Sample records for flight 2d-tof method

  1. Analytical properties of time-of-flight PET data.

    PubMed

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  2. Analytical properties of time-of-flight PET data

    NASA Astrophysics Data System (ADS)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  3. Analytical Properties of Time-of-Flight PET Data

    PubMed Central

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2015-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the “bow-tie” property of the 2D Radon transform to the time of flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data. PMID:18460746

  4. MAP Reconstruction for Fourier Rebinned TOF-PET Data

    PubMed Central

    Bai, Bing; Lin, Yanguang; Zhu, Wentao; Ren, Ran; Li, Quanzheng; Dahlbom, Magnus; DiFilippo, Frank; Leahy, Richard M.

    2014-01-01

    Time-of-flight (TOF) information improves signal to noise ratio in Positron Emission Tomography (PET). Computation cost in processing TOF-PET sinograms is substantially higher than for nonTOF data because the data in each line of response is divided among multiple time of flight bins. This additional cost has motivated research into methods for rebinning TOF data into lower dimensional representations that exploit redundancies inherent in TOF data. We have previously developed approximate Fourier methods that rebin TOF data into either 3D nonTOF or 2D nonTOF formats. We refer to these methods respectively as FORET-3D and FORET-2D. Here we describe maximum a posteriori (MAP) estimators for use with FORET rebinned data. We first derive approximate expressions for the variance of the rebinned data. We then use these results to rescale the data so that the variance and mean are approximately equal allowing us to use the Poisson likelihood model for MAP reconstruction. MAP reconstruction from these rebinned data uses a system matrix in which the detector response model accounts for the effects of rebinning. Using these methods we compare performance of FORET-2D and 3D with TOF and nonTOF reconstructions using phantom and clinical data. Our phantom results show a small loss in contrast recovery at matched noise levels using FORET compared to reconstruction from the original TOF data. Clinical examples show FORET images that are qualitatively similar to those obtained from the original TOF-PET data but a small increase in variance at matched resolution. Reconstruction time is reduced by a factor of 5 and 30 using FORET3D+MAP and FORET2D+MAP respectively compared to 3D TOF MAP, which makes these methods attractive for clinical applications. PMID:24504374

  5. Fourier rebinning and consistency equations for time-of-flight PET planograms

    PubMed Central

    Li, Yusheng; Defrise, Michel; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John's equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations and the Fourier-John equation, which are the duals of the consistency equations and John's equation, respectively. We then solve the Fourier consistency equations and Fourier-John equation using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms. Finally, we give numerical examples of implementation of a fast 2D TOF planogram projector and Fourier-based rebinning for a 2D TOF planograms using the FORCEs to show the efficacy of the Fourier-based solutions. PMID:28255191

  6. Fourier rebinning and consistency equations for time-of-flight PET planograms.

    PubMed

    Li, Yusheng; Defrise, Michel; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John's equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations and the Fourier-John equation, which are the duals of the consistency equations and John's equation, respectively. We then solve the Fourier consistency equations and Fourier-John equation using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms. Finally, we give numerical examples of implementation of a fast 2D TOF planogram projector and Fourier-based rebinning for a 2D TOF planograms using the FORCEs to show the efficacy of the Fourier-based solutions.

  7. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  8. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    PubMed

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  9. A unified Fourier theory for time-of-flight PET data

    PubMed Central

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D X-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D X-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions. PMID:26689836

  10. A unified Fourier theory for time-of-flight PET data.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D x-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions.

  11. A pitfall of the volume rendering method with 3D time-of-flight MRA: a case of a branching vessel at the aneurysm neck.

    PubMed

    Goto, Masami; Kunimatsu, Akira; Shojima, Masaaki; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Ino, Kenji; Yano, Keiichi; Saito, Nobuhito; Ohtomo, Kuni

    2013-03-25

    We present a case in which the origin of the branching vessel at the aneurysm neck was observed at the wrong place on the volume rendering method (VR) with 3D time-of-flight MRA (3D-TOF-MRA) with 3-Tesla MR system. In 3D-TOF-MRA, it is often difficult to observe the origin of the branching vessel, but it is unusual for it to be observed in the wrong place. In the planning of interventional treatment and surgical procedures, false recognition, as in the unique case in the present report, is a serious problem. Decisions based only on VR with 3D-TOF-MRA can be a cause of suboptimal selection in clinical treatment.

  12. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  13. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence.

    PubMed

    Li, Bo; Li, Hao; Dong, Li; Huang, Guofu

    2017-11-01

    In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.

  14. Visual control of robots using range images.

    PubMed

    Pomares, Jorge; Gil, Pablo; Torres, Fernando

    2010-01-01

    In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.

  15. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species.

    PubMed

    Lacroix, C; Gicquel, A; Sendid, B; Meyer, J; Accoceberry, I; François, N; Morio, F; Desoubeaux, G; Chandenier, J; Kauffmann-Lacroix, C; Hennequin, C; Guitard, J; Nassif, X; Bougnoux, M-E

    2014-02-01

    Candida spp. are responsible for severe infections in immunocompromised patients and those undergoing invasive procedures. The accurate identification of Candida species is important because emerging species can be associated with various antifungal susceptibility spectra. Conventional methods have been developed to identify the most common pathogens, but have often failed to identify uncommon species. Several studies have reported the efficiency of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of clinically relevant Candida species. In this study, we evaluated two commercially available MALDI-TOF systems, Andromas™ and Bruker Biotyper™, for Candida identification in routine diagnosis. For this purpose, we investigated 1383 Candida isolates prospectively collected in eight hospital laboratories during routine practice. MALDI-TOF MS results were compared with those obtained using conventional phenotypic methods. Analysis of rDNA gene sequences with internal transcribed regions or D1-D2 regions is considered the reference standard for identification. Both MALDI-TOF MS systems could accurately identify 98.3% of the isolates at the species level (1359/1383 for Andromas™; 1360/1383 for Bruker Biotyper™) vs. 96.5% for conventional techniques. Furthermore, whereas conventional methods failed to identify rare or emerging species, these were correctly identified by MALDI-TOF MS. Both MALDI-TOF MS systems are accurate and cost-effective alternatives to conventional methods for mycological identification of clinically relevant Candida species and should improve the diagnosis of fungal infections as well as patient management. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  16. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.

    2018-06-01

    A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.

  17. Magnetic Resonance Angiography in the Diagnosis of Cerebral Arteriovenous Malformation and Dural Arteriovenous Fistulas: Comparison of Time-Resolved Magnetic Resonance Angiography and Three Dimensional Time-of-Flight Magnetic Resonance Angiography

    PubMed Central

    Cheng, Yu-Ching; Chen, Hung-Chieh; Wu, Chen-Hao; Wu, Yi-Ying; Sun, Ming-His; Chen, Wen-Hsien; Chai, Jyh-Wen; Chi-Chang Chen, Clayton

    2016-01-01

    Background Traditional digital subtraction angiography (DSA) is currently the gold standard diagnostic method for the diagnosis and evaluation of cerebral arteriovenous malformation (AVM) and dural arteriovenous fistulas (dAVF). Objectives The aim of this study was to analyze different less invasive magnetic resonance angiography (MRA) images, time-resolved MRA (TR-MRA) and three-dimensional time-of-flight MRA (3D TOF MRA) to identify their diagnostic accuracy and to determine which approach is most similar to DSA. Patients and Methods A total of 41 patients with AVM and dAVF at their initial evaluation or follow-up after treatment were recruited in this study. We applied time-resolved angiography using keyhole (4D-TRAK) MRA to perform TR-MRA and 3D TOF MRA examinations simultaneously followed by DSA, which was considered as a standard reference. Two experienced neuroradiologists reviewed the images to compare the diagnostic accuracy, arterial feeder and venous drainage between these two MRA images. Inter-observer agreement for different MRA images was assessed by Kappa coefficient and the differences of diagnostic accuracy between MRA images were evaluated by the Wilcoxon rank sum test. Results Almost all vascular lesions (92.68%) were correctly diagnosed using 4D-TRAK MRA. However, 3D TOF MRA only diagnosed 26 patients (63.41%) accurately. There were statistically significant differences regarding lesion diagnostic accuracy (P = 0.008) and venous drainage identification (P < 0.0001) between 4D-TRAK MRA and 3D TOF MRA. The results indicate that 4D-TRAK MRA is superior to 3D TOF MRA in the assessment of lesions. Conclusion Compared with 3D TOF MRA, 4D-TRAK MRA proved to be a more reliable screening modality and follow-up method for the diagnosis of cerebral AVM and dAVF. PMID:27679690

  18. Fourier-Domain Shift Matching: A Robust Time-of-Flight Approach for Shear Wave Speed Estimation.

    PubMed

    Rosen, David; Jiang, Jingfeng

    2018-05-01

    Our primary objective of this work was to design and test a new time-of-flight (TOF) method that allows measurements of shear wave speed (SWS) following impulsive excitation in soft tissues. Particularly, under the assumption of the local plane shear wave, this work named the Fourier-domain shift matching (FDSM) method, estimates SWS by aligning a series of shear waveforms either temporally or spatially using a solution space deduced by characteristic curves of the well-known 1-D wave equation. The proposed SWS estimation method was tested using computer-simulated data, and tissue-mimicking phantom and ex vivo tissue experiments. Its performance was then compared with three other known TOF methods: lateral time-to-peak (TTP) method with robust random sampling consensus (RANSAC) fitting method, Radon sum transformation method, and a modified cross correlation method. Hereafter, these three TOF methods are referred to as the TTP-RANSAC, Radon sum, and X-corr methods, respectively. In addition to an adapted form of the 2-D Fourier transform (2-D FT)-based method in which the (group) SWS was approximated by averaging phase SWS values was considered for comparison. Based on data evaluated, we found that the overall performance of the above-mentioned temporal implementation of the proposed FDSM method was most similar to the established Radon sum method (correlation = 0.99, scale factor = 1.03, and mean difference = 0.07 m/s), and the 2-D FT (correlation = 0.98, scale factor = 1.00, and mean difference = 0.10 m/s) at high signal quality. However, results obtained from the 2-D FT method diverged (correlation = 0.201) from these of the proposed temporal implementation in the presence of diminished signal quality, whereas the agreement between the Radon sum approach and the proposed temporal implementation largely remained the same (correlation = 0.98).

  19. Image quality improvement in three-dimensional time-of-flight magnetic resonance angiography using the subtraction method for brain and temporal bone diseases.

    PubMed

    Peng, Shu-Hui; Shen, Chao-Yu; Wu, Ming-Chi; Lin, Yue-Der; Huang, Chun-Huang; Kang, Ruei-Jin; Tyan, Yeu-Sheng; Tsao, Teng-Fu

    2013-08-01

    Time-of-flight (TOF) magnetic resonance (MR) angiography is based on flow-related enhancement using the T1-weighted spoiled gradient echo, or the fast low-angle shot gradient echo sequence. However, materials with short T1 relaxation times may show hyperintensity signals and contaminate the TOF images. The objective of our study was to determine whether subtraction three-dimensional (3D) TOF MR angiography improves image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. During the 12-month study period, patients who had masses with short T1 relaxation times noted on precontrast T1-weighted brain MR images and 24 healthy volunteers were scanned using conventional and subtraction 3D TOF MR angiography. The qualitative evaluation of each MR angiogram was based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and scores in three categories, namely, (1) presence of misregistration artifacts, (2) ability to display arterial anatomy selectively (without contamination by materials with short T1 relaxation times), and (3) arterial flow-related enhancement. We included 12 patients with intracranial hematomas, brain tumors, or middle-ear cholesterol granulomas. Subtraction 3D TOF MR angiography yielded higher CNRs between the area of the basilar artery (BA) and normal-appearing parenchyma of the brain and lower SNRs in the area of the BA compared with the conventional technique (147.7 ± 77.6 vs. 130.6 ± 54.2, p < 0.003 and 162.5 ± 79.9 vs. 194.3 ± 62.3, p < 0.001, respectively) in all 36 cases. The 3D subtraction angiography did not deteriorate image quality with misregistration artifacts and showed a better selective display of arteries (p < 0.0001) and arterial flow-related enhancement (p < 0.044) than the conventional method. Subtraction 3D TOF MR angiography is more appropriate than the conventional method in improving the image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. Copyright © 2013. Published by Elsevier B.V.

  20. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraiz, J. L.; Sitek, A., E-mail: sarkadiu@gmail.com

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data,more » which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.« less

  1. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  2. Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS.

    PubMed

    Zhong, Ning; Cui, Yazhou; Zhou, Xiaoyan; Li, Tianliang; Han, Jinxiang

    2015-02-01

    Membrane proteins are an important source of potential targets for anticancer drugs or biomarkers for early diagnosis. In this study, we used a modified aqueous two-phase partition system combined with two-dimensional (2D) matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS, 2D-MALDI-TOF-TOF-MS/MS) analysis to isolate and identify membrane proteins in PANC-1 pancreatic cancer cells. Using this method, we identified 55 proteins, of which 31 (56.4 %) were membrane proteins, which, according to gene ontology annotation, are associated with various cellular processes including cell signal transduction, differentiation, and apoptosis. Immunohistochemical analysis showed that the expression level of one of the identified mitochondria membrane proteins, prohibitin 1 (PHB1), is correlated with pancreatic carcinoma differentiation; PHB1 is expressed at a higher level in normal pancreatic tissue than in well-differentiated carcinoma tissue. Further studies showed that PHB1 plays a proapoptotic role in human pancreatic cancer cells, which suggests that PHB1 has antitumorigenic properties. In conclusion, we have provided a modified method for isolating and identifying membrane proteins and demonstrated that PHB1 may be a promising biomarker for early diagnosis and therapy of pancreatic (and potentially other) cancers.

  3. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  4. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.

    PubMed

    Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X

    1993-01-01

    Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.

  5. Multidimensional gas chromatography in combination with accurate mass, tandem mass spectrometry, and element-specific detection for identification of sulfur compounds in tobacco smoke.

    PubMed

    Ochiai, Nobuo; Mitsui, Kazuhisa; Sasamoto, Kikuo; Yoshimura, Yuta; David, Frank; Sandra, Pat

    2014-09-05

    A method is developed for identification of sulfur compounds in tobacco smoke extract. The method is based on large volume injection (LVI) of 10μL of tobacco smoke extract followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography (GC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (Q-TOF-MS) using electron ionization (EI) and positive chemical ionization (PCI), with parallel sulfur chemiluminescence detection (SCD). In order to identify each individual sulfur compound, sequential heart-cuts of 28 sulfur fractions from (1)D GC to (2)D GC were performed with the three MS detection modes (SCD/EI-TOF-MS, SCD/PCI-TOF-MS, and SCD/PCI-Q-TOF-MS). Thirty sulfur compounds were positively identified by MS library search, linear retention indices (LRI), molecular mass determination using PCI accurate mass spectra, formula calculation using EI and PCI accurate mass spectra, and structure elucidation using collision activated dissociation (CAD) of the protonated molecule. Additionally, 11 molecular formulas were obtained for unknown sulfur compounds. The determined values of the identified and unknown sulfur compounds were in the range of 10-740ngmg total particulate matter (TPM) (RSD: 1.2-12%, n=3). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Obstacle Classification and 3D Measurement in Unstructured Environments Based on ToF Cameras

    PubMed Central

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-01-01

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient. PMID:24945679

  7. Preoperative evaluation of venous systems with 3-dimensional contrast-enhanced magnetic resonance venography in brain tumors: comparison with time-of-flight magnetic resonance venography and digital subtraction angiography.

    PubMed

    Lee, Jong-Myung; Jung, Shin; Moon, Kyung-Sub; Seo, Jeong-Jin; Kim, In-Young; Jung, Tae-Young; Lee, Jung-Kil; Kang, Sam-Suk

    2005-08-01

    Recent developments in magnetic resonance (MR) technology now enable the use of MR venography, providing 3-dimensional (3D) images of intracranial venous structures. The purpose of this study was to assess the usefulness of 3D contrast-enhanced MR venography (CE MRV) in the evaluation of intracranial venous system for surgical planning of brain tumors. Forty patients underwent 3D CE MRV, as well as 25 patients, 2-dimensional (2D) time-of-flight (TOF) MR venography in axial and sagittal planes; and 10 patients, digital subtraction angiography. We determined the number of visualized sinuses and cortical veins. Degree of visualization of the intracranial venous system on 3D CE MRV was compared with that of 2D TOF MR venography and digital subtraction angiography as a standard. We also assessed the value of 3D CE MRV in the investigation of sinus occlusion or localization of cortical draining veins preoperatively. Superficial cortical veins and the dural sinus were better visualized on 3D CE MRV than on 2D TOF MR venography. Both MR venographic techniques visualized superior sagittal sinus, lateral sinus, sigmoid sinus, straight sinus, and internal cerebral vein and provided more detailed information by showing obstructed sinuses in brain tumors. Only 3D CE MRV showed superficial cortical draining veins. However, it was difficult to accurately evaluate the presence of cortical collateral venous drainage. Although we do not yet advocate MR venography to replace conventional angiography as the imaging standard for brain tumors, 3D CE MRV can be regarded as a valuable diagnostic method just in evaluating the status of major sinuses and localization of the cortical draining veins.

  8. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism.

    PubMed

    Prakash, A; Sharma, C; Singh, A; Kumar Singh, P; Kumar, A; Hagen, F; Govender, N P; Colombo, A L; Meis, J F; Chowdhary, A

    2016-03-01

    Candida auris is a multidrug-resistant nosocomial bloodstream pathogen that has been reported from Asian countries and South Africa. Herein, we studied the population structure and genetic relatedness among 104 global C. auris isolates from India, South Africa and Brazil using multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RPB1, RPB2 and internal transcribed spacer (ITS) and D1/D2 regions of the ribosomal DNA were sequenced for MLST. Further, genetic variation and proteomic assessment was carried out using AFLP and MALDI-TOF MS, respectively. Both MLST and AFLP typing clearly demarcated two major clusters comprising Indian and Brazilian isolates. However, the South African isolates were randomly distributed, suggesting different genotypes. MALDI-TOF MS spectral profiling also revealed evidence of geographical clustering but did not correlate fully with the genotyping methods. Notably, overall the population structure of C. auris showed evidence of geographical clustering by all the three techniques analysed. Antifungal susceptibility testing by the CLSI microbroth dilution method revealed that fluconazole had limited activity against 87% of isolates (MIC90, 64 mg/L). Also, MIC90 of AMB was 4 mg/L. Candida auris is emerging as an important yeast pathogen globally and requires reproducible laboratory methods for identification and typing. Evaluation of MALDI-TOF MS as a typing method for this yeast is warranted. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Sensitivity estimation in time-of-flight list-mode positron emission tomography.

    PubMed

    Herraiz, J L; Sitek, A

    2015-11-01

    An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  10. Diagnostic value of 3D time-of-flight MRA in trigeminal neuralgia.

    PubMed

    Cai, Jing; Xin, Zhen-Xue; Zhang, Yu-Qiang; Sun, Jie; Lu, Ji-Liang; Xie, Feng

    2015-08-01

    The aim of this meta-analysis was to evaluate the diagnostic value of 3D time-of-flight magnetic resonance angiography (3D-TOF-MRA) in trigeminal neuralgia (TN). Relevant studies were identified by computerized database searches supplemented by manual search strategies. The studies were included in accordance with stringent inclusion and exclusion criteria. Following a multistep screening process, high quality studies related to the diagnostic value of 3D-TOF-MRA in TN were selected for meta-analysis. Statistical analyses were conducted using Statistical Analysis Software (version 8.2; SAS Institute, Cary, NC, USA) and Meta Disc (version 1.4; Unit of Clinical Biostatistics, Ramon y Cajal Hospital, Madrid, Spain). For the present meta-analysis, we initially retrieved 95 studies from database searches. A total of 13 studies were eventually enrolled containing a combined total of 1084 TN patients. The meta-analysis results demonstrated that the sensitivity and specificity of the diagnostic value of 3D-TOF-MRA in TN were 95% (95% confidence interval [CI] 0.93-0.96) and 77% (95% CI 0.66-0.86), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 2.72 (95% CI 1.81-4.09) and 0.08 (95% CI 0.06-0.12), respectively. The pooled diagnostic odds ratio of 3D-TOF-MRA in TN was 52.92 (95% CI 26.39-106.11), and the corresponding area under the curve in the summary receiver operating characteristic curve based on the 3D-TOF-MRA diagnostic image of observers was 0.9695 (standard error 0.0165). Our results suggest that 3D-TOF-MRA has excellent sensitivity and specificity as a diagnostic tool for TN, and that it can accurately identify neurovascular compression in TN patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analogous Three-Dimensional Constructive Interference in Steady State Sequences Enhance the Utility of Three-Dimensional Time of Flight Magnetic Resonance Angiography in Delineating Lenticulostriate Arteries in Insular Gliomas: Evidence from a Prospective Clinicoradiologic Analysis of 48 Patients.

    PubMed

    Rao, Arun S; Thakar, Sumit; Sai Kiran, Narayanam Anantha; Aryan, Saritha; Mohan, Dilip; Hegde, Alangar S

    2018-01-01

    Three-dimensional (3D) time of flight (TOF) imaging is the current gold standard for noninvasive, preoperative localization of lenticulostriate arteries (LSAs) in insular gliomas; however, the utility of this modality depends on tumor intensity. Over a 3-year period, 48 consecutive patients with insular gliomas were prospectively evaluated. Location of LSAs and their relationship with the tumor were determined using a combination of contrast-enhanced coronal 3D TOF magnetic resonance angiography and coronal 3D constructive interference in steady state (CISS) sequences. These findings were analyzed with respect to extent of tumor resection and early postoperative motor outcome. Tumor was clearly visualized in 29 (60.4%) patients with T1-hypointense tumors using 3D TOF and in all patients using CISS sequences. Using combined 3D TOF and CISS, LSA-tumor interface was well seen in 47 patients, including all patients with T1-heterointense or T1-isointense tumors. Extent of resection was higher in the LSA-pushed group compared with the LSA-encased group. In the LSA-encased group, 6 (12.5%) patients developed postoperative hemiparesis; 2 (4.2%) cases were attributed to LSA injury. Contrast-enhanced 3D TOF can delineate LSAs in almost all insular gliomas but is limited in identifying the LSA-tumor interface. This limitation can be overcome by addition of analogous CISS sequences that delineate the LSA-tumor interface regardless of tumor intensity. Combined 3D TOF and 3D CISS is a useful tool for surgical planning and safer resections of insular tumors and may have added surgical relevance when included as an intraoperative adjunct. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Characterizing Scintillator Response with Neutron Time-of-Flight

    NASA Astrophysics Data System (ADS)

    Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean

    2017-10-01

    Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.

  13. Concordance of Time-of-Flight MRA and Digital Subtraction Angiography in Adult Primary Central Nervous System Vasculitis.

    PubMed

    de Boysson, H; Boulouis, G; Parienti, J-J; Touzé, E; Zuber, M; Arquizan, C; Dequatre, N; Detante, O; Bienvenu, B; Aouba, A; Guillevin, L; Pagnoux, C; Naggara, O

    2017-10-01

    3D-TOF-MRA and DSA are 2 available tools to demonstrate neurovascular involvement in primary central nervous system vasculitis. We aimed to compare the diagnostic concordance of vessel imaging using 3D-TOF-MRA and DSA in patients with primary central nervous system vasculitis. We retrospectively identified all patients included in the French primary central nervous system vasculitis cohort of 85 patients who underwent, at baseline, both intracranial 3D-TOF-MRA and DSA in an interval of no more than 2 weeks and before treatment initiation. Two neuroradiologists independently reviewed all 3D-TOF-MRA and DSA imaging. Brain vasculature was divided into 25 arterial segments. Concordance between 3D-TOF-MRA and DSA for the identification of arterial stenosis was assessed by the Cohen κ Index. Thirty-one patients met the inclusion criteria, including 20 imaged with a 1.5T MR unit and 11 with a 3T MR unit. Among the 25 patients (81%) with abnormal DSA findings, 24 demonstrated abnormal 3D-TOF-MRA findings, whereas all 6 remaining patients with normal DSA findings had normal 3D-TOF-MRA findings. In the per-segment analysis, concordance between 1.5T 3D-TOF-MRA and DSA was 0.82 (95% CI, 0.75-0.93), and between 3T 3D-TOF-MRA and DSA, it was 0.87 (95% CI, 0.78-0.91). 3D-TOF-MRA shows a high concordance with DSA in diagnostic performance when analyzing brain vasculature in patients with primary central nervous system vasculitis. In patients with negative 3T 3D-TOF-MRA findings, the added diagnostic value of DSA is limited. © 2017 by American Journal of Neuroradiology.

  14. Utilization of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry for identification of infantile seborrheic dermatitis-causing Malassezia and incidence of culture-based cutaneous Malassezia microbiota of 1-month-old infants.

    PubMed

    Yamamoto, Mikachi; Umeda, Yoshiko; Yo, Ayaka; Yamaura, Mariko; Makimura, Koichi

    2014-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been utilized for identification of various microorganisms. Malassezia species, including Malassezia restricta, which is associated with seborrheic dermatitis, has been difficult to identify by traditional means. This study was performed to develop a system for identification of Malassezia species with MALDI-TOF-MS and to investigate the incidence and variety of cutaneous Malassezia microbiota of 1-month-old infants using this technique. A Malassezia species-specific MALDI-TOF-MS database was developed from eight standard strains, and the availability of this system was assessed using 54 clinical strains isolated from the skin of 1-month-old infants. Clinical isolates were cultured initially on CHROMagar Malassezia growth medium, and the 28S ribosomal DNA (D1/D2) sequence was analyzed for confirmatory identification. Using this database, we detected and analyzed Malassezia species in 68% and 44% of infants with and without infantile seborrheic dermatitis, respectively. The results of MALDI-TOF-MS analysis were consistent with those of rDNA sequencing identification (100% accuracy rate). To our knowledge, this is the first report of a MALDI-TOF-MS database for major skin pathogenic Malassezia species. This system is an easy, rapid and reliable method for identification of Malassezia. © 2014 Japanese Dermatological Association.

  15. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    NASA Technical Reports Server (NTRS)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  16. Time-of-flight scattering and recoiling spectrometer (TOF-SARS) for surface analysis

    NASA Astrophysics Data System (ADS)

    Grizzi, O.; Shi, M.; Bu, H.; Rabalais, J. W.

    1990-02-01

    A UHV spectrometer system has been designed and constructed for time-of-flight scattering and recoiling spectrometry (TOF-SARS). The technique uses a pulsed primary ion beam and TOF methods for analysis of both scattered and recoiled neutrals (N) and ions (I) simultaneously with continuous scattering angle variation over a flight path of ≊1 m. The pulsed ion beam line uses an electron impact ionization source with acceleration up to 5 keV; pulse widths down to 20 ns with average current densities of 0.05-5.0 nA/mm2 have been obtained. Typical current densities used herein are ≊0.1 nA/mm2 and TOF spectra can be collected with a total ion dose of <10-3 ions/surface atom. A channel electron multiplier detector, which is sensitive to both ions and fast neutrals, is mounted on a long tube connected to a precision rotary motion feedthru, allowing continuous rotation over a scattering angular range 0°<θ<165°. The sample is mounted on a precision manipulator, allowing azimuthal δ and incident α angle rotation, as well as translation along three orthogonal axes. The system also accommodates standard surface analysis instrumentation for LEED, AES, XPS, and UPS. The capabilities of the system are demonstrated by the following examples: (A) TOF spectra versus scattering angle θ; (B) comparison to LEED and AES; (C) surface and adsorbate structure determinations; (D) monitoring surface roughness; (E) surface semichanneling measurements; (F) measurements of scattered ion fractions; and (G) ion induced Auger electron emission.

  17. 3D surface reconstruction for laparoscopic computer-assisted interventions: comparison of state-of-the-art methods

    NASA Astrophysics Data System (ADS)

    Groch, A.; Seitel, A.; Hempel, S.; Speidel, S.; Engelbrecht, R.; Penne, J.; Höller, K.; Röhl, S.; Yung, K.; Bodenstedt, S.; Pflaum, F.; dos Santos, T. R.; Mersmann, S.; Meinzer, H.-P.; Hornegger, J.; Maier-Hein, L.

    2011-03-01

    One of the main challenges related to computer-assisted laparoscopic surgery is the accurate registration of pre-operative planning images with patient's anatomy. One popular approach for achieving this involves intraoperative 3D reconstruction of the target organ's surface with methods based on multiple view geometry. The latter, however, require robust and fast algorithms for establishing correspondences between multiple images of the same scene. Recently, the first endoscope based on Time-of-Flight (ToF) camera technique was introduced. It generates dense range images with high update rates by continuously measuring the run-time of intensity modulated light. While this approach yielded promising results in initial experiments, the endoscopic ToF camera has not yet been evaluated in the context of related work. The aim of this paper was therefore to compare its performance with different state-of-the-art surface reconstruction methods on identical objects. For this purpose, surface data from a set of porcine organs as well as organ phantoms was acquired with four different cameras: a novel Time-of-Flight (ToF) endoscope, a standard ToF camera, a stereoscope, and a High Definition Television (HDTV) endoscope. The resulting reconstructed partial organ surfaces were then compared to corresponding ground truth shapes extracted from computed tomography (CT) data using a set of local and global distance metrics. The evaluation suggests that the ToF technique has high potential as means for intraoperative endoscopic surface registration.

  18. Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.

    A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less

  19. Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    DOE PAGES

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; ...

    2017-10-16

    A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less

  20. MR angiography of the renal artery: comparison of breath-hold two-dimensional phase-contrast cine technique with the phased-array coil and breath-hold two-dimensional time-of-flight technique with the body coil.

    PubMed

    Masui, T; Takehara, Y; Igarashi, T; Ichijo, K; Takahashi, M; Kaneko, M; Nozaki, A

    1997-07-01

    Breath-hold 2D phase-contrast (PC) cine MR angiography with a phased-array coil and 2D time-of-flight (TOF) MR angiography were performed in the renal arteries and their findings were compared. Breath-hold 2D thin slice PC and TOF MR angiography were performed in 10 normal volunteers for renal arteries. A PC technique with k-space segmentation was utilized with the phased-array coil. A PC technique provided visualization of the renal artery more distally than a TOF technique (4.8 +/- 0.5 cm vs. 3.7 +/- 0.8 cm). With cardiac triggering, distal renal arteries were well demonstrated in PC MR angiography. On PC images, up- or downward movements of the mid to distal renal arteries with aortic pulsatility were recognized. The quality of the images was better with the PC than with the TOF technique (3.4 vs. 2.7). The mid to distal portions of the renal arteries translationally move with aortic pulsatility. To consistently visualize and evaluate them on MR angiography, cardiac triggering might be required to reduce the effects of pulsatile motions of the renal artery in the use of a phased-array coil.

  1. A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms

    PubMed Central

    2012-01-01

    Background A subarachnoid hemorrhage (SAH) due to the rupture of a cerebral aneurysm (CA) is a devastating event associated with high rates of mortality. Magnetic resonance angiography (MRA), as a noninvasive technique, is typically used initially. The object of our study is to evaluate the feasibility of 4D time-resolved MRA with keyhole (4D-TRAK) for the diagnostic accuracy and reliability of the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA) by using DSA as a reference. Methods 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and CE timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. Results The overall image quality of 4D-TRAK with a contrast dose of 10 ml was in the diagnostic range but still cannot be compared with that of 3D-TOF-MRA. In 52 patients with suspected CAs, fifty-eight CAs were confirmed on 3D-DSA finally. Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31%, 93.33%, 85.71% and 98.08%, 100%, 85.71%, respectively, and 74.07%, 75.00%, 66.67% and 96.30%, 95.83%, 100% on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm, measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (P = 0.008). However, for 39 CAs with maximal diameter ≥ 3 mm, the diagnostic accuracy is equally (39 on 4D-TRAK vs. 39 on 3D-TOF-MRA) (P = 1). In four larger CAs with maximal diameter ≥ 10 mm, 4D-TRAK provided a better characterization of morphology than 3D-TOF-MRA. Conclusion 4D-TRAK at a lower contrast dose of 10 ml with a combination of SENSE and CENTRA at 3 T could provide similar diagnostic accuracy rate for CAs with maximal diameter ≥ 3 mm, and a better characterization of morphology for larger CAs with maximal diameter ≥ 10 mm compared to 3D-TOF-MRA. However, further study is still needed to improve the “vascular edge” artifact and the compromise in spatial resolution in depiction of CAs with maximal diameter<3 mm. PMID:22784396

  2. [3D-TOF MR-angiography with high spatial resolution for surgical planning in insular lobe gliomas].

    PubMed

    Bykanov, A E; Pitskhelauri, D I; Pronin, I N; Tonoyan, A S; Kornienko, V N; Zakharova, N E; Turkin, A M; Sanikidze, A Z; Shkarubo, M A; Shkatova, A M; Shults, E I

    2015-01-01

    Despite the obvious progress in modern neurosurgery, surgery for glial tumors of the insular lobe is often associated with a high risk of postoperative neurological deficit, which is primarily caused by damage to perforating arteries of the M1 segment of the middle cerebral artery. The work is aimed at evaluating the effectiveness of high resolution time-of-flight (3D-TOF) MR angiography in imaging of medial and lateral lenticulostriate arteries and determining their relationship to tumor edge in patients with gliomas of the insula. 3D-TOF MR angiography data were analyzed in 20 patients with primarily diagnosed cerebral gliomas involving the insula. All patients underwent non-contrast enhanced 3D-TOF MR angiography. In 6 cases, 3D-TOF MRA was performed before and after contrast enhancement. 3D-TOF angiography before intravenous contrast injection was capable of visualizing the medial lenticulostriate arteries in 19 patients (95% of all cases) and lateral lenticulostriate arteries in 18 patients (90% of all cases). Contrast-enhanced 3D-TOF angiography allows for better visualization of both the proximal and distal segments of lenticulostriate arteries. Three variants of relationship between the tumor and lenticulostriate arteries were identified. Variant I: the tumor grew over the arteries without their displacement in 2 cases (10% of the total number of observations); variant II: the tumor caused medial displacement of arteries without growing over them in 11 cases (55% of the total number of observations); variant III: the tumor partially grew over and displaced arteries in 2 cases (10%). In 25% of cases (5 patients), tumor was poorly visualized on 3D-TOF MR angiograms because their signal characteristics did not differ from those of the medulla (tumor tissue was T1 isointense). As a result, it was impossible to determine the relationship between the tumor and lenticulostriate arteries. High spatial resolution time-of-flight MR angiography can be recommended for preoperative imaging of lenticulostriate arteries to plan the extent of neurosurgical resection in patients with glial tumors of the insular lobe.

