattern differences between weight-bearing and open chained activities, suggesting that in biphasic muscle contraction and unloaded conditions, the function of the cruciate ligaments was not physiological. The kinematics of knees with medial OA and intact ACL differed from healthy knees. PMID:25382361

  1. Antiinflammatory effect of peripheral nerve blocks after knee surgery: clinical and biologic evaluation

    PubMed Central

    Martin, Frédéric; Martinez, Valéria; Mazoit, Jean Xavier; Bouhassira, Didier; Cherif, Kamel; Gentili, Marc Edouard; Piriou, Philippe; Chauvin, Marcel; Fletcher, Dominique

    2008-01-01

    Background Nerve blocks provide analgesia after surgery. We tested whether they have anti-inflammatory effects. Methods Patient had combined sciatic (single shot) and continuous femoral block (48 hours) (block group) or morphine patient-controlled analgesia (PCA group) after total knee arthroplasty. Pain at rest and upon movement was monitored at one (D1), four (D4) and seven days (D7) and one (M1) and three months (M3) after surgery. Knee inflammation was evaluated (skin temperature, knee circumference) before surgery and at D1, D4, D7, M1 and M3. Plasma cytokine concentrations (IL6, IL1β, TNF, IL10, sTNF-R1) were measured before surgery, then at four hours, D1, D4 and D7 after surgery. Capsule and synovial membrane cytokines were measured (IL6, TNF, IL1, IL10). Knee flexion was evaluated before surgery and at D1, D4, D7, M1 and M3. We monitored morphine use and recovery time to autonomy. Results Pain at rest and upon movement was lower in the block group than in PCA patients between D1 and D7 (Anova; P<0.005). Knee flexion was improved in the block group for D1 to M1 (Anova; p<0.0001). Block group patients recovered non-assisted mobilization (t test; p=0.04) and toilet use (t test; p=0.03) more rapidly. Knee circumference and skin temperature were lower in the block group between D1 and D7 (Anova; p<0.05). Synovial membrane IL1 (p<0.05) and IL10 (p<0.01) increased and plasma IL6 and sTNF-R1 peaked at 24 hours, with no difference between groups. Conclusion Nerve blocks inhibited clinical inflammation after total knee arthroplasty with no change in tissue and plasma cytokine concentrations. PMID:18719447

  2. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living.

    PubMed

    Fiacchi, Francesco; Zambianchi, Francesco; Digennaro, Vitantonio; Ricchiuto, Ippazio; Mugnai, Raffaele; Catani, Fabio

    2014-01-01

    Few studies exist describing unicompartmental osteoarthritic knee kinematics. Moreover, the role of the anterior cruciate ligament (ACL) in the determination of knee kinematics has not been fully described. The objective of the current study was to analyze the in vivo kinematics of knees with medial osteoarthritis (OA) and intact ACL during closed and open chained motion. Eight patients scheduled for UKA diagnosed with primary medial OA underwent knee CT-scans and video-fluoroscopy. Fluoroscopic analysis included stair climbing, chair rising and leg extension. Three-dimensional bone positions were obtained from each image by iterative procedures using a CAD-model-based shape-matching technique. Patterns of axial rotation and anterior-posterior (AP) motion of the medial and lateral femoral condyle were obtained with specific software. The femur reported an overall external rotation relative to the tibia from extension to flexion in all tasks. Average AP translation of the medial femoral condyle were smaller in open-chained tasks than in weight-bearing conditions. Average AP motion of the lateral femoral condyle reported an overall posterior translation with knee flexion. The absent natural "screw-home" mechanism and the lack of medial condyle posterior translation was explained by bone-cartilage defects and meniscal degeneration. Relevant findings were the kinematic pattern differences between weight-bearing and open chained activities, suggesting that in biphasic muscle contraction and unloaded conditions, the function of the cruciate ligaments was not physiological. The kinematics of knees with medial OA and intact ACL differed from healthy knees.

  3. [A novel knee endoprosthesis with a physiological joint shape. Part 1: Biomechanical basics and tribological studies].

    PubMed

    Frosch, K-H; Floerkemeier, T; Abicht, C; Adam, P; Dathe, H; Fanghänel, J; Stürmer, K M; Kubein-Meesenburg, D; Nägerl, H

    2009-02-01

    The natural tibiofemoral joint (TFJ) functions according to a roll-glide mechanism. In the stance phase (0-20 degrees flexion), the femur rolls backwards over the tibia plateau, while further flexion causes increased gliding. This kinematics is based on the principle of a quadruple joint. The four morphological axes of rotation are the midpoints of the curvatures of the medial and lateral femoral condyles and the medial and lateral tibia plateau. In addition, the medial and lateral compartments are shifted a few millimetres in a sagittal direction, the medial tibia plateau being concave and the lateral plateau convex. In most knee arthroplasties, these factors are not taken into account; instead they are equipped with symmetrical medial and lateral joint surfaces. Thereby, the midpoints of the curvatures of the sagittal contours of the lateral and medial joint surfaces, on the femoral as well as on the tibial sides, create a common axis of rotation which does not allow a physiological roll-glide mechanism. The goal of this study was therefore to report on the biomechanical basis of the natural knee and to describe the development of a novel knee endoprosthesis based on a mathematical model. The design of the structurally new knee joint endoprosthesis has, on the lateral side, a convex shape of the tibial joint surface in a sagittal cross section. Furthermore, from a mathematical point of view, this knee endoprosthesis possesses essential kinematic and static properties similar to those of a physiological TFJ. Within the framework of the authorization tests, the endoprosthesis was examined according to ISO/WC 14243 in a knee simulator. The abrasion rates were, thereby, lower than or at least as good as those for conventional endoprostheses. The presented data demonstrate a novel concept in knee arthroplasty, which still has to be clinically confirmed by long term results.

  4. Extra-articular deformity is always correctable intra-articularly: to the contrary.

    PubMed

    Hungerford, David S

    2009-09-01

    The operative word in this debate is "always." In my opinion, there are some cases better served by extra-articular correction. The question then becomes which ones, and how does the surgeon determine? There are 4 considerations: the magnitude of the deformity, the relationship of the deformity to the knee, the side of the deformity (varus or valgus), and whether the femur or the tibia is affected by the deformity. A larger deformity is more important, but just as important is its relationship to the knee. Large deformities distant to the knee have little impact on the knee. Varus deformities require lateral intra-articular overresection, which produces lateral instability. Valgus deformities require medial overresection, which produces medial instability. Lateral instability is stabilized by the dynamic lateral stabilizers (popliteus, lateral head of the gastrocnemius, biceps femoris, and iliotibial tract) and is better tolerated than medial instability. The best way to determine the consequence of the malalignment in question is to template the knee by drawing the mechanical axis from the femoral head or ankle to the center of the knee, and then the resection level that will be required. This will demonstrate the amount of overresection required to correct the extra-articular deformity, and in some cases will indicate the advantage of an extra-articular correction.

  5. Treating Osteoarthritis of the Knee

    MedlinePlus

    ... osteotomy may need knee replacement surgery in the future. Arthroplasty is also called joint or knee replacement therapy. A surgeon removes the part of the knee damaged by osteoarthritis and replaces it with an artificial joint made from metals and plastic. All or part of the knee joint may ...

  6. Comparing wobble board and jump-landing training effects on knee and ankle movement discrimination.

    PubMed

    Waddington, G; Seward, H; Wrigley, T; Lacey, N; Adams, R

    2000-12-01

    The effects of two training programs on movement discrimination ability, at the ankle and knee, were assessed from the left and right lower limbs of forty-four football players. All players in three Under 18 Victorian Football League (VFL) squads were allocated to either wobble board training, jump landing training, or no-training conditions. Pre-tests to assess discrimination of extent for active movements made while standing were carried out on both ankles and knees of all subjects, using an automated device to accurately set the different movement stop points. Five distances were used, between 10.5 degrees and 14.5 degrees from horizontal for ankle inversion, and between 30.3 degrees and 31.7 degrees from vertical for knee flexion. From a series of 50 inversion movements and 50 knee flexion movements, matrices of absolute judgement by actual movement extent were produced. Non-parametric signal detection analysis was applied to the discrimination score. All subjects were retested after eight weeks. Improvement in discrimination of ankle movements into inversion from pre-test (0.65) to post test (0.70) for the wobble board trained group was significantly larger than the change in the jump-landing trained and the untrained groups (Jump Landing: Pretest: 0.64 to Post-test: 0.64 and Control; Pretest: 0.63 to Post-test: 0.64). Discrimination of knee flexion movements improved significantly from pre-test to post-test in all three groups. These data demonstrate that wobble board training can improve discrimination of discrete ankle inversion movements, an effect interpreted as enabling greater accuracy in the making of inversion movements in foot preparation prior to ground contact.

  7. Through Knee Amputation: Technique Modifications and Surgical Outcomes

    PubMed Central

    Albino, Frank P; Seidel, Rachel; Brown, Benjamin J; Crone, Charles G

    2014-01-01

    Background Knee disarticulations (KD) are most commonly employed following trauma or tumor resection but represent less than 2% of all lower extremity amputations performed in the United States annually. KDs provide enhanced proprioception, a long lever arm, preservation of adductor muscle insertion, decreased metabolic cost of ambulation, and an end weight-bearing stump. The role for KDs in the setting of arterial insufficiency or overwhelming infection is less clear. The purpose of this study is to describe technique modifications and report surgical outcomes following KDs at a high-volume Limb Salvage Center. Methods A retrospective study of medical records for all patients who underwent a through-knee amputation performed by the senior author (C.E.A.) between 2004 and 2012 was completed. Medical records were reviewed to collect demographic, operative, and postoperative information for each of the patients identified. Results Between 2004 and 2012, 46 through-knee amputations for 41 patients were performed. The mean patient age was 68 and indications for surgery included infection (56%), arterial thrombosis (35%), and trauma (9%). Postoperative complications included superficial cellulitis (13%), soft tissue infection (4%), and flap ischemia (4%) necessitating one case of surgical debridement (4%) and four trans-femoral amputations (9%). 9 (22%) patients went on to ambulate. Postoperative ambulation was greatest in the traumatic cohort and for patients less than 50 years of age, P<0.05. Alternatively, diabetes mellitus and infection reduced the likelihood of postoperative ambulation, P<0.01. Conclusions Knee disarticulations are a safe and effective alternative to other lower extremity amputations when clinically feasible. For patient unlikely to ambulate, a through-knee amputation maximizes ease of transfers, promotes mobility by providing a counterbalance, and eliminates the potential for knee flexion contracture with subsequent skin breakdown. PMID:25276650

  8. Arthroscopic lysis of adhesions for the stiff total knee: results after failed manipulation.

    PubMed

    Tjoumakaris, Fotios Paul; Tucker, Bradfords Chofield; Post, Zachary; Pepe, Matthew David; Orozco, Fabio; Ong, Alvin C

    2014-05-01

    Arthrofibrosis after total knee arthroplasty (TKA) is a potentially devastating complication, resulting in loss of motion and function and residual pain. For patients in whom aggressive physical therapy and manipulation under anesthesia fail, lysis of adhesions may be the only option to rescue the stiff TKA. The purpose of this study is to report the results of arthroscopic lysis of adhesions after failed manipulation for a stiff, cruciate-substituting TKA. This retrospective study evaluated patients who had undergone arthroscopic lysis of adhesions for arthrofibrosis after TKA between 2007 and 2011. Minimum follow-up was 12 months (average, 31 months). Average total range of motion of patients in this series was 62.3°. Average preoperative flexion contracture was 16° and average flexion was 78.6°. Statistical analysis was performed using Student's t test. Pre- to postoperative increase in range of motion was significant (P<.001) (average, 62° preoperatively to 98° postoperatively). Average preoperative extension deficit was 16°, which was reduced to 4° at final follow-up. This value was also found to be statistically significant (P<.0001). With regard to ultimate flexion attained, average preoperative flexion was 79°, which was improved to 103° at final follow-up. This improvement in flexion was statistically significant (P<.0001). Patients can reliably expect an improvement after arthroscopic lysis of adhesions for a stiff TKA using a standardized arthroscopic approach; however, patients achieved approximately half of the improvement that was obtained at the time of surgery.

  9. Load and speed effects on the cervical flexion relaxation phenomenon

    PubMed Central

    2010-01-01

    Background The flexion relaxation phenomenon (FRP) represents a well-studied neuromuscular response that occurs in the lumbar and cervical spine. However, the cervical spine FRP has not been investigated extensively, and the speed of movement and loading effects remains to be characterized. The objectives of the present study were to evaluate the influence of load and speed on cervical FRP electromyographic (EMG) and kinematic parameters and to assess the measurement of cervical FRP kinematic and EMG parameter repeatability. Methods Eighteen healthy adults (6 women and 12 men), aged 20 to 39 years, participated in this study. They undertook 2 sessions in which they had to perform a standardized cervical flexion/extension movement in 3 phases: complete cervical flexion; the static period in complete cervical flexion; and extension with return to the initial position. Two different rhythm conditions and 3 different loading conditions were applied to assess load and speed effects. Kinematic and EMG data were collected, and dependent variables included angles corresponding to the onset and cessation of myoelectric silence as well as the root mean square (RMS) values of EMG signals. Repeatability was examined in the first session and between the 2 sessions. Results Statistical analyses revealed a significant load effect (P < 0.001). An augmented load led to increased FRP onset and cessation angles. No load × speed interaction effect was detected in the kinematics data. A significant load effect (P < 0.001) was observed on RMS values in all phases of movement, while a significant speed effect (P < 0.001) could be seen only during the extension phase. Load × speed interaction effect was noted in the extension phase, where higher loads and faster rhythm generated significantly greater muscle activation. Intra-session and inter-session repeatability was good for the EMG and kinematic parameters. Conclusions The load increase evoked augmented FRP onset and cessation angles

  10. Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.

    PubMed

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya

    2008-11-01

    Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.

  11. Chronic Knee Dislocation After Total Knee Arthroplasty.

    PubMed

    Ross, John P; Brown, Nicholas M; Levine, Brett R

    2015-12-01

    Knee dislocation after total knee arthroplasty (TKA), although rare, is a dangerous injury that can lead to neurovascular compromise and permanent disability. Chronic dislocation after TKA is even less common and is defined as dislocation that is present for 4 weeks or more. There are few reports of its management. Chronic dislocation may be complicated further by concomitant extensor mechanism disruption, ligamentous instability, and/or capsular contracture. This article describes 3 cases of chronically dislocated TKAs and the challenges encountered in treating this difficult problem. A higher level of constraint was required to maintain knee stability, and an extensor mechanism allograft was needed in 2 of the 3 reported patients. The preferred technique at the authors' institution is a complete allograft composite, tensioned in full extension. In the setting of a chronically dislocated TKA, the authors now recommend revision surgery with an enhanced measure of constraint (constrained condylar device or hinged knee prosthesis), reconstruction of the extensor mechanism when necessary, and restoration of the joint while compensating for concomitant bony defects. Even when surgeons follow these principles, it is important to inform the patient that long-term outcomes will likely be inferior to those of revision surgery for other causes.

  12. Advanced concepts in knee arthrodesis

    PubMed Central

    Wood, Jennifer H; Conway, Janet D

    2015-01-01

    The aim is to describe advanced strategies that can be used to diagnose and treat complications after knee arthrodesis and to describe temporary knee arthrodesis to treat infected knee arthroplasty. Potential difficult complications include nonunited knee arthrodesis, limb length discrepancy after knee arthrodesis, and united but infected knee arthrodesis. If a nonunited knee arthrodesis shows evidence of implant loosening or failure, then bone grafting the nonunion site as well as exchange intramedullary nailing and/or supplemental plate fixation are recommended. If symptomatic limb length discrepancy cannot be satisfactorily treated with a shoe lift, then the patient should undergo tibial lengthening over nail with a monolateral fixator or exchange nailing with a femoral internal lengthening device. If a united knee arthrodesis is infected, the nail must be removed. Then the surgeon has the option of replacing it with a long, antibiotic cement-coated nail. The authors also describe temporary knee arthrodesis for infected knee arthroplasty in patients who have the potential to undergo insertion of a new implant. The procedure has two goals: eradication of infection and stabilization of the knee. A temporary knee fusion can be accomplished by inserting both an antibiotic cement-coated knee fusion nail and a static antibiotic cement-coated spacer. These advanced techniques can be helpful when treating difficult complications after knee arthrodesis and treating cases of infected knee arthroplasty. PMID:25793160

  13. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  14. The influences of impact interface, muscle activity, and knee angle on impact forces and tibial and femoral accelerations occurring after external impacts.

    PubMed

    Potthast, Wolfgang; Brüggemann, Gert-Peter; Lundberg, Arne; Arndt, Anton

    2010-02-01

    The purpose of this study was to quantify relative contributions of impact interface, muscle activity, and knee angle to the magnitudes of tibial and femoral accelerations occurring after external impacts. Impacts were initiated with a pneumatically driven impacter under the heels of four volunteers. Impact forces were quantified with a force sensor. Segmental accelerations were measured with bone mounted accelerometers. Experimental interventions were hard and soft shock interfaces, different knee angles (0 degrees, 20 degrees, 40 degrees knee flexion), and muscular preactivation (0%, 30%, 60% of maximal voluntary contraction) of gastrocnemii, hamstrings, and quadriceps. Greater knee flexion led to lower impact forces and higher tibial accelerations. Increased muscular activation led to higher forces and lower tibial accelerations. The softer of the two shock interfaces under study reduced both parameters. The effects on accelerations and forces through the activation and knee angle changes were greater than the effect of interface variations. The hardness of the two shock interfaces explained less than 10% of the variance of accelerations and impact forces, whereas knee angle changes explained 25-29%, and preactivation changes explained 35-48% of the variances. It can be concluded that muscle force and knee joint angle have greater effects in comparison with interface hardness on the severity of shocks on the lower leg.

  15. Differences in Anatomy and Kinematics in Asian and Caucasian TKA Patients: Influence on Implant Positioning and Subsequent Loading Conditions in Mobile Bearing Knees

    PubMed Central

    Kim, Tae Kyun; Miehlke, Rolf K.; Grupp, Thomas M.

    2014-01-01

    The objective of our study was to determine the mechanical stress conditions under tibiofemoral loading with an overlay of knee kinematics in deep flexion on two different mobile bearing designs in comparison to in vivo failure modes. This study investigates the seldom but severe complication of fatigue failure of polyethylene components at mobile bearing total knee arthroplasty designs. Assuming a combination of a floor-based lifestyle and tibial malrotation as a possible reason for a higher failure rate in Asian countries we developed a simplified finite element model considering a tibiofemoral roll-back angle of 22° and the range of rotational motion of a clinically established floating platform design (e.motion FP) at a knee flexion angle of 120° in order to compare our results to failure modes found in retrieved implants. Compared to the failure mode observed in the clinical retrievals the locations of the occurring stress maxima as well as the tensile stress distribution show analogies. From our observations, we conclude that the newly introduced finite element model with an overlay of deep knee flexion (lateral roll-back) and considerable internally rotated tibia implant positioning is an appropriate analysis for knee design optimizations and a suitable method to predict clinical failure modes. PMID:25538943

  16. Comparative Effects of Periarticular Multimodal Drug Injection and Single-Shot Femoral Nerve Block on Pain Following Total Knee Arthroplasty and Factors Influencing Their Effectiveness

    PubMed Central

    Nakagawa, Shuji; Inoue, Hiroaki; Kan, Hiroyuki; Hino, Manabu; Ichimaru, Shohei; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Amaya, Fumimasa; Sawa, Teiji; Kubo, Toshikazu

    2016-01-01

    Purpose This study compared the analgesic effects of local infiltration analgesia (LIA) and femoral nerve block (FNB) after total knee arthroplasty (TKA) and assessed factors associated with analgesia obtained by these two methods. Materials and Methods Study subjects included 66 patients (72 knees) who underwent TKA for osteoarthritis of the knee. Pain visual analogue scale (VAS), the amount of analgesics used, number of days to achieve 90° of flexion of the knee joint, date of initiating parallel-bar walking, range of motion of the knee joint at discharge, and adverse events were investigated. Results The VAS scores did not differ significantly between two groups, whereas the amount of analgesics used was significantly lower in the LIA group. Preoperative flexion contracture was significantly more severe in the LIA group with high VAS compared with low VAS. No serious adverse event occurred in the LIA or FNB group. Conclusions The lower analgesic usage in the LIA group than the FNB group indicates that the analgesic effect of LIA was greater than that of singleshot FNB after TKA. There were no serious complications in either group. The postoperative analgesic effect of LIA was smaller in patients with severe than less severe preoperative flexion contracture.