  3. Time-resolved 3D contrast-enhanced MRA on 3.0T: a non-invasive follow-up technique after stent-assisted coil embolization of the intracranial aneurysm.

    PubMed

    Choi, Jin Woo; Roh, Hong Gee; Moon, Won-Jin; Kim, Na Ra; Moon, Sung Gyu; Kang, Chung Hwan; Chun, Young Il; Kang, Hyun-Seung

    2011-01-01

    To evaluate the usefulness of time-resolved contrast enhanced magnetic resonance angiography (4D MRA) after stent-assisted coil embolization by comparing it with time of flight (TOF)-MRA. TOF-MRA and 4D MRA were obtained by 3T MRI in 26 patients treated with stent-assisted coil embolization (Enterprise:Neuroform = 7:19). The qualities of the MRA were rated on a graded scale of 0 to 4. We classified completeness of endovascular treatment into three categories. The degree of quality of visualization of the stented artery was compared between TOF and 4D MRA by the Wilcoxon signed rank test. We used the Mann-Whitney U test for comparing the quality of the visualization of the stented artery according to the stent type in each MRA method. The quality in terms of the visualization of the stented arteries in 4D MRA was significantly superior to that in 3D TOF-MRA, regardless of type of the stent (p < 0.001). The quality of the arteries which were stented with Neuroform was superior to that of the arteries stented with Enterprise in 3D TOF (p < 0.001) and 4D MRA (p = 0.008), respectively. 4D MRA provides a higher quality view of the stented parent arteries when compared with TOF.

  4. Surface and adsorbate structural analysis from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Rabalais, J. W.; Bu, H.; Roux, C.

    1992-02-01

    The methods of obtaining surface structural information from low energy ion scattering spectrometry are described. These methods include measurements of backscattering, forwardscattering, and recoiling intensities vs beam incident α, beam exit β, crystal azimuthal δ, and scattering Θ angles. References are provided which give examples of each different kind of measurement. The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS), which collects both scattered.and recoiled neutrals and ions simultaneously, is described. TOF-SARS data for the three surface phases, clean Ni{110}-(1 × 1), Ni{110}-(1 × 2)-H missing row, and Ni{110}-(2 × 1)-O missing row, are used to illustrate some of the structural measurements.

  5. Determination of the structure of subsurface layers by means of coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Teplov, S. V.; Rabalais, J. W.

    1994-05-01

    It is demonstrated that both surface and subsurface structural information can be obtained from Si{100}-(2 × 1) and Si{100}-(1 × 1)-H by coupling coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS) with three-dimensional trajectory simulations. Experimentally, backscattering intensity versus incident α angle scans at a scattering angle of ˜ 180° have been measured for 2 keV He + incident on both the (2 × 1) and (1 × 1)-H surfaces. Computationally, an efficient three-dimensional version of the Monte Carlo computer code RECAD has been developed and applied to simulation of the TOF-SARS results. An R (reliability) factor has been introduced for quantitative evaluation of the agreement between experimental and simulated scans. For the case of 2 keV He + scattering from Si{100}, scattering features can be observed and delineated from as many as 14 atomic layers ( ˜ 18 Å) below the surface. The intradimer spacing D is determined as 2.2 Å from the minimum in the R-factor versus D plot.

  6. The applied research of MRI with ASSET-EPI-FLAIR combined with 3D TOF MRA sequences in the assessment of patients with acute cerebral infarction.

    PubMed

    Lin, Zhichao; Guo, Zexiong; Qiu, Lin; Yang, Wanyoug; Lin, Mingxia

    2016-12-01

    Background To extend the time window for thrombolysis, reducing the time for diagnosis and detection of acute cerebral infarction seems to be warranted. Purpose To evaluate the feasibility of implementing an array spatial sensitivity technique (ASSET)-echo-planar imaging (EPI)-fluid attenuated inversion recovery (FLAIR) (AE-FLAIR) sequence into an acute cerebral infarction magnetic resonance (MR) evaluation protocol, and to assess the diagnostic value of AE-FLAIR combined with three-dimensional time-of-flight MR angiography (3D TOF MRA). Material and Methods A total of 100 patients (68 men, 32 women; age range, 44-82 years) with acute cerebral infarction, including 50 consecutive uncooperative and 50 cooperative patients, were evaluated with T1-weighted (T1W) imaging, T2-weighted (T2W) imaging, FLAIR, diffusion-weighted imaging (DWI), 3D TOF, EPI-FLAIR, and AE-FLAIR. Conventional FLAIR, EPI-FLAIR, and AE-FLAIR were assessed by two observers independently for image quality. The optimized group (AE-FLAIR and 3D TOF) and the control group (T1W imaging, T2W imaging, conventional FLAIR, DWI, and 3D TOF) were compared for evaluation time and diagnostic accuracy. Results One hundred and twenty-five lesions were detected and images having adequate diagnostic image quality were in 73% of conventional FLAIR, 62% of EPI-FLAIR, and 89% of AE-FLAIR. The detection time was 12 ± 1 min with 76% accuracy and 4 ± 0.5 min with 100% accuracy in the control and the optimized groups, respectively. Inter-observer agreements of κ = 0.78 and κ = 0.81 were for the optimized group and control group, respectively. Conclusion With reduced acquisition time and better image quality, AE-FLAIR combined with 3D TOF may be used as a rapid diagnosis tool in patients with acute cerebral infarction, especially in uncooperative patients.

  7. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    PubMed

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-07

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  8. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  9. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    PubMed

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  10. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    PubMed

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Capsule Typing of Haemophilus influenzae by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik

    2018-03-01

    Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.

  12. Time-of-flight PET time calibration using data consistency

    NASA Astrophysics Data System (ADS)

    Defrise, Michel; Rezaei, Ahmadreza; Nuyts, Johan

    2018-05-01

    This paper presents new data driven methods for the time of flight (TOF) calibration of positron emission tomography (PET) scanners. These methods are derived from the consistency condition for TOF PET, they can be applied to data measured with an arbitrary tracer distribution and are numerically efficient because they do not require a preliminary image reconstruction from the non-TOF data. Two-dimensional simulations are presented for one of the methods, which only involves the two first moments of the data with respect to the TOF variable. The numerical results show that this method estimates the detector timing offsets with errors that are larger than those obtained via an initial non-TOF reconstruction, but remain smaller than of the TOF resolution and thereby have a limited impact on the quantitative accuracy of the activity image estimated with standard maximum likelihood reconstruction algorithms.

  13. Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.

    2008-03-01

    Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.

  14. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    PubMed

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  15. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    NASA Astrophysics Data System (ADS)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Follow-up of intracranial aneurysms treated with stent-assisted coiling: Comparison of contrast-enhanced MRA, time-of-flight MRA, and digital subtraction angiography.

    PubMed

    Marciano, David; Soize, Sébastien; Metaxas, Georgios; Portefaix, Christophe; Pierot, Laurent

    2017-02-01

    Data about non-invasive follow-up of aneurysm after stent-assisted coiling is scarce. We aimed to compare time-of-flight (TOF) magnetic resonance angiography (MRA) (3D-TOF-MRA) and contrast-enhanced MRA (CE-MRA) at 3-Tesla, with digital subtraction angiography (DSA) for evaluating aneurysm occlusion and parent artery patency after stent-assisted coiling. In this retrospective single-center study, patients were included if they had an intracranial aneurysm treated by stent-assisted coiling between March 2008 and June 2015, followed with both MRA sequences (3D-TOF-MRA and CE-MRA) at 3-Tesla and DSA, performed in an interval<48hours. Thirty-five aneurysms were included. Regarding aneurysm occlusion evaluation, agreement with DSA was better for CE-MRA (K=0.53) than 3D-TOF-MRA (K=0.28). Diagnostic accuracies for aneurysm remnant depiction were similar for 3D-TOF-MRA and CE-MRA (P=1). Both 3D-TOF-MRA (K=0.05) and CE-MRA (K=-0.04) were unable to detect pathological vessel compared to DSA, without difference in accuracy (P=0.68). For parent artery occlusion detection, agreement with DSA was substantial for 3D-TOF-MRA (K=0.64) and moderate for CE-MRA (K=0.45), with similar good diagnostic accuracies (P=1). After stent-assisted coiling treatment, 3D-TOF-MRA and CE-MRA demonstrated good accuracy to detect aneurysm remnant (but tended to overestimation). Although CE-MRA agreement with DSA was better, there was no statistical difference between 3D-TOF-MRA and CE-MRA accuracies. Both MRAs were unable to provide a precise evaluation of in-stent status but could detect parent vessel occlusion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Neurovascular Study of the Trigeminal Nerve at 3 T MRI

    PubMed Central

    Gonzalez, Nadia; Muñoz, Alexandra; Bravo, Fernando; Sarroca, Daniel; Morales, Carlos

    2015-01-01

    This study aimed to show a novel visualization method to investigate neurovascular compression of the trigeminal nerve (TN) using a volume-rendering fusion imaging technique of 3D fast imaging employing steady-state acquisition (3D FIESTA) and coregistered 3D time of flight MR angiography (3D TOF MRA) sequences, which we called “neurovascular study of the trigeminal nerve”. We prospectively studied 30 patients with unilateral trigeminal neuralgia (TN) and 50 subjects without symptoms of TN (control group), on a 3 Tesla scanner. All patients were assessed using 3D FIESTA and 3D TOF MRA sequences centered on the pons, as well as a standard brain protocol including axial T1, T2, FLAIR and GRE sequences to exclude other pathologies that could cause TN. Post-contrast T1-weighted sequences were also performed. All cases showing arterial imprinting on the trigeminal nerve (n = 11) were identified on the ipsilateral side of the pain. No significant relationship was found between the presence of an artery in contact with the trigeminal nerve and TN. Eight cases were found showing arterial contact on the ipsilateral side of the pain and five cases of arterial contact on the contralateral side. The fusion imaging technique of 3D FIESTA and 3D TOF MRA sequences, combining the high anatomical detail provided by the 3D FIESTA sequence with the 3D TOF MRA sequence and its capacity to depict arterial structures, results in a tool that enables quick and efficient visualization and assessment of the relationship between the trigeminal nerve and the neighboring vascular structures. PMID:25924169

  18. Comparison of remnant size in embolized intracranial aneurysms measured at follow-up with DSA and MRA.

    PubMed

    Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-12-01

    The possibility of recanalization and the need for retreatment are the most important limitations of intracranial aneurysm embolization. The purpose of the study was to compare the size of aneurysm remnants measured at follow-up with three-dimensional digital subtracted angiography (3D-DSA) and magnetic resonance angiography (MRA). Twenty-six aneurysms were found incompletely occluded in 72 consecutively examined patients at a follow-up after 3 months. The diameters and volume of aneurysm remnants were compared between 3D-DSA, time-of-flight MRA (TOF-MRA), contrast-enhanced TOF-MRA (CE-TOF-MRA), and contrast-enhanced MRA (CE-MRA) at 1.5 T. There was a significant correlation between remnant volumes calculated based on 3D-DSA and all MRA modalities. The intraobserver variability of the measurements ranged from 3.4 to 4.1 % and the interobserver variability from 5.8 to 7.3 %. There were no significant differences in the variability between the techniques. The mean residual filling volume ranged from 16.3 ± 19.0 mm(3) in TOF-MRA to 30.5 ± 44.6 mm(3) in 3D-DSA (P < 0.04). Significant differences were found in the volumes measured with 3D-DSA and CE-MRA as compared to TOF-MRA and CE-TOF-MRA (P < 0.01). There was a moderate significant correlation between the residual filling and the relative error of measurement in the case of TOF-MRA and CE-TOF-MRA. TOF-MRA seems to underestimate the size of aneurysm remnants detected at follow-up and should not be used as a sole imaging method to decide on re-embolization.

  19. PMT-scintillator system set up for D-D neutron TOF measurements in INTI plasma focus device

    NASA Astrophysics Data System (ADS)

    Damideh, V.; Saw, S. H.; Sadighzadeh, A.; Ali, J.; Rawat, R. S.; Lee, P.; Lee, S.

    2017-03-01

    This paper summarizes a Photomultiplier-Scintillator diagnostic system for use in our plasma focus experiments at the Center for Plasma Research INTI IU. The system features an anode-grounded high pulse linearity voltage divider and uses NE102A plastic scintillators. It has detected D-D neutrons in INTI plasma focus device with clear and high signal to noise ratio. Neutron TOF of 120 ns has been measured from the time difference between hard x-ray pulse peak and neutron peak time over a flight path of 2.6±0.01 m; giving energy of 2.5±0.1 MeV for these side-on neutrons.

  20. Improved bacterial identification directly from urine samples with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kitagawa, Koichi; Shigemura, Katsumi; Onuma, Ken-Ichiro; Nishida, Masako; Fujiwara, Mayu; Kobayashi, Saori; Yamasaki, Mika; Nakamura, Tatsuya; Yamamichi, Fukashi; Shirakawa, Toshiro; Tokimatsu, Issei; Fujisawa, Masato

    2018-03-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) contributes to rapid identification of pathogens in the clinic but has not yet performed especially well for Gram-positive cocci (GPC) causing complicated urinary tract infection (UTI). The goal of this study was to investigate the possible clinical use of MALDI-TOF MS as a rapid method for bacterial identification directly from urine in complicated UTI. MALDI-TOF MS was applied to urine samples gathered from 142 suspected complicated UTI patients in 2015-2017. We modified the standard procedure (Method 1) for sample preparation by adding an initial 10 minutes of ultrasonication followed by centrifugation at 500 g for 1 minutes to remove debris such as epithelial cells and leukocytes from the urine (Method 2). In 133 urine culture-positive bacteria, the rate of corresponded with urine culture in GPC by MALDI-TOF MS in urine with standard sample preparation (Method 1) was 16.7%, but the modified sample preparation (Method 2) significantly improved that rate to 52.2% (P=.045). Method 2 also improved the identification accuracy for Gram-negative rods (GNR) from 77.1% to 94.2% (P=.022). The modified Method 2 significantly improved the average MALDI score from 1.408±0.153 to 2.166±0.045 (P=.000) for GPC and slightly improved the score from 2.107±0.061 to 2.164±0.037 for GNR. The modified sample preparation for MALDI-TOF MS can improve identification accuracy for complicated UTI causative bacteria. This simple modification offers a rapid and accurate routine diagnosis for UTI, and may possibly be a substitute for urine cultures. © 2017 Wiley Periodicals, Inc.

  1. [Separation and identification of bovine lactoferricin by high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/ time of flight mass spectrometry].

    PubMed

    An, Meichen; Liu, Ning

    2010-02-01

    A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.

  2. [Combined use of ECK-triggered 2D-phase contrast MR angiography and 2D-time-of-flight MR angiography for planning and follow up before and after vascular intervention of pelvic and leg arteries].

    PubMed

    Reimer, P; Wilhelm, M; Lentschig, M; Wörtler, K; Marx, C; Allkemper, T; Boettger, U; Heinecke, A; Rummeny, E J; Peters, P E

    1998-03-01

    To develop a strategy for the complete work-up of vessel lumen and vessel wall for planning and follow-up of radiological interventions of lower extremity arteries. A total of 36 patients (21 pre-, 8 post- and 7 pre- and postinterventional) were studied. MRA studies were performed using an ECG-triggered phase contrast technique for the demonstration of intraluminal flow and an axial high resolution time-of-flight technique to assess the vascular wall. All MRA studies were analysed by intraindividual DSA comparison for the assessment of flow and wall structures. Combined MRA techniques provided a good correlation with DSA for the assessment of vascular flow. The kappa test revealed a value of greater than 0.61 for most on the vessel segments proving a good correlation of both methods. Orthogonal high-resolution TOF-MRA provided additional information for the assessment postinterventional wall haematomas and hard plaques. Combination of PCA to study flow and axial TOF to study wall pathology improves the usefulness of peripheral MRA.

  3. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.).

    PubMed

    Wang, Aili; Liu, Li; Peng, Yanchun; Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes.

  4. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. PMID:26407296

  5. Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET

    NASA Astrophysics Data System (ADS)

    Rezaei, Ahmadreza; Michel, Christian; Casey, Michael E.; Nuyts, Johan

    2016-02-01

    Previously, maximum-likelihood methods have been proposed to jointly estimate the activity image and the attenuation image or the attenuation sinogram from time-of-flight (TOF) positron emission tomography (PET) data. In this contribution, we propose a method that addresses the possible alignment problem of the TOF-PET emission data and the computed tomography (CT) attenuation data, by combining reconstruction and registration. The method, called MLRR, iteratively reconstructs the activity image while registering the available CT-based attenuation image, so that the pair of activity and attenuation images maximise the likelihood of the TOF emission sinogram. The algorithm is slow to converge, but some acceleration could be achieved by using Nesterov’s momentum method and by applying a multi-resolution scheme for the non-rigid displacement estimation. The latter also helps to avoid local optima, although convergence to the global optimum cannot be guaranteed. The results are evaluated on 2D and 3D simulations as well as a respiratory gated clinical scan. Our experiments indicate that the proposed method is able to correct for possible misalignment of the CT-based attenuation image, and is therefore a very promising approach to suppressing attenuation artefacts in clinical PET/CT. When applied to respiratory gated data of a patient scan, it produced deformations that are compatible with breathing motion and which reduced the well known attenuation artefact near the dome of the liver. Since the method makes use of the energy-converted CT attenuation image, the scale problem of joint reconstruction is automatically solved.

  6. Identification of proteins in a human pleural exudate using two-dimensional preparative liquid-phase electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Nilsson, C L; Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Pleural effusion may occur in patients suffering from physical trauma or systemic disorders such as infection, inflammation, or cancer. In order to investigate proteins in a pleural exudate from a patient with severe pneumonia, we used a strategy that combined preparative two-dimensional liquid-phase electrophoresis (2-D LPE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and Western blotting. Preparative 2-D LPE is based on the same principles as analytical 2-D gel electrophoresis, except that the proteins remain in liquid phase during the entire procedure. In the first dimension, liquid-phase isoelectric focusing allows for the enrichment of proteins in liquid fractions. In the Rotofor cell, large volumes (up to 55 mL) and protein amounts (up to 1-2 g) can be loaded. Several low abundance proteins, cystatin C, haptoglobin, transthyretin, beta2-microglobulin, and transferrin, were detected after liquid-phase isoelectric focusing, through Western blotting analysis, in a pleural exudate (by definition, >25 g/L total protein). Direct MALDI-TOF-MS analysis of proteins in a Rotofor fraction is demonstrated as well. MALDI-TOF-MS analysis of a tryptic digest of a continuous elution sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fraction confirmed the presence of cystatin C. By applying 2-D LPE, MALDI-TOF-MS, and Western blotting to the analysis of this pleural exudate, we were able to confirm the identity of proteins of potential diagnostic value. Our findings serve to illustrate the usefulness of this combination of methods in the analysis of pathological fluids.

  7. Shiga Toxin 2 Subtypes of Enterohemorrhagic E. coli O157:H- E32511 Analyzed by RT-qPCR and Top-Down Proteomics Using MALDI-TOF-TOF-MS

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Zaragoza, William J.

    2015-05-01

    We have measured the relative abundance of the B-subunits and mRNA transcripts of two Stx2 subtypes present in Shiga toxin-producing Escherichia coli (STEC) O157:H- strain E32511 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) with post source decay (PSD) and real time-quantitative polymerase chain reaction (RT-qPCR). Stx2a and Stx2c in STEC strain E32511 were quantified from the integrated peak area of their singly charged disulfide-intact B-subunit ions at m/z ~7819 and m/z ~7774, respectively. We found that the Stx2a subtype was 21-fold more abundant than the Stx2c subtype. The two amino acid substitutions (16D ↔ 16 N and 24D ↔ 24A) that distinguish Stx2a from Stx2c not only result in a mass difference of 45 Da between their respective B-subunits but also result in distinctly different fragmentation channels by MS/MS-PSD because both substitutions involve an aspartic acid (D) residue. Importantly, these two substitutions have also been linked to differences in subtype toxicity. We measured the relative abundances of mRNA transcripts using RT-qPCR and determined that the stx2a transcript is 13-fold more abundant than stx2c transcript. In silico secondary structure analysis of the full mRNA operons of stx2a and stx2c suggest that transcript structural differences may also contribute to a relative increase of Stx2a over Stx2c. In consequence, toxin expression may be under both transcriptional and post-transcriptional control.

  8. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction.

    PubMed

    Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G

    2014-12-01

    F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.

  9. Improvement of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of difficult-to-identify bacteria and its impact in the workflow of a clinical microbiology laboratory.

    PubMed

    Rodríguez-Sánchez, Belén; Marín, Mercedes; Sánchez-Carrillo, Carlos; Cercenado, Emilia; Ruiz, Adrián; Rodríguez-Créixems, Marta; Bouza, Emilio

    2014-05-01

    This study evaluates matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) capability for the identification of difficult-to-identify microorganisms. A total of 150 bacterial isolates inconclusively identified with conventional phenotypic tests were further assessed by 16S rRNA sequencing and by MALDI-TOF MS following 2 methods: a) a simplified formic acid-based, on-plate extraction and b) performing a tube-based extraction step. Using the simplified method, 29 isolates could not be identified. For the remaining 121 isolates (80.7%), we obtained a reliable identification by MALDI-TOF: in 103 isolates, the identification by 16S rRNA sequencing and MALDI TOF coincided at the species level (68.7% from the total 150 analyzed isolates and 85.1% from the samples with MALDI-TOF result), and in 18 isolates, the identification by both methods coincided at the genus level (12% from the total and 14.9% from the samples with MALDI-TOF results). No discordant results were observed. The performance of the tube-based extraction step allowed the identification at the species level of 6 of the 29 unidentified isolates by the simplified method. In summary, MALDI-TOF can be used for the rapid identification of many bacterial isolates inconclusively identified by conventional methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefferkoetter, Joshua, E-mail: dnrjds@nus.edu.sg; Ouyang, Jinsong; Rakvongthai, Yothin

    2014-06-15

    Purpose: A study was designed to investigate the impact of time-of-flight (TOF) and point spread function (PSF) modeling on the detectability of myocardial defects. Methods: Clinical FDG-PET data were used to generate populations of defect-present and defect-absent images. Defects were incorporated at three contrast levels, and images were reconstructed by ordered subset expectation maximization (OSEM) iterative methods including ordinary Poisson, alone and with PSF, TOF, and PSF+TOF. Channelized Hotelling observer signal-to-noise ratio (SNR) was the surrogate for human observer performance. Results: For three iterations, 12 subsets, and no postreconstruction smoothing, TOF improved overall defect detection SNR by 8.6% as comparedmore » to its non-TOF counterpart for all the defect contrasts. Due to the slow convergence of PSF reconstruction, PSF yielded 4.4% less SNR than non-PSF. For reconstruction parameters (iteration number and postreconstruction smoothing kernel size) optimizing observer SNR, PSF showed larger improvement for faint defects. The combination of TOF and PSF improved mean detection SNR as compared to non-TOF and non-PSF counterparts by 3.0% and 3.2%, respectively. Conclusions: For typical reconstruction protocol used in clinical practice, i.e., less than five iterations, TOF improved defect detectability. In contrast, PSF generally yielded less detectability. For large number of iterations, TOF+PSF yields the best observer performance.« less

  11. Characterization of mustard seeds and paste by DART ionization with time-of-flight mass spectrometry.

    PubMed

    Prchalová, Jana; Kovařík, František; Ševčík, Rudolf; Čížková, Helena; Rajchl, Aleš

    2014-09-01

    Direct analysis in real time (DART) is a novel technique with great potential for rapid screening analysis. The DART ionization method coupled with high-resolution time-of-flight mass spectrometry (TOF-MS) has been used for characterization of mustard seeds and table mustard. The possibility to use DART to analyse glucosinolates was confirmed on determination of sinalbin (4-hydroxybenzyl glucosinolate). The DART-TOF-MS method was optimized and validated. A set of samples of mustard seeds and mustard products was analyzed. High-performance liquid chromatography and DART-TOF-MS were used to determine glucosinolates in mustard seeds and compared. The correlation equation between these methods was DART = 0.797*HPLC + 6.987, R(2)  = 0.972. The DART technique seems to be a suitable method for evaluation of the quality of mustard seeds and mustard products. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Comparison of veterinary drug residue results in animal tissues by ultrahigh-performance liquid chromatography coupled to triple quadrupole or quadrupole-time-of-flight tandem mass spectrometry after different sample preparation methods, including use of a commercial lipid removal product.

    PubMed

    Anumol, Tarun; Lehotay, Steven J; Stevens, Joan; Zweigenbaum, Jerry

    2017-04-01

    Veterinary drug residues in animal-derived foods must be monitored to ensure food safety, verify proper veterinary practices, enforce legal limits in domestic and imported foods, and for other purposes. A common goal in drug residue analysis in foods is to achieve acceptable monitoring results for as many analytes as possible, with higher priority given to the drugs of most concern, in an efficient and robust manner. The U.S. Department of Agriculture has implemented a multiclass, multi-residue method based on sample preparation using dispersive solid phase extraction (d-SPE) for cleanup and ultrahigh-performance liquid chromatography-tandem quadrupole mass spectrometry (UHPLC-QQQ) for analysis of >120 drugs at regulatory levels of concern in animal tissues. Recently, a new cleanup product called "enhanced matrix removal for lipids" (EMR-L) was commercially introduced that used a unique chemical mechanism to remove lipids from extracts. Furthermore, high-resolution quadrupole-time-of-flight (Q/TOF) for (U)HPLC detection often yields higher selectivity than targeted QQQ analyzers while allowing retroactive processing of samples for other contaminants. In this study, the use of both d-SPE and EMR-L sample preparation and UHPLC-QQQ and UHPLC-Q/TOF analysis methods for shared spiked samples of bovine muscle, kidney, and liver was compared. The results showed that the EMR-L method provided cleaner extracts overall and improved results for several anthelmintics and tranquilizers compared to the d-SPE method, but the EMR-L method gave lower recoveries for certain β-lactam antibiotics. QQQ vs. Q/TOF detection showed similar mixed performance advantages depending on analytes and matrix interferences, with an advantage to Q/TOF for greater possible analytical scope and non-targeted data collection. Either combination of approaches may be used to meet monitoring purposes, with an edge in efficiency to d-SPE, but greater instrument robustness and less matrix effects when analyzing EMR-L extracts. Graphical abstract Comparison of cleanup methods in the analysis of veterinary drug residues in bovine tissues.

  13. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  14. Shiga toxin 2 subtypes of enterohemorrhagic E. coli O157:H- E32511 analyzed by RT-qPCR and top-down proteomics using MALDI-TOF-TOF-MS

    USDA-ARS?s Scientific Manuscript database

    We have measured the relative abundance of the B-subunits and mRNA transcripts of two Stx2 subtypes present in Shiga toxin-producing Escherichia coli (STEC) O157:H- strain E32511 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-M...

  15. Multi-residue analysis method for analysis of pharmaceuticals using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS) in water sample

    NASA Astrophysics Data System (ADS)

    Al-Qaim, Fouad Fadhil; Abdullah, Md Pauzi; Othman, Mohamed Rozali

    2013-11-01

    In this work, a developed method using solid - phase extraction (SPE) followed by liquid chromatography - time of flight mass spectrometry (LC-ESI-TOF/MS) was developed and validated for quantification and confirmation of eleven pharmaceuticals with different therapeutic classes in water samples, Malaysia. These compounds are caffeine (CAF), prazosin (PRZ), enalapril (ENL), carbamazepine (CBZ), nifedipine (NFD), levonorgestrel (LNG), simvastatin (SMV), hydrochlorothiazide (HYD), gliclazide (GLIC), diclofenac-Na (DIC-Na) and mefenamic acid (MEF). LC was performed on a Dionex Ultimate 3000/LC 09115047 (USA) system. Chromatography was performed on a Thermo Scientific C18 (250 mm × 2.1 mm, i.d.: 5μm) column. Several parameters were optimised such as; mobile phase, gradient elution, collision energy and solvent elution for extraction of compounds from water. The recoveries obtained ranged from 30-148 % in river water. Five pharmaceutical compounds were detected in the surface water samples: caffeine, prazosin, enalpril, diclofenac-Na and mefenamic acid. The developed method is precise and accepted recoveries were got. In addition, this method is suitable to identify and quantify trace concentrations of pharmaceuticals in surface water.

  16. High sensitive analysis of steroids in doping control using gas chromatography/time-of-flight mass-spectrometry.

    PubMed

    Revelsky, A I; Samokhin, A S; Virus, E D; Rodchenkov, G M; Revelsky, I A

    2011-04-01

    The method of high sensitive gas chromatographic/time-of-flight mass-spectrometric (GC/TOF-MS) analysis of steroids was developed. Low-resolution TOF-MS instrument (with fast spectral acquisition rate) was used. This method is based on the formation of the silyl derivatives of steroids; exchange of the reagent mixture (pyridine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)) for tert-butylmethylether; offline large sample volume injection of this solution based on sorption concentration of the respective derivatives from the vapour-gas mixture flow formed from the solution and inert gas flows; and entire analytes solvent-free concentrate transfer into the injector of the gas chromatograph. Detection limits for 100 µl sample solution volume were 0.5-2 pg/µl (depending on the component). Application of TOF-MS model 'TruTOF' (Leco, St Joseph, MO, USA) coupled with gas chromatograph and ChromaTOF software (Leco, St Joseph, MO, USA) allowed extraction of the full mass spectra and resolving coeluted peaks. Due to use of the proposed method (10 µl sample aliquot) and GC/TOF-MS, two times more steroid-like compounds were registered in the urine extract in comparison with the injection of 1 µl of the same sample solution. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Investigation of practical initial attenuation image estimates in TOF-MLAA reconstruction for PET/MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ju-Chieh, E-mail: chengjuchieh@gmail.com; Y

    Purpose: Time-of-flight joint attenuation and activity positron emission tomography reconstruction requires additional calibration (scale factors) or constraints during or post-reconstruction to produce a quantitative μ-map. In this work, the impact of various initializations of the joint reconstruction was investigated, and the initial average mu-value (IAM) method was introduced such that the forward-projection of the initial μ-map is already very close to that of the reference μ-map, thus reducing/minimizing the offset (scale factor) during the early iterations of the joint reconstruction. Consequently, the accuracy and efficiency of unconstrained joint reconstruction such as time-of-flight maximum likelihood estimation of attenuation and activity (TOF-MLAA)more » can be improved by the proposed IAM method. Methods: 2D simulations of brain and chest were used to evaluate TOF-MLAA with various initial estimates which include the object filled with water uniformly (conventional initial estimate), bone uniformly, the average μ-value uniformly (IAM magnitude initialization method), and the perfect spatial μ-distribution but with a wrong magnitude (initialization in terms of distribution). 3D GATE simulation was also performed for the chest phantom under a typical clinical scanning condition, and the simulated data were reconstructed with a fully corrected list-mode TOF-MLAA algorithm with various initial estimates. The accuracy of the average μ-values within the brain, chest, and abdomen regions obtained from the MR derived μ-maps was also evaluated using computed tomography μ-maps as the gold-standard. Results: The estimated μ-map with the initialization in terms of magnitude (i.e., average μ-value) was observed to reach the reference more quickly and naturally as compared to all other cases. Both 2D and 3D GATE simulations produced similar results, and it was observed that the proposed IAM approach can produce quantitative μ-map/emission when the corrections for physical effects such as scatter and randoms were included. The average μ-value obtained from MR derived μ-map was accurate within 5% with corrections for bone, fat, and uniform lungs. Conclusions: The proposed IAM-TOF-MLAA can produce quantitative μ-map without any calibration provided that there are sufficient counts in the measured data. For low count data, noise reduction and additional regularization/rescaling techniques need to be applied and investigated. The average μ-value within the object is prior information which can be extracted from MR and patient database, and it is feasible to obtain accurate average μ-value using MR derived μ-map with corrections as demonstrated in this work.« less

  18. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.

    PubMed

    Mehranian, Abolfazl; Zaidi, Habib

    2015-04-01

    Time-of-flight (TOF) PET/MR imaging is an emerging imaging technology with great capabilities offered by TOF to improve image quality and lesion detectability. We assessed, for the first time, the impact of TOF image reconstruction on PET quantification errors induced by MR imaging-based attenuation correction (MRAC) using simulation and clinical PET/CT studies. Standard 4-class attenuation maps were derived by segmentation of CT images of 27 patients undergoing PET/CT examinations into background air, lung, soft-tissue, and fat tissue classes, followed by the assignment of predefined attenuation coefficients to each class. For each patient, 4 PET images were reconstructed: non-TOF and TOF both corrected for attenuation using reference CT-based attenuation correction and the resulting 4-class MRAC maps. The relative errors between non-TOF and TOF MRAC reconstructions were compared with their reference CT-based attenuation correction reconstructions. The bias was locally and globally evaluated using volumes of interest (VOIs) defined on lesions and normal tissues and CT-derived tissue classes containing all voxels in a given tissue, respectively. The impact of TOF on reducing the errors induced by metal-susceptibility and respiratory-phase mismatch artifacts was also evaluated using clinical and simulation studies. Our results show that TOF PET can remarkably reduce attenuation correction artifacts and quantification errors in the lungs and bone tissues. Using classwise analysis, it was found that the non-TOF MRAC method results in an error of -3.4% ± 11.5% in the lungs and -21.8% ± 2.9% in bones, whereas its TOF counterpart reduced the errors to -2.9% ± 7.1% and -15.3% ± 2.3%, respectively. The VOI-based analysis revealed that the non-TOF and TOF methods resulted in an average overestimation of 7.5% and 3.9% in or near lung lesions (n = 23) and underestimation of less than 5% for soft tissue and in or near bone lesions (n = 91). Simulation results showed that as TOF resolution improves, artifacts and quantification errors are substantially reduced. TOF PET substantially reduces artifacts and improves significantly the quantitative accuracy of standard MRAC methods. Therefore, MRAC should be less of a concern on future TOF PET/MR scanners with improved timing resolution. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms.