  17. Comparative Effects of Periarticular Multimodal Drug Injection and Single-Shot Femoral Nerve Block on Pain Following Total Knee Arthroplasty and Factors Influencing Their Effectiveness

    PubMed Central

    Nakagawa, Shuji; Inoue, Hiroaki; Kan, Hiroyuki; Hino, Manabu; Ichimaru, Shohei; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Amaya, Fumimasa; Sawa, Teiji; Kubo, Toshikazu

    2016-01-01

    Purpose This study compared the analgesic effects of local infiltration analgesia (LIA) and femoral nerve block (FNB) after total knee arthroplasty (TKA) and assessed factors associated with analgesia obtained by these two methods. Materials and Methods Study subjects included 66 patients (72 knees) who underwent TKA for osteoarthritis of the knee. Pain visual analogue scale (VAS), the amount of analgesics used, number of days to achieve 90° of flexion of the knee joint, date of initiating parallel-bar walking, range of motion of the knee joint at discharge, and adverse events were investigated. Results The VAS scores did not differ significantly between two groups, whereas the amount of analgesics used was significantly lower in the LIA group. Preoperative flexion contracture was significantly more severe in the LIA group with high VAS compared with low VAS. No serious adverse event occurred in the LIA or FNB group. Conclusions The lower analgesic usage in the LIA group than the FNB group indicates that the analgesic effect of LIA was greater than that of singleshot FNB after TKA. There were no serious complications in either group. The postoperative analgesic effect of LIA was smaller in patients with severe than less severe preoperative flexion contracture. PMID:27595078

  18. A Chick Embryo in-Vitro Model of Knee Morphogenesis

    PubMed Central

    Rodriguez, Edward K.; Munasinghe, Jeeva

    2016-01-01

    Background: In this feasibility study, a mechanically loaded in-vitro tissue culture model of joint morphogenesis using the isolated lower extremity of the 8 day old chick embryo was developed to assess the effects of mechanical loading on joint morphogenesis. Methods: The developed in-vitro system allows controlled flexion and extension of the chick embryonic knee with a range of motion of 20 degrees from a resting position of 90-100 degrees of flexion. Joint morphogenesis at 2, 3, 4 and 7 days of culture was assessed by histology and micro MRI in 4 specimen types: undisturbed in-ovo control embryos, in-ovo paralyzed embryos, in-vitro unloaded limb cultures, and in-vitro loaded limb cultures. Relative glycosaminoglycan (GAG) concentration across the joint was assessed with an MRI technique referred to as dGEMRIC (delayed gadolinium enhanced MRI of cartilage) where T1 is proportional to glycosaminoglycan concentration. Results: Average T1 over the entire tissue image for the normal control (IC) knee was 480 msec; for the 4 day loaded specimen average T1 was 354 msec; and for the 7 day loaded specimens T1 was 393 msec. The 4 day unloaded specimen had an average T1 of 279 msec while the 7 day unloaded specimen had an average T1 of 224 msec. The higher T1 values in loaded than unloaded specimens suggest that more glycosaminoglycan is produced in the loaded culture than in the unloaded preparation. Conclusion: Isolated limb tissue cultures under flexion-extension load can be viable and exhibit more progression of joint differentiation and glycosaminoglycan production than similarly cultured but unloaded specimens. However, when compared with controls consisting of intact undisturbed embryos in-ovo, the isolated loaded limbs in culture do not demonstrate equivalent amounts of absolute growth or joint differentiation. PMID:27200386

  19. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Czaplicki, Adam; Jarocka, Marta; Walawski, Jacek

    2015-01-01

    The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age. PMID:26646385

  20. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction.

    PubMed

    Czaplicki, Adam; Jarocka, Marta; Walawski, Jacek

    2015-01-01

    The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age.

  1. Muscle recruitment variations during wrist flexion exercise: MR evaluation

    NASA Technical Reports Server (NTRS)

    Fleckenstein, J. L.; Watumull, D.; Bertocci, L. A.; Nurenberg, P.; Peshock, R. M.; Payne, J. A.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    OBJECTIVE: Many exercise protocols used in physiological studies assume homogeneous and diffuse muscle recruitment. To test this assumption during a "standard" wrist flexion protocol, variations in muscle recruitment were assessed using MRI in eight healthy subjects. MATERIALS AND METHODS: Variations were assessed by comparing the right to the left forearms and the effect of slight (15 degrees) pronation or supination at the wrist. RESULTS: Postexercise imaging showed focal regions of increased signal intensity (SI), indicating relatively strong recruitment, most often in entire muscles, although occasionally only in subvolumes of muscles. In 15 of 26 studies, flexor carpi radialis (FCR) showed more SI than flexor carpi ulnaris, while in 11 studies SI in these muscles increased equivalently. Relatively greater FCR recruitment was seen during pronation and/or use of the nondominant side. Palmaris longus, a wrist flexor, did not appear recruited in 4 of 11 forearms in which it was present. A portion of the superficial finger flexor became hyperintense in 89% of studies, while recruitment of the deep finger flexor was seen only in 43%. CONCLUSION: Inter- and intraindividual variations in forearm muscle recruitment should be anticipated in physiological studies of standard wrist flexion exercise protocols.

  2. Decoding flexion of individual fingers using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Kubánek, J.; Miller, K. J.; Ojemann, J. G.; Wolpaw, J. R.; Schalk, G.

    2009-12-01

    Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.

  3. Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg

    PubMed Central

    Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej

    2015-01-01

    The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the

  4. Bilateral custom-fit total knee arthroplasty in a patient with poliomyelitis.

    PubMed

    Tardy, Nicolas; Chambat, Pierre; Murphy, Colin G; Fayard, Jean-Marie

    2014-09-01

    In limbs affected by poliomyelitis, total knee arthroplasty results in satisfactory pain relief. However, the risk of failure is high, especially if the preoperative quadriceps power is low. Therefore, treating osteoarthritis in the current patient represented a challenging procedure. A 66-year-old man presented with tricompartmental osteoarthritis of both knees, with valgus deformity of 14° on the left knee and 11° on the right knee. He walked with a bilateral knee recurvatum of 30° and a grade 1 quadriceps power. The authors treated both knees with cemented custom-fit hinged total knee arthroplasty with 30° of recurvatum in the tibial keel. Clinical scores showed good results 1 year postoperatively, especially on the subjective data of quality of life and function. At follow-up, radiographs showed good total knee arthroplasty positioning on the right side and a small mechanical loosening at the end of the tibial keel on the left side. Only 5 studies (Patterson and Insall; Moran; Giori and Lewallen; Jordan et al; and Tigani et al) have reported total knee arthroplasty results in patients with poliomyelitis. This study reports an original case of bilateral custom-fit hinged total knee arthroplasty in a patient with poliomyelitis. To the authors' knowledge, this is the first report of this type of procedure in the literature. The key point is the degree of recurvatum that is needed to allow walking, avoiding excessive constraints on the implants that can lead to early mechanical failure.

  5. Three-dimensional knee joint moments during performance of the bodyweight squat: effects of stance width and foot rotation.

    PubMed

    Almosnino, Sivan; Kingston, David; Graham, Ryan B

    2013-02-01

    The purpose of this investigation was to assess the effects of stance width and foot rotation angle on three-dimensional knee joint moments during bodyweight squat performance. Twenty-eight participants performed 8 repetitions in 4 conditions differing in stance or foot rotation positions. Knee joint moment waveforms were subjected to principal component analysis. Results indicated that increasing stance width resulted in a larger knee flexion moment magnitude, as well as larger and phase-shifted adduction moment waveforms. The knee's internal rotation moment magnitude was significantly reduced with external foot rotation only under the wide stance condition. Moreover, squat performance with a wide stance and externally rotated feet resulted in a flattening of the internal rotation moment waveform during the middle portion of the movement. However, it is speculated that the differences observed across conditions are not of clinical relevance for young, healthy participants.

  6. Anterior knee pain

    MedlinePlus

    ... as running, jumping or twisting, skiing, or playing soccer). You have flat feet. Anterior knee pain is ... to the kneecap Runners, jumpers, skiers, bicyclists, and soccer players who exercise often Teenagers and healthy young ...

  7. Knee joint replacement

    MedlinePlus

    ... is used to attach this part. Repair your muscles and tendons around the new joint and close the surgical cut. The surgery takes about 2 hours. Most artificial knees have both metal and plastic parts. Some ...

  8. Total Knee Replacement

    MedlinePlus

    ... as anti- inflammatory medications, cortisone injections, lubricating injections, physical therapy, or other surgeries A knee that has become ... your function. Other treatment options — including medications, injections, physical therapy, or other types of surgery — will also be ...

  9. Reconstruction of small-scale galaxy cluster substructure with lensing flexion

    NASA Astrophysics Data System (ADS)

    Cain, Benjamin; Bradač, Maruša; Levinson, Rebecca

    2016-09-01

    We present reconstructions of galaxy-cluster-scale mass distributions from simulated gravitational lensing data sets including strong lensing, weak lensing shear, and measurements of quadratic image distortions - flexion. The lensing data is constructed to make a direct comparison between mass reconstructions with and without flexion. We show that in the absence of flexion measurements, significant galaxy-group scale substructure can remain undetected in the reconstructed mass profiles, and that the resulting profiles underestimate the aperture mass in the substructure regions by ˜25 - 40%. When flexion is included, subhaloes down to a mass of ˜3 × 1012 M⊙ can be detected at an angular resolution smaller than 10″. Aperture masses from profiles reconstructed with flexion match the input distribution values to within an error of ˜13%, including both statistical error and scatter. This demonstrates the important constraint that flexion measurements place on substructure in galaxy clusters and its utility for producing high-fidelity mass reconstructions.

  10. Arthroscopic-assisted Arthrodesis of the Knee Joint With the Ilizarov Technique: A Case Report and Literature Review.

    PubMed

    Waszczykowski, Michal; Niedzielski, Kryspin; Radek, Maciej; Fabis, Jaroslaw

    2016-01-01

    Arthrodesis of the knee joint is a mainly a salvage surgical procedure performed in cases of infected total knee arthroplasty, tumor, failed knee arthroplasty or posttraumatic complication.The authors report the case of 18-year-old male with posttraumatic complication of left knee because of motorbike accident 1 year before. He was treated immediately after the injury in the local Department of Orthopaedics and Traumatology. The examination in the day of admission to our department revealed deformation of the left knee, massive scar tissue adhesions to the proximal tibial bone and multidirectional instability of the knee. The plain radiographs showed complete lack of lateral compartment of the knee joint and patella. The patient complained of severe instability and pain of the knee and a consecutive loss of supporting function of his left limb. The authors decided to perform an arthroscopic-assisted fusion of the knee with Ilizarov external fixator because of massive scar tissue in the knee region and the prior knee infection.In the final follow-up after 54 months a complete bone fusion, good functional and clinical outcome were obtained.This case provides a significant contribution to the development and application of low-invasive techniques in large and extensive surgical procedures in orthopedics and traumatology. Moreover, in this case fixation of knee joint was crucial for providing good conditions for the regeneration of damaged peroneal nerve. PMID:26817899

  11. Arthroscopic-assisted Arthrodesis of the Knee Joint With the Ilizarov Technique: A Case Report and Literature Review.

    PubMed

    Waszczykowski, Michal; Niedzielski, Kryspin; Radek, Maciej; Fabis, Jaroslaw

    2016-01-01

    Arthrodesis of the knee joint is a mainly a salvage surgical procedure performed in cases of infected total knee arthroplasty, tumor, failed knee arthroplasty or posttraumatic complication.The authors report the case of 18-year-old male with posttraumatic complication of left knee because of motorbike accident 1 year before. He was treated immediately after the injury in the local Department of Orthopaedics and Traumatology. The examination in the day of admission to our department revealed deformation of the left knee, massive scar tissue adhesions to the proximal tibial bone and multidirectional instability of the knee. The plain radiographs showed complete lack of lateral compartment of the knee joint and patella. The patient complained of severe instability and pain of the knee and a consecutive loss of supporting function of his left limb. The authors decided to perform an arthroscopic-assisted fusion of the knee with Ilizarov external fixator because of massive scar tissue in the knee region and the prior knee infection.In the final follow-up after 54 months a complete bone fusion, good functional and clinical outcome were obtained.This case provides a significant contribution to the development and application of low-invasive techniques in large and extensive surgical procedures in orthopedics and traumatology. Moreover, in this case fixation of knee joint was crucial for providing good conditions for the regeneration of damaged peroneal nerve.