    PubMed

    Wu, Qian; Li, Ming-Hua

    2012-07-06

    A subarachnoid hemorrhage (SAH) due to the rupture of a cerebral aneurysm (CA) is a devastating event associated with high rates of mortality. Magnetic resonance angiography (MRA), as a noninvasive technique, is typically used initially. The object of our study is to evaluate the feasibility of 4D time-resolved MRA with keyhole (4D-TRAK) for the diagnostic accuracy and reliability of the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA) by using DSA as a reference. 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and CE timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. The overall image quality of 4D-TRAK with a contrast dose of 10 ml was in the diagnostic range but still cannot be compared with that of 3D-TOF-MRA. In 52 patients with suspected CAs, fifty-eight CAs were confirmed on 3D-DSA finally. Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31%, 93.33%, 85.71% and 98.08%, 100%, 85.71%, respectively, and 74.07%, 75.00%, 66.67% and 96.30%, 95.83%, 100% on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm, measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (P = 0.008). However, for 39 CAs with maximal diameter ≥ 3 mm, the diagnostic accuracy is equally (39 on 4D-TRAK vs. 39 on 3D-TOF-MRA) (P = 1). In four larger CAs with maximal diameter ≥ 10 mm, 4D-TRAK provided a better characterization of morphology than 3D-TOF-MRA. 4D-TRAK at a lower contrast dose of 10 ml with a combination of SENSE and CENTRA at 3 T could provide similar diagnostic accuracy rate for CAs with maximal diameter ≥ 3 mm, and a better characterization of morphology for larger CAs with maximal diameter ≥ 10 mm compared to 3D-TOF-MRA. However, further study is still needed to improve the "vascular edge" artifact and the compromise in spatial resolution in depiction of CAs with maximal diameter<3 mm.

  20. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat.

    PubMed

    Liu, Li; Ikeda, Tatsuya M; Branlard, Gerard; Peña, Roberto J; Rogers, William J; Lerner, Silvia E; Kolman, María A; Xia, Xianchun; Wang, Linhai; Ma, Wujun; Appels, Rudi; Yoshida, Hisashi; Wang, Aili; Yan, Yueming; He, Zhonghu

    2010-06-24

    Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF x SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat.

  1. Species level identification of coagulase negative Staphylococcus spp. from buffalo using matrix-assisted laser desorption ionization-time of flight mass spectrometry and cydB real-time quantitative PCR.

    PubMed

    Pizauro, Lucas J L; de Almeida, Camila C; Soltes, Glenn A; Slavic, Durda; Rossi-Junior, Oswaldo D; de Ávila, Fernando A; Zafalon, Luiz F; MacInnes, Janet I

    2017-05-01

    Incorrect identification of Staphylococcus spp. can have serious clinical and zoonotic repercussions. Accordingly, the aim of this study was to determine if matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or cydB real- time quantitative PCR (qPCR) could be used to accurately identify coagulase negative Staphylococcus spp. (CoNS) obtained from buffalo milk and milking environment samples. Seventy-five of 84 CoNS isolates could be identified to the species level (score value >1.99) using MALDI-TOF MS. However, as determined by cytochrome d ubiquinol oxidase subunit II (cydB) qPCR and by 16S RNA and cydB gene sequencing, 10S. agnetis strains were wrongly identified as S. hyicus by MALDI-TOF MS. In addition, 9 isolates identified by MALDI-TOF only to the genus level (score values between 1.70 and 1.99) could be identified to species by cydB qPCR. Our findings suggest that MALDI-TOF MS is a reliable method for rapid identification of S. chromogenes and S. epidermidis (species of interest both in human and veterinary medicine) and may be able to correctly identify other Staphylococcus spp. However, at present not all Staphylococcus spp. found in buffalo milk can be accurately identified by MALDI-TOF MS and for these organisms, the cydB qPCR developed in the current study may provide a reliable alternative method for rapid identification of CoNS species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    PubMed

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  3. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Ogasawara, K.; Ebert, R. W.; McComas, D. J.; Allegrini, F.; Weidner, S. E.; Alexander, N.; Livi, S. A.

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ˜10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ˜30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  4. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas.

    PubMed

    Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  5. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography

    PubMed Central

    Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I.

    2017-01-01

    The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels (p < 0.001). Additionally, we found that the TOF-MRA SIG values were highly correlated with various flow rates (β = 0.96, p < 0.001). Remarkably, the correlation coefficient between the WSS obtained from the computational fluid dynamics (CFD) analysis and the TOF-MRA SIG was greater than 0.8 in each section at the carotid artery (p < 0.001 for all β values). This new technique using TOF-MRA could enable the rapid calculation of the TOF-MRA SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice. PMID:28900625

  6. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography.

    PubMed

    Han, Kap-Soo; Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I; Jeong, Seul-Ki

    2017-01-01

    The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels ( p < 0.001). Additionally, we found that the TOF-MRA SIG values were highly correlated with various flow rates ( β = 0.96, p < 0.001). Remarkably, the correlation coefficient between the WSS obtained from the computational fluid dynamics (CFD) analysis and the TOF-MRA SIG was greater than 0.8 in each section at the carotid artery ( p < 0.001 for all β values). This new technique using TOF-MRA could enable the rapid calculation of the TOF-MRA SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice.

  7. Rapid Genotyping of Single Nucleotide Polymorphisms Influencing Warfarin Drug Response by Surface-Enhanced Laser Desorption and Ionization Time-of-Flight (SELDI-TOF) Mass Spectrometry

    PubMed Central

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M.

    2010-01-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy. PMID:20075209

  8. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectrometry.

    PubMed

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M

    2010-03-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy.

  9. A novel PFIB sample preparation protocol for correlative 3D X-ray CNT and FIB-TOF-SIMS tomography.

    PubMed

    Priebe, Agnieszka; Audoit, Guillaume; Barnes, Jean-Paul

    2017-02-01

    We present a novel sample preparation method that allows correlative 3D X-ray Computed Nano-Tomography (CNT) and Focused Ion Beam Time-Of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS) tomography to be performed on the same sample. In addition, our invention ensures that samples stay unmodified structurally and chemically between the subsequent experiments. The main principle is based on modifying the topography of the X-ray CNT experimental setup before FIB-TOF-SIMS measurements by incorporating a square washer around the sample. This affects the distribution of extraction field lines and therefore influences the trajectories of secondary ions that are now guided more efficiently towards the detector. As the result, secondary ion detection is significantly improved and higher, i.e. statistically better, signals are obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Kolecka, A; Khayhan, K; Arabatzis, M; Velegraki, A; Kostrzewa, M; Andersson, A; Scheynius, A; Cafarchia, C; Iatta, R; Montagna, M T; Youngchim, S; Cabañes, F J; Hoopman, P; Kraak, B; Groenewald, M; Boekhout, T

    2014-02-01

    Infections caused by Malassezia yeasts are most likely underdiagnosed, because fatty acid supplementation is needed for growth. Rapid identification of Malassezia species is essential for appropriate treatment of Malassezia-related skin infections, fungaemia and nosocomial outbreaks in neonates, children and adults and can be life-saving for those patients. Ma-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported to be a rapid and reliable diagnostic tool to identify clinically important yeasts, but so far no data have been reported on identification of Malassezia isolates with this technique. To create an extensive database of main mass spectra (MSPs) that will allow quick identification of Malassezia species by MALDI-TOF MS. An in-house library of 113 MSPs was created from 48 reference strains from the CBS-KNAW yeast collection. The in-house library was challenged with two test sets of Malassezia strains, namely 165 reference strains from the CBS collection and 338 isolates collected in Greece, Italy, Sweden and Thailand. MALDI-TOF MS allowed correct identification of all 14 Malassezia spp. MALDI-TOF MS results were concordant with those of sequence analyses of the internal transcribed spacers (ITS1/ITS2) and the D1/D2 domains of the large subunit of the ribosomal DNA. Implementation of the MALDI-TOF MS system as a routine identification tool will contribute to correct identification of Malassezia yeasts with minimal effort and in a short turnaround time, which is especially important for the rapid identification of Malassezia in skin diseases and nosocomial outbreaks. © 2013 British Association of Dermatologists.

  11. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    PubMed

    Barnini, Simona; Ghelardi, Emilia; Brucculeri, Veronica; Morici, Paola; Lupetti, Antonella

    2015-06-18

    Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.

  12. Compton scatter tomography in TOF-PET

    NASA Astrophysics Data System (ADS)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  13. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can alsomore » be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was first developed and then applied to the axial neutron time of flight detectors at the ZFacility mentioned above. First, MCNPPoliMi was used to model relevant portions of the facility between the source and the detector locations. To obtain useful statistics, variance reduction was utilized. Then, the resulting collision output table produced by MCNPPoliMi was further analyzed by a MATLAB postprocessing code. This converted the energy deposited by neutron and photon interactions in the plastic scintillator (i.e., nTOF detector) into light output, in units of MeVee%D1%84 (electron equivalent) vs time. The time response of the detector was then folded into the signal via another MATLAB code. The simulated response was then compared with experimental data and shown to be in good agreement. To address the issue of neutron scattering, an %E2%80%9CIdeal Case,%E2%80%9D (i.e., a plastic scintillator was placed at the same distance from the source for each detector location) with no structural components in the problem. This was done to produce as %E2%80%9Cpure%E2%80%9D a neutron signal as possible. The simulated waveform from this %E2%80%9CIdeal Case%E2%80%9D was then compared with the simulated data from the %E2%80%9CFull Scale%E2%80%9D geometry (i.e., the detector at the same location, but with all the structural materials now included). The %E2%80%9CIdeal Case%E2%80%9D was subtracted from the %E2%80%9CFull Scale%E2%80%9D geometry case, and this was determined to be the contribution due to scattering. The time response was deconvolved out of the empirical data, and the contribution due to scattering was then subtracted out of it. A transformation was then made from dN/dt to dN/dE to obtain neutron spectra at two different detector locations.« less

  14. Study of carrier-mobility of organic thin film by dark-injection time-of-flight and electric-field-induced optical second-harmonic generation measurements

    NASA Astrophysics Data System (ADS)

    Li, Xin; Sunaga, Masashi; Taguchi, Dai; Manaka, Takaaki; Lin, Hong; Iwamoto, Mitsumasa

    2017-06-01

    By using dark-injection time-of-flight (ToF) and time-resolved electric-field-induced optical second-harmonic generation (EFISHG) measurements, we studied carrier mobility μ of pentacene (Pen) thin film of ITO/Pen/Al and Au/Pen/polyimide/ITO diodes where pentacene film is ∼100 nm in thickness. ToF showed that determination of transit time tr from trace of transient currents is difficult owing to large capacitive charging current. On the other hand, optical EFISHG is free from this charging current, and allows us to calculate hole and electron mobility as μh = 1.8 ×10-4 cm2/Vs and μe = 7.6 ×10-7 cm2/Vs, respectively, by using the relation tr = d / μ ∫tc tr E (0) dt (d : Pen thickness, E (0) : electric field across Pen), instead of the conventional relationship tr =d2 / μV (V : voltage across Pen). Time-resolved EFISHG measurement is useful for the determination of carrier mobility of organic thin film in organic devices.

  15. Comparison of phenotypic methods and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for the identification of aero-tolerant Actinomyces spp. isolated from soft-tissue infections.

    PubMed

    Ng, L S Y; Sim, J H C; Eng, L C; Menon, S; Tan, T Y

    2012-08-01

    Aero-tolerant Actinomyces spp. are an under-recognised cause of cutaneous infections, in part because identification using conventional phenotypic methods is difficult and may be inaccurate. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a promising new technique for bacterial identification, but with limited data on the identification of aero-tolerant Actinomyces spp. This study evaluated the accuracy of a phenotypic biochemical kit, MALDI-TOF MS and genotypic identification methods for the identification of this problematic group of organisms. Thirty aero-tolerant Actinomyces spp. were isolated from soft-tissue infections over a 2-year period. Species identification was performed by 16 s rRNA sequencing and genotypic results were compared with results obtained by API Coryne and MALDI-TOF MS. There was poor agreement between API Coryne and genotypic identification, with only 33% of isolates correctly identified to the species level. MALDI-TOF MS correctly identified 97% of isolates to the species level, with 33% of identifications achieved with high confidence scores. MALDI-TOF MS is a promising new tool for the identification of aero-tolerant Actinomyces spp., but improvement of the database is required in order to increase the confidence level of identification.

  16. A comparative study of magnetic resonance venography techniques for the evaluation of the internal jugular veins in multiple sclerosis patients☆

    PubMed Central

    Rahman, M. Tamizur; Sethi, Sean K.; Utriainen, David T.; Hewett, J. Joseph; Haacke, E. Mark

    2014-01-01

    Background and Purpose The use of magnetic resonance imaging (MRI) to assess the vascular nature of diseases such as multiple sclerosis (MS) is a growing field of research. This work reports on the application of MR angiographic (MRA) and venographic (MRV) techniques in assessing the extracranial vasculature in MS patients. Materials and Methods A standardized MRI protocol containing 2D TOF-MRV and dynamic 3D contrast-enhanced (CE) MRAV was run for 170 MS patients and 40 healthy controls (HC). The cross-sectional area (CSA) of the internal jugular veins (IJVs) was measured at three neck levels in all subjects for both MRV techniques to determine the presence of venous stenoses. All data were analyzed retrospectively. Results For the values where both methods showed signal, the 3D method showed larger CSA measurement values compared to 2D methods in both IJVs, in both MS and HC subjects which was confirmed with student paired t-tests. Of the 170 MS patients, 93 (55%) in CE-MRAV and 103 (61%) in TOF-MRV showed stenosis in at least one IJV. The corresponding numbers for the 40 HC subjects were 2 (5%) and 4 (10%), respectively. Carotid ectasias with IJV stenosis were seen in 26 cases (15%) with 3D CE-MRAV and were not observable with 2D TOF-MRV. Carotid ectasias were not seen in the HC group. In the 2D TOF-MRV data, banding of the IJVs related to slow flow was seen in 58 (34%) MS cases and in no HC cases. MS patients showed lower average CSAs than the HC subjects. Conclusion The 3D CE MRAV depicted the vascular anatomy more completely than the 2D TOF-MRV. However, the 3D CE MRAV does not provide any information about the flow characteristics which are indirectly available in the 2D TOF-MRV in those cases where there is slow flow. PMID:23850076

  17. Characterization of constituents in Stellera chamaejasme L. by rapid-resolution liquid chromatography-diode array detection and electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Liang; Lou, Zi-Yang; Zhu, Zhen-Yu; Zhang, Guo-Qing; Chai, Yi-Feng

    2008-01-01

    A reliable and rapid method based on rapid-resolution liquid chromatography-diode array detection (RRLC-DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF/MS) has been developed for the isolation and characterization of multiple constituents in the root of Stellera chamaejasme L., which was extracted by sonication with methanol in an optimized procedure. Separation of the multiple constituents was achieved on an Agilent Zorbax XDB-C18 (50x3.0 mm i.d.; 1.8 microm) column using a gradient elution at a flow rate of 0.4 mL/min. The detection wavelength was 210 nm. Mass spectra were acquired in both positive and negative modes. A formula database of the known chemical constituents in the root of Stellera chamaejasme L. was established by an Agilent software. Twenty-two obvious peaks appeared in the total ion chromatogram and nine of them were characterized by TOF/MS. The RRLC-DAD and ESI-TOF/MS method with ultrasonic extraction would be useful for rapid and effective characterization of chemical constituents in the root of Stellera chamaejasme L. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  19. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; McComas, D. J.; Allegrini, F.

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinctmore » ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.« less

  1. [Determination of six plant growth regulator residues in strawberry by liquid chromatography-quadrupole time of flight mass spectrometry].

    PubMed

    Liu, Jingjing; Gong, Ping; Zhang, Xiaomei; Wang, Jianhua; Wang, Jingtang

    2012-10-01

    A novel method was established for the determination of six plant growth regulators (PGRs), 2,4-dichlorophenoxy acetic (2,4-D), 4-chlorophenoxy-acetic acid (CAP), 4-(3-indolyl)-butyric acid (BAA), forchlorfenuron (CPPU), abscisic acid (ABA) and trans-zeatin (ZT) in strawberry using liquid chromatography-quadrupole-time of flight mass spectrometry (LC-Q TOF MS). The Quick, Easy, Cheap, Effective, Rugged and Safe method (QuEChERS) has been validated for the extraction. In this QuEChERS method, the sample was extracted by acetonitrile and cleaned up with C18 adsorbent. The extract was measured directly by LC-Q TOF MS with electrospray ionization in negative mode. The compounds were separated on an Eclipse XDB-C8 column (150 mm x 4.6 mm, 5 microm) with acetonitrile-5 mmol/L ammonium acetate-0. 1% formic acid as mobile phase under gradient elution. The confirmatory analysis was carried out by determining the accurate masses of all compounds and fragment ions upon Target MS/MS. The limits of detection (LODs) were between 1 microg/kg and 5 microg/kg. The linear range was 0.005-1.0 mg/L for each analyte. The recoveries ranged from 87% to 107% with the relative standard deviations (RSDs) less than 10% (n = 6). The method was proved to be simple and accurate.

  2. Topochemical Analysis of Cell Wall Components by TOF-SIMS.

    PubMed

    Aoki, Dan; Fukushima, Kazuhiko

    2017-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a recently developing analytical tool and a type of imaging mass spectrometry. TOF-SIMS provides mass spectral information with a lateral resolution on the order of submicrons, with widespread applicability. Sometimes, it is described as a surface analysis method without the requirement for sample pretreatment; however, several points need to be taken into account for the complete utilization of the capabilities of TOF-SIMS. In this chapter, we introduce methods for TOF-SIMS sample treatments, as well as basic knowledge of wood samples TOF-SIMS spectral and image data analysis.

  3. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization-Tandem Time of Flight mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...

  4. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings. PMID:26147919

  5. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury.

    PubMed

    Wang, Yuyu; Wang, Dazhi; Lin, Lin; Wang, Minghua

    2015-01-01

    Mercury is a ubiquitous environmental contaminant which exerts neurotoxicity upon animals. Nevertheless, the molecular mechanisms involved in inorganic mercury neurotoxicity are unknown. We investigated protein profiles of marine medaka, chronically exposed to mercuric chloride using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) analysis. The mercury accumulation and ultrastructure were also examined in the brain. The results showed that mercury was significantly accumulated in the treated brain, and subsequently caused a noticeable damage. The comparison of 2D-DIGE protein profiles between the control and treatment revealed that 16 protein spots were remarkably altered in abundance, which were further submitted for MALDI-TOF-TOF MS analysis. The identified proteins indicated that inorganic mercury may cause neurotoxicity through the induction of oxidative stress, cytoskeletal assembly dysfunction and metabolic disorders. Thus, this study provided a basis for a better understanding of the molecular mechanisms involved in mercury neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  7. Comparison of PCR/electron spray ionization-time-of-flight-mass spectrometry versus traditional clinical microbiology for active surveillance of organisms contaminating high-use surfaces in a burn intensive care unit, an orthopedic ward and healthcare workers.

    PubMed

    Yun, Heather C; Kreft, Rachael E; Castillo, Mayra A; Ehrlich, Garth D; Guymon, Charles H; Crouch, Helen K; Chung, Kevin K; Wenke, Joseph C; Hsu, Joseph R; Spirk, Tracy L; Costerton, J William; Mende, Katrin; Murray, Clinton K

    2012-10-10

    Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools. Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital. High-use environmental surfaces were assessed in 9 burn ICU and 10 orthopedic patient rooms. Clinical cultures during the study period were reviewed for pathogen comparison with investigational molecular diagnostic methods. From 158 samples, 142 organisms were identified by TCM and 718 by PCR/ESI-TOF-MS. The molecular diagnostic method detected more organisms (4.5 ± 2.1 vs. 0.9 ± 0.8, p < 0.01) from 99% vs. 67% of samples (p < 0.01). TCM detected S. aureus in 13 samples vs. 21 by PCR/ESI-TOF-MS. Gram-negative organisms were less commonly identified than gram-positive by both methods; especially by TCM. Among all detected bacterial species, similar percentages were typical nosocomial pathogens (18-19%) for TCM vs. PCR/ESI-TOF-MS. PCR/ESI-TOF-MS also detected mecA in 112 samples, vanA in 13, and KPC-3 in 2. MecA was associated (p < 0.01) with codetection of coagulase negative staphylococci but not S. aureus. No vanA was codetected with enterococci; one KPC-3 was detected without Klebsiella spp. In this pilot study, PCR/ESI-TOF-MS detected more organisms, especially gram-negatives, compared to TCM, but the current assay format is limited by the number of antibiotic resistance determinants it covers. Further large-scale assessments of PCR/ESI-TOF-MS for hospital surveillance are warranted.

  8. Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides.

    PubMed

    Baum, Florian; Fedorova, Maria; Ebner, Jennifer; Hoffmann, Ralf; Pischetsrieder, Monika

    2013-12-06

    Milk is an excellent source of bioactive peptides. However, the composition of the native milk peptidome has only been partially elucidated. The present study applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) directly or after prefractionation of the milk peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) or OFFGEL fractionation for the comprehensive analysis of the peptide profile of raw milk. The peptide sequences were determined by MALDI-TOF/TOF or nano-ultra-performance liquid chromatography-nanoelectrospray ionization-LTQ-Orbitrap-MS. Direct MALDI-TOF-MS analysis led to the assignment of 57 peptides. Prefractionation by both complementary methods led to the assignment of another 191 peptides. Most peptides originate from α(S1)-casein, followed by β-casein, and α(S2)-casein. κ-Casein and whey proteins seem to play only a minor role as peptide precursors. The formation of many, but not all, peptides could be explained by the activity of the endogenous peptidases, plasmin or cathepsin D, B, and G. Database searches revealed the presence of 22 peptides with established physiological function, including those with angiotensin-converting-enzyme (ACE) inhibitory, immunomodulating, or antimicrobial activity.

  9. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry-based blood group genotyping--the alternative approach.

    PubMed

    Gassner, Christoph; Meyer, Stefan; Frey, Beat M; Vollmert, Caren

    2013-01-01

    Although matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry (MALDI-TOF MS) has previously been reported for high throughput blood group genotyping, those reports are limited to only a few blood group systems. This review describes the development of a large cooperative Swiss-German project, aiming to employ MALDI-TOF MS for the molecular detection of the blood groups Rh, Kell, Kidd, Duffy, MNSs, a comprehensive collection of low incidence antigens, as well as the platelet and granulocyte antigens HPA and HNA, representing a total of 101 blood group antigens, encoded by 170 alleles, respectively. Recent reports describe MALDI-TOF MS as a technology with short time-to-resolution, ability for high throughput, and cost-efficiency when used in genetic analysis, including forensics, pharmacogenetics, oncology and hematology. Furthermore, Kell and RhD genotyping have been performed on fetal DNA from maternal plasma with excellent results. In summary, this article introduces a new technological approach for high throughput blood group genotyping by means of MALDI-TOF MS. Although all data presented are preliminary, the observed success rates, data quality and concordance with known blood group types are highly impressive, underlining the accuracy and reliability of this cost-efficient high throughput method. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. [EXPRESS IDENTIFICATION OF POSITIVE BLOOD CULTURES USING DIRECT MALDI-TOF MASS SPECTROMETRY].

    PubMed

    Popov, D A; Ovseenko, S T; Vostrikova, T Yu

    2015-01-01

    To evaluate the effectiveness of direct identification of pathogens of bacteremia by direct matrix assisted laser desorption ionization time-flight mass spectrometry (mALDI-TOF) compared to routine method. A prospective study included 211 positive blood cultures obtained from 116 patients (106 adults and 10 children, aged from 2 weeks to 77 years old in the ICU after open heart surgery. Incubation was carried out under aerobic vials with a sorbent for antibiotics Analyzer BacT/ALERT 3D 120 (bioMerieux, France) in parallel with the primary sieving blood cultures on solid nutrient media with subsequent identification of pure cultures using MALDI-TOF mass spectrometry analyzer Vitek MS, bioMerieux, France routine method), after appropriate sample preparation we carried out a direct (without screening) MALDI-TOF mass spectrometric study of monocomponental blood cultures (n = 201). using a routine method in 211 positive blood cultures we identified 23 types of microorganisms (Staphylococcus (n = 87), Enterobacteria- ceae (n = 71), Enterococci (n = 20), non-fermentative Gram-negative bacteria (n = 18), others (n = 5). The average time of incubation of samples to obtain a signal of a blood culture growth was 16.2 ± 7.4 h (from 3.75 to 51 hours.) During the first 12 hours of incubation, growth was obtained in 32.4% of the samples, and on the first day in 92.2%. In the direct mass spectrometric analysis mnonocomponental blood cultures (n = 201) is well defined up to 153 species of the sample (76.1%), while the share of successful identification of Gram-negative bacteria was higher than that of Gram-positive (85.4 and 69, 1%, respectively p = 0.01). The high degree of consistency in the results of standard and direct method of identifying blood cultures using MALDI-TOF mass spectrometry (κ = 0.96, p < 0.001; the samples included in the calculation for which both option given result). Duration of the direct mass spectrometric analysis, including sample preparation, was no longer than 1 hour: The method of direct MALDI-TOF mass spectrometry allows to significantly speed up the identification of blood cultures that may contribute as much as possible early appointment effective regimes of starting antibiotic therapy.

  11. TOFPET 2: A high-performance circuit for PET time-of-flight

    NASA Astrophysics Data System (ADS)

    Di Francesco, Agostino; Bugalho, Ricardo; Oliveira, Luis; Rivetti, Angelo; Rolo, Manuel; Silva, Jose C.; Varela, Joao

    2016-07-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with (320 pF) capacitance the circuit has 24 (30) dB SNR, 75 (39) ps r.m.s. resolution, and 4 (8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  12. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    PubMed

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  13. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Seng, Piseth; Drancourt, Michel; Gouriet, Frédérique; La Scola, Bernard; Fournier, Pierre-Edouard; Rolain, Jean Marc; Raoult, Didier

    2009-08-15

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in <1 h using a database comprising > or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.

  14. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yield and ion temperature on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, C. J., E-mail: cforrest@lle.rochester.edu; Glebov, V. Yu.; Goncharov, V. N.

    Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a singlemore » line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.« less

  15. Evaluation of capacity to detect ability to form biofilm in Candida parapsilosis sensu stricto strains by MALDI-TOF MS.

    PubMed

    Mlynáriková, Katarína; Šedo, Ondrej; Růžička, Filip; Zdráhal, Zbyněk; Holá, Veronika; Mahelová, Martina

    2016-11-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is, currently, used as a rapid and reliable tool in microbial diagnostics. The discriminatory power of the method extends its applicability also beyond species level. This study examined the possibility to use MALDI-TOF MS to differentiate between Candida parapsilosis sensu stricto biofilm-positive (n = 12) and biofilm-negative (n = 9) strains. The results indicated a grouping trend within MALDI-TOF mass spectra belonging to each of the tested groups. However, these trends were eclipsed by mass spectral variations resulting from limited repeatability of the method, making its application for the selected purpose impossible. Improvement in the discriminatory power of the method was not obtained neither by using different matrices (α-cyano-4-hydroxycinnamic acid, ferulic acid, 5-chloro-2-mercaptobenzothionazole) for MALDI-TOF MS analysis nor by testing different culture conditions (cultivation length, culture media).

  16. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.

    PubMed

    Attali, Jonathan; Benaissa, Azzedine; Soize, Sébastien; Kadziolka, Krzysztof; Portefaix, Christophe; Pierot, Laurent

    2016-01-01

    Follow-up of intracranial aneurysms treated by flow diverter with MRI is complicated by imaging artifacts produced by these devices. This study compares the diagnostic accuracy of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MRA (CE-MRA) at 3 T for the evaluation of aneurysm occlusion and parent artery patency after flow diversion treatment, with digital subtraction angiography (DSA) as the gold standard. Patients treated with flow diverters between January 2009 and January 2013 followed by MRA at 3 T (3D-TOF-MRA and CE-MRA) and DSA within a 48 h period were included in a prospective single-center study. Aneurysm occlusion was assessed with full and simplified Montreal scales and parent artery patency with three-grade and two-grade scales. Twenty-two patients harboring 23 treated aneurysms were included. Interobserver agreement using simplified scales for occlusion (Montreal) and parent artery patency were higher for DSA (0.88 and 0.61) and CE-MRA (0.74 and 0.55) than for 3D-TOF-MRA (0.51 and 0.02). Intermodality agreement was higher for CE-MRA (0.88 and 0.32) than for 3D-TOF-MRA (0.59 and 0.11). CE-MRA yielded better accuracy than 3D-TOF-MRA for aneurysm remnant detection (sensitivity 83% vs 50%; specificity 100% vs 100%) and for the status of the parent artery (specificity 63% vs 32%; sensitivity 100% vs 100%). At 3 T, CE-MRA is superior to 3D-TOF-MRA for the evaluation of aneurysm occlusion and parent artery patency after flow diversion treatment. However, intraluminal evaluation remains difficult with MRA regardless of the sequence used. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Rapid, sensitive and simultaneous determination of fluorescence-labeled polyamines in human hair by high-pressure liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry.

    PubMed

    Sugiura, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa; Inagaki, Shinsuke

    2008-09-26

    The rapid, sensitive and simultaneous determination of six polyamines, i.e., ornithine (ORN), 1,3-diaminopropane (DAP), putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM), in human hairs was performed by ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS). The primary (-NH(2)) and secondary (-NH) amines in the polyamine structures were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 30 min in the mixture of 0.1M borax (pH 9.3) and acetonitrile (CH(3)CN). The resulting derivatives were perfectly separated using an ACQUITY UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1mm i.d.) by a gradient elution with a mixture of water-acetonitrile containing 0.1% formic acid (HCOOH). The separated polyamine derivatives were sensitively detected with both FL and TOF-MS. The detection limits in FL and TOF-MS were 11-86 and 2-5 fmol, respectively. However, the determination of several polyamines by FL detection was interfered with by endogenous substances in the hair. Therefore, the simultaneous determination in hair was carried out by the combination of UPLC separation and the ESI-TOF-MS detection. The structures of the polyamines were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. A good linearity was achieved from the calibration curves, that was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), i.e., 1,6-diaminohexane (DAH), against the injected amounts of each polyamine (0.05-50 pmol, r(2)>0.999). The proposed method was applied to the determination in the hairs of healthy volunteers. The mean concentrations of ORN, DAP, PUT, CAD, SPD and SPM in 1mg of human hairs (n=20) were 1.46, 0.18, 1.18, 0.11, 1.97 and 0.98 pmol, respectively. Because the proposed method provides a good mass accuracy and the trace detection of the polyamines in hair, this analytical technique seems to be applicable for the determination of various biological compounds in hair.

  18. Comparison of PCR/Electron spray Ionization-Time-of-Flight-Mass Spectrometry versus Traditional Clinical Microbiology for active surveillance of organisms contaminating high-use surfaces in a burn intensive care unit, an orthopedic ward and healthcare workers

    PubMed Central

    2012-01-01

    Background Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools. Methods Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital. High-use environmental surfaces were assessed in 9 burn ICU and 10 orthopedic patient rooms. Clinical cultures during the study period were reviewed for pathogen comparison with investigational molecular diagnostic methods. Results From 158 samples, 142 organisms were identified by TCM and 718 by PCR/ESI-TOF-MS. The molecular diagnostic method detected more organisms (4.5 ± 2.1 vs. 0.9 ± 0.8, p < 0.01) from 99% vs. 67% of samples (p < 0.01). TCM detected S. aureus in 13 samples vs. 21 by PCR/ESI-TOF-MS. Gram-negative organisms were less commonly identified than gram-positive by both methods; especially by TCM. Among all detected bacterial species, similar percentages were typical nosocomial pathogens (18-19%) for TCM vs. PCR/ESI-TOF-MS. PCR/ESI-TOF-MS also detected mecA in 112 samples, vanA in 13, and KPC-3 in 2. MecA was associated (p < 0.01) with codetection of coagulase negative staphylococci but not S. aureus. No vanA was codetected with enterococci; one KPC-3 was detected without Klebsiella spp. Conclusions In this pilot study, PCR/ESI-TOF-MS detected more organisms, especially gram-negatives, compared to TCM, but the current assay format is limited by the number of antibiotic resistance determinants it covers. Further large-scale assessments of PCR/ESI-TOF-MS for hospital surveillance are warranted. PMID:23050585

  19. Rapid screening of abused drugs by direct analysis in real time (DART) coupled to time-of-flight mass spectrometry (TOF-MS) combined with ion mobility spectrometry (IMS).

    PubMed

    Lian, Ru; Wu, Zhongping; Lv, Xiaobao; Rao, Yulan; Li, Haiyang; Li, Jinghua; Wang, Rong; Ni, Chunfang; Zhang, Yurong

    2017-10-01

    Increasing in cases involving drugs of abuse leads to heavy burden for law enforcement agencies, exacerbating demand for rapid screening technique. In this study, atmospheric pressure ionization technologies including direct analysis in real time (DART) ion source coupled to a time-of-flight mass spectrometer (DART-TOF-MS)as well asdopant-assisted positive photoionization ion mobility spectrometry (DAPP-IMS) without radioactivity were utilized together as the powerful analytical tool for the rapid screening and identification of 53 abused drugs.The limits of detection (LOD) were 0.05-2μg/mL when using DART-TOF-MS and 0.02-2μg when using DAPP-IMS which could satisfy the actual requirement in forensic science laboratory. The advantages of this method included fast response, high-throughput potential, high specificity, and minimal sample preparation. A screening library of reduced mobility (K 0 ), accurate mass of informative precursor ion ([M+H] + ) and fragment ions was established respectively by employing a bench-top DAPP-IMS and TOF-MS in-source collision induced dissociation (CID) mode. Then the standardized screening procedure was developed with criteria for the confirmation of positive result. A total of 50 seized drug samples provided by local forensic laboratory we reanalyzed to testify the utility of the method. This study suggests that a method combing DART-TOF-MS and DAPP-IMS is promising for the rapid screening and identification of abused drugs with minimal sample preparation and absence of chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    PubMed

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa; Andersen, Line Bisgaard; Jensen, Thøger Gorm; Kemp, Michael; Skov, Marianne Nielsine; Gahrn-Hansen, Bente; Møller, Jens Kjølseth

    2011-12-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important anaerobic bacteria.