  12. Reading Knee-Deep

    ERIC Educational Resources Information Center

    Jewett, Pamela

    2007-01-01

    Freire told his audience at a seminar at the University of Massachusetts, "You need to read knee-deep in texts, for deeper than surface meanings, and you need to know the words to be able to do it" (quoted in Cleary, 2003). In a children's literature class, fifteen teachers and I traveled along a path that moved us toward reading knee-deep as we…

  13. Dashboard (in the) knee.

    PubMed

    Patel, M S; Qureshi, A A; Green, T P

    2015-03-01

    We present the case of a 19-year-old individual presenting to an orthopaedic outpatient clinic several months following a dashboard knee injury during a road traffic accident with intermittent mechanical symptoms. Despite unremarkable examination findings and normal magnetic resonance imaging, the patient was identified subsequently as having an intra-articular plastic foreign body consistent with a piece of dashboard on arthroscopic knee assessment, the retrieval of which resulted in a complete resolution of symptoms.

  14. Trip recoveries of people with unilateral, transfemoral or knee disarticulation amputations: Initial findings.

    PubMed

    Crenshaw, Jeremy R; Kaufman, Kenton R; Grabiner, Mark D

    2013-07-01

    The purpose of this report is to provide novel findings from the kinematics of five amputees following a laboratory-induced trip. Only amputees with a unilateral, transfemoral or knee disarticulation amputation were included in this study. When the prosthesis was obstructed, all subjects used a lowering strategy, resulting in three harness-assisted recoveries and one fall. When the non-prosthetic limb was obstructed, one subject fell using an elevating strategy, one subject fell using a lowering strategy, and one subject, who was harness-assisted, used a hopping strategy. These results can be used to guide further studies of how to limit prosthetic knee flexion due to weight-bearing during a lowering strategy, implement compensatory step training to reduce fall risk, and identify appropriate, context-specific recovery strategies for people with transfemoral or knee disarticulation amputations.

  15. Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject.

    PubMed

    Sup, Frank; Varol, Huseyin Atakan; Goldfarb, Michael

    2011-02-01

    This paper extends a previously developed level- ground walking control methodology to enable an above knee amputee to walk up slopes using a powered knee and ankle prosthesis. Experimental results corresponding to walking on level ground and two different slope angles (5 (°) and 10 (°)) with the powered prosthesis using the control method are compared to walking under the same conditions with a passive prosthesis. The data indicate that the powered prosthesis with the upslope walking controller is able to reproduce several kinematic characteristics of healthy upslope walking that the passive prosthesis does not (such as knee flexion after heel strike and a powered ankle plantarflexion during push-off). Finally, results are shown that demonstrate the ability of the prosthesis to generate a slope estimate, which is in turn utilized to adapt the underlying control parameters to the corresponding slope.

  16. Taking care of your new knee joint

    MedlinePlus

    Knee arthroplasty - precautions; Knee replacement - precautions ... After you have knee replacement surgery , you will need to be careful about how you move your knee, especially for the first few ...

  17. Obesity is not associated with increased knee joint torque and power during level walking.

    PubMed

    DeVita, Paul; Hortobágyi, Tibor

    2003-09-01

    While it is widely speculated that obesity causes increased loads on the knee leading to joint degeneration, this concept is untested. The purpose of the study was to identify the effects of obesity on lower extremity joint kinetics and energetics during walking. Twenty-one obese adults were tested at self-selected (1.29m/s) and standard speeds (1.50m/s) and 18 lean adults were tested at the standard speed. Motion analysis and force platform data were combined to calculate joint torques and powers during the stance phase of walking. Obese participants were more erect with 12% less knee flexion and 11% more ankle plantarflexion in self-selected compared to standard speeds (both p<0.02). Obese participants were still more erect than lean adults with approximately 6 degrees more extension at all joints (p<0.05, for each joint) at the standard speed. Knee and ankle torques were 17% and 11% higher (p<0.034 and p<0.041) and negative knee work and positive ankle work were 68% and 11% higher (p<0.000 and p<0.048) in obese participants at the standard speed compared to the slower speed. Joint torques and powers were statistically identical at the hip and knee but were 88% and 61% higher (both p<0.000) at the ankle in obese compared to lean participants at the standard speed. Obese participants used altered gait biomechanics and despite their greater weight, they had less knee torque and power at their self-selected walking speed and equal knee torque and power while walking at the same speed as lean individuals. We propose that the ability to reorganize neuromuscular function during gait may enable some obese individuals to maintain skeletal health of the knee joint and this ability may also be a more accurate risk indicator for knee osteoarthritis than body weight.

  18. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints.

    PubMed

    Kipp, Kristof; Redden, Josh; Sabick, Michelle B; Harris, Chad

    2012-07-01

    The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.

  19. THE INFLUENCE OF CORE MUSCULATURE ENGAGEMENT ON HIP AND KNEE KINEMATICS IN WOMEN DURING A SINGLE LEG SQUAT

    PubMed Central

    Shirey, Matthew; Hurlbutt, Matthew; Johansen, Nicole; King, Gregory W.; Wilkinson, Steven G.

    2012-01-01

    Purpose/Background: Excessive frontal plane motion and valgus torques have been linked to knee injuries, particularly in women. Studies have investigated the role of lower extremity musculature, yet few have studied the activation of trunk or “core” musculature on hip and knee kinematics. Therefore, this study evaluated the influence of intentional core engagement on hip and knee kinematics during a single leg squat. Methods: Participants (n = 14) performed a single leg squat from a 6 inch step under 2 conditions: core intentionally engaged (CORE) and no intentional core engagement (NOCORE). Participants were also evaluated for core activation ability using Sahrmann's model, and the resulting scores were used to divide participants into low (LOWCORE) and high scoring (HIGHCORE) groups. All trials were captured using 3-D motion analysis, and data were normalized for height and time. Paired t-tests and repeated measures, mixed model MANOVAs were used to assess condition and group differences. Results: The CORE condition, compared to NOCORE, was characterized by smaller right [t(13) = 3.03, p = .01] and left [t(13) = 3.04, p = .01] hip frontal plane displacement and larger knee flexion range of motion [t(13) = 3.08, p = .009]. Subsequent MANOVAs and follow-up analyses revealed that: (1) the CORE condition demonstrated smaller right and left hip medial-lateral displacement in the LOWCORE group (p = .001), but not in the HIGHCORE group; (2) the CORE condition showed larger overall knee flexion range of motion across LOWCORE and HIGHCORE groups (p = .021); and (3) the HIGHCORE group exhibited less knee varus range of motion across CORE and NOCORE conditions (p = .028). Conclusions: Intentional core activation influenced hip and knee kinematics during single leg squats, with greater positive effect noted in the LOWCORE group. These findings may have implications for preventing and rehabilitating knee injuries among women. Level of Evidence: 2B, Cohort laboratory study

  20. Shod landing provides enhanced energy dissipation at the knee joint relative to barefoot landing from different heights.

    PubMed

    Yeow, C H; Lee, P V S; Goh, J C H

    2011-12-01

    Athletic shoes can directly provide shock absorption at the foot due to its cushioning properties, however it remains unclear how these shoes may affect the level of energy dissipation contributed by the knee joint. This study sought to investigate biomechanical differences, in terms of knee kinematics, kinetics and energetics, between barefoot and shod landing from different heights. Twelve healthy male recreational athletes were recruited and instructed to perform double-leg landing from 0.3-m and 0.6-m heights in barefoot and shod conditions. The shoe model tested was Brooks Maximus II. Markers were placed on the subjects based on the Plug-in Gait Marker Set. Force-plates and motion-capture system were used to capture ground reaction force (GRF) and kinematics data respectively. 2×2-ANOVA (barefoot/shod condition×landing height) was performed to examine differences in knee kinematics, kinetics and energetics between barefoot and shod conditions from different landing heights. Peak GRF was not significantly different (p=0.732-0.824) between barefoot and shod conditions for both landing heights. Knee range-of-motion, flexion angular velocity, external knee flexion moment, and joint power and work were higher during shod landing (p<0.001 to p=0.007), compared to barefoot landing for both landing heights. No significant interactions (p=0.073-0.933) were found between landing height and barefoot/shod condition for the tested parameters. While the increase in landing height can elevate knee energetics independent of barefoot/shod conditions, we have also shown that the shod condition was able to augment the level of energy dissipation contributed by the knee joint, via the knee extensors, regardless of the tested landing heights.

  1. Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years.

    PubMed

    Favre, Julien; Erhart-Hledik, Jennifer C; Chehab, Eric F; Andriacchi, Thomas P

    2016-06-14

    Although kinematic alterations during walking have been reported with knee osteoarthritis (OA), there is a paucity of longitudinal data, therefore limiting our understanding of the role of kinematics in OA development. This study tested the hypothesis that less knee extension angle and less posterior displacement of the femur relative to the tibia during the heel-strike portion of the gait cycle are associated with greater loss of medial cartilage thickness during a follow-up period of five years. This study also tested for associations between flexion-extension angle and anterior-posterior displacement during other periods of the gait cycle and 5-year cartilage thinning. 16 subjects with moderate medial knee OA were tested with gait analysis and MRI at baseline and had a follow-up MRI after 5 years. Linear regressions were used to assess the relationship between changes in cartilage thickness and baseline kinematics using Pearson correlation coefficients. Multivariate regressions were also performed to adjust for gender, baseline age, BMI, walking speed, Kellgren/Lawrence grade, and baseline knee pain score. As hypothesized, baseline knee flexion angle and femoral displacement during heel-strike and other gait cycle periods were significantly associated with medial femoral and tibial cartilage thinning at the 5 year follow-up; these associations were strengthened after adjustment for covariates. This study provided new insight into the pathogenesis of knee OA where baseline knee kinematics were associated with longitudinal disease progression. These results could serve as a basis for developing newer gait modification interventions to reduce the risk for developing knee OA. PMID:27178021

  2. Viscoelastic creep induced by repetitive spine flexion and its relationship to dynamic spine stability.

    PubMed

    Howarth, Samuel J; Kingston, David C; Brown, Stephen H M; Graham, Ryan B

    2013-08-01

    Repetitive trunk flexion elicits passive tissue creep, which has been hypothesized to compromise spine stability. The current investigation determined if increased spine flexion angle at the onset of flexion relaxation (FR) in the lumbar extensor musculature was associated with altered dynamic stability of spine kinematics. Twelve male participants performed 125 consecutive cycles of full forward trunk flexion. Spine kinematics and lumbar erector spinae (LES) electromyographic (EMG) activity were obtained throughout the repetitive trunk flexion trial. Dynamic stability was evaluated with maximum finite-time Lyapunov exponents over five sequential blocks of 25cycles. Spine flexion angle at FR onset, and peak LES EMG activity were determined at baseline and every 25th cycle. Spine flexion angle at FR increased on average by 1.7° after baseline with significant increases of 1.7° and 2.4° at the 50th and 100th cycles. Maximum finite-time Lyapunov exponents demonstrated a transient, non-statistically significant, increase between cycles 26 and 50 followed by a recovery to baseline over the remainder of the repetitive trunk flexion cycles. Recovery of dynamic stability may be the consequence of increased active spine stiffness demonstrated by the non-significant increase in peak LES EMG that occurred as the repetitive trunk flexion progressed.

  3. Dislocation after total knee arthroplasty.

    PubMed

    Wazir, N N; Shan, Y; Mukundala, V V; Gunalan, R

    2007-05-01

    Two cases of dislocation of total knee arthroplasty presented to us within the same week. The first patient is a 71-year-old woman who underwent bilateral primary total knee arthroplasty. The left knee dislocated three weeks after the surgery. Due to failure of conservative measures, she underwent revision total knee arthroplasty. The other patient is a 72-year-old woman presenting ten years after primary total knee arthroplasty, with a traumatic dislocation of the knee joint. She was treated as an outpatient with closed manipulative reduction.

  4. Knee pain in competitive swimming.

    PubMed

    Rodeo, S A

    1999-04-01

    The high volume of training in competitive swimming results in cumulative overload injuries. Knee pain ranks second to shoulder pain as a common complaint in competitive swimmers. Most knee pain occurs on the medial side of the knee and, most commonly, in breaststroke swimmers; however, knee pain may accompany all strokes. This article reviews the incidence of knee pain, the biomechanic and anatomic factors predisposing to injury, specific injury patterns, injury diagnosis, and the treatment and prevention of injury to the knee in swimmers. PMID:10230572

  5. Designs and performance of microprocessor-controlled knee joints.

    PubMed

    Thiele, Julius; Westebbe, Bettina; Bellmann, Malte; Kraft, Marc

    2014-02-01

    In this comparative study, three transfemoral amputee subjects were fitted with four different microprocessor-controlled exoprosthetic knee joints (MPK): C-Leg, Orion, Plié2.0, and Rel-K. In a motion analysis laboratory, objective gait measures were acquired during level walking at different velocities. Subsequent technical analyses, which involved X-ray computed tomography, identified the functional mechanisms of each device and enabled corroboration of the performance in the gait laboratory by the engineering design of the MPK. Gait measures showed that the mean increase of the maximum knee flexion angle at different walking velocities was closest in value to the unaffected contralateral knee (6.2°/m/s) with C-Leg (3.5°/m/s; Rel-K 17.0°/m/s, Orion 18.3°/m/s, and Plié2.0 28.1°/m/s). Technical analyses corroborated that only with Plié2.0 the flexion resistances were not regulated by microprocessor control at different walking velocities. The muscular effort for the initiation of the swing phase, measured by the minimum hip moment, was found to be lowest with C-Leg (-82.1±14.1 Nm; Rel-K -83.59±17.8 Nm, Orion -88.0±16.3 Nm, and Plié2.0 -91.6±16.5 Nm). Reaching the extension stop at the end of swing phase was reliably executed with both Plié2.0 and C-Leg. Abrupt terminal stance phase extension observed with Plié2.0 and Rel-K could be attributed to the absence of microprocessor control of extension resistance.

  6. The Effects of Knee Joint and Hip Abduction Angles on the Activation of Cervical and Abdominal Muscles during Bridging Exercises.

    PubMed

    Lee, Su-Kyoung; Park, Du-Jin

    2013-07-01

    [Purpose] The purpose of this study was to examine the effects of the flexion angle of the knee joint and the abduction angle of the hip joint on the activation of the cervical region and abdominal muscles. [Subjects] A total of 42 subjects were enrolled 9 males and 33 females. [Methods] The bridging exercise in this study was one form of exercise with a knee joint flexion angle of 90°. Based on this, a bridging exercise was conducted at the postures of abduction of the lower extremities at 0, 5, 10, and 15°. [Result] The changes in the knee joint angle and the hip abduction angle exhibited statistically significant effects on the cervical erector spinae, adductor magnus, and gluteus medius muscles. The abduction angles did not result in statistically significant effects on the upper trapezium, erector spinae, external oblique, and rectus abdominis muscles. However, in relation to the knee joint angles, during the bridging exercise, statistically significant results were exhibited. [Conclusion] When patients with both cervical and back pain do a bridging exercise, widening the knee joint angle would reduce cervical and shoulder muscle activity through minimal levels of abduction, permitting trunk muscle strengthening with reduced cervical muscle activity. This method would be helpful for strengthening trunk muscles in a selective manner. PMID:24259870

  7. The effect of co-stabilizer muscle activation on knee joint position sense: a single group pre-post test

    PubMed Central

    Nam, Yeongyo; Lee, Ho Jun; Choi, Myongryol; Chung, Sangmi; Park, Junhyung; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of co-stabilizer muscle activation on knee joint position sense. [Subjects and Methods] This study was a pre-post, single-blinded randomly controlled trial (angle sequence randomly selected) design. Seven healthy adults with no orthopaedic or neurological problems participated in this study. Knee joint position sense was measured by a target matching test at target angles of 30°, 45° and 80° of knee flexion a using digital inclinometer under two conditions: erect sitting, which is known to highly activate co-stabilizer muscle and slump sitting, which is known to little activate the co-stabilizer muscle. [Results] A significant difference in joint position matching error at the knee flexion angle of 45° was founded between two conditions erect sitting: (3.83 ± 1.47) and slump sitting: (1.00 ± 0.63). There were no significant differences in joint position matching error at the other target angles. [Conclusion] Knee joint position sense at 45° is likely to be affected by activation of co-stabilizer muscle, and this value is suitable for facilitation of joint position sense with skilled movement. PMID:27512279

  8. Effect of two different kinesio taping techniques on knee kinematics and kinetics in young females

    PubMed Central

    Guner, Senem; Alsancak, Serap; Koz, Mitat

    2015-01-01

    [Purpose] The application of kinesio taping may improve strength and performance, inhibit and facilitate motor activity, and increase range of motion. The aim of this study was to compare the effects of kinesio taping facilitation and inhibition applications on spatiotemporal knee kinematics and kinetics during walking activity in healthy subjects. [Subjects and Methods] A three-dimensional quantitative gait evaluation was performed without tape and with, facilitation and inhibition kinesio taping application on the knee. Sixteen healthy female college students (age, 19.7 ± 0.4 years; height, 1.64 ± 3.4 cm; body mass, 51.5 ± 4.8 kg) participated in the study. [Results] Spatiotemporal parameters (cadence, walking speed, stride length) were significantly different among the trials. Knee joint sagittal plane range of motion was not different with either kinesio taping application. Knee external flexion moment during the early stance phase decreased significantly with facilitation kinesio taping and increased with the inhibition kinesio taping. Knee external extension moment during the mid-stance phase increased with facilitation kinesio taping. Knee power parameters, eccentric activity in the rectus femoris during the pre-swing phase was significantly increased with inhibition kinesio taping application, while eccentric activity of the hamstrings during the terminal swing of gait was decreased. [Conclusion] These findings showed that facilitation kinesio taping application affected the terminal stance phase and that inhibition kinesio taping influenced the terminal swing phase compared with the no tape condition. PMID:26644651

  9. Persons with reconstructed ACL exhibit altered knee mechanics during high-speed maneuvers.

    PubMed

    Lee, S-P; Chow, J W; Tillman, M D

    2014-06-01

    Anterior cruciate ligament (ACL) injury is a sports trauma that causes long-term disability. The function of the knee during dynamic activities can be severely limited even after successful surgical reconstruction. This study examined the effects of approach velocity during side-step cutting on knee joint mechanics in persons with reconstructed ACL (ACLR). 22 participants (11 with unilateral ACLR, 11 matched-controls) participated. Knee joint mechanics were tested in 3 approach conditions: counter-movement, one-step, and running. Dependent variables, including peak knee flexion, extension, valgus, varus, internal rotation, external rotation angles and corresponding peak joint moments, were assessed during the stance phase of cutting. Two 2×3 ("group" by "approach condition") mixed MANOVA tests were used to examine the effects of ACLR and approach velocity on knee mechanics. ACLR participants exhibited higher knee internal rotator moment (0.22 vs. 0.13 Nm/kg, p=0.003). Inter-group comparisons revealed that the ACLR participants exhibited significantly higher abductor and internal rotator moments only in the running condition (1.86 vs. 1.16 Nm/kg, p=0.018; 0.28 vs. 0.17 Nm/kg, p=0.010, respectively). Our findings suggested that patients with ACLR may be at increased risk of re-injury when participating in high-demand physical activities. Task demand should be considered when prescribing progressive therapeutic interventions to ACLR patients.

  10. Effect of two different kinesio taping techniques on knee kinematics and kinetics in young females.

    PubMed

    Guner, Senem; Alsancak, Serap; Koz, Mitat

    2015-10-01

    [Purpose] The application of kinesio taping may improve strength and performance, inhibit and facilitate motor activity, and increase range of motion. The aim of this study was to compare the effects of kinesio taping facilitation and inhibition applications on spatiotemporal knee kinematics and kinetics during walking activity in healthy subjects. [Subjects and Methods] A three-dimensional quantitative gait evaluation was performed without tape and with, facilitation and inhibition kinesio taping application on the knee. Sixteen healthy female college students (age, 19.7 ± 0.4 years; height, 1.64 ± 3.4 cm; body mass, 51.5 ± 4.8 kg) participated in the study. [Results] Spatiotemporal parameters (cadence, walking speed, stride length) were significantly different among the trials. Knee joint sagittal plane range of motion was not different with either kinesio taping application. Knee external flexion moment during the early stance phase decreased significantly with facilitation kinesio taping and increased with the inhibition kinesio taping. Knee external extension moment during the mid-stance phase increased with facilitation kinesio taping. Knee power parameters, eccentric activity in the rectus femoris during the pre-swing phase was significantly increased with inhibition kinesio taping application, while eccentric activity of the hamstrings during the terminal swing of gait was decreased. [Conclusion] These findings showed that facilitation kinesio taping application affected the terminal stance phase and that inhibition kinesio taping influenced the terminal swing phase compared with the no tape condition. PMID:26644651

  11. Effect of two different kinesio taping techniques on knee kinematics and kinetics in young females.

    PubMed

    Guner, Senem; Alsancak, Serap; Koz, Mitat

    2015-10-01

    [Purpose] The application of kinesio taping may improve strength and performance, inhibit and facilitate motor activity, and increase range of motion. The aim of this study was to compare the effects of kinesio taping facilitation and inhibition applications on spatiotemporal knee kinematics and kinetics during walking activity in healthy subjects. [Subjects and Methods] A three-dimensional quantitative gait evaluation was performed without tape and with, facilitation and inhibition kinesio taping application on the knee. Sixteen healthy female college students (age, 19.7 ± 0.4 years; height, 1.64 ± 3.4 cm; body mass, 51.5 ± 4.8 kg) participated in the study. [Results] Spatiotemporal parameters (cadence, walking speed, stride length) were significantly different among the trials. Knee joint sagittal plane range of motion was not different with either kinesio taping application. Knee external flexion moment during the early stance phase decreased significantly with facilitation kinesio taping and increased with the inhibition kinesio taping. Knee external extension moment during the mid-stance phase increased with facilitation kinesio taping. Knee power parameters, eccentric activity in the rectus femoris during the pre-swing phase was significantly increased with inhibition kinesio taping application, while eccentric activity of the hamstrings during the terminal swing of gait was decreased. [Conclusion] These findings showed that facilitation kinesio taping application affected the terminal stance phase and that inhibition kinesio taping influenced the terminal swing phase compared with the no tape condition.