  1. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species

    PubMed Central

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R.; Posteraro, Patrizia; Perlin, David S.; Posteraro, Brunella

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility. PMID:22535984

  2. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species.

    PubMed

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R; Posteraro, Patrizia; Perlin, David S; Sanguinetti, Maurizio; Posteraro, Brunella

    2012-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility.

  3. Bacterial rapid identification with matrix assisted laser desorption/ionization time-of-flight mass spectrometry: development of an 'in-house method' and comparison with Bruker Sepsityper(®) kit.

    PubMed

    Frédéric Ric, S; Antoine, M; Bodson, A; Lissoir, B

    2015-10-01

    The objective of this study was to compare an in-house matrix-assisted laser desorption ionization with time of flight (MALDI-TOF) method and a commercial MALDI-TOF kit (Sepsityper(®) kit) for direct bacterial identification in positive blood cultures. We also evaluated the time saved and the cost associated with the rapid identification techniques. We used the BACTEC(®) automated system for detecting positive blood cultures. Direct identification using Sepsityper kit and the in-house method were compared with conventional identification by MALDI-TOF using pure bacterial culture on the solid phase. We also evaluated different cut-off scores for rapid bacterial identification. In total, 127 positive blood vials were selected. The rate of rapid identification with the MALDI Sepsityper kit was 25.2% with the standard cut-off and 33.9% with the enlarged cut-off, while the results for the in-house method were 44.1 and 61.4%, respectively. Error rates with the enlarged cut-off were 6.98 (n = 3) and 2.56% (n = 2) for Sepsityper and the in-house method, respectively. Identification rates were higher for gram-negative bacteria. Direct bacterial identification succeeded in supplying rapid identification of the causative organism in cases of sepsis. The time taken to obtain a result was nearly 24  hours shorter for the direct bacterial identification methods than for conventional MALDI-TOF on solid phase culture. Compared with the Sepsityper kit, the in-house method offered better results and fewer errors, was more cost-effective and easier to use.

  4. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories ▿

    PubMed Central

    van Veen, S. Q.; Claas, E. C. J.; Kuijper, Ed J.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory. PMID:20053859

  5. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    PubMed

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  6. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques.

  7. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Three-dimensional magnetic resonance imaging based on time-of-flight magnetic resonance angiography for superficial cerebral arteriovenous malformation--technical note.

    PubMed

    Murata, Takahiro; Horiuchi, Tetsuyoshi; Rahmah, Nunung Nur; Sakai, Keiichi; Hongo, Kazuhiro

    2011-01-01

    Direct surgery remains important for the treatment of superficial cerebral arteriovenous malformation (AVM). Surgical planning on the basis of careful analysis from various neuroimaging modalities can aid in resection of superficial AVM with favorable outcome. Three-dimensional (3D) magnetic resonance (MR) imaging reconstructed from time-of-flight (TOF) MR angiography was developed as an adjunctive tool for surgical planning of superficial AVM. 3-T TOF MR imaging without contrast medium was performed preoperatively in patients with superficial AVM. The images were imported into OsiriX imaging software and the 3D reconstructed MR image was produced using the volume rendering method. This 3D MR image could clearly visualize the surface angioarchitecture of the AVM with the surrounding brain on a single image, and clarified feeding arteries including draining veins and the relationship with sulci or fissures surrounding the nidus. 3D MR image of the whole AVM angioarchitecture was also displayed by skeletonization of the surrounding brain. Preoperative 3D MR image corresponded to the intraoperative view. Feeders on the brain surface were easily confirmed and obliterated during surgery, with the aid of the 3D MR images. 3D MR imaging for surgical planning of superficial AVM is simple and noninvasive to perform, enhances intraoperative orientation, and is helpful for successful resection.

  9. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  10. Characterizing Neutron Diagnostics on the nTOF Line at SUNY Geneseo

    NASA Astrophysics Data System (ADS)

    Harrison, Hannah; Seppala, Hannah; Visca, Hannah; Wakwella, Praveen; Fletcher, Kurt; Padalino, Stephen; Forrest, Chad; Regan, Sean; Sangster, Craig

    2016-10-01

    Charged particle beams from SUNY Geneseo's 1.7 MV Tandem Pelletron Accelerator induce nuclear reactions that emit neutrons ranging from 0.5 to 17.9 MeV via 2H(d,n)3He and 11B(d,n)12C. This adjustable neutron source can be used to calibrate ICF and HEDP neutron scintillators for ICF diagnostics. However, gamma rays and muons, which are often present during an accelerator-based calibration, are difficult to differentiate from neutron signals in scintillators. To mitigate this problem, a new neutron time-of-flight (nTOF) line has been constructed. The nTOF timing is measured using the associated particle technique. A charged particle produced by the nuclear reaction serves as a start signal, while its associated neutron is the stop signal. Each reaction is analyzed event-by-event to determine whether the scintillator signal was generated by a neutron, gamma or muon. Using this nTOF technique, the neutron response for different scintillation detectors can be determined. Funded in part by a LLE contract through the DOE.

  11. The use of PCR/Electrospray Ionization-Time-of-Flight-Mass Spectrometry (PCR/ESI-TOF-MS) to detect bacterial and fungal colonization in healthy military service members.

    PubMed

    Vetor, Ryan; Murray, Clinton K; Mende, Katrin; Melton-Kreft, Rachel; Akers, Kevin S; Wenke, Joseph; Spirk, Tracy; Guymon, Charles; Zera, Wendy; Beckius, Miriam L; Schnaubelt, Elizabeth R; Ehrlich, Garth; Vento, Todd J

    2016-07-22

    The role of microbial colonization in disease is complex. Novel molecular tools to detect colonization offer theoretical improvements over traditional methods. We evaluated PCR/Electrospray Ionization-Time-of-Flight-Mass Spectrometry (PCR/ESI-TOF-MS) as a screening tool to study colonization of healthy military service members. We assessed 101 healthy Soldiers using PCR/ESI-TOF-MS on nares, oropharynx, and groin specimens for the presence of gram-positive and gram-negative bacteria (GNB), fungi, and antibiotic resistance genes. A second set of swabs was processed by traditional culture, followed by identification using the BD Phoenix automated system; comparison between PCR/ESI-TOF-MS and culture was carried out only for GNB. Using PCR/ESI-TOF-MS, at least one colonizing organism was found on each individual: mean (SD) number of organisms per subject of 11.8(2.8). The mean number of organisms in the nares, groin and oropharynx was 3.8(1.3), 3.8(1.4) and 4.2(2), respectively. The most commonly detected organisms were aerobic gram-positive bacteria: primarily coagulase-negative Staphylococcus (101 subjects: 341 organisms), Streptococcus pneumoniae (54 subjects: 57 organisms), Staphylococcus aureus (58 subjects: 80 organisms) and Nocardia asteroides (45 subjects: 50 organisms). The mecA gene was found in 96 subjects. The most commonly found GNB was Haemophilus influenzae (20 subjects: 21 organisms) and the most common anaerobe was Propionibacterium acnes (59 subjects). Saccharomyces species (30 subjects) were the most common fungi detected. Only one GNB (nares E. coli) was identified in the same subject by both diagnostic systems. PCR/ESI-TOF-MS detected common colonizing organisms and identified more typically-virulent bacteria in asymptomatic, healthy adults. PCR/ESI-TOF-MS appears to be a useful method for detecting bacterial and fungal organisms, but further clinical correlation and validation studies are needed.

  12. The clinical value of MRA at 3.0 T for the diagnosis and therapeutic planning of patients with subarachnoid haemorrhage.

    PubMed

    Chen, Yuan-Chang; Sun, Zhen-Kui; Li, Ming-Hua; Li, Yong-Dong; Wang, Wu; Tan, Hua-Qiao; Gu, Bin-Xian; Chen, Shi-Wen

    2012-07-01

    To evaluate the clinical value of unenhanced magnetic resonance angiography (MRA) at 3.0 T for the diagnosis and therapeutic planning of patients with subarachnoid haemorrhage (SAH). A total of 165 patients with SAH were referred for three-dimensional time-of-flight MRA (3D-TOF-MRA) before digital subtraction angiography (DSA). For each aneurysm, 3D-TOF-MRA was used to determine whether the aneurysm was suitable for coil placement with or without balloon/stent-assisted coiling, surgical clipping or conservative treatment. Treatment planning with 3D-TOF-MRA was compared with actual treatment decisions or treatment that had been carried out in each aneurysm decided using DSA. The aneurysm-based evaluation yielded accuracy of 96.9%, sensitivity of 97.6%, specificity of 93.1%, positive predictive value (PPV) of 98.8% and negative predictive value (NPV) of 87.1%, in the detection of intracranial aneurysms. Treatment planning could be correctly made on the basis of aneurysm anatomy and working view by volume rendering (VR) 3D-TOF-MRA with accuracy, sensitivity, specificity, PPV and NPV of 94.9%, 94.0%, 100%, 100% and 74.4%, respectively, on a per aneurysm-based evaluation. VR 3D-TOF-MRA offers high diagnostic accuracy in the detection of ruptured intracranial aneurysms, and appears to be an effective treatment planning tool for most patients with SAH. VR 3D-TOF-MRA offers high diagnostic accuracy for detecting ruptured intracranial aneurysms. • VR 3D-TOF-MRA helps treatment planning for patients with subarachnoid haemorrhage. • 3D-TOF-MRA is non-invasive and avoids using ionising radiation or contrast agents.

  13. Top-down proteomic identification of bacterial protein biomarkers and toxins using MALDI-TOF-TOF-MS/MS and post-source decay

    USDA-ARS?s Scientific Manuscript database

    Matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry(MALDI-TOF-TOF-MS)has provided new capabilities for the rapid identification of digested and non-digested proteins. The tandem (MS/MS) capability of TOF-TOF instruments allows precursor ion selection/isolation...

  14. Impact of Time-of-Flight on PET Tumor Detection

    PubMed Central

    Kadrmas, Dan J.; Casey, Michael E.; Conti, Maurizio; Jakoby, Bjoern W.; Lois, Cristina; Townsend, David W.

    2009-01-01

    Time-of-flight (TOF) PET uses very fast detectors to improve localization of events along coincidence lines-of-response. This information is then utilized to improve the tomographic reconstruction. This work evaluates the effect of TOF upon an observer's performance for detecting and localizing focal warm lesions in noisy PET images. Methods An advanced anthropomorphic lesion-detection phantom was scanned 12 times over 3 days on a prototype TOF PET/CT scanner (Siemens Medical Solutions). The phantom was devised to mimic whole-body oncologic 18F-FDG PET imaging, and a number of spheric lesions (diameters 6–16 mm) were distributed throughout the phantom. The data were reconstructed with the baseline line-of-response ordered-subsets expectation-maximization algorithm, with the baseline algorithm plus point spread function model (PSF), baseline plus TOF, and with both PSF+TOF. The lesion-detection performance of each reconstruction was compared and ranked using localization receiver operating characteristics (LROC) analysis with both human and numeric observers. The phantom results were then subjectively compared to 2 illustrative patient scans reconstructed with PSF and with PSF+TOF. Results Inclusion of TOF information provides a significant improvement in the area under the LROC curve compared to the baseline algorithm without TOF data (P = 0.002), providing a degree of improvement similar to that obtained with the PSF model. Use of both PSF+TOF together provided a cumulative benefit in lesion-detection performance, significantly outperforming either PSF or TOF alone (P < 0.002). Example patient images reflected the same image characteristics that gave rise to improved performance in the phantom data. Conclusion Time-of-flight PET provides a significant improvement in observer performance for detecting focal warm lesions in a noisy background. These improvements in image quality can be expected to improve performance for the clinical tasks of detecting lesions and staging disease. Further study in a large clinical population is warranted to assess the benefit of TOF for various patient sizes and count levels, and to demonstrate effective performance in the clinical environment. PMID:19617317

  15. Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Panda, A; Kurapati, S; Samantaray, J C; Myneedu, V P; Verma, A; Srinivasan, A; Ahmad, H; Behera, D; Singh, U B

    2013-01-01

    The purpose of this study was to evaluate the identification of Mycobacterium tuberculosis which is often plagued with ambiguity. It is a time consuming process requiring 4-8 weeks after culture positivity, thereby delaying therapeutic intervention. For a successful treatment and disease management, timely diagnosis is imperative. We evaluated a rapid, proteomic based technique for identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Freshly grown mycobacterial isolates were used. Acetonitrile/trifluoroacetic acid extraction procedure was carried out, following which cinnamic acid charged plates were subjected to identification by MALDI-TOF MS. A comparative analysis of 42 clinical mycobacterial isolates using the MALDI-TOF MS and conventional techniques was carried out. Among these, 97.61% were found to corroborate with the standard methods at genus level and 85.36% were accurate till the species level. One out of 42 was not in accord with the conventional assays because MALDI-TOF MS established it as Mycobacterium tuberculosis (log (score)>2.0) and conventional methods established it to be non-tuberculous Mycobacterium. MALDI-TOF MS was found to be an accurate, rapid, cost effective and robust system for identification of mycobacterial species. This innovative approach holds promise for early therapeutic intervention leading to better patient care.

  16. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V

    2010-12-01

    Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of the site specific protein glycation and antioxidant capacity of rare sugar-protein/peptide conjugates.

    PubMed

    Sun, Yuanxia; Hayakawa, Shigeru; Ogawa, Masahiro; Izumori, Ken

    2005-12-28

    Protein-sugar conjugates generated in nonenzymatic glycation of alpha-lactalbumin (LA) with rare sugars [D-allose (All) and D-psicose (Psi)] and alimentary sugars as controls [D-glucose (Glc) and D-fructose (Fru)] were qualitatively determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Mass spectra revealed that the extent of glycation at lysine residues on LA with D-aldose molecules was very much higher than that of glycation with d-ketose molecules. To identify the specific site of glycation, the peptide mapping was established from protease V8 digestion, using a combination of computational cutting of proteins and MALDI-TOF-MS. As compared to peptide mapping, three and seven glycation sites were located in the primary structure of LA-ketose and LA-aldose conjugates, respectively. On the other hand, the antioxidant activities of protein-sugar conjugates and their peptic hydrolysates were investigated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging method. The antioxidant activities of proteins/peptides glycated with rare sugars were significantly higher than those modified with the control sugars. The results indicated that the glycation degree and position were not markedly different between rare sugar and corresponding control sugar, but the antioxidant properties of protein and its hydrolysate were significantly enhanced by modifying with rare sugar.

  18. Contrast-Enhanced and Time-of-Flight MRA at 3T Compared with DSA for the Follow-Up of Intracranial Aneurysms Treated with the WEB Device.

    PubMed

    Timsit, C; Soize, S; Benaissa, A; Portefaix, C; Gauvrit, J-Y; Pierot, L

    2016-09-01

    Imaging follow-up at 3T of intracranial aneurysms treated with the WEB Device has not been evaluated yet. Our aim was to assess the diagnostic accuracy of 3D-time-of-flight MRA and contrast-enhanced MRA at 3T against DSA, as the criterion standard, for the follow-up of aneurysms treated with the Woven EndoBridge (WEB) system. From June 2011 to December 2014, patients treated with the WEB in our institution, then followed for ≥6 months after treatment by MRA at 3T (3D-TOF-MRA and contrast-enhanced MRA) and DSA within 48 hours were included. Aneurysm occlusion was assessed with a simplified 2-grade scale (adequate occlusion [total occlusion + neck remnant] versus aneurysm remnant). Interobserver and intermodality agreement was evaluated by calculating the linear weighted κ. MRA test characteristics and predictive values were calculated from a 2 × 2 contingency table, by using DSA data as the standard of reference. Twenty-six patients with 26 WEB-treated aneurysms were included. The interobserver reproducibility was good with DSA (κ = 0.71) and contrast-enhanced-MRA (κ = 0.65) compared with moderate with 3D-TOF-MRA (κ = 0.47). Intermodality agreement with DSA was fair with both contrast-enhanced MRA (κ = 0.36) and 3D-TOF-MRA (κ = 0.36) for the evaluation of total occlusion. For aneurysm remnant detection, the prevalence was low (15%), on the basis of DSA, and both MRA techniques showed low sensitivity (25%), high specificity (100%), very good positive predictive value (100%), and very good negative predictive value (88%). Despite acceptable interobserver reproducibility and predictive values, the low sensitivity of contrast-enhanced MRA and 3D-TOF-MRA for aneurysm remnant detection suggests that MRA is a useful screening procedure for WEB-treated aneurysms, but similar to stents and flow diverters, DSA remains the criterion standard for follow-up. © 2016 by American Journal of Neuroradiology.

  19. keV-Scale sterile neutrino sensitivity estimation with time-of-flight spectroscopy in KATRIN using self-consistent approximate Monte Carlo

    NASA Astrophysics Data System (ADS)

    Steinbrink, Nicholas M. N.; Behrens, Jan D.; Mertens, Susanne; Ranitzsch, Philipp C.-O.; Weinheimer, Christian

    2018-03-01

    We investigate the sensitivity of the Karlsruhe Tritium Neutrino Experiment (KATRIN) to keV-scale sterile neutrinos, which are promising dark matter candidates. Since the active-sterile mixing would lead to a second component in the tritium β-spectrum with a weak relative intensity of order sin ^2θ ≲ 10^{-6}, additional experimental strategies are required to extract this small signature and to eliminate systematics. A possible strategy is to run the experiment in an alternative time-of-flight (TOF) mode, yielding differential TOF spectra in contrast to the integrating standard mode. In order to estimate the sensitivity from a reduced sample size, a new analysis method, called self-consistent approximate Monte Carlo (SCAMC), has been developed. The simulations show that an ideal TOF mode would be able to achieve a statistical sensitivity of sin ^2θ ˜ 5 × 10^{-9} at one σ , improving the standard mode by approximately a factor two. This relative benefit grows significantly if additional exemplary systematics are considered. A possible implementation of the TOF mode with existing hardware, called gated filtering, is investigated, which, however, comes at the price of a reduced average signal rate.

  20. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).

    PubMed

    Han, Hua; Sun, Xiaomei; Xie, Yunhui; Feng, Jian; Zhang, Shougong

    2014-11-26

    Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species.

  1. No scanning depth imaging system based on TOF

    NASA Astrophysics Data System (ADS)

    Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo

    2016-03-01

    To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.

  2. Hydrogen/deuterium exchange, a unique and effective method for MS fragmentation behavior elucidation of ginkgolides and its application to systematic research in Ginkgo biloba.

    PubMed

    Niu, Xingliang; Luo, Jun; Xu, Deran; Zou, Hongyan; Kong, Lingyi

    2017-02-05

    Ginkgolides, the main active constituents of Ginkgo biloba, possess significant selectively inhibition on platelet-activating factor and pancreatic lipase and attract wide attention in pharmacological research area. In our study, an effective hydrogen/deuterium (H/D) exchange method was developed by exchanging the α-Hs of lactone groups in ginkgolides with Ds, which was very useful for the elucidation of the fragmentation patterns of ginkgolides in Quadrupole Time-of-flight Mass Spectrometry (Q-TOF-MS), especially in accurately distinguishing the type and position of substituent in framework of ginkgolides. Then, a systematic research strategy for qualitative and quantitative analysis of ginkgolides, based on H/D exchange, tandem solid-phase extraction and LC-Q-TOF-MS, was developed, which was successfully applied in each medicinal part of G. biloba, which indicated that ginkgolide B was the most abundant ginkgolide in the seeds of G. biloba (60.6μg/g). This research was the successful application of H/D exchange in natural products, and proved that H/D exchange is a potential method for analysis research of complex TCMs active constituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High-resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries. Lessons for improving bolus-chase peripheral MRA.

    PubMed

    Hood, Maureen N; Ho, Vincent B; Foo, Thomas K F; Marcos, Hani B; Hess, Sandra L; Choyke, Peter L

    2002-09-01

    Peripheral magnetic resonance angiography (MRA) is growing in use. However, methods of performing peripheral MRA vary widely and continue to be optimized, especially for improvement in illustration of infrapopliteal arteries. The main purpose of this project was to identify imaging factors that can improve arterial visualization in the lower leg using bolus chase peripheral MRA. Eighteen healthy adults were imaged on a 1.5T MR scanner. The calf was imaged using conventional three-station bolus chase three-dimensional (3D) MRA, two dimensional (2D) time-of-flight (TOF) MRA and single-station Gadolinium (Gd)-enhanced 3D MRA. Observer comparisons of vessel visualization, signal to noise ratios (SNR), contrast to noise ratios (CNR) and spatial resolution comparisons were performed. Arterial SNR and CNR were similar for all three techniques. However, arterial visualization was dramatically improved on dedicated, arterial-phase Gd-enhanced 3D MRA compared with the multi-station bolus chase MRA and 2D TOF MRA. This improvement was related to optimization of Gd-enhanced 3D MRA parameters (fast injection rate of 2 mL/sec, high spatial resolution imaging, the use of dedicated phased array coils, elliptical centric k-space sampling and accurate arterial phase timing for image acquisition). The visualization of the infrapopliteal arteries can be substantially improved in bolus chase peripheral MRA if voxel size, contrast delivery, and central k-space data acquisition for arterial enhancement are optimized. Improvements in peripheral MRA should be directed at these parameters.

  4. Improved method for identification of low abundance proteins using 2D-gel electrophoresis, MALDI-TOF and TOF/TOF

    EPA Science Inventory

    Introduction: Differential protein expression studies have been routinely performed in our laboratory to determine the health effects of environmentally-important chemicals. In this abstract, improvements in the in-gel protein digestion, MALDI plate spotting and data acquisition...

  5. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  6. Understanding the Changes to Biomass Surface Characteristics after Ammonia and Organosolv Pretreatments by Using Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS)

    DOE PAGES

    Tolbert, Allison K.; Yoo, Chang Geun; Ragauskas, Arthur J.

    2017-03-20

    Surface characteristic changes to poplar after ammonia and organosolv pretreatments were investigated by means of time-of-flight secondary-ion mass spectrometry (TOF-SIMS) analysis. Whereas normalized total polysaccharides and lignin contents on the surface differed from bulk chemical compositions, the surface cellulose ions detected by TOF-SIMS showed the same value trend as the cellulose content in the biomass. In addition, the lignin syringyl/guaiacyl ratio according to TOF-SIMS results showed the same trend as the ratio measured by means of NMR spectroscopic analysis, even though the ratio scales for each method were different. A similar correlation was determined between the surface cellulose and glucosemore » release after enzymatic hydrolysis. Lastly, these results demonstrate that surface characterization using TOF-SIMS can provide important information about the effects of pretreatment on biomass properties and its hydrolysis.« less

  7. Understanding the Changes to Biomass Surface Characteristics after Ammonia and Organosolv Pretreatments by Using Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Allison K.; Yoo, Chang Geun; Ragauskas, Arthur J.

    Surface characteristic changes to poplar after ammonia and organosolv pretreatments were investigated by means of time-of-flight secondary-ion mass spectrometry (TOF-SIMS) analysis. Whereas normalized total polysaccharides and lignin contents on the surface differed from bulk chemical compositions, the surface cellulose ions detected by TOF-SIMS showed the same value trend as the cellulose content in the biomass. In addition, the lignin syringyl/guaiacyl ratio according to TOF-SIMS results showed the same trend as the ratio measured by means of NMR spectroscopic analysis, even though the ratio scales for each method were different. A similar correlation was determined between the surface cellulose and glucosemore » release after enzymatic hydrolysis. Lastly, these results demonstrate that surface characterization using TOF-SIMS can provide important information about the effects of pretreatment on biomass properties and its hydrolysis.« less

  8. Prospective Evaluation of a Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System in a Hospital Clinical Microbiology Laboratory for Identification of Bacteria and Yeasts: a Bench-by-Bench Study for Assessing the Impact on Time to Identification and Cost-Effectiveness

    PubMed Central

    Tan, K. E.; Ellis, B. C.; Lee, R.; Stamper, P. D.; Zhang, S. X.

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been found to be an accurate, rapid, and inexpensive method for the identification of bacteria and yeasts. Previous evaluations have compared the accuracy, time to identification, and costs of the MALDI-TOF MS method against standard identification systems or commercial panels. In this prospective study, we compared a protocol incorporating MALDI-TOF MS (MALDI protocol) with the current standard identification protocols (standard protocol) to determine the performance in actual practice using a specimen-based, bench-by-bench approach. The potential impact on time to identification (TTI) and costs had MALDI-TOF MS been the first-line identification method was quantitated. The MALDI protocol includes supplementary tests, notably for Streptococcus pneumoniae and Shigella, and indications for repeat MALDI-TOF MS attempts, often not measured in previous studies. A total of 952 isolates (824 bacterial isolates and 128 yeast isolates) recovered from 2,214 specimens were assessed using the MALDI protocol. Compared with standard protocols, the MALDI protocol provided identifications 1.45 days earlier on average (P < 0.001). In our laboratory, we anticipate that the incorporation of the MALDI protocol can reduce reagent and labor costs of identification by $102,424 or 56.9% within 12 months. The model included the fixed annual costs of the MALDI-TOF MS, such as the cost of protein standards and instrument maintenance, and the annual prevalence of organisms encountered in our laboratory. This comprehensive cost analysis model can be generalized to other moderate- to high-volume laboratories. PMID:22855510

  9. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness.

    PubMed

    Tan, K E; Ellis, B C; Lee, R; Stamper, P D; Zhang, S X; Carroll, K C

    2012-10-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been found to be an accurate, rapid, and inexpensive method for the identification of bacteria and yeasts. Previous evaluations have compared the accuracy, time to identification, and costs of the MALDI-TOF MS method against standard identification systems or commercial panels. In this prospective study, we compared a protocol incorporating MALDI-TOF MS (MALDI protocol) with the current standard identification protocols (standard protocol) to determine the performance in actual practice using a specimen-based, bench-by-bench approach. The potential impact on time to identification (TTI) and costs had MALDI-TOF MS been the first-line identification method was quantitated. The MALDI protocol includes supplementary tests, notably for Streptococcus pneumoniae and Shigella, and indications for repeat MALDI-TOF MS attempts, often not measured in previous studies. A total of 952 isolates (824 bacterial isolates and 128 yeast isolates) recovered from 2,214 specimens were assessed using the MALDI protocol. Compared with standard protocols, the MALDI protocol provided identifications 1.45 days earlier on average (P < 0.001). In our laboratory, we anticipate that the incorporation of the MALDI protocol can reduce reagent and labor costs of identification by $102,424 or 56.9% within 12 months. The model included the fixed annual costs of the MALDI-TOF MS, such as the cost of protein standards and instrument maintenance, and the annual prevalence of organisms encountered in our laboratory. This comprehensive cost analysis model can be generalized to other moderate- to high-volume laboratories.

  10. Dehydrogenation and dehalogenation of amines in MALDI-TOF MS investigated by isotopic labeling.

    PubMed

    Kang, Chuanqing; Zhou, Yihan; Du, Zhijun; Bian, Zheng; Wang, Jianwei; Qiu, Xuepeng; Gao, Lianxun; Sun, Yuequan

    2013-12-01

    Secondary and tertiary amines have been reported to form [M-H](+) that correspond to dehydrogenation in matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI-TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N-benzyl group, which resulted in the formation of [M-D](+) and [M-H](+) ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N-benzyl group showed high-intensity [M-D](+) and [M-H](+) ion peaks, whereas those of secondary amines showed low-intensity ion peaks. Ratios between the peak intensities of [M-D](+) and [M-H](+) greater than 1 suggested chemoselective dehydrogenation at the N-benzyl groups. The presence of an electron donor group on the N-benzyl groups enhanced the selectivity. The dehalogenation of amines with an N-(4-halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI-TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Early identification of microorganisms in blood culture prior to the detection of a positive signal in the BACTEC FX system using matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    PubMed

    Wang, Ming-Cheng; Lin, Wei-Hung; Yan, Jing-Jou; Fang, Hsin-Yi; Kuo, Te-Hui; Tseng, Chin-Chung; Wu, Jiunn-Jong

    2015-08-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome. Copyright © 2013. Published by Elsevier B.V.

  12. CYP2D6 polymorphisms as predictors of outcome in breast cancer patients treated with tamoxifen: expanded polymorphism coverage improves risk stratification.

    PubMed

    Schroth, Werner; Hamann, Ute; Fasching, Peter A; Dauser, Silke; Winter, Stefan; Eichelbaum, Michel; Schwab, Matthias; Brauch, Hiltrud

    2010-09-01

    This study aimed to validate matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)/Taqman copy number assay (CNA) CYP2D6 genotyping by AmpliChip CYP450 Test for the prediction of tamoxifen metabolizer phenotypes in breast cancer, and to investigate the influence of CYP2D6 variant coverage on genotype-phenotype relationships and tamoxifen outcome. Hormone receptor-positive postmenopausal breast cancer patients (n = 492) treated with adjuvant tamoxifen, previously analyzed by MALDI-TOF MS/CNA, were reanalyzed by AmpliChip CYP450 Test and validated by independent methods. Cox proportional hazard ratios (HR) were calculated for recurrence of poor (PM) relative to extensive metabolizer (EM) phenotypes with increasing numbers of CYP2D6 variants. Kaplan-Meier distributions were calculated for different phenotype classifications. Concordance was 99.2% to 99.5% for CNA and 99.8% to 100% per CYP2D6 allele (*3, *4, *5, *9, *10, and *41). The prevalence of predicted phenotypes was 1.2% for ultrarapid metabolizer (UM), 37.2% for EM without variant, 43.5% for heterozygous EM, 9.7% for intermediate metabolizer (IM), and 8.3% for PM. Approximately, one third of patients were misclassified based on a *4 analysis only, but inclusion of all reduced-function alleles increased the PM-associated HR from 1.33 (P = 0.58) to 2.87 (P = 0.006). Kaplan-Meier analyses showed highest and lowest clinical benefit for UM and PM with respect to both the AmpliChip-based and a redefined phenotype assignment. The latter revealed significant allele-dose-dependent associations (P = 0.011) and largest effect size (HR(PM_EM) = 2.77; 95% confidence interval, 1.31-5.89). MALDI-TOF MS/CNA is suitable for accurate CYP2D6 genotyping. For tamoxifen pharmacogenetics, broad CYP2D6 allele coverage is recommended to reduce phenotype misclassification. Classification based on refined EM and reduced-function metabolizers is advisable. AACR.

  13. TOFPET2: a high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications

    NASA Astrophysics Data System (ADS)

    Di Francesco, A.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rivetti, A.; Rolo, M.; Silva, J. C.; Silva, R.; Varela, J.

    2016-03-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with 320 pF capacitance the circuit has 24 (30) dB SNR, 75(39) ps r.m.s. resolution, and 4(8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  14. Depth-Resolved Cathodoluminescence of Thorium Dioxide

    DTIC Science & Technology

    2013-03-01

    exhibited more of an energy dependency than the cut and polished sample. However, in a companion study, ime of flight secondary ion mass spectrometry...Ion Mass Spectrometry (TOF SIMS) ......................17 2.7 Atomic Force Microscope (AFM...1 TOF SIMS……….Time of Flight Secondary Ion Mass Spectroscopy……………….62 1 DEPTH

  15. Design and realization of retina-like three-dimensional imaging based on a MOEMS mirror

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hao, Qun; Xia, Wenze; Peng, Yuxin; Cheng, Yang; Mu, Jiaxing; Wang, Peng

    2016-07-01

    To balance conflicts for high-resolution, large-field-of-view and real-time imaging, a retina-like imaging method based on time-of flight (TOF) is proposed. Mathematical models of 3D imaging based on MOEMS are developed. Based on this method, we perform simulations of retina-like scanning properties, including compression of redundant information and rotation and scaling invariance. To validate the theory, we develop a prototype and conduct relevant experiments. The preliminary results agree well with the simulations.

  16. Construction of the optical part of a time-of-flight detector prototype for the AFP detector

    DOE PAGES

    Nozka, L.; Adamczyk, L.; Avoni, G.; ...

    2016-11-22

    We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from themore » ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. Finally, the emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.« less

  17. Construction of the optical part of a time-of-flight detector prototype for the AFP detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozka, L.; Adamczyk, L.; Avoni, G.

    We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from themore » ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. Finally, the emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.« less

  18. Comparison of TOF MRA, Contrast-Enhanced MRA and Subtracted CTA from CTP in Residue Evaluation of Treated Intracranial Aneurysms.

    PubMed

    Dündar, Tolga Turan; Aralaşmak, Ayşe; Özdemir, Hüseyin; Seyithanoğlu, Mehmet Hakan; Uysal, Ömer; Toprak, Hüseyin; Kitiş, Serkan; Özek, Erdinç; Alkan, Alpay

    2017-10-18

    To compare effectiveness of contrast-enhanced MRA (CE-MRA), 3D-Time-of-flight MRA (3D-TOF-MRA) and subtracted CTA from CTP (sub-CTA) in residue evaluation of intracranial aneurysms treated either with coiling or clipping. Sixteen treated aneurysms, which were evaluated with three methods within two weeks after the operation, were enrolled. The success of each imaging techniques in demonstration of residue aneurysm and nearby vessels was compared by Fisher\\'s Exact Test. The differences among three was evaluated by Cochran\\'s Q test (p ≤ 0.05). Perfusion abnormality was noted in % 81 of clipped and none of coiled patients. Vessel visualization in the vicinity of aneurysm was better in sub-CTA, followed by CE-MRA. In clipped aneurysms, sub-CTA revealed residue aneurysms in % 16,7 of the patients while 3D-TOF-MRA and CE-MRA revealed none. In coiled aneurysms, CE-MRA revealed residue aneurysms in 100 %, and TOF-MRA in 33,3 % while sub-CTA revealed none. Although dramatic differences were noted in the evaluation of residue aneurysm as well as nearby vessel visualization, no statistical significance noted due to very few patients in subcategories Conclusion: This is first study comparing the effectiveness of CE-MRA, 3D-TOF MRA and sub-CTA in residue aneurysms evaluation. Vessel visualization in the vicinity of aneurysm was better in sub-CTA in all regardless of coiling or clipping. Residue aneurysms were more commonly revealed by CE-MRA in coiled patients and more commonly and better shown by sub-CTA in clipped patients in addition of showing perfusion abnormality that's is more common in clipped patients.

  19. Modeling and simulation of charged particle beam transport in the UTA 2 meter Time of Flight Positron Annihilation Induced Auger Spectrometer

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, Lawrence; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2010-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) is a surface analytical technique with high surface selectivity. Almost 95% of the PAES signal originates from the sample's topmost layer due to the trapping of positrons just above the surface in an image-potential well before annihilation. This talk presents a description of the TOF technique as the results of modeling of the charged particle transport used in the design of the 2 meter TOF-PAES system currently under construction at UTA.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuermann, Karl; Vorwerk, Dierk; Buecker, Arno

    Purpose: To compare nonferromagnetic iliac artery prostheses in their suitability for patency monitoring with magnetic resonance angiography (MRA) using conventional angiography as a reference. Methods: In experiment 1, three Memotherm stents were inserted into the iliac arteries of each of six sheep: two 'tandem' stents on one side and a single stent on the other side. In experiment 2, four prostheses (normal and low-porosity Corvita stent-grafts, Memotherm, ZA-stent) were inserted in each of 11 sheep. Patency was monitored before and 1, 3, and 6 months after insertion with 3D phase-contrast and two 2D time-of-flight sequences (TOF-1: TR/TE = 18/6.9, TOF-2:more » 13/2.5) with and without contrast at 1.5 T. On 206 coronal MIP images (72 pre-, 134 post-stenting), three readers analyzed 824 iliac segments (206 x 4) for patency and artifacts. Results: There was no difference in the number of artifacts between tandem and single iliac Memotherm stents. The ZA-stent induced significantly fewer artifacts than the other prostheses (p < 0.00001). With MRA, patency of the ZA-stent was correctly diagnosed in 88% of cases, which was almost comparable to nonstented iliac segments (95%), patency of the Memotherm stent in 59%, and of the Corvita stent-grafts in 57% and 55%. The TOF-2 sequence with contrast yielded the best images. Conclusion: MRA compatibility of nonferromagnetic prostheses depends strongly on the design of the device. MRA may be used to monitor the patency of iliac ZA-stents, whereas iliac Memotherm stents and Corvita stent-grafts appear to be less suited for follow-up with MRA.« less

  1. (1→3)-β-d-Glucan oligosaccharides monomers purification and its H2O2 induction effect study.

    PubMed

    Fu, Yunbin; Wang, Mengyu; Wang, Wenxia; Tuo, Yaqin; Guo, Zhimou; Du, Yuguang; Yin, Heng

    2015-11-01

    In order to produce highly purified (1→3)-β-d-glucan oligosaccharides ((1→3)-β-d-GOS) monomers, a hydrophilic interaction liquid chromatography (HILIC) system with X-Amide stationary phase was performed. Nine (1→3)-β-d-GOS monomers with degree of polymerization (DP) from 2 to 10 were successfully separated. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) demonstrated that these monomers were with high purity. Furthermore, a hydrogen peroxide (H2O2) online detection method was established to monitor H2O2 releases in tobacco cells. This is the first report on nine consecutive (1→3)-β-d-GOS monomers purification and its effect upon H2O2-releasing in plants. It was found that (1→3)-β-d-GOS monomers with higher DP induced stronger defense responses in plants, which will pave the way for elucidating the relationship between (1→3)-β-d-GOS and biological activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rapid Identification and Assignation of the Active Ingredients in Fufang Banbianlian Injection Using HPLC-DAD-ESI-IT-TOF-MS.

    PubMed

    Li, Sensen; Lin, Zongtao; Jiang, Haixiu; Tong, Lingkun; Wang, Hong; Chen, Shizhong

    2016-08-01

    Fufang Banbianlian Injection (FBI) is a well-known traditional Chinese medicine formula composed of three herbal medicines. However, the systematic investigation on its chemical components has not been reported yet. In this study, a high-performance liquid chromatography combined with diode-array detector, and coupled to an electrospray ionization with ion-trap time-of-flight mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS) method, was established for the identification of chemical profile in FBI. Sixty-six major constituents (14 phenolic acids, 14 iridoids, 20 flavonoids, 2 benzylideneacetone compounds, 3 phenylethanoid glycosides, 1 coumarin, 1 lignan, 3 nucleosides, 1 amino acids, 1 monosaccharides, 2 oligosaccharides, 3 alduronic acids and citric acid) were identified or tentatively characterized by comparing their retention times and MS spectra with those of standards or literature data. Finally, all constituents were further assigned in the individual herbs (InHs), although some of them were from multiple InHs. As a result, 11 compounds were from Lobelia chinensis Lour, 33 compounds were from Scutellaria barbata D. Don and 38 compounds were from Hedyotis diffusa Willd. In conclusion, the developed HPLC-DAD-ESI-IT-TOF-MS method is a rapid and efficient technique for analysis of FBI sample, and could be a valuable method for the further study on the quality control of the FBI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    PubMed

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a method for novel, rapid sample preparation using differential lysis of blood cells. We demonstrate the efficacy and ease of use of this sample preparation and subsequent MALDI-TOF MS identification, applying it to a total of 500 aerobic and anaerobic BCs reported to be positive by a Bactec 9240 system. In 86.5% of all BCs, the microorganism species were correctly identified. Moreover, in 18/27 mixed cultures at least one isolate was correctly identified. A novel method that adjusts the score value for MALDI-TOF MS results is proposed, further improving the proportion of correctly identified samples. The results of the present study show that the MALDI-TOF MS-based method allows rapid (<20 minutes) bacterial identification directly from positive BCs and with high accuracy. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for the identification of Neisseria gonorrhoeae.

    PubMed

    Buchanan, R; Ball, D; Dolphin, H; Dave, J

    2016-09-01

    Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared with the API NH biochemical method for the identification of Neisseria gonorrhoeae in routine clinical samples. A retrospective review of laboratory records for 1090 isolates for which both biochemical and MALDI-TOF MS identifications were available was performed. Cases of discrepant results were examined in detail for evidence supportive of a particular organism identification. Of 1090 isolates, 1082 were identified as N. gonorrhoeae by API NH. MALDI-TOF MS successfully identified 984 (91%) of these after one analysis, rising to 1081 (99.9%) after two analyses, with a positive predictive value of 99.3%. For those isolates requiring a repeat analysis, failure to generate an identifiable proteomic signature was the reason in 76% of cases, with alternative initial identifications accounting for the remaining 24%. MALDI-TOF MS identified eight isolates as N. gonorrhoeae that were not identified as such by API NH-examination of these discrepant results suggested that the MALDI-TOF MS identification may be the more reliable. MALDI-TOF MS is at least as accurate and reliable a method of identifying N. gonorrhoeae as API NH. We propose that MALDI-TOF MS could potentially be used as a single method for N. gonorrhoeae identification in routine cases by laboratories with access to this technology. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS.

    PubMed

    Bazzi, Ali M; Rabaan, Ali A; El Edaily, Zeyad; John, Susan; Fawarah, Mahmoud M; Al-Tawfiq, Jaffar A

    Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry facilitates rapid and accurate identification of pathogens, which is critical for sepsis patients. In this study, we assessed the accuracy in identification of both Gram-negative and Gram-positive bacteria, except for Streptococcus viridans, using four rapid blood culture methods with Vitek MALDI-TOF-MS. We compared our proposed lysis centrifugation followed by washing and 30% acetic acid treatment method (method 2) with two other lysis centrifugation methods (washing and 30% formic acid treatment (method 1); 100% ethanol treatment (method 3)), and picking colonies from 90 to 180min subculture plates (method 4). Methods 1 and 2 identified all organisms down to species level with 100% accuracy, except for Streptococcus viridans, Streptococcus pyogenes, Enterobacter cloacae and Proteus vulgaris. The latter two were identified to genus level with 100% accuracy. Each method exhibited excellent accuracy and precision in terms of identification to genus level with certain limitations. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  6. Single-Photon Detectors for Time-of-Flight Range Imaging

    NASA Astrophysics Data System (ADS)

    Stoppa, David; Simoni, Andrea

    We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.

  7. Identification of inflammation-related proteins in a murine colitis model by 2D fluorescence difference gel electrophoresis and mass spectrometry.

    PubMed

    Naito, Yuji; Takagi, Tomohisa; Okada, Hitomi; Omatsu, Tatsushi; Mizushima, Katsura; Handa, Osamu; Kokura, Satoshi; Ichikawa, Hiroshi; Fujiwake, Hideshi; Yoshikawa, Toshikazu

    2010-05-01

    The aim of this study was to identify new intestinal proteins potentially associated with acute inflammation using proteomic profiling of an in vivo mice model of ulcerative colitis. 2D fluorescence difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight spectrometer (MALDI-TOF) peptide mass fingerprinting were used to determine differentially expressed proteins between normal and inflamed intestinal mucosa. Acute colitis was induced by 8.0% dextran sodium sulfate (DSS) given p.o. for 7 days. Among a total of seven protein spots showing differential expression, we identified five different proteins, of which two were upregulated and three downregulated in colitis in comparison to normal mucosa, using the MASCOT search engine. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase 2 and serpin b1a were upregulated proteins, and protein disulfide-isomerase A3, peroxiredoxin-6 and vimentin were identified as downregulated proteins. These identified proteins may be responsible for the development of the intestinal inflammation. 2D-DIGE and MALDI-TOF mass spectrometry are useful in the search for the differentially expressed proteins.

  8. Antifungal Susceptibility Testing of Aspergillus spp. by Using a Composite Correlation Index (CCI)-Based Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Method Appears To Not Offer Benefit over Traditional Broth Microdilution Testing

    PubMed Central

    Gitman, Melissa R.; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid

    2017-01-01

    ABSTRACT Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. PMID:28404678

  9. Antifungal Susceptibility Testing of Aspergillus spp. by Using a Composite Correlation Index (CCI)-Based Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method Appears To Not Offer Benefit over Traditional Broth Microdilution Testing.

    PubMed

    Gitman, Melissa R; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid; Kus, Julianne V

    2017-07-01

    Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. © Crown copyright 2017.

  10. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets.

    PubMed

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-04-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  11. Role of MRA in the detection of intracranial aneurysm in the acute phase of subarachnoid hemorrhage.

    PubMed

    Pierot, Laurent; Portefaix, Christophe; Rodriguez-Régent, Christine; Gallas, Sophie; Meder, Jean-François; Oppenheim, Catherine

    2013-07-01

    Magnetic resonance angiography (MRA) has been evaluated for the detection of unruptured intracranial aneurysms with favorable results at 3 Tesla (3T) and with similar diagnostic accuracy as both 3D time-of-flight (3D-TOF) and contrast-enhanced (CE-MRA) MRA. However, the diagnostic value and place of MRA in the detection of ruptured aneurysms has been little evaluated. Thus, the goal of this prospective single-center series was to assess the feasibility and diagnostic value of 3T 3D-TOF MRA and CE-MRA for aneurysm detection in acute non-traumatic subarachnoid hemorrhage (SAH). From March 2006 to December 2007, all consecutive patients admitted to our hospital with acute non-traumatic SAH (≤10 days) were prospectively included in this study evaluating MRA in the diagnostic workup of SAH. Feasibility of MRA and sensitivity/specificity of 3D-TOF and CE-MRA were assessed compared with gold standard DSA. In all, 84 consecutive patients (45 women, 39 men; age 23-86 years) were included. The feasibility of MRA was low (43/84, 51.2%). The reasons given for patients not undergoing magnetic resonance imaging (MRI) examination were clinical status (27 patients), potential delay in aneurysm treatment (11 patients) and contraindications to MRI (three patients). In patients explored by MRA, the sensitivity of CE-MRA (95%) was higher compared with 3D-TOF (86%) with similar specificity (80%). Also, 3D-TOF missed five aneurysms while CE-MRA missed two. The value of MRA in the diagnostic workup of ruptured aneurysms is limited due to its low feasibility during the acute phase of bleeding. Sensitivity for aneurysm detection was good for both MRA techniques, but tended to be better with CE-MRA. Copyright © 2013. Published by Elsevier Masson SAS.

  12. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    PubMed

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  13. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    PubMed

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  14. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  15. Differential protein expression during colonic adaptation in ultra-short bowel rats

    PubMed Central

    Jiang, Hai-Ping; Chen, Tao; Yan, Guang-Rong; Chen, Dan

    2011-01-01

    AIM: To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). METHODS: Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis. RESULTS: The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in sugar and fat metabolism, protein synthesis and oxidation reduction, which are associated with colonic adaption. CONCLUSION: Eight proteins found in this study play important roles in colonic compensation and are associated with sugar and fat metabolism, protein synthesis, and molecular chaperoning PMID:21633663

  16. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    PubMed Central

    Welker, Martin; Pincus, David; Charrier, Jean-Philippe; Girard, Victoria

    2017-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. PMID:28840984

  17. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    PubMed

    van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria

    2017-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.

  18. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  19. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    PubMed

    Ayyadurai, Saravanan; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2010-11-12

    Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.

  20. Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography.

    PubMed

    Rocío-Bautista, Priscilla; Pino, Verónica; Pasán, Jorge; López-Hernández, Irene; Ayala, Juan H; Ruiz-Pérez, Catalina; Afonso, Ana M

    2018-03-01

    Five metal-organic frameworks (MOFs), specifically HKUST-1, MOF-5(Zn), MIL-53(Al), UiO-64 and MOF-74(Zn) are synthesized, characterized, and utilized in a miniaturized solid-phase extraction method under dispersive mode (D-µSPE) for the determination of six pollutants of different nature, including one polycyclic aromatic hydrocarbon, two hormones, two drugs, and one disinfectant, from environmental waters (tap water and wastewater). A discussion of possible interactions justifying the partitioning of target analytes to the MOFs is included, considering not only the analytes' physicochemical characteristics but also those of MOFs: metal nature, structural environment of MOF pores, pore size and pore aperture widths, among others. MIL-53(Al) is selected for its versatility and high extraction efficiency for the target compounds. The D-µSPE method using MIL-53(Al) is optimized and used in combination with high-performance liquid chromatography (HPLC) with diode array detector (DAD) or liquid-chromatography with time-of-flight mass spectrometric detector (LC-TOF). Under optimum conditions, only 5mg of MIL-53(Al) are required for 10mL of water, with the aid of 5min of vortex and 5min of centrifugation. Elution is accomplished with 200µL of acetonitrile (3 times), and evaporation down to 100µL before LC injection. Detection limits down to 0.040μgL -1 for triclosan and 0.013μgL -1 for atrazine are obtained for the entire method using HPLC-DAD and LC-TOF, respectively. The method, operating at low spiked levels (2µgL -1 for HPLC-DAD and 0.7µgL -1 for LC-TOF), is also characterized for average relative recoveries of 109% and 105%; relative standard deviation values lower than 8.7% and 7.5%; and average extraction efficiencies of 41.2% and 49.1%; using HPLC-DAD and LC-TOF, respectively; while demonstrating adequate analytical performance with complex samples such as wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Identification of Cronobacter species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an optimized analysis method.

    PubMed

    Wang, Qi; Zhao, Xiao-Juan; Wang, Zi-Wei; Liu, Li; Wei, Yong-Xin; Han, Xiao; Zeng, Jing; Liao, Wan-Jin

    2017-08-01

    Rapid and precise identification of Cronobacter species is important for foodborne pathogen detection, however, commercial biochemical methods can only identify Cronobacter strains to genus level in most cases. To evaluate the power of mass spectrometry based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) for Cronobacter species identification, 51 Cronobacter strains (eight reference and 43 wild strains) were identified by both MALDI-TOF MS and 16S rRNA gene sequencing. Biotyper RTC provided by Bruker identified all eight reference and 43 wild strains as Cronobacter species, which demonstrated the power of MALDI-TOF MS to identify Cronobacter strains to genus level. However, using the Bruker's database (6903 main spectra products) and Biotyper software, the MALDI-TOF MS analysis could not identify the investigated strains to species level. When MALDI-TOF MS analysis was performed using the combined in-house Cronobacter database and Bruker's database, bin setting, and unweighted pair group method with arithmetic mean (UPGMA) clustering, all the 51 strains were clearly identified into six Cronobacter species and the identification accuracy increased from 60% to 100%. We demonstrated that MALDI-TOF MS was reliable and easy-to-use for Cronobacter species identification and highlighted the importance of establishing a reliable database and improving the current data analysis methods by integrating the bin setting and UPGMA clustering. Copyright © 2017. Published by Elsevier B.V.

  2. Characterization of Klebsiella isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES).

    PubMed

    Karagöz, Alper; Acar, Sümeyra; Körkoca, Hanifi

    2015-01-01

    The purpose of the study was to evaluate the performance of the VITEK mass spectrometry (MS) (bioMérieux, France) system for the identification of Klebsiella spp. isolated from different sources. Moreover, while assessing the ability of the VITEK 2 automated expert system (AES) to recognize antimicrobial resistance patterns, the researchers have extended the study to compare VITEK 2 with the routine antimicrobial susceptibility testing method. This study tested 51 Klebsiella spp. isolates that were isolated from environmental examples and clinical examples. Results of conventional methods and the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS were compared. Then, any differing results were compared against a reference 16S rRNA gene sequence, and when indicated, a recA sequencing analysis was done. VITEK MS correctly identified 100% of the Klebsiella spp. isolates. There were two K. oxytoca isolates incorrectly identified to the species level with conventional methods according to the 16S rRNA gene sequencing analysis. In addition, a VITEK 2 AST-N261 card was used for the detection of extended spectrum beta-lactamases (ESBL). Using the VITEK 2 AES, ESBL positivity was found at the rate of 16.3% whereas this rate was 4.08% using the disk diffusion method. MALDI-TOF MS is a rapid and accurate method for the identification of Klebsiella spp. Moreover, the bioMérieux AES provides a useful laboratory tool for the interpretation of susceptibility results.

  3. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

  4. Identification of Rare Pathogenic Bacteria in a Clinical Microbiology Laboratory: Impact of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard

    2013-01-01

    During the past 5 years, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories. PMID:23637301

  5. Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer.

    PubMed

    Mühlematter, Urs J; Nagel, Hannes W; Becker, Anton; Mueller, Julian; Vokinger, Kerstin N; de Galiza Barbosa, Felipe; Ter Voert, Edwin E G T; Veit-Haibach, Patrick; Burger, Irene A

    2018-05-31

    Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.

  6. A 3D image sensor with adaptable charge subtraction scheme for background light suppression

    NASA Astrophysics Data System (ADS)

    Shin, Jungsoon; Kang, Byongmin; Lee, Keechang; Kim, James D. K.

    2013-02-01

    We present a 3D ToF (Time-of-Flight) image sensor with adaptive charge subtraction scheme for background light suppression. The proposed sensor can alternately capture high resolution color image and high quality depth map in each frame. In depth-mode, the sensor requires enough integration time for accurate depth acquisition, but saturation will occur in high background light illumination. We propose to divide the integration time into N sub-integration times adaptively. In each sub-integration time, our sensor captures an image without saturation and subtracts the charge to prevent the pixel from the saturation. In addition, the subtraction results are cumulated N times obtaining a final result image without background illumination at full integration time. Experimental results with our own ToF sensor show high background suppression performance. We also propose in-pixel storage and column-level subtraction circuit for chiplevel implementation of the proposed method. We believe the proposed scheme will enable 3D sensors to be used in out-door environment.

  7. A follow-up study of autosomal dominant polycystic kidney disease with intracranial aneurysms using 3.0 T three-dimensional time-of-flight magnetic resonance angiography.

    PubMed

    Jiang, Tao; Wang, Peng; Qian, Yi; Zheng, Xuan; Xiao, Liaoyuan; Yu, Shengqiang; Liu, Shiyuan

    2013-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) patients have an increased risk for intracranial aneurysms (IAs). Our aim was to screen and follow up the unruptured intracranial aneurysms (UIAs) detected by 3.0 T three-dimensional time-of-flight magnetic resonance angiography (3D-TOF MRA) in patients with ADPKD in order to evaluate the growth of UIAs and the value of 3D-TOF MRA. From 2011 to 2012, we followed up UIAs detected in 40 ADPKD patients who had MRA examinations with an interval of at least 36 months. All MRA examinations were performed on a 3T system (Achieva X-Series, Philips Medical Systems) with a Sense-Head-8 receiver head coil. The acquired data sets were transferred to a workstation (EWS, Philips Medical) to perform maximum intensity projection (MIP) and volume rendering (VR) with a specialized software package (Philips Medical). The size of UIAs was determined as the longest diameter in transverse or vertical measurement. UIAs that grew more than 20% were considered as enlarged. Fifty UIAs were found in 40 previously examined ADPKD patients who underwent 3.0 T 3D-TOF MRA follow-ups. No patients ever had treatment before the second examination. The longest diameter of all follow-up UIAs was less than 10mm and mean diameter was 3.64 ± 2.25 mm. UIAs in only 4 patients (10%) were considered as enlarged. None of the 50 IAs in the 40 ADPKD patients ruptured during the MRA follow-up period. 3.0 T 3D-TOF MRA was feasible for UIAs follow-up in ADPKD patients. The chance of enlargement and rupture of UIAs in ADPKD patients was not higher than in the general population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Prospective PET image quality gain calculation method by optimizing detector parameters.

    PubMed

    Theodorakis, Lampros; Loudos, George; Prassopoulos, Vasilios; Kappas, Constantine; Tsougos, Ioannis; Georgoulias, Panagiotis

    2015-12-01

    Lutetium-based scintillators with high-performance electronics introduced time-of-flight (TOF) reconstruction in the clinical setting. Let G' be the total signal to noise ratio gain in a reconstructed image using the TOF kernel compared with conventional reconstruction modes. G' is then the product of G1 gain arising from the reconstruction process itself and (n-1) other gain factors (G2, G3, … Gn) arising from the inherent properties of the detector. We calculated G2 and G3 gains resulting from the optimization of the coincidence and energy window width for prompts and singles, respectively. Both quantitative and image-based validated Monte Carlo models of Lu2SiO5 (LSO) TOF-permitting and Bi4Ge3O12 (BGO) TOF-nonpermitting detectors were used for the calculations. G2 and G3 values were 1.05 and 1.08 for the BGO detector and G3 was 1.07 for the LSO. A value of almost unity for G2 of the LSO detector indicated a nonsignificant optimization by altering the energy window setting. G' was found to be ∼1.4 times higher for the TOF-permitting detector after reconstruction and optimization of the coincidence and energy windows. The method described could potentially predict image noise variations by altering detector acquisition parameters. It could also further contribute toward a long-lasting debate related to cost-efficiency issues of TOF scanners versus the non-TOF ones. Some vendors re-engage nowadays to non-TOF product line designs in an effort to reduce crystal costs. Therefore, exploring the limits of image quality gain by altering the parameters of these detectors remains a topical issue.

  9. The 2nd order focusing sector field type TOF mass analyzer with an orthogonal ion acceleration for LC-IMS-MS.

    PubMed

    Poteshin, S S; Zarakovsky, A I

    2017-03-15

    Original orthogonal acceleration (OA) electrostatic sector time of flight (TOF) mass analyzer is proposed those allows the second order focusing of time of flight by initial ions position. Resolving power aberration limit exceeding 80,000 FW (full width mass peak) was shown to be obtainable for mass analyzer with the total length of flight L=133.2cm, the average ion energy 3700V and the ion energy spread of 2.5% on the entrance of sector field. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Estimating Angle-of-Arrival and Time-of-Flight for Multipath Components Using WiFi Channel State Information.

    PubMed

    Ahmed, Afaz Uddin; Arablouei, Reza; Hoog, Frank de; Kusy, Branislav; Jurdak, Raja; Bergmann, Neil

    2018-05-29

    Channel state information (CSI) collected during WiFi packet transmissions can be used for localization of commodity WiFi devices in indoor environments with multipath propagation. To this end, the angle of arrival (AoA) and time of flight (ToF) for all dominant multipath components need to be estimated. A two-dimensional (2D) version of the multiple signal classification (MUSIC) algorithm has been shown to solve this problem using 2D grid search, which is computationally expensive and is therefore not suited for real-time localisation. In this paper, we propose using a modified matrix pencil (MMP) algorithm instead. Specifically, we show that the AoA and ToF estimates can be found independently of each other using the one-dimensional (1D) MMP algorithm and the results can be accurately paired to obtain the AoA⁻ToF pairs for all multipath components. Thus, the 2D estimation problem reduces to running 1D estimation multiple times, substantially reducing the computational complexity. We identify and resolve the problem of degenerate performance when two or more multipath components have the same AoA. In addition, we propose a packet aggregation model that uses the CSI data from multiple packets to improve the performance under noisy conditions. Simulation results show that our algorithm achieves two orders of magnitude reduction in the computational time over the 2D MUSIC algorithm while achieving similar accuracy. High accuracy and low computation complexity of our approach make it suitable for applications that require location estimation to run on resource-constrained embedded devices in real time.

  11. Identification of bacteria isolated from veterinary clinical specimens using MALDI-TOF MS.

    PubMed

    Pavlovic, Melanie; Wudy, Corinna; Zeller-Peronnet, Veronique; Maggipinto, Marzena; Zimmermann, Pia; Straubinger, Alix; Iwobi, Azuka; Märtlbauer, Erwin; Busch, Ulrich; Huber, Ingrid

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently emerged as a rapid and accurate identification method for bacterial species. Although it has been successfully applied for the identification of human pathogens, it has so far not been well evaluated for routine identification of veterinary bacterial isolates. This study was performed to compare and evaluate the performance of MALDI-TOF MS based identification of veterinary bacterial isolates with commercially available conventional test systems. Discrepancies of both methods were resolved by sequencing 16S rDNA and, if necessary, the infB gene for Actinobacillus isolates. A total of 375 consecutively isolated veterinary samples were collected. Among the 357 isolates (95.2%) correctly identified at the genus level by MALDI-TOF MS, 338 of them (90.1% of the total isolates) were also correctly identified at the species level. Conventional methods offered correct species identification for 319 isolates (85.1%). MALDI-TOF identification therefore offered more accurate identification of veterinary bacterial isolates. An update of the in-house mass spectra database with additional reference spectra clearly improved the identification results. In conclusion, the presented data suggest that MALDI-TOF MS is an appropriate platform for classification and identification of veterinary bacterial isolates.

  12. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database.

    PubMed

    Raharimalala, F N; Andrianinarivomanana, T M; Rakotondrasoa, A; Collard, J M; Boyer, S

    2017-09-01

    Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control. © 2017 The Royal Entomological Society.

  13. Evaluation of the applicability of territorial arterial spin labeling in meningiomas for presurgical assessments compared with 3-dimensional time-of-flight magnetic resonance angiography.

    PubMed

    Lu, Yiping; Luan, Shihai; Liu, Li; Xiong, Ji; Wen, Jianbo; Qu, Jianxun; Geng, Daoying; Yin, Bo

    2017-10-01

    To prospectively evaluate the application of territorial arterial spin labelling (t-ASL) in comparison with unenhanced three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) in the identification of the feeding vasculature of meningiomas. Thirty consecutive patients with suspected meningiomas underwent conventional MR imaging, unenhanced 3D-TOF-MRA and t-ASL scanning. Four experienced neuro-radiologists assessed the feeding vessels with different techniques separately. For the identification of the origin of the feeding arteries on t-ASL, the inter-observer agreement was excellent (к = 0.913), while the inter-observer agreement of 3D-TOF-MRA was good (к = 0.653). The inter-modality agreement between t-ASL and 3D-TOF-MRA for the feeding arteries was moderate (к = 0.514). All 8 patients with motor or sensory disorders proved to have meningiomas supplied completely or partially by the internal carotid arteries, while all 14 patients with meningiomas supplied by the external carotid arteries or basilar arteries didn't show any symptoms concerning motor or sensory disorders (p = 0.003). T-ASL could complement unenhanced 3D-TOF-MRA and increase accuracy in the identification of the supplying arteries of meningiomas in a safe, intuitive, non-radioactive manner. The information about feeding arteries was potentially related to patients' symptoms and pathology, making it more crucial for neurosurgeons in planning surgery as well as evaluating prognosis. • A comprehensive understanding of feeding vasculature is helpful for optimized treatment decisions. • T-ASL could identify main supplying arteries of meningiomas with excellent inter-observer agreement. • The inter-modality agreement for identification of the main feeding arteries was moderate. • Blood supply from ICAs was related to motor or sensory disorders. • High-level meningiomas were found to have double main supplying arteries.

  14. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting.

    PubMed

    Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 5 different strains of Aspergillus flavus. Prior to MALDI-TOF MS analysis, the fungi were subjected to three 1-min bead beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contain abundant peaks in the range of 5 to 20kDa and may be used to discriminate between species unambiguously. A discriminant analysis using all peaks from the MALDI-TOF MS data yielded error rates for classification of 0 and 18.75% for resubstitution and cross-validation methods, respectively. If a subset of 28 significant peaks is chosen, resubstitution and cross-validation error rates are 0%. Discriminant analysis of the MALDI-TOF MS data for 5 strains of A. flavus using all peaks yielded error rates for classification of 0 and 5% for resubstitution and cross-validation methods, respectively. These data indicate that MALDI-TOF MS data may be used for unambiguous identification of members of the genus Aspergillus at both the species and strain levels.

  15. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF

    NASA Astrophysics Data System (ADS)

    Jesch, Christian; Dickel, Timo; Plaß, Wolfgang R.; Short, Devin; Ayet San Andres, Samuel; Dilling, Jens; Geissel, Hans; Greiner, Florian; Lang, Johannes; Leach, Kyle G.; Lippert, Wayne; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    At TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) will extend TITAN's capabilities and facilitate mass measurements and in-trap decay spectroscopy of exotic nuclei that so far have not been possible due to strong isobaric contamination. This MR-TOF-MS will also enable mass measurements of very short-lived nuclides (half-life > 1 ms) that are produced in very low quantities (a few detected ions overall). In order to allow the installation of an MR-TOF-MS in the restricted space on the platform, on which the TITAN facility is located, novel mass spectrometric methods have been developed. Transport, cooling and distribution of the ions inside the device is done using a buffer gas-filled RFQ-based ion beam switchyard. Mass selection is achieved using a dynamic retrapping technique after time-of-flight analysis in an electrostatic isochronous reflector system. Only due to the combination of these novel methods the realization of an MR-TOF-MS based isobar separator at TITAN has become possible. The device has been built, commissioned off-line and is currently under installation at TITAN.

  16. Sequencing RNA by a combination of exonuclease digestion and uridine specific chemical cleavage using MALDI-TOF.

    PubMed Central

    Tolson, D A; Nicholson, N H

    1998-01-01

    The determination of DNA sequences by partial exonuclease digestion followed by Matrix-Assisted Laser Desorption Time of Flight Mass Spectrometry (MALDI-TOF) is a well established method. When the same procedure is applied to RNA, difficulties arise due to the small (1 Da) mass difference between the nucleotides U and C, which makes unambiguous assignment difficult using a MALDI-TOF instrument. Here we report our experiences with sequence specific endonucleases and chemical methods followed by MALDI-TOF to resolve these sequence ambiguities. We have found chemical methods superior to endonucleases both in terms of correct specificity and extent of sequence coverage. This methodology can be used in combination with exonuclease digestion to rapidly assign RNA sequences. PMID:9421498

  17. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry.

    PubMed

    Wang, X-H; Zhang, G; Fan, Y-Y; Yang, X; Sui, W-J; Lu, X-X

    2013-03-01

    Rapid identification of bacterial pathogens from clinical specimens is essential to establish an adequate empirical antibiotic therapy to treat urinary tract infections (UTIs). We used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) combined with UF-1000i urine flow cytometry of urine specimens to quickly and accurately identify bacteria causing UTIs. We divided each urine sample into three aliquots for conventional identification, UF-1000i, and MALDI-TOF MS, respectively. We compared the results of the conventional method with those of MALDI-TOF MS combined with UF-1000i, and discrepancies were resolved by 16S rRNA gene sequencing. We analyzed 1456 urine samples from patients with UTI symptoms, and 932 (64.0%) were negative using each of the three testing methods. The combined method used UF-1000i to eliminate negative specimens and then MALDI-TOF MS to identify the remaining positive samples. The combined method was consistent with the conventional method in 1373 of 1456 cases (94.3%), and gave the correct result in 1381 of 1456 cases (94.8%). Therefore, the combined method described here can directly provide a rapid, accurate, definitive bacterial identification for the vast majority of urine samples, though the MALDI-TOF MS software analysis capabilities should be improved, with regard to mixed bacterial infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  19. A new calibrant for MALDI-TOF-TOF-PSD-MS/MS of non-digested proteins for top-down proteomic analysis

    USDA-ARS?s Scientific Manuscript database

    RATIONALE: Matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight (TOF-TOF) tandem mass spectrometry (MS/MS) has seen increasing use for post-source decay (PSD)-MS/MS analysis of non-digested protein ions for top-down proteomic identification. However, there is no commonl...

  20. High sensitive and throughput screening of Aflatoxin using MALDI-TOF-TOF-PSD-MS/MS

    USDA-ARS?s Scientific Manuscript database

    We have achieved sensitive and efficient detection of aflatoxin B1(AFB1) through matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry (MALDI-TOF-TOF) and post-source decay (PSD) tandem mass spectrometry (MS/MS) using an acetic acid – a-cyano-4-hydroxycinnamic a...

  1. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry.