  12. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position

    PubMed Central

    Cho, Kang Hee; Lee, Hyunkeun

    2016-01-01

    Objective To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. Methods One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. Results There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. Conclusion To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint. PMID:27152277

  13. Anterior cruciate ligament injury after more than 20 years. II. Concentric and eccentric knee muscle strength.

    PubMed

    Tengman, E; Brax Olofsson, L; Stensdotter, A K; Nilsson, K G; Häger, C K

    2014-12-01

    The long-term consequences on knee muscle strength some decades after rupture of the anterior cruciate ligament (ACL) are not established. The aims of our study were to examine peak torque more than 20 years after ACL injury and to compare their knee muscle strength to that of healthy controls. We tested 70 individuals with unilateral ACL injury 23 ± 2 years after injury, whereof 33 (21 men) were treated with physiotherapy in combination with ACL reconstruction (ACLR ) and 37 (23 men) with physiotherapy alone (ACLPT ). These were compared with 33 age- and gender-matched controls (21 men). A Kin-Com(®) dynamometer (90°/s) was used to measure peak torque in knee flexion and extension in both concentric and eccentric contractions. Knee extension peak torque, concentric and eccentric, was ∼10% lower for the injured leg compared with the non-injured leg for both ACLR (P < 0.001; P < 0.001) and ACLPT (P = 0.007; P = 0.002). The ACLPT group also showed reduced eccentric knee flexion torque of the injured leg (P = 0.008). The strength of the non-injured leg in both ACL groups was equal to that of controls. No difference was seen for those with no-or-low degree of knee osteoarthritis compared to those with moderate-to-high degree of osteoarthritis. ACL injury may lead to a persistent reduction of peak torque in the injured leg, which needs to be considered across the lifespan.

  14. Movement Analysis of Flexion and Extension of Honeybee Abdomen Based on an Adaptive Segmented Structure

    PubMed Central

    Zhao, Jieliang; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees. A high-speed video camera was used to capture the curling and to analyze the changes in the arc length of the honeybee abdomen not only in free-flying mode but also in the fixed sample. Frozen sections and environment scanning electron microscope were used to investigate the microstructure and motion principle of honeybee abdomen and to explore the physical structure restricting its curling. An adaptive segmented structure, especially the folded intersegmental membrane (FIM), plays a dominant role in the flexion and extension of the abdomen. The structural features of FIM were utilized to mimic and exhibit movement restriction on honeybee abdomen. Combining experimental analysis and theoretical demonstration, a unidirectional bending mechanism of honeybee abdomen was revealed. Through this finding, a new perspective for aerospace vehicle design can be imitated. PMID:26223946

  15. Comparison of wear behaviors for an artificial cervical disc under flexion/extension and axial rotation motions.

    PubMed

    Wang, Song; Song, Jian; Liao, Zhenhua; Feng, Pingfa; Liu, Weiqiang

    2016-06-01

    The wear behaviors of a ball-on-socket (UHMWPE-on-Ti6Al4V) artificial cervical disc were studied with 1.5 MC (million cycles) wear simulation under single flexion/extension and axial rotation motion and their composite motion. The wear rates, wear traces, and contact stress were analyzed and contrasted based on mass loss, optical microscopy and SEM as well as 3D profilometer, and ANSYS software, respectively. A much higher wear rate and more severe wear scars appeared under multi-directional motion. Flexion/extension motion of 7.5° lead to more severe wear than that under axial rotation motion of 4°. The above results were closely related to the contact compression stress and shear stress. The wear surface in FE motion showed typical linear wear scratches while revealing obvious arc-shaped wear tracks in AR motion. However, the central zone of both ball and socket components revealed more severe wear tracks than that in the edge zone under these two different motions. The dominant wear mechanism was plowing/scratching and abrasive wear as well as a little oxidation wear for the titanium socket while it was scratching damage with adhesive wear and fatigue wear due to plastic deformation under cyclic load and motion profiles for the UHMWPE ball. PMID:27040218

  16. Maximal anaerobic performance of the knee extensor muscles during growth.

    PubMed

    Saavedra, C; Lagassé, P; Bouchard, C; Simoneau, J A

    1991-09-01

    The extent of the growth changes in maximal work output during 10 s (MWO10), 30 s (MWO30), and 90 s (MWO90) of maximal repetitive knee flexions and extensions assessed on a modified Hydra-Gym machine was investigated in 84 boys and 83 girls, 9-19 yr of age. Body weight, fat mass and fat free mass by underwater weighing, and thigh volume and cross-sectional area were also determined. No difference was observed in the absolute MWO10, MWO30, and MWO90 between girls and boys at 9 and 11 yr of age. However, significant differences appeared between genders from 13 yr of age onward, anaerobic performances of the knee extensor muscles of girls representing about 75% or even less of those of boys. The analysis of variance revealed that maximal work ouput during the three knee extension tests was significantly greater in males as well as in females from 9 to 18 yr, regardless how performance was related to morphological characteristics. Performance in absolute values or expressed per unit of body weight, fat free mass, and thigh cross-sectional area for the MWO10, MWO30, and MWO90 tests were almost always significantly lower in both genders when performances of the 9-yr-old group were compared with those of the 13-yr-old group or older groups. Improvement in maximal work output during the 10-s, 30-s, or 90-s knee extension tests with age occurred mainly between 9 and 15 yr in both genders. The results of the present study show that there are gender differences in predominantly anaerobic performances during growth and reveal that increase in muscle mass does not appear to be the only factor responsible for the age-related increment in the anaerobic working capacity of the knee extensor muscles.

  17. Altered Tibiofemoral Joint Contact Mechanics and Kinematics in Patients with Knee Osteoarthritis and Episodic Complaints of Joint Instability

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Klatt, Brian A.; Gustafson, Jonathan A.; Tashman, Scott; Fitzgerald, G. Kelley

    2014-01-01

    Background To evaluate knee joint contact mechanics and kinematics during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. Methods Forty-three subjects, 11 with medial compartment knee osteoarthritis and self-reported instability (unstable), 7 with medial compartment knee osteoarthritis but no reports of instability (stable), and 25 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a downhill gait task on a treadmill. Findings The medial compartment contact point excursions were longer in the unstable group compared to the stable (p=0.046) and the control groups (p=0.016). The peak medial compartment contact point velocity was also greater for the unstable group compared to the stable (p=0.047) and control groups (p=0.022). Additionally, the unstable group demonstrated a coupled movement pattern of knee extension and external rotation after heel contact which was different than the coupled motion of knee flexion and internal rotation demonstrated by stable and control groups. Interpretation Our findings suggest that knee joint contact mechanics and kinematics are altered during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. The observed longer medial compartment contact point excursions and higher velocities represent objective signs of mechanical instability that may place the arthritic knee joint at increased risk for disease progression. Further research is indicated to explore the clinical relevance of altered contact mechanics and kinematics during other common daily activities and to assess the efficacy of rehabilitation programs to improve altered joint biomechanics in knee osteoarthritis patients with self-reported instability. PMID:24856791

  18. Prolonged Epidural Infusion Improves Functional Outcomes Following Knee Arthroscopy in Patients with Arthrofibrosis after Total Knee Arthroplasty: A Retrospective Evaluation.

    PubMed

    Saltzman, Bryan M; Dave, Ankur; Young, Adam; Ahuja, Mukesh; Amin, Sandeep D; Bush-Joseph, Charles A

    2016-01-01

    A total of 20 consecutive patients with knee stiffness post total knee arthroplasty (TKA) underwent arthroscopic lysis of adhesions and manipulation plus indwelling epidural were evaluated retrospectively. Epidural catheters were placed preoperatively for an intended 6 weeks of postoperative analgesia to facilitate intensive physical therapy. The mean loss of knee extension immediately before incision was 13.5 ± 9.1 degrees (range, 0-35 degrees) and flexion was 77.65 ± 19.2 degrees (range, 45-125 degrees). At the 6-week and final (mean, 0.47 years) follow-up, the loss of extension was 1.5 ± 5.1 degrees (range, -10 to +7 degrees) and 5.4 ± 4.7 degrees (range, 0-15 degrees), respectively, and flexion was 99.7 ± 12.3 degrees (range, 75-120 degrees) and 98.5 ± 16.1 degrees (range, 75-130 degrees), respectively. Of the 20 patients, 2 missed their 6-week clinic visit. Improvements in motion immediately preoperative to 6-week and final follow-up were each significant (p < 0.01). At examination 6 weeks postoperatively, 94.4% of patients met the definition for clinical motion success and 70% maintained success at final follow-up. Visual analog scale improved significantly from 5.4 to 2.0 (p < 0.01) at 6 weeks postoperative in the 12 patients with this data recorded. On the basis of this data, use of tunneled epidurals with arthroscopic lysis of adhesions for arthrofibrosis after TKA is correlated with a high likelihood of functional success postoperatively as measured by range of motion improvement.

  19. The Arterial Folding Point During Flexion of the Hip Joint

    SciTech Connect

    Park, Sung Il; Won, Je Hwan Kim, Byung Moon; Kim, Jae Keun; Lee, Do Yun

    2005-04-15

    Purpose: Endovascular stents placed in periarticular vessels may be at a greater risk of neointimal hyperplasia and eventual occlusion than those placed in non-periarticular vessels. The purpose of this study was to investigate the location of maximal conformational change along the iliac and femoral artery, the folding point, during flexion of the hip joint and its location relative to the hip joint and the inguinal ligament. Methods: Seventy patients undergoing femoral artery catheterization were evaluated. The patients were 47 men and 23 women and ranged in age from 26 to 75 years (mean 54 years). The arteries (right:left = 34:36) were measured using a marked catheter for sizing vessels. Fluoroscopic images were obtained in anteroposterior and lateral projections in neutral position, and in the lateral projection in flexed position of the hip joint. The folding point was determined by comparing the lateral projection images in the neutral and flexed positions. The distance from the acetabular roof to the folding point and the distance from the inguinal ligament to the folding point was evaluated. Results: : The folding point was located 42.8 {+-} 28.6 mm cranial to the acetabular roof and 35.1 {+-} 30.1 mm cranial to the inguinal ligament. As the patient's age increased, the folding point was located more cranially (p < 0.001). Conclusions: The folding point during flexion of the hip joint was located 42.8 {+-} 28.6 mm cranial to the acetabular roof and 35.1 {+-} 30.1 mm cranial to the inguinal ligament. As the patient's age increased, the folding point was located more cranially. When a stent is inserted over this region, more attention may be needed during follow-up to monitor possible occlusion and stent failure.