    PubMed

    Schrödl, Wieland; Heydel, Tilo; Schwartze, Volker U; Hoffmann, Kerstin; Grosse-Herrenthey, Anke; Walther, Grit; Alastruey-Izquierdo, Ana; Rodriguez-Tudela, Juan Luis; Olias, Philipp; Jacobsen, Ilse D; de Hoog, G Sybren; Voigt, Kerstin

    2012-02-01

    Zygomycetes of the order Mucorales can cause life-threatening infections in humans. These mucormycoses are emerging and associated with a rapid tissue destruction and high mortality. The resistance of Mucorales to antimycotic substances varies between and within clinically important genera such as Mucor, Rhizopus, and Lichtheimia. Thus, an accurate diagnosis before onset of antimycotic therapy is recommended. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) is a potentially powerful tool to rapidly identify infectious agents on the species level. We investigated the potential of MALDI-TOF MS to differentiate Lichtheimia species, one of the most important agents of mucormycoses. Using the Bruker Daltonics FlexAnalysis (version 3.0) software package, a spectral database library with m/z ratios of 2,000 to 20,000 Da was created for 19 type and reference strains of clinically relevant Zygomycetes of the order Mucorales (12 species in 7 genera). The database was tested for accuracy by use of 34 clinical and environmental isolates of Lichtheimia comprising a total of five species. Our data demonstrate that MALDI-TOF MS can be used to clearly discriminate Lichtheimia species from other pathogenic species of the Mucorales. Furthermore, the method is suitable to discriminate species within the genus. The reliability and robustness of the MALDI-TOF-based identification are evidenced by high score values (above 2.3) for the designation to a certain species and by moderate score values (below 2.0) for the discrimination between clinically relevant (Lichtheimia corymbifera, L. ramosa, and L. ornata) and irrelevant (L. hyalospora and L. sphaerocystis) species. In total, all 34 strains were unequivocally identified by MALDI-TOF MS with score values of >1.8 down to the generic level, 32 out of 34 of the Lichtheimia isolates (except CNM-CM 5399 and FSU 10566) were identified accurately with score values of >2 (probable species identification), and 25 of 34 isolates were identified to the species level with score values of >2.3 (highly probable species identification). The MALDI-TOF MS-based method reported here was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  2. Polydopamine-Coated Magnetic Molecularly Imprinted Polymers with Fragment Template for Identification of Pulsatilla Saponin Metabolites in Rat Feces with UPLC-Q-TOF-MS.

    PubMed

    Zhang, Yu-Zhen; Zhang, Jia-Wei; Wang, Chong-Zhi; Zhou, Lian-Di; Zhang, Qi-Hui; Yuan, Chun-Su

    2018-01-24

    In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe 3 O 4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.

  3. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system.

    PubMed

    McElvania Tekippe, Erin; Shuey, Sunni; Winkler, David W; Butler, Meghan A; Burnham, Carey-Ann D

    2013-05-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including "heavy" (H) and "light" (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or "score." We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS.

  4. Optimizing Identification of Clinically Relevant Gram-Positive Organisms by Use of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System

    PubMed Central

    McElvania TeKippe, Erin; Shuey, Sunni; Winkler, David W.; Butler, Meghan A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including “heavy” (H) and “light” (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or “score.” We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS. PMID:23426925

  5. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.

  6. Low energy positron beam system for the investigation of 2D and porous materials

    NASA Astrophysics Data System (ADS)

    Chrysler, M. D.; Chirayath, V. A.; Mcdonald, A. D.; Gladen, R. W.; Fairchild, A. J.; Koymen, A. R.; Weiss, A. H.

    2017-01-01

    An advanced variable energy positron beam (~2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths.

  7. Biomarkers of Aspergillus spores

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  8. Quantitative analysis of a brass alloy using CF-LIBS and a laser ablation time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Abdullah, M.; Ahmed, Rizwan; Piracha, N. K.; Aslam Baig, M.

    2018-01-01

    We present a quantitative analysis of a brass alloy using laser induced breakdown spectroscopy, energy dispersive x-ray spectroscopy (EDX) and laser ablation time-of-flight mass spectrometry (LA-TOF-MS). The emission lines of copper (Cu I) and zinc (Zn I), and the constituent elements of the brass alloy were used to calculate the plasma parameters. The plasma temperature was calculated from the Boltzmann plot as (10 000  ±  1000) K and the electron number density was determined as (2.0  ±  0.5)  ×  1017 cm-3 from the Stark-broadened Cu I line as well as using the Saha-Boltzmann equation. The elemental composition was deduced using these techniques: the Boltzmann plot method (70% Cu and 30% Zn), internal reference self-absorption correction (63.36% Cu and 36.64% Zn), EDX (61.75% Cu and 38.25% Zn), and LA-TOF (62% Cu and 38% Zn), whereas, the certified composition is (62% Cu and 38% Zn). It was observed that the internal reference self-absorption correction method yields analytical results comparable to that of EDX and LA-TOF-MS.

  9. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector

    NASA Astrophysics Data System (ADS)

    Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho

    2017-04-01

    There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.

  10. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization– time-of-flight mass spectrometry

    PubMed Central

    Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-01-01

    Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644968

  11. In-beam test of the RPC architecture foreseen to be used for the CBM-TOF inner wall

    NASA Astrophysics Data System (ADS)

    Petriş, M.; Bartoş, D.; Petrovici, M.; Rădulescu, L.; Simion, V.; Deppner, I.; Herrmann, N.; Simon, C.; Frühauf, J.; Kiš, M.; Loizeau, P.-A.

    2018-05-01

    The Time Of Flight (TOF) subsystem is one of the main detectors of the CBM experiment. The TOF wall in conjunction with Silicon Tracking System (STS) is foreseen to identify charged hadrons, i.e. pions, kaons and protons, with a full azimuthal coverage at 2.50 - 250 polar angles. A system time resolution of at least 80 ps, including all contributions, such as electronics jitter and the resolution of the time reference system, is required. Such a performance should be maintained up to a counting rate larger than 30 kHz/cm2 at the most inner region of TOF wall. Our R&D activity has been focused on the development of two-dimensional position sensitive Multi-gap Resistive Plate Counter (MRPC) prototypes for the forward region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The in-beam tests using secondary particles produced in 30 GeV/u Pb ion collisions on a Pb target at SPS - CERN aimed to test the performance of these prototypes in conditions similar to the ones expected at SIS100 at FAIR. The performance of the prototypes is studied in conditions of exposure of the whole active area of the chamber to high multiplicity of reaction products. The results show that this type of MRPC fulfill the challenging requirements of the CBM-TOF wall. Therefore, such an architecture is recommended as basic solution for CBM-TOF inner zone.

  12. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    PubMed

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  13. Effect of Time-of-Flight Information on PET/MR Reconstruction Artifacts: Comparison of Free-breathing versus Breath-hold MR-based Attenuation Correction.

    PubMed

    Delso, Gaspar; Khalighi, Mohammed; Ter Voert, Edwin; Barbosa, Felipe; Sekine, Tetsuro; Hüllner, Martin; Veit-Haibach, Patrick

    2017-01-01

    Purpose To evaluate the magnitude and anatomic extent of the artifacts introduced on positron emission tomographic (PET)/magnetic resonance (MR) images by respiratory state mismatch in the attenuation map. Materials and Methods The method was tested on 14 patients referred for an oncologic examination who underwent PET/MR imaging. The acquisition included standard PET and MR series for each patient, and an additional attenuation correction series was acquired by using breath hold. PET data were reconstructed with and without time-of-flight (TOF) information, first by using the standard free-breathing attenuation map and then again by using the additional breath-hold map. Two-tailed paired t testing and linear regression with 0 intercept was performed on TOF versus non-TOF and free-breathing versus breath-hold data for all detected lesions. Results Fluorodeoxyglucose-avid lesions were found in eight of the 14 patients included in the study. The uptake differences (maximum standardized uptake values) between PET reconstructions with free-breathing versus breath-hold attenuation ranged, for non-TOF reconstructions, from -18% to 26%. The corresponding TOF reconstructions yielded differences from -15% to 18%. Conclusion TOF information was shown to reduce the artifacts caused at PET/MR by respiratory mismatch between emission and attenuation data. © RSNA, 2016 Online supplemental material is available for this article.

  14. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    PubMed

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  15. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time.

    PubMed

    Lagacé-Wiens, Philippe R S; Adam, Heather J; Karlowsky, James A; Nichol, Kimberly A; Pang, Paulette F; Guenther, Jodi; Webb, Amanda A; Miller, Crystal; Alfa, Michelle J

    2012-10-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P < 0.0001) in the ideal situation where MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.

  16. Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

    PubMed Central

    Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.-S.; Leflèche, A.; Badell, E.; Guiso, N.; Leclercq, A.; Le Monnier, A.; Lecuit, M.; Rodriguez-Nava, V.; Bergeron, E.; Raymond, J.; Vimont, S.; Bille, E.; Carbonnelle, E.; Guet-Revillet, H.; Lécuyer, H.; Beretti, J.-L.; Vay, C.; Berche, P.; Ferroni, A.; Nassif, X.

    2012-01-01

    Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry. PMID:22692743

  17. Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities.

    PubMed

    Groth, M; Forkert, N D; Buhk, J H; Schoenfeld, M; Goebell, E; Fiehler, J

    2013-02-01

    To compare intra- and inter-observer reliability of aneurysm measurements obtained by a 3D computer-aided technique with standard manual aneurysm measurements in different imaging modalities. A total of 21 patients with 29 cerebral aneurysms were studied. All patients underwent digital subtraction angiography (DSA), contrast-enhanced (CE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA). Aneurysm neck and depth diameters were manually measured by two observers in each modality. Additionally, semi-automatic computer-aided diameter measurements were performed using 3D vessel surface models derived from CE- (CE-com) and TOF-MRA (TOF-com) datasets. Bland-Altman analysis (BA) and intra-class correlation coefficient (ICC) were used to evaluate intra- and inter-observer agreement. BA revealed the narrowest relative limits of intra- and inter-observer agreement for aneurysm neck and depth diameters obtained by TOF-com (ranging between ±5.3 % and ±28.3 %) and CE-com (ranging between ±23.3 % and ±38.1 %). Direct measurements in DSA, TOF-MRA and CE-MRA showed considerably wider limits of agreement. The highest ICCs were observed for TOF-com and CE-com (ICC values, 0.92 or higher for intra- as well as inter-observer reliability). Computer-aided aneurysm measurement in 3D offers improved intra- and inter-observer reliability and a reproducible parameter extraction, which may be used in clinical routine and as objective surrogate end-points in clinical trials.

  18. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Use with Positive Blood Cultures: Methodology, Performance, and Optimization.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Ledeboer, Nathan A

    2017-12-01

    Early initiation of effective antibiotics for septic patients is essential for patient survival. Matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized clinical microbiology for isolate identification and has the possibility to impact how blood culture testing is performed. This review discusses the various uses of MALDI-TOF MS for the identification and susceptibility testing of positive blood cultures, the performance of these methods, and the outcomes involved with its implementation. Copyright © 2017 American Society for Microbiology.

  19. A Robotic Platform for Corn Seedling Morphological Traits Characterization

    PubMed Central

    Lu, Hang; Tang, Lie; Whitham, Steven A.; Mei, Yu

    2017-01-01

    Crop breeding plays an important role in modern agriculture, improving plant performance, and increasing yield. Identifying the genes that are responsible for beneficial traits greatly facilitates plant breeding efforts for increasing crop production. However, associating genes and their functions with agronomic traits requires researchers to observe, measure, record, and analyze phenotypes of large numbers of plants, a repetitive and error-prone job if performed manually. An automated seedling phenotyping system aimed at replacing manual measurement, reducing sampling time, and increasing the allowable work time is thus highly valuable. Toward this goal, we developed an automated corn seedling phenotyping platform based on a time-of-flight of light (ToF) camera and an industrial robot arm. A ToF camera is mounted on the end effector of the robot arm. The arm positions the ToF camera at different viewpoints for acquiring 3D point cloud data. A camera-to-arm transformation matrix was calculated using a hand-eye calibration procedure and applied to transfer different viewpoints into an arm-based coordinate frame. Point cloud data filters were developed to remove the noise in the background and in the merged seedling point clouds. A 3D-to-2D projection and an x-axis pixel density distribution method were used to segment the stem and leaves. Finally, separated leaves were fitted with 3D curves for morphological traits characterization. This platform was tested on a sample of 60 corn plants at their early growth stages with between two to five leaves. The error ratios of the stem height and leave length measurements are 13.7% and 13.1%, respectively, demonstrating the feasibility of this robotic system for automated corn seedling phenotyping. PMID:28895892

  20. A Robotic Platform for Corn Seedling Morphological Traits Characterization.

    PubMed

    Lu, Hang; Tang, Lie; Whitham, Steven A; Mei, Yu

    2017-09-12

    Crop breeding plays an important role in modern agriculture, improving plant performance, and increasing yield. Identifying the genes that are responsible for beneficial traits greatly facilitates plant breeding efforts for increasing crop production. However, associating genes and their functions with agronomic traits requires researchers to observe, measure, record, and analyze phenotypes of large numbers of plants, a repetitive and error-prone job if performed manually. An automated seedling phenotyping system aimed at replacing manual measurement, reducing sampling time, and increasing the allowable work time is thus highly valuable. Toward this goal, we developed an automated corn seedling phenotyping platform based on a time-of-flight of light (ToF) camera and an industrial robot arm. A ToF camera is mounted on the end effector of the robot arm. The arm positions the ToF camera at different viewpoints for acquiring 3D point cloud data. A camera-to-arm transformation matrix was calculated using a hand-eye calibration procedure and applied to transfer different viewpoints into an arm-based coordinate frame. Point cloud data filters were developed to remove the noise in the background and in the merged seedling point clouds. A 3D-to-2D projection and an x -axis pixel density distribution method were used to segment the stem and leaves. Finally, separated leaves were fitted with 3D curves for morphological traits characterization. This platform was tested on a sample of 60 corn plants at their early growth stages with between two to five leaves. The error ratios of the stem height and leave length measurements are 13.7% and 13.1%, respectively, demonstrating the feasibility of this robotic system for automated corn seedling phenotyping.

  1. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  2. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  3. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  4. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  5. Imaging thermal plasma mass and velocity analyzer

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew

    2016-07-01

    We present the design and principle of operation of the imaging ion mass and velocity analyzer on the Enhanced Polar Outflow Probe (e-POP), which measures low-energy (1-90 eV/e) ion mass composition (1-40 AMU/e) and velocity distributions using a hemispherical electrostatic analyzer (HEA), a time-of-flight (TOF) gate, and a pair of toroidal electrostatic deflectors (TED). The HEA and TOF gate measure the energy-per-charge and azimuth of each detected ion and the ion transit time inside the analyzer, respectively, providing the 2-D velocity distribution of each major ionospheric ion species and resolving the minor ion species under favorable conditions. The TED are in front of the TOF gate and optionally sample ions at different elevation angles up to ±60°, for measurement of 3-D velocity distribution. We present examples of observation data to illustrate the measurement capability of the analyzer, and show the occurrence of enhanced densities of heavy "minor" O++, N+, and molecular ions and intermittent, high-velocity (a few km/s) upward and downward flowing H+ ions in localized regions of the quiet time topside high-latitude ionosphere.

  6. Effective use of flow-spoiled FBI and time-SLIP methods in the diagnostic study of an aberrant vessel of the head and neck: "left jugular venous steal by the right jugular vein".

    PubMed

    Kogure, Taroh; Kogure, Kyuya; Iizuka, Mitsumasa; Ino, Azusa; Ishii, Masako

    2010-08-01

    Three-dimensional (3D) time-of-flight (TOF) is now commonly used in routine magnetic resonance angiography (MRA) studies of the head and neck. However, there are limits to its diagnostic abilities in the clinical field and, in some instances, a more invasive supplementary examination may be required. We incidentally discovered a patient with an aberrant vessel of the head and neck that ran alongside the left carotid artery and contained a constant, slowly pulsating efferent blood flow. 3D-TOF and carotid ultrasonography could not determine the nature and origin of this vessel. Additional studies using flow-spoiled fresh blood imaging (flow-spoiled FBI) and time spatial labeling inversion pulse (time-SLIP) methods were effective in determining that the vessel was the left jugular vein, and that the continuous venous reflux was a result of a venous steal by the right jugular vein. We show that by combining different MRA techniques we can effectively achieve diagnosis without resorting to more invasive examinations. 2010 Wiley-Liss, Inc.

  7. Diagnostic performance of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry in blood bacterial infections: a systematic review and meta-analysis.

    PubMed

    Scott, Jamie S; Sterling, Sarah A; To, Harrison; Seals, Samantha R; Jones, Alan E

    2016-07-01

    Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has shown promise in decreasing time to identification of causative organisms compared to traditional methods; however, the utility of MALDI-TOF MS in a heterogeneous clinical setting is uncertain. To perform a systematic review on the operational performance of the Bruker MALDI-TOF MS system and evaluate published cut-off values compared to traditional blood cultures. A comprehensive literature search was performed. Studies were included if they performed direct MALDI-TOF MS analysis of blood culture specimens in human patients with suspected bacterial infections using the Bruker Biotyper software. Sensitivities and specificities of the combined studies were estimated using a hierarchical random effects linear model (REML) incorporating cut-off scores of ≥1.7 and ≥2.0. Fifty publications were identified, with 11 studies included after final review. The estimated sensitivity utilising a cut-off of ≥2.0 from the combined studies was 74.6% (95% CI = 67.9-89.3%), with an estimated specificity of 88.0% (95% CI = 74.8-94.7%). When assessing a cut-off of ≥1.7, the combined sensitivity increases to 92.8% (95% CI = 87.4-96.0%), but the estimated specificity decreased to 81.2% (95% CI = 61.9-96.6%). In this analysis, MALDI-TOF MS showed acceptable sensitivity and specificity in bacterial speciation with the current recommended cut-off point compared to blood cultures; however, lowering the cut-off point from ≥2.0 to ≥1.7 would increase the sensitivity of the test without significant detrimental effect on the specificity, which could improve clinician confidence in their results.

  8. Experimental investigation of the Multipoint Ultrasonic Flowmeter

    NASA Astrophysics Data System (ADS)

    Jakub, Filipský

    2018-06-01

    The Multipoint Ultrasonic Flowmeter is a vector tomographic device capable of reconstructing all three components of velocity field based solely on boundary ultrasonic measurements. Computer simulations have shown the feasibility of such a device and have been published previously. This paper describes an experimental investigation of achievable accuracy of such a method. Doubled acoustic tripoles used to obtain information of the solenoidal part of vector field show extremely short differences between the Time Of Flights (TOFs) of individual sensors and are therefore sensitive to parasitic effects of TOF measurements. Sampling at 40MHz and correlation method is used to measure the TOF.

  9. Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.

    PubMed

    Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio

    2009-01-01

    3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.

  10. A systematic review of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry compared to routine microbiological methods for the time taken to identify microbial organisms from positive blood cultures.

    PubMed

    Dixon, P; Davies, P; Hollingworth, W; Stoddart, M; MacGowan, A

    2015-05-01

    Bloodstream infections are a significant source of mortality and morbidity. Patient outcomes are improved by rapid identification of the causative pathogen and administration of appropriate antimicrobial therapy. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry has recently emerged as an alternative to microbiological identification. It is important to establish whether the costs of MALDI-TOF are justified by more timely identification and appropriate therapy, reduced length of stay and reduced hospital costs. We undertook a systematic review of the literature comparing MALDI-TOF and routine methods for the identification of the aetiological agent in patients with known or suspected bloodstream infection. The primary outcome of the review was the 'time to identify' organisms. Information on related measures such as 'time to appropriate antimicrobial treatment' and downstream hospital cost was also collected where reported. Ten of 775 articles identified met the inclusion criteria. All included studies were observational. MALDI-TOF identification was at least 24 h faster than routine methods in most circumstances. MADLI-TOF was associated with a reduction in downstream hospital costs and length of stay in studies reporting these outcomes. The observational studies reviewed provide evidence of potentially substantial time savings of MALDI-TOF in pathogen identification and instigation of appropriate therapy, which may also reduce hospital stay. Due to the small number of studies, all at relatively high risk of bias, this cannot be considered as definitive evidence of the impact of MALDI-TOF. More and better evidence, including impact on patient health and cost-effectiveness, is required.

  11. Unimolecular dissociation of protonated trans-1,4-diphenyl-2-butene-1,4-dione in the gas phase: rearrangement versus simple cleavage.

    PubMed

    Wu, Lianming; Liu, David Q; Vogt, Frederick G

    2006-01-01

    Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways. Copyright (c) 2006 John Wiley & Sons, Ltd.

  12. Series of Noncontrast Time-of-Flight Magnetic Resonance Angiographies to Identify Problems with Arteriovenous Fistula Maturation.

    PubMed

    Gonzalez, Aaron J; Casey, Kevin M; Drinkwine, Benjamin J; Weiss, Jeffrey S

    2016-01-01

    Successful maturation of arteriovenous fistulas (AVFs) remains a challenge for those managing patients with end-stage renal disease. Time-of-flight magnetic resonance angiography (TOF-MR) can be used to evaluate AVFs without the risk of radiation exposure, intravenous contrast, or reliance on the operator-dependent modality of color Doppler ultrasonography (CDUS). The objective of our study was to assess the utility of TOF-MR in the evaluation of nonmaturing AVFs and to identify the best clinical situations to use this technology. Consecutive patients with abnormal findings on CDUS or physical examination after AVF creation underwent 3-dimensional (3D) TOF-MR. Imaging was performed at 3 T with a scan acquisition time of approximately 15 min. The technique was similar to head and neck magnetic resonance angiography (MRA), except presaturation bands were not used, thereby allowing simultaneous visualization of both arterial and venous flow. A total of 19 TOF-MR studies were performed. Nineteen patients underwent imaging and were the focus of this study. Seventeen of 19 TOF-MR studies were of diagnostic quality and yielded findings which enabled the vascular surgeon to take corrective measures. Findings included inflow stenosis, anastomotic narrowing, venous outflow stenosis, and hemodynamically significant venous tributaries. Twelve of 17 patients required conventional digital subtraction angiography (DSA). The congruence rate between TOF-MR and DSA was 83.3%. Four patients (21%) avoided DSA and went directly to definitive surgical treatment including branch ligation (3) or new access (1). This is the first report in the literature of successful implementation of 3D TOF-MR to assist in identifying AVF maturation problems. This unique noninvasive imaging modality provides actionable images without contrast or radiation exposure and can obviate the need for invasive diagnostic procedures or provide an anatomic map for planning corrective intervention. Published by Elsevier Inc.

  13. Rapid detection of AAC(6')-Ib-cr production using a MALDI-TOF MS strategy.

    PubMed

    Pardo, C-A; Tan, R N; Hennequin, C; Beyrouthy, R; Bonnet, R; Robin, F

    2016-12-01

    Plasmid-mediated quinolone resistance mechanisms have become increasingly prevalent among Enterobacteriaceae strains since the 1990s. Among these mechanisms, AAC(6')-Ib-cr is the most difficult to detect. Different detection methods have been developed, but they require expensive procedures such as Sanger sequencing, pyrosequencing, polymerase chain reaction (PCR) restriction, or the time-consuming phenotypic method of Wachino. In this study, we describe a simple matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method which can be easily implemented in clinical laboratories that use the MALDI-TOF technique for bacterial identification. We tested 113 strains of Enterobacteriaceae, of which 64 harbored the aac(6')-Ib-cr gene. We compared two MALDI-TOF strategies, which differed by their norfloxacin concentration (0.03 vs. 0.5 g/L), and the method of Wachino with the PCR and sequencing strategy used as the reference. The MALDI-TOF strategy, performed with 0.03 g/L norfloxacin, and the method of Wachino yielded the same high performances (Se = 98 %, Sp = 100 %), but the turnaround time of the MALDI-TOF strategy was faster (<5 h), simpler, and inexpensive (<1 Euro). Our study shows that the MALDI-TOF strategy has the potential to become a major method for the detection of many different enzymatic resistance mechanisms.

  14. Comprehensive Optimization of LC-MS Metabolomics Methods Using Design of Experiments (COLMeD)

    PubMed Central

    Rhoades, Seth D.

    2017-01-01

    Introduction Both reverse-phase and HILIC chemistries are deployed for liquid-chromatography mass spectrometry (LC-MS) metabolomics analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics analysis is additionally complicated by the physiochemical diversity of metabolites and array of tunable analytical parameters. Objective Our aim was to rationally and efficiently design complementary HILIC-based polar metabolomics methods on multiple instruments using Design of Experiments (DoE). Methods We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow we term COLMeD (Comprehensive optimization of LC-MS metabolomics methods using design of experiments). Multivariate statistical analysis guided our decision process in the method optimizations. Results LC-MS/MS tuning for the QqQ method on serum metabolites yielded a median response increase of 161.5% (p<0.0001) over initial conditions with a 13.3% increase in metabolite coverage. The COLMeD output was benchmarked against two widely used polar metabolomics methods, demonstrating total ion current increases of 105.8% and 57.3%, with median metabolite response increases of 106.1% and 10.3% (p<0.0001 and p<0.05 respectively). For our optimized qTOF method, 22 solvent systems were compared on a standard mix of physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 29.8% response increase (p<0.0001) over initial conditions. Conclusions The COLMeD process elucidated response tradeoffs, facilitating improved chromatography and MS response without compromising separation of isobars. COLMeD is efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-specific optimization as demonstrated through acylcarnitine optimization within the QqQ method. PMID:28348510

  15. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans

    PubMed Central

    Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype. PMID:29020109

  16. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    PubMed

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  17. Evaluating The Relation of Trace Fracture Inclination and Sound Pressure Level and Time-of-flight QUS Parameters Using Computational Simulation

    NASA Astrophysics Data System (ADS)

    Rosa, P. T.; Fontes-Pereira, A. J.; Matusin, D. P.; von Krüger, M. A.; Pereira, W. C. A.

    Bone healing is a complex process that stars after the occurrence of a fracture to restore bone optimal conditions. The gold standards for bone status evaluation are the dual energy X-ray absorptiometry and the computerized tomography. Ultrasound-based technologies have some advantages as compared to X-ray technologies: nonionizing radiation, portability and lower cost among others. Quantitative ultrasound (QUS) has been proposed in literature as a new tool to follow up the fracture healing process. QUS relates the ultrasound propagation with the bone tissue condition (normal or pathological), so, a change in wave propagation may indicate a variation in tissue properties. The most used QUS parameters are time-of-flight (TOF) and sound pressure level (SPL) of the first arriving signal (FAS). In this work, the FAS is the well known lateral wave. The aim of this work is to evaluate the relation of the TOF and SPL of the FAS and fracture inclination trace in two stages of bone healing using computational simulations. Four fracture geometries were used: normal and oblique with 30, 45 and 60 degrees. The TOF average values were 63.23 μs, 63.14 μs, 63.03 μs 62.94 μs for normal, 30, 45 and 60 degrees respectively and average SPL values were -3.83 dB -4.32 dB, -4.78 dB, -6.19 dB for normal, 30, 45 and 60 degrees respectively. The results show an inverse pattern between the amplitude and time-of-flight. These values seem to be sensible to fracture inclination trace, and in future, can be used to characterize it.

  18. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jian, E-mail: lujian@ujs.edu.cn; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013; Zhou, Zhongping

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell linemore » is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.« less

  19. Comprehensive Optimization of LC-MS Metabolomics Methods Using Design of Experiments (COLMeD).

    PubMed

    Rhoades, Seth D; Weljie, Aalim M

    2016-12-01

    Both reverse-phase and HILIC chemistries are deployed for liquid-chromatography mass spectrometry (LC-MS) metabolomics analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics analysis is additionally complicated by the physiochemical diversity of metabolites and array of tunable analytical parameters. Our aim was to rationally and efficiently design complementary HILIC-based polar metabolomics methods on multiple instruments using Design of Experiments (DoE). We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow we term COLMeD (Comprehensive optimization of LC-MS metabolomics methods using design of experiments). Multivariate statistical analysis guided our decision process in the method optimizations. LC-MS/MS tuning for the QqQ method on serum metabolites yielded a median response increase of 161.5% (p<0.0001) over initial conditions with a 13.3% increase in metabolite coverage. The COLMeD output was benchmarked against two widely used polar metabolomics methods, demonstrating total ion current increases of 105.8% and 57.3%, with median metabolite response increases of 106.1% and 10.3% (p<0.0001 and p<0.05 respectively). For our optimized qTOF method, 22 solvent systems were compared on a standard mix of physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 29.8% response increase (p<0.0001) over initial conditions. The COLMeD process elucidated response tradeoffs, facilitating improved chromatography and MS response without compromising separation of isobars. COLMeD is efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-specific optimization as demonstrated through acylcarnitine optimization within the QqQ method.

  20. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies inmore » a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.« less

  1. [Applications of MALDI-TOF-MS in clinical microbiology laboratory].

    PubMed

    Carbonnelle, Etienne; Nassif, Xavier

    2011-10-01

    For twenty years, mass spectrometry (MS) has emerged as a particularly powerful tool for analysis and characterization of proteins in research. It is only recently that this technology, especially MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight) has entered the field of routine microbiology. This method has proven to be reliable and safe for the identification of bacteria, yeasts, filamentous fungi and dermatophytes. MALDI-TOF-MS is a rapid, precise and cost-effective method for identification, compared to conventional phenotypic techniques or molecular biology. Its ability to analyse whole microorganisms with few sample preparation has greatly reduced the time to identification (1-2 min). Furthermore, this technology can be used to identify bacteria directly from clinical samples as blood culture bottles or urines. Future applications will be developed in order to provide direct information concerning virulence or resistance protein markers. © 2011 médecine/sciences – Inserm / SRMS.

  2. Candida guilliermondii and Other Species of Candida Misidentified as Candida famata: Assessment by Vitek 2, DNA Sequencing Analysis, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Two Global Antifungal Surveillance Programs

    PubMed Central

    Woosley, Leah N.; Diekema, Daniel J.; Jones, Ronald N.; Pfaller, Michael A.

    2013-01-01

    Candida famata (teleomorph Debaryomyces hansenii) has been described as a medically relevant yeast, and this species has been included in many commercial identification systems that are currently used in clinical laboratories. Among 53 strains collected during the SENTRY and ARTEMIS surveillance programs and previously identified as C. famata (includes all submitted strains with this identification) by a variety of commercial methods (Vitek, MicroScan, API, and AuxaColor), DNA sequencing methods demonstrated that 19 strains were C. guilliermondii, 14 were C. parapsilosis, 5 were C. lusitaniae, 4 were C. albicans, and 3 were C. tropicalis, and five isolates belonged to other Candida species (two C. fermentati and one each C. intermedia, C. pelliculosa, and Pichia fabianni). Additionally, three misidentified C. famata strains were correctly identified as Kodomaea ohmeri, Debaryomyces nepalensis, and Debaryomyces fabryi using intergenic transcribed spacer (ITS) and/or intergenic spacer (IGS) sequencing. The Vitek 2 system identified three isolates with high confidence to be C. famata and another 15 with low confidence between C. famata and C. guilliermondii or C. parapsilosis, displaying only 56.6% agreement with DNA sequencing results. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) results displayed 81.1% agreement with DNA sequencing. One strain each of C. metapsilosis, C. fermentati, and C. intermedia demonstrated a low score for identification (<2.0) in the MALDI Biotyper. K. ohmeri, D. nepalensis, and D. fabryi identified by DNA sequencing in this study were not in the current database for the MALDI Biotyper. These results suggest that the occurrence of C. famata in fungal infections is much lower than previously appreciated and that commercial systems do not produce accurate identifications except for the newly introduced MALDI-TOF instruments. PMID:23100350

  3. Time-of-flight magnetic resonance angiography (TOF-MRA) of the normal equine head.

    PubMed

    Manso-Díaz, G; García-Real, M I; Casteleyn, C; San-Román, F; Taeymans, O

    2013-03-01

    Noncontrast magnetic resonance angiography (MRA) is widely used in human and small animal medicine. However, this technique has not yet been described in the horse, and compared to other angiographic techniques MRA could be more cost efficient and potentially safer. The aim of this study was to provide a comprehensive anatomical reference of the normal equine head vasculature using a noncontrast MRA technique, on both low- and high-field MRI. Five healthy adult horses were examined, 4 with a low-field magnet (0.23T) and the remaining one with a high-field magnet (1.5T). The magnetic resonance angiography sequence used was TOF (time-of-flight) 2D-MRA and CT images of a vascular corrosion cast were subsequently used as anatomical references. The MRA imaging protocol provided good visualisation of all major intra- and extracranial vessels down to a size of approximately 2 mm in diameter on both low- and high-field systems. This resulted in identification of vessels to the order of 3rd-4th branches of ramification. The visibility of the arteries was higher than of the veins, which showed lower signal intensity. Overall, MRA obtained with the high-field protocol provided better visualisation of the arteries, showing all the small arterial branches with a superior resolution. The use of a specific vascular sequence such as TOF 2D-MRA allows good visualisation of the equine head vasculature and eliminates the need for contrast media for MRA. Magnetic resonance angiography allows for visualisation of the vasculature of the equine head. Vessel morphology, symmetry and size can be evaluated and this may possibly play a role in preoperative planning or characterisation of diseases of the head, such as neoplasia or guttural pouch mycosis. © 2012 EVJ Ltd.

  4. Identification of Weissella species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren

    2015-01-01

    Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species.