  20. Diagnostic Performance of 3D Standing CT Imaging For Detection of Knee Osteoarthritis Features

    PubMed Central

    Segal, Neil A; Nevitt, Michael C.; Lynch, John A; Niu, Jingbo; Torner, James C; Guermazi, Ali

    2016-01-01

    Objective To determine the diagnostic performance of standing computerized tomography (SCT) of the knee for osteophytes and subchondral cysts compared to fixed-flexion radiography, using magnetic resonance imaging (MRI) as the reference standard. Methods Twenty participants were recruited from the Multicenter Osteoarthritis Study (MOST). Participants' knees were imaged with SCT while standing in a knee-positioning frame, and with PA fixed-flexion radiography and 1T MRI. Medial and lateral marginal osteophytes and subchondral cysts were scored on bilateral radiographs and coronal SCT images using the OARSI grading system and on coronal MRI using Whole Organ MRI Scoring (WORMS). Imaging modalities were read separately with images in random order. Sensitivity, specificity, and accuracy for the detection of lesions were calculated and differences between modalities were tested using McNemar's test. Results Participants' mean age was 66.8 years, BMI was 29.6kg/m2 and 50% were women. Of the 160 surfaces (medial and lateral femur and tibia for 40 knees), MRI revealed 84 osteophytes and 10 subchondral cysts. In comparison with osteophytes and subchondral cysts detected by MRI, SCT was significantly more sensitive (93% and 100%; p<0.004) and accurate (95% and 99%; p<0.001 for osteophytes) than plain radiographs (sensitivity: 60% and 10% and accuracy 79% and 94% respectively). For osteophytes, differences in sensitivity and accuracy were greatest at the medial femur (p=0.002). Conclusions In comparison with MRI, SCT imaging was more sensitive and accurate for detection of osteophytes and subchondral cysts than conventional fixed-flexion radiography. Additional study is warranted to assess diagnostic performance of SCT measures of joint space width, progression of OA features and the patellofemoral joint. PMID:26313455

  1. Obesity, knee osteoarthritis and knee arthroplasty: a review

    PubMed Central

    2013-01-01

    The incidence of obesity is rising worldwide. Obesity is a risk factor for developing osteoarthritis in the knee. Obesity and knee osteoarthritis are independently disabling conditions and in combination pose difficult therapeutic challenges. This review will discuss obesity, osteoarthritis, and the problems associated with knee osteoarthritis in an obese population. Treatment options including surgery and its success will be discussed. PMID:24304704

  2. The behavior of reinforced concrete knee joints under earthquake loads

    NASA Astrophysics Data System (ADS)

    Angelakos, Bill

    The poor performance of knee joint connections during recent earthquakes motivated a number of experimental investigations of knee joint behavior under reversed cyclic loading. In this work the knee joint design problem is studied through a collective evaluation of the available experimental results and analytical modeling. The objective is to identify the critical response variables controlling the mechanics of knee joints under earthquake loads and to quantify the influence they have on the strength and deformation capacity of the joint. A knee joint model is derived from simple mechanical constructs of equilibrium and compatibility. The parametric dependence of knee joint behavior is investigated for critical design parameters such as concrete strength, amounts and yield strengths of horizontal and vertical transverse reinforcement, and bond demand. Three different limiting equations are developed from the model limiting the joint shear resistance according with the three alternative modes of joint shear failure. These are: (i) yielding of horizontal and vertical transverse reinforcement, (ii) and (iii) yielding in either of the two principal reinforcing directions accompanied by crushing of the concrete in compression (here the softening influence of orthogonal tensile deformations is considered). For those test specimens from the experimental database that experienced a joint shear failure, the simple knee joint model predicts their joint shear capacity well. Consistent with observations from interior connections it is shown that anchorage of the main reinforcement in the knee joint region prevails as the determining factor of the response of the joint panel. In addition, the same basic physical model that describes the source of resistance in interior connections also applies to knee joints; truss action, and diagonal strut action. By favorably anchoring the beam and column bars it is possible to develop the joint shear strength which is associated with one

  3. Arthroscopic treatment of patients with moderate arthrofibrosis after total knee replacement.

    PubMed

    Jerosch, Joerg; Aldawoudy, Akram M

    2007-01-01

    The purpose of this study was to document the effect of arthroscopic management in patients with knee stiffness after total knee replacement. We present a case series study, in which 32 patients have been treated for moderate arthrofibrosis of the knee after total knee replacement, with the same regimen. We have excluded all cases of stiffness, because of infection, mechanical mal-alignment, loosening of the implants and other obvious reasons of stiffness of the knee, rather than pure arthrofibrosis. All patients first underwent a trial of conservative treatment before going for arthroscopic management. A pain catheter for femoral nerve block was inserted just before anesthesia for post-operative pain management. Arthroscopic arthrolysis of the intra-articular pathology was performed in a standardized technique with release of all fibrous bands in the suprapatellar pouch, reestablishing the medial and lateral gutter, release of the patella, resection of the remaining meniscal tissue or an anterior cyclops, if needed. Intensive physiotherapy and continuous passive motion were to start immediately post-operatively. All the patients were available for the follow up and they were evaluated using the knee society rating system. A total of 25 of the 32 procedures resulted in an improvement of the patients knee score. All the knees operated upon had intra-articular fibrous bands, hypertrophic synovitis and peri-patellar adhesions. A total of eight patients suffered from an anterior cyclops lesion and six patients showed pseudomenicus. In 19 cases a medial and lateral relapse of the patella was performed; only 5 patients got an isolated lateral release. The mean knee flexion was 119 degrees (100-130) at the end of arthroscopy and was 97 degrees (75-115) at the last follow up. The eight patients with extension lags decreased from 27 degrees (10 degrees-35 degrees) pre-operatively to 4 degrees (0-10) at time of follow up. The average knee society ratings increased from 70

  4. Epidemiology of jumper's knee.

    PubMed

    Ferretti, A

    1986-01-01

    Jumper's knee is a typical functional overload injury because it affects those athletes who submit their knee extensor mechanisms to intense and repeated stress, e.g. volleyball and basketball players, high and long jumpers. According to the classification of Perugia and colleagues, it is an insertional tendinopathy affecting, in order of frequency, the insertion of the patellar tendon into the patella (65% of cases), attachment of the quadriceps tendon to the patella (25%) and the attachment of the patellar tendon to the tibial tuberosity (10%). The frequent occurrence of this injury in athletes led to the study of factors that may contribute to its onset and aggravation. These factors are divided into extrinsic (i.e. kind of sport practised and training methods used) and intrinsic (i.e. connected with the somatic and morphological characteristics of the athletes). On the basis of our experience and after a review of the literature it appears, contrary to what has been repeatedly claimed in the past, the extrinsic factors are more important than the intrinsic in the aetiology of jumper's knee. The effect of traumatic incidents and use of elastic kneecap guards should also be considered negligible. The intrinsic causes of jumper's knee, can be sought in the mechanical properties of tendons (resistance, elasticity and extensibility) rather than in morphological or biomechanical abnormalities of the knee extensor mechanism.

  5. Neuromuscular efficiency during sit to stand movement in women with knee osteoarthritis.

    PubMed

    Patsika, Glykeria; Kellis, Eleftherios; Amiridis, Ioannis G

    2011-10-01

    The purpose of this study was to investigate the neuromuscular efficiency of women with knee osteoarthritis (OA) when performing a sit-to-stand movement and during maximum strength efforts. Twelve women with unilateral knee OA (age 60.33±6.66 years, height 1.61±0.05 m, mass 77.08±9.2 kg) and 11 controls (age 56.54±5.46 years, height 1.64±0.05 m, mass 77.36±13.34 kg) participated in this study. Subjects performed a sit-to-stand movement from a chair while position of center of pressure and knee angular speed were recorded. Furthermore, maximal isokinetic knee extension and flexion strength at 60°/s, 120°/s and 150°/s was measured. Surface, electromyography (EMG) from the biceps femoris (BF), vastus lateralis (VL) and vastus medialis (VM) was recorded during all tests. Analysis of variance (ANOVA) showed that during the sit-to-stand OA group demonstrated significantly lower knee angular speed (44.49±9.61°/s vs. 71.68±19.86°/s), a more posterior position of the center of pressure (39.20±7.02% vs. 41.95±2.49%) and a higher antagonist BF activation (57.13±20.55% vs. 32.01±19.5%) compared with controls (p<0.05). Further, women with knee OA demonstrated a lower Moment-to-EMG ratio than controls in extension and eccentric flexion at 60°/s and 150°/s, while the opposite was found for concentric flexion at 60°/s (p<0.05). Among other factors, the slower performance of the sit-to-stand movement in women with OA is due to a less efficient use of the knee extensor muscles (less force per unit of EMG) and, perhaps, a higher BF antagonist co-activation. This may lead subjects with OA to adopt a different movement strategy compared with controls.

  6. Midflexion instability in primary total knee replacement: a review

    PubMed Central

    Ramappa, Manjunath

    2015-01-01

    Introduction: Midflexion instability in primary total knee replacement (TKR) is an evolving concept. Successful treatment of instability requires an understanding of the different types of instability. Methods: A literature review was performed to identify information pertinent to midflexion instability in primary total knee replacement, utilising PRISMA guidelines. Databases searched included Embase, Medline, All of the Cochrane Library, PubMed and cross references. Results: Three factors, i.e., elevated joint line, multiradii femoral component and medial collateral ligament (MCL) laxity, were identified to influence midflexion instability. Literature suggested mediolateral instability at 30–60° of flexion as diagnostic of midflexion instability. Literature search also revealed paucity in clinical studies analysing midflexion instability. Most of the evidence was obtained from cadaveric studies for elevated joint line and MCL laxity. Clinical studies on multiradii femoral component were limited by their small study size and early followup period. Conclusion: Elevated joint line, multiradii femoral component and MCL laxity have been suggested to cause midflexion laxity in primary TKR. Due to limitations in available evidence, this review was unable to raise the strength of overall evidence. Future well-designed clinical studies are essential to make definitive conclusions. This review serves as a baseline for future researchers and creates awareness for routine assessment of midflexion instability in primary total knee replacement. PMID:27163080

  7. Isokinetic knee joint evaluation in track and field events.

    PubMed

    Deli, Chariklia K; Paschalis, Vassilis; Theodorou, Anastasios A; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Koutedakis, Yiannis

    2011-09-01

    The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.

  8. The effect of exercise on anterior-posterior knee laxity.

    PubMed

    Steiner, M E; Grana, W A; Chillag, K; Schelberg-Karnes, E

    1986-01-01

    A commercial knee laxity testing device was used to quantitate anterior and posterior laxity before and after exercise. Measurements were made at 20 degrees of knee flexion and with a displacement force of 133 N (30 pounds). In sedentary controls no significant change in laxity was noted over 2 hours. Squat power lifters sustained no significant change in laxity after a series of squats (0.4 to 0.7 cm) using 1.6 times body weight. However, 18% to 20% increases in mean anterior and posterior laxity were noted in college basketball players after 90 minutes of practice and in recreational runners after a 10 km race. The role of muscle relaxation in such tests was also evaluated by measuring laxity in normal knees before and during general anesthesia. Negligible laxity change was noted. Thus, functionally "complete" muscle relaxation can be obtained during testing in the cooperative individual. In conclusion, basketball players and distance runners experienced a transient increase in anterior and posterior laxity during exercise. Power lifters doing squats did not demonstrate a significant change in laxity. It appears that repetitive physiologic stresses at a high strain rate produce significant ligamentous laxity, while a relatively few large stresses at a low strain rate do not.

  9. Interpretation of movement during stair ascent for predicting severity and prognosis of knee osteoarthritis in elderly women using support vector machine.

    PubMed

    Yoo, Tae Keun; Kim, Sung Kean; Choi, Soo Beom; Kim, Deog Young; Kim, Deok Won

    2013-01-01

    Several studies have demonstrated that pathologic movement changes in knee osteoarthritis (OA) may contribute to disease progression. The aim of this study was to investigate the association between movement changes during stair ascent and pain, radiographic severity, and prognosis of knee OA in the elderly women using machine learning (ML) over a seven-year follow-up period. Eighteen elderly female patients with knee OA and 20 healthy controls were enrolled. Kinematic data for stair ascent were obtained using a 3D-motion analysis system at baseline. Kinematic factors were analyzed based on one of the popular ML methods, support vector machines (SVM). SVM was used to search kinematic predictors associated with pain, radiographic severity of knee OA, and unfavorable outcomes, which were defined as persistent knee pain as reported at the seven-year follow-up or as having undergone total knee replacement during the follow-up period. Six patients (46.2%) had unfavorable outcomes at the seven-year follow-up. SVM showed accuracy of detection of knee OA (97.4%), prediction of pain (83.3%), radiographic severity (83.3%), and unfavorable outcomes (69.2%). The predictors with SVM included the time of stair ascent, maximal anterior pelvis tilting, knee flexion at initial foot contact, and ankle dorsiflexion at initial foot contact. The interpretation of movement during stair ascent using ML may be helpful for physicians not only in detecting knee OA, but also in evaluating pain and radiographic severity.

  10. Total knee arthroplasty in valgus knees using minimally invasive medial-subvastus approach

    PubMed Central

    Shah, Nilen Amulak; Jain, Nimesh Prakash

    2016-01-01

    Background: An ideal approach for valgus knees must provide adequate exposure with minimal complications due to approach per se. Median parapatellar approach is most commonly used approach in TKA including valgus knees. A medial subvastus approach is seldom used for valgus knees and has definite advantages of maintaining extensor mechanism integrity and minimal effect on patellar tracking. The present study was conducted to evaluate outcomes of total knee arthroplasty (TKA) and efficacy of subvastus approach in valgus knees in terms of early functional recovery, limb alignment and complications. Materials and Methods: We retrospectively reviewed 112 knees with valgus deformity between January 2006 and December 2011. All patients were assessed postoperatively for pain using Visual Analog Scale (VAS) and quadriceps recovery in form of time to active straight leg raising (SLR) and staircase competency and clinical outcomes using American Knee Society (AKS) score and radiographic evaluation with average followup of 40 months (range 24–84 months). Results: The mean VAS on postoperative day (POD) 1 and POD2 at rest was 2.73 and 2.39, respectively and after mobilization was 3.28 and 3.08, respectively (P < 0.001). The quadriceps recovery was very early and 92 (86.7%) patients were able to do active SLR by POD1 with mean time of 21.98 h while reciprocal gait and staircase competency was possible at 43.05 h. The AKS and function score showed significant improvement from preoperative mean score of 39 and 36 to 91 and 79 (P < 0.001), respectively, and the mean range of motion increased from 102° preoperatively to 119° at recent followup (P < 0.001). The mean tibiofemoral valgus was corrected from preoperative 16° (range 10°–35°) to 5° (range 3°–9°) valgus (P < 0.001). Conclusions: Mini-subvastus quadriceps approach provides adequate exposure and excellent early recovery for TKA in valgus knees, without increase in incidence of complications. PMID:26955174

  11. Changes in Joint Gap Balances between Intra- and Postoperation in Total Knee Arthroplasty.

    PubMed

    Nakajima, Arata; Aoki, Yasuchika; Murakami, Masazumi; Nakagawa, Koichi

    2014-01-01

    Achieving correct soft tissue balance and preparing equal and rectangular extension and flexion joint gaps are crucial goals of TKA. Intraoperative gap balances would change postoperatively; however, changes in joint gap balances between pre- and postoperation remain unclear. To explore these changes associated with TKA, we prospectively investigated 21 posterior cruciate ligament retaining TKAs for varus knees. Intraoperative extension gap balance (iEGB) was 2.6 ± 2.0° varus versus postoperative extension gap balance (pEGB) of 0.77 ± 1.8° valgus (P < 0.01), while no significant difference between intraoperative flexion gap balance (iFGB) and postoperative flexion gap balance (pFGB) was observed. We also explored correlations between intraoperative and postoperative gap balances but found no significant correlations. These observations indicate that (i) surgeons should avoid excessive release of the medial soft tissue during TKA for varus knees and (ii) intraoperative gap balance may not be necessarily reflected on postoperative gap balance.

  12. The Effects of Psoas Major and Lumbar Lordosis on Hip Flexion and Sprint Performance

    ERIC Educational Resources Information Center

    Copaver, Karine; Hertogh, Claude; Hue, Olivier

    2012-01-01

    In this study, we analyzed the correlations between hip flexion power, sprint performance, lumbar lordosis (LL) and the cross-sectional area (CSA) of the psoas muscle (PM). Ten young adults performed two sprint tests and isokinetic tests to determine hip flexion power. Magnetic resonance imaging was used to determine LL and PM CSA. There were…

  13. Decreasing the required lumbar extensor moment induces earlier onset of flexion relaxation.

    PubMed

    Zwambag, Derek P; De Carvalho, Diana E; Brown, Stephen H M

    2016-10-01

    Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p<0.0001 and p=0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p=0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction. PMID:27267174

  14. Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue

    PubMed Central

    2010-01-01

    Background The flexion-relaxation phenomenon (FRP) is defined by reduced lumbar erector spinae (ES) muscle myoelectric activity during full trunk flexion. The objectives of this study were to quantify the effect of hip and back extensor muscle fatigue on FRP parameters and lumbopelvic kinematics. Methods Twenty-seven healthy adults performed flexion-extension tasks under 4 different experimental conditions: no fatigue/no load, no fatigue/load, fatigue/no load, and fatigue/load. Total flexion angle corresponding to the onset and cessation of myoelectric silence, hip flexion angle, lumbar flexion angle and maximal trunk flexion angle were compared across different experimental conditions by 2 × 2 (Load × Fatigue) repeated-measures ANOVA. Results The angle corresponding to the ES onset of myoelectric silence was reduced after the fatigue task, and loading the spine decreased the lumbar contribution to motion compared to the hip during both flexion and extension. A relative increment of lumbar spine motion compared to pelvic motion was also observed in fatigue conditions. Conclusions Previous results suggested that ES muscles, in a state of fatigue, are unable to provide sufficient segmental stabilization. The present findings indicate that, changes in lumbar-stabilizing mechanisms in the presence of muscle fatigue seem to be caused by modulation of lumbopelvic kinematics. PMID:20525336

  15. [Biomechanics of the knee joint].

    PubMed

    Witzel, U

    1993-01-01

    The capsular and ligamentous structures as control system of a healthy knee-joint supported by the muscular system are responsible for the rolling and gliding motion of the femoral condyles on the tibial plateau. Both the condyles and the tibial plateau have individually developed but to each other adjusted shapes and fine structures thereby. These structures consist of hyaline cartilage at their three-dimensional surfaces and of closely packed fibrils (lamina splendens) as the final gliding zone for tensile load. The orientation of the collagenous fibres can be made visible by split lines. The chondral surfaces are indirectly in contact to each other and orthogonally stressed at the particular point of contact. The indirect contact of the cartilaginous surfaces happens under interposition of the menisci. The meniscus serves to reduce and equalize the surface pressure by its own projected surface on the one hand and by maintaining of a hydraulic pressure of the synovial fluid on the other hand. Deviations of the condylar position as a result on ligamentous instabilities or ruptures with a following occurring loss of congruence, meniscal lesions or traumatic ruptures lead to a rapid discharge of the synovial fluid under load. The result is a hydraulic head loss with direct contact of the chondral surfaces under stress leading to arthrotic deformations. Severe arthrotic deformations or very much every meniscectomy produce intraarticular lumped loads resulting in a hyper-physiologic chondral pressure and malnutrition thereby. Further on there develop subchondral stress concentrations (caused by the lumped loads) leading to osseous damages, too. MR-pictures can make visible these damages. Chondromalacia, fissure or even chondrolysis are arthroscopically detectable sometimes. As after-effects of deficient knee ligaments occur pathological deviations of the femoral condyles and resulting destructions of the articular surfaces under stress enormously intensified by

  16. Comparison of strain-gage and fiber-optic goniometry for measuring knee kinematics during activities of daily living and exercise.

    PubMed

    Mohamed, Abeer A; Baba, Jennifer; Beyea, James; Landry, John; Sexton, Andrew; McGibbon, Chris A

    2012-08-01

    There is increasing interest in wearable sensor technology as a tool for rehabilitation applications in community or home environments. Recent studies have focused on evaluating inertial based sensing (accelerometers, gyroscopes, etc.) that provide only indirect measures of joint motion. Measurement of joint kinematics using flexible goniometry is more direct, and still popular in laboratory environments, but has received little attention as a potential tool for wearable systems. The aim of this study was to compare two goniometric devices: a traditional strain-gauge flexible goniometer, and a fiberoptic flexible goniometer, for measuring dynamic knee flexion/extension angles during activity of daily living: chair rise, and gait; and exercise: deep knee bends, against joint angles computed from a "gold standard" Vicon motion tracking system. Six young adults were recruited to perform the above activities in the lab while wearing a goniometer on each knee, and reflective markers for motion tracking. Kinematic data were collected simultaneously from the goniometers (one on each leg) and the motion tracking system (both legs). The results indicate that both goniometers were within 2-5 degrees of the Vicon angles for gait and chair rise. For some deep knee bend trials, disagreement with Vicon angles exceeded ten degrees for both devices. We conclude that both goniometers can record ADL knee movement faithfully and accurately, but should be carefully considered when high (>120 deg) knee