  5. MALDI-TOF Mass Spectrometry Is a Fast and Reliable Platform for Identification and Ecological Studies of Species from Family Rhizobiaceae

    PubMed Central

    Ferreira, Laura; Sánchez-Juanes, Fernando; García-Fraile, Paula; Rivas, Raúl; Mateos, Pedro F.; Martínez-Molina, Eustoquio; González-Buitrago, José Manuel; Velázquez, Encarna

    2011-01-01

    Family Rhizobiaceae includes fast growing bacteria currently arranged into three genera, Rhizobium, Ensifer and Shinella, that contain pathogenic, symbiotic and saprophytic species. The identification of these species is not possible on the basis of physiological or biochemical traits and should be based on sequencing of several genes. Therefore alternative methods are necessary for rapid and reliable identification of members from family Rhizobiaceae. In this work we evaluated the suitability of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for this purpose. Firstly, we evaluated the capability of this methodology to differentiate among species of family Rhizobiaceae including those closely related and then we extended the database of MALDI Biotyper 2.0 including the type strains of 56 species from genera Rhizobium, Ensifer and Shinella. Secondly, we evaluated the identification potential of this methodology by using several strains isolated from different sources previously identified on the basis of their rrs, recA and atpD gene sequences. The 100% of these strains were correctly identified showing that MALDI-TOF MS is an excellent tool for identification of fast growing rhizobia applicable to large populations of isolates in ecological and taxonomic studies. PMID:21655291

  6. [Application of MALDI-TOF-MS in gene testing for non-syndromic hearing loss].

    PubMed

    Zeng, Yun; Jiang, Dan; Feng, Da-fei; Jin, Dong-dong; Wu, Xiao-hui; Ding, Yan-li; Zou, Jing

    2013-12-01

    To investigate the feasibility of Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) , according to the genetic test of non-syndromic hearing loss (NSHL), and check using the direct sequencing. Peripheral blood was collected from 454 NSHL patients. DNA samples were extracted and 20 loci of the four common disease-causing genes were analysed by MALDI-TOF-MS, including GJB2 (35delG, 167delT, 176_191del16, 235delC, 299_300delAT ), GJB3 (538C→T, 547G→A), SLC26A4 (281C→T, 589G→A, IVS7-2A→G, 1174A→T, 1226G→A, 1229C→T, IVS15+5G→A, 1975G→C, 2027T→A, 2162C→T, 2168A→G), and mitochondrial 12S rRNA (1494C→T, 1555A→G). Direct sequencing was also used to analyse the aforementioned 20 loci in order to validate the accuracy of MALDI-TOF-MS. Among the 454 patients, 166 cases (36.56%) of disease-causing mutations were detected, which included 69 cases (21.15%) of GJB2 gene mutation, four cases (0.88%) of GJB3 gene mutation, 64 cases (14.10%) of SLC26A4 gene mutation, and three cases (0.66%) of mitochondrial 12S rRNA gene mutation. Moreover, the results obtained from direct sequencing and MALDI-TOF-MS were consistent, and the results showed that the two methods were consistent. The MALDI-TOF-MS detection method was designed based on the hearing loss-related mutation hotspots seen in the Chinese population, and it has a high detection rate for NSHL related mutations. In comparison to the conventional detection methods, MALDI-TOF-MS has the following advantages: more detection sites, greater coverage, accurate, high throughput and low cost. Therefore, this method is capable of satisfying the needs of clinical detection for hearing impairment and it is suitable for large-scale implementation.

  7. A Prospective, Matched Comparison Study of SUV Measurements From Time-of-Flight Versus Non-Time-of-Flight PET/CT Scanners.

    PubMed

    Thompson, Holly M; Minamimoto, Ryogo; Jamali, Mehran; Barkhodari, Amir; von Eyben, Rie; Iagaru, Andrei

    2016-07-01

    As quantitative F-FDG PET numbers and pooling of results from different PET/CT scanners become more influential in the management of patients, it becomes imperative that we fully interrogate differences between scanners to fully understand the degree of scanner bias on the statistical power of studies. Participants with body mass index (BMI) greater than 25, scheduled on a time-of-flight (TOF)-capable PET/CT scanner, had a consecutive scan on a non-TOF-capable PET/CT scanner and vice versa. SUVmean in various tissues and SUVmax of malignant lesions were measured from both scans, matched to each subject. Data were analyzed using a mixed-effects model, and statistical significance was determined using equivalence testing, with P < 0.05 being significant. Equivalence was established in all baseline organs, except the cerebellum, matched per patient between scanner types. Mixed-effects method analysis of lesions, repeated between scan types and matched per patient, demonstrated good concordance between scanner types. Patients could be scanned on either a TOF or non-TOF-capable PET/CT scanner without clinical compromise to quantitative SUV measurements.

  8. Fifteen novel immunoreactive proteins of Chinese virulent Haemophilus parasuis serotype 5 verified by an immunoproteomic assay.

    PubMed

    Yu, Yanfei; Wu, Guangyan; Zhai, Zhipeng; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2015-01-01

    Haemophilus parasuis (H. parasuis) is associated with meningitis, polyserositis, polyarthritis and bacterial pneumonia. At present, its prevention and control is difficult because of the lack of suitable subunit vaccines. Nowadays, high-throughput methods, immunoproteomics, are available to screen for more vaccine candidates. A protein extraction method for H. parasuis and two-dimensional electrophoresis (2-DE) were optimized to provide high-resolution profiles covering pH 3 to 10. Twenty immunoreactive spots were excised from gels after strict comparison between 2-DE Western blot membranes and the relevant gels. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and MALDI-TOF-TOF-MS successfully identified 16 different proteins. Fifteen of them were reported as immunoreactive proteins in H. parasuis for the first time. In addition, recombinant HP5-7 (ABC transporter, periplasmic-binding protein) showed immunoreactivity both with hyperimmune rabbit serum and convalescent swine serum. Four recombinants of the 14 successfully expressed genes showed immunoreactivity with hyperimmune rabbit serum.

  9. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing.

    PubMed

    Adam, T W; Clairotte, M; Streibel, T; Elsasser, M; Pommeres, A; Manfredi, U; Carriero, M; Martini, G; Sklorz, M; Krasenbrink, A; Astorga, C; Zimmermann, R

    2012-07-01

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated.

  10. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry.

    PubMed

    Fagerquist, Clifton K; Zaragoza, William J; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B; Mandrell, Robert E

    2014-05-01

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.

  11. Top-Down Proteomic Identification of Shiga Toxin 2 Subtypes from Shiga Toxin-Producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization–Tandem Time of Flight Mass Spectrometry

    PubMed Central

    Zaragoza, William J.; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B.; Mandrell, Robert E.

    2014-01-01

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)–tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes. PMID:24584253

  12. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E

    2014-07-01

    In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  13. Experimental investigation of stress wave propagation in standing trees

    Treesearch

    Houjiang Zhang; Xiping Wang; Juan Su

    2011-01-01

    The objective of this study was to investigate how a stress wave travels in a standing tree as it is introduced into the tree trunk through a mechanical impact. A series of stress wave time-of-flight (TOF) data were obtained from three freshly-cut red pine (Pinus resinosa Ait.) logs by means of a two-probe stress wave timer. Two-dimensional (2D) and three-dimensional (...

  14. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution

    NASA Astrophysics Data System (ADS)

    Seifert, Stefan; van der Lei, Gerben; van Dam, Herman T.; Schaart, Dennis R.

    2013-05-01

    Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM). Here, we present a first experimental characterization of a TOF PET detector comprising a 24 × 24 × 10 mm3 LSO:Ce,0.2%Ca scintillator read out by a dSiPM array (DPC-6400-44-22) developed by Philips Digital Photon Counting. A spatial resolution of ˜1 mm full-width-at-half-maximum (FWHM) averaged over the entire crystal was obtained (varying from just below 1 mm FWHM in the detector center to ˜1.2 mm FWHM close to the edges). Furthermore, the bias in the position estimation at the crystal edges that is typically found in monolithic scintillators is well below 1 mm even in the corners of the crystal.

  15. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    NASA Astrophysics Data System (ADS)

    Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.

  16. Timing resolution studies of the optical part of the AFP Time-of-flight detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chytka, L.; Avoni, G.; Brandt, A.

    We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π + particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgroundsmore » that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.« less

  17. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOEpatents

    Karp, Joel S [Glenside, PA; Surti, Suleman [Philadelphia, PA

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  18. Timing resolution studies of the optical part of the AFP Time-of-flight detector

    DOE PAGES

    Chytka, L.; Avoni, G.; Brandt, A.; ...

    2018-04-02

    We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π + particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgroundsmore » that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.« less

  19. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    De Carolis, E; Posteraro, B; Lass-Flörl, C; Vella, A; Florio, A R; Torelli, R; Girmenia, C; Colozza, C; Tortorano, A M; Sanguinetti, M; Fadda, G

    2012-05-01

    Accurate species discrimination of filamentous fungi is essential, because some species have specific antifungal susceptibility patterns, and misidentification may result in inappropriate therapy. We evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for species identification through direct surface analysis of the fungal culture. By use of culture collection strains representing 55 species of Aspergillus, Fusarium and Mucorales, a reference database was established for MALDI-TOF MS-based species identification according to the manufacturer's recommendations for microflex measurements and MALDI BioTyper 2.0 software. The profiles of young and mature colonies were analysed for each of the reference strains, and species-specific spectral fingerprints were obtained. To evaluate the database, 103 blind-coded fungal isolates collected in the routine clinical microbiology laboratory were tested. As a reference method for species designation, multilocus sequencing was used. Eighty-five isolates were unequivocally identified to the species level (≥99% sequence similarity); 18 isolates producing ambiguous results at this threshold were initially rated as identified to the genus level only. Further molecular analysis definitively assigned these isolates to the species Aspergillus oryzae (17 isolates) and Aspergillus flavus (one isolate), concordant with the MALDI-TOF MS results. Excluding nine isolates that belong to the fungal species not included in our reference database, 91 (96.8%) of 94 isolates were identified by MALDI-TOF MS to the species level, in agreement with the results of the reference method; three isolates were identified to the genus level. In conclusion, MALDI-TOF MS is suitable for the routine identification of filamentous fungi in a medical microbiology laboratory. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  20. Obliteration dynamics in cerebral arteriovenous malformations after cyberknife radiosurgery: quantification with sequential nidus volumetry and 3-tesla 3-dimensional time-of-flight magnetic resonance angiography.

    PubMed

    Wowra, Berndt; Muacevic, Alexander; Tonn, Jörg-Christian; Schoenberg, Stefan O; Reiser, Maximilian; Herrmann, Karin A

    2009-02-01

    To investigate the time-dependent obliteration of cerebral arteriovenous malformations (cAVM) after CyberKnife radiosurgery (CKRS) (Accuray, Inc., Sunnyvale, CA) by means of sequential 3-T, 3-dimensional (3D), time-of-flight (TOF) magnetic resonance angiography (MRA), and volumetry of the arteriovenous malformation (AVM) nidus. In this prospective study, 3D TOF MRA was performed on 20 patients with cAVMs treated by single-fraction CKRS. Three-dimensional TOF MRA was performed on a 3-T, 32-channel magnetic resonance scanner (Magnetom TIM Trio; Siemens Medical Solutions, Erlangen, Germany) with isotropic voxel size at a spatial resolution of 0.6 x 0.6 x 0.6 mm3. The time-dependent relative decay of the transnidal blood flow evidenced by 3D TOF MRA was referred to as "obliteration dynamics." Volumetry of the nidus size was performed with OsiriX imaging software (OsiriX Foundation, Geneva, Switzerland). All patients had 3 to 4 follow-up examinations at 3- to 6-month intervals over a minimum follow-up period of 9 months. Subtotal obliteration was determined if the residual nidus volume was 5% or less of the initial nidus volume. Stata/IC software (Version 10.0; Stata Corp., College Station, TX) was used for statistical analysis and to identify potential factors of AVM obliteration. Regarding their clinical status, case history, and pretreatments, the participants of this study represent difficult-to-treat cAVM patients. The median nidus volume was 1.8 mL (range, 0.4-12.5 mL); the median minimum dose prescribed to the nidus was 22 Gy (range, 16-24 Gy) delivered to the 67% isodose line (range, 55-80%). CKRS was well tolerated, with complications in 2 patients. No further hemorrhages occurred after RS, except 1 small and clinically inapparent incident. The median follow-up period after RS was 25.0 months (range, 11.7-36.8 months). After RS, a statistically significant obliteration was observed in all patients. However, the obliteration dynamics of the cAVMs showed a pronounced variability, with 2 types of post-therapeutic behavior identified. cAVMs of Group A showed a faster reduction of transnidal blood flow than cAVMs in Group B. The median time to subtotal obliteration was 23.8 months for all patients, 11.6 months for patients in Group A, and 27.8 months for patients in Group B (P = 0.05). Logistic regression analysis revealed dose homogeneity and the circumscribed isodose to be the only variables (P < 0.01) associated with the obliteration dynamics in this study. The cumulative complete angiographic obliteration rate was 67% (95% confidence interval, 32-95%) 2 years after RS. The use of sequential 3D TOF MRA at 3 T and nidus volumetry enables a noninvasive quantitative assessment of the dynamic obliteration process induced by CKRS in cAVMs. This method may be helpful to identify factors related to AVM obliteration after RS when larger patient cohorts become available.

  1. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi.

    PubMed

    Huang, Yanfei; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Wang, Jinglin; Lu, Xinxin

    2017-07-01

    Infections caused by filamentous fungi have become a health concern, and require rapid and accurate identification in order for effective treatment of the pathogens. To compare the performance of two MALDI-TOF MS systems (Bruker Microflex LT and Xiamen Microtyper) in the identification of filamentous fungal species. A total of 374 clinical filamentous fungal isolates sequentially collected in the Clinical Laboratory at the Beijing Tongren Hospital between January 2014 and December 2015 were identified by traditional phenotypic methods, Bruker Microflex LT and Xiamen Microtyper MALDI-TOF MS, respectively. The discrepancy between these methods was resolved by sequencing for definitive identification. Bruker Microflex LT and Xiamen Microtyper had similar correct species ID (98.9 vs. 99.2%), genus ID (99.7 vs. 100%), mis-ID (0.3 vs. 0%) and no ID (0 vs. 0). The rate of correct species identification by both MALDI-TOF MS (98.9 and 99.2%, respectively) was much higher compared with phenotypic approach (91.9%). Both MALDI-TOF MS systems provide accurate identification of clinical filamentous fungi compared with conventional phenotypic method, and have the potential to replace identification for routine identification of these fungi in clinical mycology laboratories. Both systems have similar performance in the identification of clinical filamentous fungi.

  2. 4D flow MRI assessment of extracranial-intracranial bypass: qualitative and quantitative evaluation of the hemodynamics.

    PubMed

    Sekine, Tetsuro; Takagi, Ryo; Amano, Yasuo; Murai, Yasuo; Orita, Erika; Matsumura, Yoshio; Kumita, Shin-Ichiro

    2016-03-01

    Our aim was to assess the feasibility of using time-resolved 3D phase-contrast (4D flow) MRI to characterize extracranial-intracranial (EC-IC) bypass. We enrolled 32 patients who underwent EC-IC bypass (15 men, 17 women; mean age 66.4 years). In all, 16 underwent radial artery graft (RAG) bypass and 16 underwent superficial temporal artery (STA) bypass. 4D flow MRI, time-of-flight (TOF) magnetic resonance angiography (MRA), and computed tomography angiography (CTA) were performed. Bypass patency, flow direction, and blood flow volume (BFV) of each artery were determined by 4D flow MRI. Arterial diameters were measured by TOF-MRA and CTA. We compared RAG and STA bypasses by evaluating the flow direction and BFV of each artery. We evaluated the correlation between arterial diameters (measured by CTA or MRA) and the BFV and the detectability of flow direction (measured by 4D flow MRI) of each artery. 4D flow MRI confirmed the patency of each bypass artery. Flow direction of the M1 segment of the middle cerebral artery and BFV in the bypass artery differed between RAG and STA groups (p < 0.01). BFV in the bypass slightly correlated with the diameters on CTA (p < 0.05, R (2) = 0.287). Of the 29 arteries in the circle of Willis, nine were not depicted on 4D flow MRI. Cutoff values for arterial diameters on CTA and TOF-MRA for detecting the artery on 4D flow MRI were 2.4 and 1.8 mm, respectively. 4D flow MRI provided unique information for characterizing EC-IC bypasses, although this detectability is limited when addressing small arteries with slow flow.

  3. Comparative evaluation of matrix-assisted laser desorption ionisation-time of flight mass spectrometry and conventional phenotypic-based methods for identification of clinically important yeasts in a UK-based medical microbiology laboratory.

    PubMed

    Fatania, Nita; Fraser, Mark; Savage, Mike; Hart, Jason; Abdolrasouli, Alireza

    2015-12-01

    Performance of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) was compared in a side-by side-analysis with conventional phenotypic methods currently in use in our laboratory for identification of yeasts in a routine diagnostic setting. A diverse collection of 200 clinically important yeasts (19 species, five genera) were identified by both methods using standard protocols. Discordant or unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene. MALDI-TOF and conventional methods were in agreement for 182 isolates (91%) with correct identification to species level. Eighteen discordant results (9%) were due to rarely encountered species, hence the difficulty in their identification using traditional phenotypic methods. MALDI-TOF MS enabled rapid, reliable and accurate identification of clinically important yeasts in a routine diagnostic microbiology laboratory. Isolates with rare, unusual or low probability identifications should be confirmed using robust molecular methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.

    PubMed

    Mroczek, Tomasz

    2016-09-10

    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry.

    PubMed

    Gao, Boyan; Luo, Yinghua; Lu, Weiying; Liu, Jie; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-03-01

    A supercritical CO 2 ultra-performance convergence chromatography (UPC 2 ) system was utilized with a quadrupole time-of-flight mass spectrometry (Q-TOF MS) to examine the triacylglycerol compositions of sunflower, corn and soybean oils. UPC 2 provided an excellent resolution and separation for the triacylglycerols, while the high performance Q-TOF MS system was able to provide the molecular weight and fragment ions information for triacylglycerol compound characterization. A total of 33 triacylglycerols were identified based on their elementary compositions and MS 2 fragment ion profiles, and their levels in the three oils were estimated. The combination of UPC 2 and Q-TOF MS may determine triacylglycerol compositions for oils and fats, and provide sn-position information for fatty acids, which may be important for food nutritional value and stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rapid, sensitive, and validated UPLC/Q-TOF-MS method for quantitative determination of vasicine in Adhatoda vasica and its in vitro culture

    PubMed Central

    Madhukar, Garg; Tamboli, Ennus Tajuddin; Rabea, Parveen; Ansari, S. H.; Abdin, M. Z.; Sayeed, Ahmad

    2014-01-01

    Background: Adhatoda vasica a perennial herb has been used in Ayurvedic and Unani system of medicines since last 2000 years and has been employed for the treatment of respiratory tract ailments. Objective: To develop and validate new, rapid, and highly sensitive high throughput ultra-performance liquid chromatography/quadrupole-time-of-flight mass-spectrometry (UPLC/Q-TOF-MS) method for the quantitative estimation of vasicine in the leaves and to establish in vitro cultures of Adhatoda vasica for production of vasicine. Materials and Methods: The chromatographic separation was achieved on a Waters ACQUITY UPLC™ BEH C8 (100.0 × 2.1 mm; 1.7 μm) column packing using isocratic mobile phase consisting of acetonitrile: 20 mM ammonium acetate (90:10; v/v) in a multiple reactions monitoring mode using the transitions m/z 189.09 → 171.08 for vasicine. Results: The vasicine was eluted at 2.58 ± 0.05 min and established a dynamic range of linearity over the concentration range of 1-1000 ng/ml (r2 = 0.999 ± 0.0005). The lower limit of detection and quantification was 0.68 and 1.0 ng/ml, respectively. There was no significant difference observed in the content of vasicine (0.92-1.04%w/w) among the eleven samples collected from different locations of India. The in vitro cultures developed showed that addition of extra 28 mM KNO3 and 100 mM NaCl in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) + benzyladenine (BA) + indole acetic acid (IAA) (1 ppm each) produces faster biomass and higher amount of quinazoline alkaloids. Conclusion: Rapid, efficient, and sensitive UPLC/Q-TOF-MS method was developed for the estimation of vasicine and an efficient protocol for development of in vitro cultures was proposed, which can be used at large scale for industrial production of vasicine using bioreactors. PMID:24914304

  7. A new retrospective, multi-evidence veterinary drug screening method using drift tube ion mobility mass spectrometry.

    PubMed

    Xu, Zhenzhen; Li, Jianzhong; Chen, Ailiang; Ma, Xin; Yang, Shuming

    2018-05-03

    The retrospectivity (the ability to retrospect to a previously unknown compound in raw data) is very meaningful for food safety and risk assessment when facing new emerging drugs. Accurate mass and retention time based screening may lead false positive and false negative results so new retrospective, reliable platform is desirable. Different concentration levels of standards with and without matrix were analyzed using ion mobility (IM)-quadrupole-time-of-flight (Q-TOF) for collecting retrospective accurate mass, retention time, drift time and tandem MS evidence for identification in a single experiment. The isomer separation ability of IM and the four-dimensional (4D) feature abundance quantification abilities were evaluated for veterinary drugs for the first time. The sensitivity of the IM-Q-TOF workflow was obviously higher than that of the traditional database searching algorithm [find by formula (FbF) function] for Q-TOF. In addition, the IM-Q-TOF workflow contained most of the results from FbF and removed the false positive results. Some isomers were separated by IM and the 4D feature abundance quantitation removed interference with similar accurate mass and showed good linearity. A new retrospective, multi-evidence platform was built for veterinary drug screening in a single experiment. The sensitivity was significantly improved and the data can be used for quantification. The platform showed its potential to be used for food safety and risk assessment. This article is protected by copyright. All rights reserved.

  8. Fusion of magnetic resonance angiography and magnetic resonance imaging for surgical planning for meningioma--technical note.

    PubMed

    Kashimura, Hiroshi; Ogasawara, Kuniaki; Arai, Hiroshi; Beppu, Takaaki; Inoue, Takashi; Takahashi, Tsutomu; Matsuda, Koichi; Takahashi, Yujiro; Fujiwara, Shunrou; Ogawa, Akira

    2008-09-01

    A fusion technique for magnetic resonance (MR) angiography and MR imaging was developed to help assess the peritumoral angioarchitecture during surgical planning for meningioma. Three-dimensional time-of-flight (3D-TOF) and 3D-spoiled gradient recalled (SPGR) datasets were obtained from 10 patients with intracranial meningioma, and fused using newly developed volume registration and visualization software. Maximum intensity projection (MIP) images from 3D-TOF MR angiography and axial SPGR MR imaging were displayed at the same time on the monitor. Selecting a vessel on the real-time MIP image indicated the corresponding points on the axial image automatically. Fusion images showed displacement of the anterior cerebral or middle cerebral artery in 7 patients and encasement of the anterior cerebral arteries in 1 patient, with no relationship between the main arterial trunk and tumor in 2 patients. Fusion of MR angiography and MR imaging can clarify relationships between the intracranial vasculature and meningioma, and may be helpful for surgical planning for meningioma.

  9. The Exploration of Peptide Biomarkers in Malignant Pleural Effusion of Lung Cancer Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    PubMed Central

    Xu, Jing; Xu, Bin; Tang, Chuanhao; Li, Xiaoyan; Qin, Haifeng; Wang, Weixia; Wang, Hong; Wang, Zhongyuan; Li, Liangliang; Li, Zhihua; Gao, Hongjun

    2017-01-01

    Background. Diagnoses of malignant pleural effusion (MPE) are a crucial problem in clinics. In our study, we compared the peptide profiles of MPE and tuberculosis pleural effusion (TPE) to investigate the value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in diagnosis of MPE. Material and Methods. The 46 MPE and 32 TPE were randomly assigned to training set and validation set. Peptides were isolated by weak cation exchange magnetic beads and peaks in the m/z range of 800–10000 Da were analyzed. Comparing the peptide profile between 30 MPE and 22 TPE samples in training set by ClinProTools software, we screened the specific biomarkers and established a MALDI-TOF-MS classification of MPE. Finally, the other 16 MPE and 10 TPE were included to verify the model. We additionally determined carcinoembryonic antigen (CEA) in MPE and TPE samples using electrochemiluminescent immunoassay method. Results. Five peptide peaks (917.37 Da, 4469.39 Da, 1466.5 Da, 4585.21 Da, and 3216.87 Da) were selected to separate MPE and TPE by MALDI-TOF-MS. The sensitivity, specificity, and accuracy of the classification were 93.75%, 100%, and 96.15%, respectively, after blinded test. The sensitivity of CEA was significantly lower than MALDI-TOF-MS classification (P = 0.035). Conclusions. The results indicate MALDI-TOF-MS is a potential method for diagnosing MPE. PMID:28386154

  10. The Exploration of Peptide Biomarkers in Malignant Pleural Effusion of Lung Cancer Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Xu, Jing; Xu, Bin; Tang, Chuanhao; Li, Xiaoyan; Qin, Haifeng; Wang, Weixia; Wang, Hong; Wang, Zhongyuan; Li, Liangliang; Li, Zhihua; Gao, Hongjun; He, Kun; Liu, Xiaoqing

    2017-01-01

    Background . Diagnoses of malignant pleural effusion (MPE) are a crucial problem in clinics. In our study, we compared the peptide profiles of MPE and tuberculosis pleural effusion (TPE) to investigate the value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in diagnosis of MPE. Material and Methods . The 46 MPE and 32 TPE were randomly assigned to training set and validation set. Peptides were isolated by weak cation exchange magnetic beads and peaks in the m / z range of 800-10000 Da were analyzed. Comparing the peptide profile between 30 MPE and 22 TPE samples in training set by ClinProTools software, we screened the specific biomarkers and established a MALDI-TOF-MS classification of MPE. Finally, the other 16 MPE and 10 TPE were included to verify the model. We additionally determined carcinoembryonic antigen (CEA) in MPE and TPE samples using electrochemiluminescent immunoassay method. Results . Five peptide peaks (917.37 Da, 4469.39 Da, 1466.5 Da, 4585.21 Da, and 3216.87 Da) were selected to separate MPE and TPE by MALDI-TOF-MS. The sensitivity, specificity, and accuracy of the classification were 93.75%, 100%, and 96.15%, respectively, after blinded test. The sensitivity of CEA was significantly lower than MALDI-TOF-MS classification ( P = 0.035). Conclusions . The results indicate MALDI-TOF-MS is a potential method for diagnosing MPE.

  11. Performance of the Tachyon Time-of-Flight PET Camera

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-02-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  12. Performance of the Tachyon Time-of-Flight PET Camera.

    PubMed

    Peng, Q; Choong, W-S; Vu, C; Huber, J S; Janecek, M; Wilson, D; Huesman, R H; Qi, Jinyi; Zhou, Jian; Moses, W W

    2015-02-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 × 25 mm 2 side of 6.15 × 6.15 × 25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  13. Performance of the Tachyon Time-of-Flight PET Camera

    PubMed Central

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057

  14. Performance of the Tachyon Time-of-Flight PET Camera

    DOE PAGES

    Peng, Q.; Choong, W. -S.; Vu, C.; ...

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm 2 side of 6.15 ×6.15 ×25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according tomore » the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less

  15. The MRPC-based ALICE time-of-flight detector: Status andperformance

    NASA Astrophysics Data System (ADS)

    Alici, A.; ALICE Collaboration

    2013-04-01

    The large time-of-flight (TOF) array is one of the main detectors devoted to charged hadron identification in the mid-rapidity region of the ALICE experiment at the LHC. It allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9<η<0.9. The TOF exploits the innovative MRPC technology capable of an intrinsic time resolution better than 50 ps with an efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. The TOF detector has been efficiently taking data since the first pp collisions recorded in ALICE in December 2009. In this report, the status of the TOF detector and the performance achieved for both pp and Pb-Pb collisions aredescribed.

  16. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    EPA Science Inventory

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  17. Charge-Retraction Time-of-Flight Measurement for Organic Charge Transport Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J.U.; Young, R.H.; Tang, C.W.

    This describes an all-electrical technique, charge-retraction time-of-flight (CR-TOF), to measure charge carrier mobility through an organic layer. Carriers are injected and accumulated at a blocking interface, then retracted. The retraction current transient is nearly indistinguishable from a traditional time-of-flight photocurrent. The CR-TOF technique is validated by measurement of the hole mobility of two well-known compounds, 4,4',4"-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine and 4,4'-bis[N-1-napthyl)-N-phenylamino]biphenyl, utilizing 1,3,5-tris(N-phenylbenzimidazol-2-yl)-benzene as a hole-blocking layer.

  18. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  19. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS.

    PubMed

    Hager, Tiffany J; Howard, Luke R; Liyanage, Rohana; Lay, Jackson O; Prior, Ronald L

    2008-02-13

    Blackberries ( Rubus sp.) were evaluated by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) to identify the ellagitannins present in flesh, torus (receptacle tissue), and seeds. Most ellagitannins were present (or detectable) only in seed tissues. Ellagitannins identified by HPLC-ESI-MS in the seeds included pedunculagin, casuarictin/potentillin, castalagin/vescalagin, lambertianin A/sanguiin H-6, lambertianin C, and lambertianin D. For several of the ellagitannins, isomeric separation was also obtained. The MALDI-TOF-MS analysis was primarily utilized to evaluate and identify high molecular mass (>1000 Da) ellagitannins. The MALDI analysis verified the presence of the ellagitannins identified by HPLC-ESI-MS including lambertianin A/sanguiin H-6, lambertianin C, and lambertianin D, but the analysis also indicated the presence of several other compounds that were most likely ellagitannins based on the patterns observed in the masses (i.e., loss or addition of a gallic acid moiety to a known ellagitannin). This study determined the presence of several possible isomeric forms of ellagitannins previously unidentified in fruit and presents a possible analytical HPLC method for the analysis of the major ellagitannins present in the fruit.

  20. Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape.

    PubMed

    Schuster, Dominik; Rickmeyer, Jasmin; Gajdiss, Mike; Thye, Thorsten; Lorenzen, Stephan; Reif, Marion; Josten, Michaele; Szekat, Christiane; Melo, Luís D R; Schmithausen, Ricarda M; Liégeois, Florian; Sahl, Hans-Georg; Gonzalez, Jean-Paul J; Nagel, Michael; Bierbaum, Gabriele

    2017-01-01

    The species Staphylococcus argenteus was separated recently from Staphylococcus aureus (Tong S.Y., F. Schaumburg, M.J. Ellington, J. Corander, B. Pichon, F. Leendertz, S.D. Bentley, J. Parkhill, D.C. Holt, G. Peters, and P.M. Giffard, 2015). The objective of this work was to characterise the genome of a non-human S. argenteus strain, which had been isolated from the faeces of a wild-living western lowland gorilla in Gabon, and analyse the spectrum of this species in matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The full genome sequence revealed a scarcity of virulence genes and absence of resistance genes, indicating a decreased virulence potential compared to S. aureus and the human methicillin-resistant S. argenteus isolate MSHR1132 T . Spectra obtained by MALDI-TOF MS and the analysis of available sequences in the genome databases identified several MALDI-TOF MS signals that clearly differentiate S. argenteus, the closely related Staphylococcus schweitzeri and S. aureus. In conclusion, in the absence of biochemical tests that identify the three species, mass spectrometry should be employed as method of choice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Direct Analysis and Identification of Pathogenic Lichtheimia Species by Matrix-Assisted Laser Desorption Ionization–Time of Flight Analyzer-Mediated Mass Spectrometry

    PubMed Central

    Schrödl, Wieland; Heydel, Tilo; Schwartze, Volker U.; Hoffmann, Kerstin; Große-Herrenthey, Anke; Walther, Grit; Alastruey-Izquierdo, Ana; Rodriguez-Tudela, Juan Luis; Olias, Philipp; Jacobsen, Ilse D.; de Hoog, G. Sybren

    2012-01-01

    Zygomycetes of the order Mucorales can cause life-threatening infections in humans. These mucormycoses are emerging and associated with a rapid tissue destruction and high mortality. The resistance of Mucorales to antimycotic substances varies between and within clinically important genera such as Mucor, Rhizopus, and Lichtheimia. Thus, an accurate diagnosis before onset of antimycotic therapy is recommended. Matrix-assisted laser desorption ionization (MALDI)–time of flight (TOF) mass spectrometry (MS) is a potentially powerful tool to rapidly identify infectious agents on the species level. We investigated the potential of MALDI-TOF MS to differentiate Lichtheimia species, one of the most important agents of mucormycoses. Using the Bruker Daltonics FlexAnalysis (version 3.0) software package, a spectral database library with m/z ratios of 2,000 to 20,000 Da was created for 19 type and reference strains of clinically relevant Zygomycetes of the order Mucorales (12 species in 7 genera). The database was tested for accuracy by use of 34 clinical and environmental isolates of Lichtheimia comprising a total of five species. Our data demonstrate that MALDI-TOF MS can be used to clearly discriminate Lichtheimia species from other pathogenic species of the Mucorales. Furthermore, the method is suitable to discriminate species within the genus. The reliability and robustness of the MALDI-TOF-based identification are evidenced by high score values (above 2.3) for the designation to a certain species and by moderate score values (below 2.0) for the discrimination between clinically relevant (Lichtheimia corymbifera, L. ramosa, and L. ornata) and irrelevant (L. hyalospora and L. sphaerocystis) species. In total, all 34 strains were unequivocally identified by MALDI-TOF MS with score values of >1.8 down to the generic level, 32 out of 34 of the Lichtheimia isolates (except CNM-CM 5399 and FSU 10566) were identified accurately with score values of >2 (probable species identification), and 25 of 34 isolates were identified to the species level with score values of >2.3 (highly probable species identification). The MALDI-TOF MS-based method reported here was found to be reproducible and accurate, with low consumable costs and minimal preparation time. PMID:22135259

  2. Modeling of charged particles trajectories in order to optimize the design of a new, higher resolution, Time of flight- Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) System

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex

    2011-03-01

    Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.

  3. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    PubMed

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. MR angiography fusion technique for treatment planning of intracranial arteriovenous malformations.

    PubMed

    McGee, Kiaran P; Ivanovic, Vladimir; Felmlee, Joel P; Meyer, Fredrick B; Pollock, Bruce E; Huston, John

    2006-03-01

    To develop an image fusion technique using elliptical centric contrast-enhanced (CE) MR angiography (MRA) and three-dimensional (3D) time-of-flight (TOF) acquisitions for radiosurgery treatment planning of arteriovenous malformations (AVMs). CE and 3D-TOF MR angiograms with disparate in-plane fields of view (FOVs) were acquired, followed by k-space reformatting to provide equal voxel dimensions. Spatial domain addition was performed to provide a third, fused data volume. Spatial distortion was evaluated on an MRA phantom and provided slice-dependent and global distortion along the three physical dimensions of the MR scanner. In vivo validation was performed on 10 patients with intracranial AVMs prior to their conventional angiogram on the day of gamma knife radiosurgery. Spatial distortion in the phantom within a volume of 14 x 14 x 3.2 cm(3) was less than +/-1 mm (+/-1 standard deviation (SD)) for CE and 3D-TOF data sets. Fused data volumes were successfully generated for all 10 patients. Image fusion can be used to obtain high-resolution CE-MRA images of intracranial AVMs while keeping the fiducial markers needed for gamma knife radiosurgery planning. The spatial fidelity of these data is within the tolerance acceptable for daily quality control (QC) purposes and gamma knife treatment planning. (c) 2006 Wiley-Liss, Inc.

  6. Cerebral TOF Angiography at 7T: Impact of B1+ Shimming with a 16-Channel Transceiver Array

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Adriany, Gregor; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-01-01

    Purpose Time-of-flight (TOF) MR imaging is clinically among the most common cerebral non-contrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultra-high field (UHF) of B0=7T, however, spatially varying transmit B1 (B1+) fields at 7T reduce TOF contrast uniformity, typically resulting in sub-optimal contrast and reduced vessel conspicuity in the brain periphery. Methods Using a 16-channel B1+ shimming system we compare different dynamically applied B1+ phase shimming approaches on the RF excitation to improve contrast homogeneity for a (0.5 mm)3 resolution multi-slab TOF acquisition. In addition, B1+ shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. Results B1+ excitation homogeneity was improved by a factor 2.2 to 2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1+ shimming on the venous saturation pulse. Conclusion B1+ shimming can significantly improve high resolution TOF vascular investigations at UHF, holding strong promise for non contrast-enhanced clinical applications. PMID:23640915

  7. 3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras

    PubMed Central

    Aguilera, Teodoro

    2017-01-01

    This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211

  8. Investigation of digital timing resolution and further improvement by using constant fraction signal time marker slope for fast scintillator detectors

    NASA Astrophysics Data System (ADS)

    Singh, Kundan; Siwal, Davinder

    2018-04-01

    A digital timing algorithm is explored for fast scintillator detectors, viz. LaBr3, BaF2, and BC501A. Signals were collected with CAEN 250 mega samples per second (MSPS) and 500 MSPS digitizers. The zero crossing time markers (TM) were obtained with a standard digital constant fraction timing (DCF) method. Accurate timing information is obtained using cubic spline interpolation of a DCF transient region sample points. To get the best time-of-flight (TOF) resolution, an optimization of DCF parameters is performed (delay and constant fraction) for each pair of detectors: (BaF2-LaBr3), (BaF2-BC501A), and (LaBr3-BC501A). In addition, the slope information of an interpolated DCF signal is extracted at TM position. This information gives a new insight to understand the broadening in TOF, obtained for a given detector pair. For a pair of signals having small relative slope and interpolation deviations at TM, leads to minimum time broadening. However, the tailing in TOF spectra is dictated by the interplay between the interpolation error and slope variations. Best TOF resolution achieved at the optimum DCF parameters, can be further improved by using slope parameter. Guided by the relative slope parameter, events selection can be imposed which leads to reduction in TOF broadening. While the method sets a trade-off between timing response and coincidence efficiency, it provides an improvement in TOF. With the proposed method, the improved TOF resolution (FWHM) for the aforementioned detector pairs are; 25% (0.69 ns), 40% (0.74 ns), 53% (0.6 ns) respectively, obtained with 250 MSPS, and corresponds to 12% (0.37 ns), 33% (0.72 ns), 35% (0.69 ns) respectively with 500 MSPS digitizers. For the same detector pair, event survival probabilities are; 57%, 58%, 51% respectively with 250 MSPS and becomes 63%, 57%, 68% using 500 MSPS digitizers.

  9. Safety and Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Highly Pathogenic Organisms.

    PubMed

    Rudrik, James T; Soehnlen, Marty K; Perry, Michael J; Sullivan, Maureen M; Reiter-Kintz, Wanda; Lee, Philip A; Pettit, Denise; Tran, Anthony; Swaney, Erin

    2017-12-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) sample preparation methods, including the direct, on-plate formic acid, and ethanol/formic acid tube extraction methods, were evaluated for their ability to render highly pathogenic organisms nonviable and safe for handling in a biosafety level 2 laboratory. Of these, the tube extraction procedure was the most successful, with none of the tested strains surviving this sample preparation method. Tube extracts from several agents of bioterrorism and their near neighbors were analyzed in an eight-laboratory study to examine the utility of the Bruker Biotyper and Vitek MS MALDI-TOF MS systems and their in vitro diagnostic (IVD), research-use-only, and Security-Relevant databases, as applicable, to accurately identify these agents. Forty-six distinct strains of Bacillus anthracis , Yersinia pestis , Francisella tularensis , Burkholderia mallei , Burkholderia pseudomallei , Clostridium botulinum , Brucella melitensis , Brucella abortus , Brucella suis , and Brucella canis were extracted and distributed to participating laboratories for analysis. A total of 35 near-neighbor isolates were also analyzed. Copyright © 2017 Rudrik et al.

  10. [Fast identification of constituents of Lagotis brevituba by using UPLC-Q-TOF-MS/MS method].

    PubMed

    Xie, Jing; Zhang, Li; Zeng, Jin-Xiang; Li, Min; Wang, Juan; Xie, Xiong-Xiong; Zhong, Guo-Yue; Luo, Guang-Ming; Yuan, Jin-Bin; Liang, Jian

    2017-06-01

    The chemical constituents of Lagotis brevituba were rapidly determined and analyzed by using ultra performance liquid chromatography tandem quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) method, providing material basis for the clinical application of L. brevituba. The separation was performed on UPLC YMC-Triart C₁₈ (2.1 mm×100 mm, 1.9 μm) column, with acetonitrile-water containing 0.2% formic acid as mobile phase for gradient elution. The flow rate was 0.4 mL•min-1 gradient elution and column temperature was 40 ℃, the injection volume was 2 μL. ESI ion source was used to ensure the data collected in a negative ion mode. The chemical components of L. brevituba were identified through retention time, exact relative molecular mass, cleavage fragments of MS/MS and reported data. The results showed that a total of 22 compounds were identified, including 11 flavones, 6 phenylethanoid glycosides, 1 iridoid glucosides, and 4 organic acid. The UPLC-Q-TOF-MS/MS method could fast identify the chemical components of L. brevituba, providing valuable information about L. brevituba for its clinical application. Copyright© by the Chinese Pharmaceutical Association.

  11. Identification of Lactobacillus from the Saliva of Adult Patients with Caries Using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    PubMed Central

    Ma, Qingwei; Song, Yeqing; Zhang, Qian; Wang, Xiaoyan; Chen, Feng

    2014-01-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification. PMID:25166027

  12. Deuterated-xylene (xylene-d10; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Raymond, R. S.; Torres-Isea, R. O.; Di Fulvio, A.; Clarke, S. D.; Pozzi, S. A.; Febbraro, M.

    2016-06-01

    In conjunction with Eljen Technology, Inc. (Sweetwater,TX) we have designed, constructed, and evaluated a 3 in. ×3 in. deuterated-xylene organic liquid scintillator (C8D10; EJ301D) as a fast neutron detector. Similar to deuterated benzene (C6D6; NE230, BC537, and EJ315) this scintillator can provide good pulse-shape discrimination between neutrons and gamma rays, has good timing characteristics, and can provide a light spectrum with peaks corresponding to discrete neutron energy groups up to ca. 20 MeV. Unlike benzene-based detectors, deuterated xylene is less volatile, less toxic, is not known to be carcinogenic, has a higher flashpoint, and hence is much safer for many applications. In addition EJ301D can provide slightly more light output and better PSD than deuterated-benzene scintillators. We show that, as with deuterated-benzene scintillators, the light-response spectra can be unfolded to provide useable neutron energy spectra without need for time-of-flight (ToF). An array of these detectors arranged at many angles close to a reaction target can be much more effective (×10 to ×100 or more) than an array of long-path ToF detectors which must utilize a narrowly-bunched and pulse-selected beam. As we demonstrate using a small Van de Graaff accelerator, measurements can thus be performed when a bunched and pulse-selected beam (as needed for time-of-flight) is not available.

  13. Use of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry analyser in a diagnostic microbiology laboratory in a developing country.

    PubMed

    Bulane, Atang; Hoosen, Anwar

    2017-01-01

    Rapid and accurate identification of pathogens is of utmost importance for management of patients. Current identification relies on conventional phenotypic methods which are time consuming. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) is based on proteomic profiling and allows for rapid identification of pathogens. We compared MALDI-TOF MS against two commercial systems, MicroScan Walkaway and VITEK 2 MS. Over a three-month period from July 2013 to September 2013, a total of 227 bacteria and yeasts were collected from an academic microbiology laboratory ( N = 121; 87 Gram-negatives, seven Gram-positives, 27 yeasts) and other laboratories ( N = 106; 35 Gram-negatives, 34 Gram-positives, 37 yeasts). Sixty-five positive blood cultures were initially processed with Bruker Sepsityper kit for direct identification. From the 65 blood culture bottles, four grew more than one bacterial pathogen and MALDI-TOF MS identified only one isolate. The blood cultures yielded 21 Gram-negatives, 43 Gram-positives and one Candida . There were 21 Escherirchia coli isolates which were reported by the MALDI-TOF MS as E. coli / Shigella . Of the total 292 isolates, discrepant results were found for one bacterial and three yeast isolates. Discrepant results were resolved by testing with the API system with MALDI-TOF MS showing 100% correlation. The MALDI-TOF MS proved to be very useful for rapid and reliable identification of bacteria and yeasts directly from blood cultures and after culture of other specimens. The difference in time to identification was significant for all isolates. However, for positive blood cultures with minimal sample preparation time there was a massive difference in turn-around time with great appreciation by clinicians.

  14. [MALDI-TOF mass spectrometry in the investigation of large high-molecular biological compounds].

    PubMed

    Porubl'ova, L V; Rebriiev, A V; Hromovyĭ, T Iu; Minia, I I; Obolens'ka, M Iu

    2009-01-01

    MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry has become, in the recent years, a tool of choice for analyses of biological polymers. The wide mass range, high accuracy, informativity and sensitivity make it a superior method for analysis of all kinds of high-molecular biological compounds including proteins, nucleic acids and lipids. MALDI-TOF-MS is particularly suitable for the identification of proteins by mass fingerprint or microsequencing. Therefore it has become an important technique of proteomics. Furthermore, the method allows making a detailed analysis of post-translational protein modifications, protein-protein and protein-nucleic acid interactions. Recently, the method was also successfully applied to nucleic acid sequencing as well as screening for mutations.

  15. Physical and clinical performance of the mCT time-of-flight PET/CT scanner.

    PubMed

    Jakoby, B W; Bercier, Y; Conti, M; Casey, M E; Bendriem, B; Townsend, D W

    2011-04-21

    Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.

  16. Physical and clinical performance of the mCT time-of-flight PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Jakoby, B. W.; Bercier, Y.; Conti, M.; Casey, M. E.; Bendriem, B.; Townsend, D. W.

    2011-04-01

    Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.

  17. Detection of protein modifications and counterfeit protein pharmaceuticals using isotope tags for relative and absolute quantification and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry: studies of insulins.

    PubMed

    Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin

    2008-08-15

    Isotope tags for relative and absolute quantification (iTRAQ) reagent coupled with matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, and Lantus) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI-TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including human insulin (P28K29) and Lispro insulin (K28P29), which differ only by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting.

  18. Gain Switching for a Detection System to Accommodate a Newly Developed MALDI-Based Quantification Method

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Hyeon, Taeghwan; Kim, Myung Soo; Moon, Jeong Hee

    2017-09-01

    In matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF), matrix-derived ions are routinely deflected away to avoid problems with ion detection. This, however, limits the use of a quantification method that utilizes the analyte-to-matrix ion abundance ratio. In this work, we will show that it is possible to measure this ratio by a minor instrumental modification of a simple form of MALDI-TOF. This involves detector gain switching. [Figure not available: see fulltext.

  19. Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit™ for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital.

    PubMed

    Tadros, Manal; Petrich, Astrid

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit - the Sepsityper Kit (Bruker Daltonik, Germany) - and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in comparison with conventional identification methods. Correct identification to the genus and species levels was obtained in 75 of 80 (93.8%) and 39 of 50 (78%) blood culture broths, respectively. Applying the blood culture analysis module, a newly developed software tool, improved the species identification of Gram-negative organisms from 94.7% to 100% and of Gram-positive organisms from 66.7% to 70%. MALDI-TOF MS is a promising tool for the direct identification of organisms cultured from sterile sites.

  20. Identification of Eight Synthetic Cannabinoids, Including 5F-AKB48 in Seized Herbal Products Using DART-TOF-MS and LC-QTOF-MS as Nontargeted Screening Methods.

    PubMed

    Moore, Katherine N; Garvin, Demetra; Thomas, Brian F; Grabenauer, Megan

    2017-09-01

    Synthetic cannabinoids are sprayed onto plant material and smoked for their marijuana-like effects. Clandestine manufacturers modify synthetic cannabinoid structures by creating closely related analogs. Forensic laboratories are tasked with detection of these analog compounds, but targeted analytical methods are often thwarted by the structural modifications. Here, direct analysis in real time coupled to accurate mass time-of-flight mass spectrometry (DART-TOF-MS) in combination with liquid chromatography quadruple time-of-flight mass spectrometry (LC-QTOF-MS) are presented as a screening and nontargeted confirmation method, respectively. Methanol extracts of herbal material were run using both methods. Spectral data from four different herbal products were evaluated by comparing fragmentation pattern, accurate mass and retention time to available reference standards. JWH-018, JWH-019, AM2201, JWH-122, 5F-AKB48, AKB48-N-(4-pentenyl) analog, UR144, and XLR11 were identified in the products. Results demonstrate that DART-TOF-MS affords a useful approach for rapid screening of herbal products for the presence and identification of synthetic cannabinoids. © 2017 American Academy of Forensic Sciences.

  1. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry rapid detection of carbapenamase activity in Acinetobacter baumannii isolates.

    PubMed

    Abouseada, Noha; Raouf, May; El-Attar, Eman; Moez, Pacinte

    2017-01-01

    Carbapenamase-producing Acinetobacter baumannii are an increasing threat in hospitals and Intensive Care Units. Accurate and rapid detection of carbapenamase producers has a great impact on patient improvement and aids in implementation of infection control measures. In this study, we describe the use of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS) to identify carbapenamase-producing A. baumannii isolates in up to 3 h. Isolates and Methods: A total of 50 A. baumannii isolates (of which 39 were carabapenamase producers) were tested using MALDI TOF MS. Isolates were incubated for 3 h with 0.25 mg/ml up to 2 mg/ml of imipenem (IMP) at 37°C. Supernatants were analysed by MALDI TOF to analyse peaks corresponding to IMP (300 Da) and an IMP metabolite (254 Da) using UltrafleXtreme (Bruker Daltonics, Bremen, Germany). All carbapenamase-producing isolates were evidenced by the disappearance or reduction in intensity of the 300 Da peak of IPM and the appearance of a 254 Da peak of the IPM metabolite. In isolates that did not produce carbapenamase, the IPM 300 Da peak remained intact. MALDI TOF is a promising tool in the field of diagnostic microbiology that has the ability to transfer identification and antimicrobial susceptibility testing time from days to hours.

  2. The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.

    2002-01-01

    The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.

  3. Comparative Proteomic Analysis of Three Gelatinous Chinese Medicines and Their Authentications by Tryptic-digested Peptides Profiling using Matrix-assisted Laser Desorption/Ionization-time of Flight/Time of Flight Mass Spectrometry.

    PubMed

    Yang, Huan; Zheng, Jie; Wang, Hai-Yan; Li, Nan; Yang, Ya-Ya; Shen, Yu-Ping

    2017-01-01

    Gelatinous Chinese medicines (GCMs) including Asini Corii Colla, Testudinis Carapacis ET Plastri Colla, and Cervi Cornus Colla, were made from reptile shell or mammalian skin or deer horn, and consumed as a popular tonic, as well as hemopoietic and hemostatic agents. Misuse of them would not exert their functions, and fake or adulterate products have caused drug market disorder and affected food and drug safety. GCMs are rich in denatured proteins, but insufficient in available DNA fragments, hence commonly used cytochrome c oxidase I barcoding was not successful for their authentication. In this study, we performed comparative proteomic analysis of them and their animal origins to identify the composition of intrinsic proteins for the first time. A reliable and convenient approach was proposed for their authentication, by the incorporation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two-dimensional electrophoresis, and matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). A total of 26 proteins were identified from medicinal parts of original animals, and GCMs proteins presented in a dispersive manner in electrophoresis analyses due to complicated changes in the structure of original proteins caused by long-term decoction and the addition of ingredients during their manufacturing. In addition, by comparison of MALDI-TOF/TOF-MS profiling, 19 signature peptide fragments originated from the protein of GCM products were selected according to criteria. These could assist in the discrimination and identification of adulterates of GCMs and other ACMs for their form of raw medicinal material, the pulverized, and even the complex. Comparative proteomic analysis of three gelatinous Chinese medicines was conducted, and their authentications were based on tryptic-digested peptides profiling using matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry. Abbreviations used: GCMs: Gelatinous Chinese medicines, COI: Cytochrome c oxidase I, SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, MALDI-TOF/TOF-MS: Matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry, LC: Liquid chromatography, ChP: Chinese Pharmacopoeia, HPLC: High performance liquid chromatography, LC-ESI + -MS: Liquid chromatography-electro spray ionization-mass spectrometry, IEF: isoelectric focusing, HCCA: α-Cyano-4-hydroxycinnamic acid.

  4. Structural characterization of native high-methoxylated pectin using nuclear magnetic resonance spectroscopy and ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comparative use of 2,5-dihydroxybenzoic acid and nor-harmane as UV-MALDI matrices.

    PubMed

    Monge, María Eugenia; Negri, R Martín; Kolender, Adriana A; Erra-Balsells, Rosa

    2007-01-01

    The successful analysis by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF MS) of native and hydrolyzed high-methoxylated pectin samples is described. In order to find the optimal conditions for UV-MALDI-TOF MS analysis several experimental variables were studied such as: different UV-MALDI matrices (nor-harmane, 2,5-dihydroxybenzoic acid), sample preparation methods (mixture, sandwich), inorganic salt addition (doping salts, NaCl, KCl, NH(4)Cl), ion mode (positive, negative), linear and reflectron mode, etc. nor-Harmane has never been used as a UV-MALDI matrix for the analysis of pectins but its use avoids pre-treatment of the sample, such as an enzymatic digestion or an acid hydrolysis, and there is no need to add salts, making the analysis easier and faster. This study suggested an alternative way of analyzing native high-methoxylated pectins, with UV-MALDI-TOF MS, by using nor-harmane as the matrix in negative ion mode. The analysis by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy of the native and hydrolyzed pectin is also briefly described. Copyright (c) 2007 John Wiley & Sons, Ltd.

  5. [Value of MR imaging and MR angiography in the differential diagnosis of carotid space tumour].

    PubMed

    Liu, Pei-fang; Li, Xin; Bao, Run-xian; Liu, Jing-zu; Ge, Zheng-jin

    2004-04-01

    To determine the imaging features of magnetic resonance imaging (MRI) and 2D time of flight (TOF) MR angiography (MRA) and study the value in the differential diagnosis and surgical planning for carotid space tumors. Twenty-six patients with suspected pulsatile carotid space mass were imaged by MRI and 2D TOF MRA from 1996 to 2003. Its characteristic findings were analyzed for lesion shape, margin, signal intensity, angle of common carotid bifurcation, and the relationship between the great vessels and carotid space mass. Of the 26 patients, 22 were verified histopathologically, including 15 carotid body tumors (1 patient had bilateral carotid body tumors), 4 carotid artery aneurysms, 3 schwannomas, and 1 metastatic carcinoma. The rest four patients had clinical pseudomasses proved by MRI and MRA as considerable dilated or tortuous carotid artery as compared with the contralateral one. Combined MRI and MRA assessment of carotid body tumors and carotid artery aneurysm yielded an accuracy of 100%. It was also revealed that the anatomy shown on the MRI and axial MRA source images was consistent with that found by surgery. MRI in combination with MRA is considered as non-invasive imaging technique for the evaluation of carotid space tumor showing superiority to other modalities in the differential diagnosis between vascular versus non-vascular tumours. This method may take the place of traumatic carotid angiography.

  6. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Jung-Fu; Ge, Mao-Cheng; Liu, Tsui-Ping; Chang, Shih-Cheng; Lu, Jang-Jih

    2017-06-30

    Rapid identification of microbes in the bloodstream is crucial in managing septicemia because of its high disease severity, and direct identification from positive blood culture bottles through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can shorten the turnaround time. Therefore, we developed a simple method for rapid microbiological identification from positive blood cultures by using MALDI-TOF MS. We modified previously developed methods to propose a faster, simpler and more economical method, which includes centrifugation and hemolysis. Specifically, our method comprises two-stage centrifugation with gravitational acceleration (g) at 600g and 3000g, followed by the addition of a lysis buffer and another 3000g centrifugation. In total, 324 monomicrobial bacterial cultures were identified. The success rate of species identification was 81.8%, which is comparable with other complex methods. The identification success rate was the highest for Gram-negative aerobes (85%), followed by Gram-positive aerobes (78.2%) and anaerobes (67%). The proposed method requires less than 10 min, costs less than US$0.2 per usage, and facilitates batch processing. We conclude that this method is feasible for clinical use in microbiology laboratories, and can serve as a reference for treatments or further complementary diagnostic testing. Copyright © 2017. Published by Elsevier B.V.

  7. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Tyler; Kuznetsov, Ilya; Willingham, David

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less

  8. Evaluation of ice-tea quality by DART-TOF/MS.

    PubMed

    Rajchl, Aleš; Prchalová, Jana; Kružík, Vojtěch; Ševčík, Rudolf; Čížková, Helena

    2015-11-01

    DART (Direct Analysis in Real Time) coupled with Time-of-Flight Mass Spectrometry (TOF/MS) has been used for analyses of ice-teas. The article focuses on quality and authenticity of ice-teas as one of the most important tea-based products on the market. Twenty-one samples of ice-teas (black and green) were analysed. Selected compounds of ice-teas were determined: theobromine, caffeine, total phenolic compounds, total soluble solids, total amino acid concentration, preservatives and saccharides were determined. Fingerprints of DART-TOF/MS spectra were used for comprehensive assessment of the ice-tea samples. The DART-TOF/MS method was used for monitoring the following compounds: citric acid, caffeine, saccharides, artificial sweeteners (saccharin, acesulphame K), and preservatives (sorbic and benzoic acid), phosphoric acid and phenolic compounds. The measured data were subjected to a principal components analysis. The HPLC and DART-TOF/MS methods were compared in terms of determination of selected compounds (caffeine, benzoic acid, sorbic acid and saccharides) in the ice-teas. The DART-TOF/MS technique seems to be a suitable method for fast screening, testing quality and authenticity of tea-based products. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Nuclear astrophysics at FRANZ

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.

    2018-01-01

    The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.

  10. Trifasciatosides A-J, Steroidal Saponins from Sansevieria trifasciata.

    PubMed

    Teponno, Rémy Bertrand; Tanaka, Chiaki; Jie, Bai; Tapondjou, Léon Azefack; Miyamoto, Tomofumi

    2016-01-01

    Four previously unreported steroidal saponins, trifasciatosides A-D (1-4), three pairs of previously undescribed steroidal saponins, trifasciatosides E-J (5a, b-7a, b) including acetylated ones, together with twelve known compounds were isolated from the n-butanol soluble fraction of the methanol extract of Sansevieria trifasciata. Their structures were elucidated on the basis of detailed spectroscopic analysis, including (1)H-NMR, (13)C-NMR, (1)H-(1)H correlated spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond connectivity (HMBC), total correlated spectroscopy (TOCSY), nuclear Overhauser enhancement and exchange spectroscopy (NOESY), electrospray ionization-time of flight (ESI-TOF)-MS and chemical methods. Compounds 2, 4, and 7a, b exhibited moderate antiproliferative activity against HeLa cells.

  11. The use of Gram stain and matrix-assisted laser desorption ionization time-of-flight mass spectrometry on positive blood culture: synergy between new and old technology.

    PubMed

    Fuglsang-Damgaard, David; Nielsen, Camilla Houlberg; Mandrup, Elisabeth; Fuursted, Kurt

    2011-10-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is promising as an alternative to more costly and cumbersome methods for direct identifications in blood cultures. We wanted to evaluate a simplified pre-treatment method for using MALDI-TOF-MS directly on positive blood cultures using BacT/Alert blood culture system, and to test an algorithm combining the result of the initial microscopy with the result suggested by MALDI-TOF-MS. Using the recommended cut-off score of 1.7 the best results were obtained among Gram-negative rods with correct identifications in 91% of Enterobacteriaceae, 83% in aerobic/non-fermentative Gram-negative rods, whereas results were more modest among Gram-positive cocci with correct identifications in 52% of Staphylococci, 54% in Enterococci and only 20% in Streptococci. Combining the results of Gram stain with the top reports by MALDI-TOF-MS, increased the sensitivity from 91% to 93% in the score range from 1.5 to 1.7 and from 48% to 85% in the score range from 1.3 to 1.5. Thus, using this strategy and accepting a cut-off at 1.3 instead of the suggested 1.7, overall sensitivity could be increased from 88.1% to 96.3%. MALDI-TOF-MS is an efficient method for direct routine identification of bacterial isolates in blood culture, especially when combined with the result of the Gram stain. © 2011 The Authors. APMIS © 2011 APMIS.

  12. Evaluation of MALDI-TOF MS (Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry) for routine identification of anaerobic bacteria.

    PubMed

    Rodríguez-Sánchez, Belén; Alcalá, Luis; Marín, Mercedes; Ruiz, Adrián; Alonso, Elena; Bouza, Emilio

    2016-12-01

    Information regarding the use of MALDI-TOF MS as an alternative to conventional laboratory methods for the rapid and reliable identification of bacterial isolates is still limited. In this study, MALDI-TOF MS was evaluated on 295 anaerobic isolates previously identified by 16S rRNA gene sequencing and with biochemical tests (Rapid ID 32A system, BioMérieux). In total, 85.8% of the isolates were identified by MALDI-TOF MS at the species level vs 49.8% using the Rapid ID 32A system (p < 0.0001). None of the isolates was discordantly identified at the genus level using MALDI-TOF MS and only 9 of them could not be identified using the method. Thus, our results show that MALDI-TOF MS is a robust and reliable tool for the identification of anaerobic isolates in the microbiology laboratory. Its implementation will reduce the turnaround time for a final identification and the number of isolates that require 16S rRNA sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Can 3D light localization be reached in ‘white paint’?

    NASA Astrophysics Data System (ADS)

    Sperling, T.; Schertel, L.; Ackermann, M.; Aubry, G. J.; Aegerter, C. M.; Maret, G.

    2016-01-01

    When waves scatter multiple times in 3D random media, a disorder driven phase transition from diffusion to localization may occur (Anderson 1958 Phys. Rev. 109 1492-505 Abrahams et al 1979 Phys. Rev. Lett. 42 673-6). In ‘The question of classical localization: a theory of white paint?’ Anderson suggested the possibility to observe light localization in TiO2 samples (Anderson 1985 Phil. Mag. B 52 505-9). We recently claimed the observation of localization effects measuring photon time of flight (ToF) distributions (Störzer et al 2006 Phys. Rev. Lett. 96 063904) and evaluating transmission profiles (TPs) (Sperling et al 2013 Nat. Photonics 7 48-52) in such TiO2 samples. Here we present a careful study of the long time tail of ToF distributions and the long time behavior of the TP width for very thin samples and different turbidities that questions the localization interpretation. We further show new data that allow an alternative consistent explanation of these previous data by a fluorescence process. An adapted diffusion model including an appropriate exponential fluorescence decay accounts for the shape of the ToF distributions and the TP width. These observations question whether the strong localization regime can be reached with visible light scattering in polydisperse TiO2 samples, since the disorder parameter can hardly be increased any further in such a ‘white paint’ material.

  14. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    PubMed

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  15. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface

    PubMed Central

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states. PMID:26046669

  16. Identification of anaerobic bacteria by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry with on-plate formic acid preparation.

    PubMed

    Schmitt, Bryan H; Cunningham, Scott A; Dailey, Aaron L; Gustafson, Daniel R; Patel, Robin

    2013-03-01

    Identification of anaerobic bacteria using phenotypic methods is often time-consuming; methods such as 16S rRNA gene sequencing are costly and may not be readily available. We evaluated 253 clinical isolates of anaerobic bacteria using the Bruker MALDI Biotyper (Bruker Daltonics, Billerica, MA) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system with a user-supplemented database and an on-plate formic acid-based preparation method and compared results to those of conventional identification using biochemical testing or 16S rRNA gene sequencing. A total of 179 (70.8%) and 232 (91.7%) isolates were correctly identified to the species and genus levels, respectively, using manufacturer-recommended score cutoffs. MALDI-TOF MS offers a rapid, inexpensive method for identification of anaerobic bacteria.

  17. Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.

    2017-03-01

    4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.

  18. A New Approach for Combining Time-of-Flight and RGB Cameras Based on Depth-Dependent Planar Projective Transformations

    PubMed Central

    Salinas, Carlota; Fernández, Roemi; Montes, Héctor; Armada, Manuel

    2015-01-01

    Image registration for sensor fusion is a valuable technique to acquire 3D and colour information for a scene. Nevertheless, this process normally relies on feature-matching techniques, which is a drawback for combining sensors that are not able to deliver common features. The combination of ToF and RGB cameras is an instance that problem. Typically, the fusion of these sensors is based on the extrinsic parameter computation of the coordinate transformation between the two cameras. This leads to a loss of colour information because of the low resolution of the ToF camera, and sophisticated algorithms are required to minimize this issue. This work proposes a method for sensor registration with non-common features and that avoids the loss of colour information. The depth information is used as a virtual feature for estimating a depth-dependent homography lookup table (Hlut). The homographies are computed within sets of ground control points of 104 images. Since the distance from the control points to the ToF camera are known, the working distance of each element on the Hlut is estimated. Finally, two series of experimental tests have been carried out in order to validate the capabilities of the proposed method. PMID:26404315

  19. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in the screening of vanA-positive Enterococcus faecium.

    PubMed

    Wang, Li-jun; Lu, Xin-xin; Wu, Wei; Sui, Wen-jun; Zhang, Gui

    2014-01-01

    In order to evaluate a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MAIDI-TOF MS) assay in screening vancomycin-resistant Enterococcus faecium, a total of 150 E. faecium clinical strains were studied, including 60 vancomycin-resistant E. faecium (VREF) isolates and 90 vancomycin-susceptible (VSEF) strains. Vancomycin resistance genes were detected by sequencing. E. faecium were identified by MALDI-TOF MS. A genetic algorithm model with ClinProTools software was generated using spectra of 30 VREF isolates and 30 VSEF isolates. Using this model, 90 test isolates were discriminated between VREF and VSEF. The results showed that all sixty VREF isolates carried the vanA gene. The performance of VREF detection by the genetic algorithm model of MALDI-TOF MS compared to the sequencing method was sensitivity = 80%, specificity = 90%, false positive rate =10%, false negative rate =10%, positive predictive value = 80%, negative predictive value= 90%. MALDI-TOF MS can be used as a screening test for discrimination between vanA-positive E. faecium and vanA-negative E. faecium.

  20. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays.

    PubMed

    Bonura, M A; Ruiz, C L; Fehl, D L; Cooper, G W; Chandler, G; Hahn, K D; Nelson, A J; Styron, J D; Torres, J A

    2014-11-01

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.

  1. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia

    PubMed Central

    Fahrmann, Johannes; Grapov, Dmitry; Yang, Jun; Hammock, Bruce; Fiehn, Oliver; Bell, Graeme I.

    2015-01-01

    Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D. PMID:25852003

  2. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.

    PubMed

    Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).

  3. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry

    PubMed Central

    Yao, Jingwen; Utsunomiya, Shin-ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/). PMID:26819872

  4. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    PubMed Central

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968

  5. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H.

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. PMID:25994167

  6. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Tran, Anthony; Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H

    2015-08-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Comparison of carotid plaque ulcer detection using contrast-enhanced and time-of-flight MRA techniques.

    PubMed

    Etesami, M; Hoi, Y; Steinman, D A; Gujar, S K; Nidecker, A E; Astor, B C; Portanova, A; Qiao, Y; Abdalla, W M A; Wasserman, B A

    2013-01-01

    Ulceration in carotid plaque is a risk indicator for ischemic stroke. Our aim was to compare plaque ulcer detection by standard TOF and CE-MRA techniques and to identify factors that influence its detection. Carotid MR imaging scans were acquired on 2066 participants in the ARIC study. We studied the 600 thickest plaques. TOF-MRA, CE-MRA, and black-blood MR images were analyzed together to define ulcer presence (plaque surface niche ≥2 mm in depth). Sixty ulcerated arteries were detected. These arteries were randomly assigned, along with 40 nonulcerated plaques from the remaining 540, for evaluation of ulcer presence by 2 neuroradiologists. Associations between ulcer detection and ulcer characteristics, including orientation, location, and size, were determined and explored by CFD modeling. One CE-MRA and 3 TOF-MRAs were noninterpretable and excluded. Of 71 ulcers in 56 arteries, readers detected an average of 39 (55%) on both TOF-MRA and CE-MRA, 26.5 (37.5%) only on CE-MRA, and 1 (1.5%) only on TOF-MRA, missing 4.5 (6%) ulcers by both methods. Ulcer detection by TOF-MRA was associated with its orientation (distally pointing versus perpendicular: OR = 5.57 [95% CI, 1.08-28.65]; proximally pointing versus perpendicular: OR = 0.21 [95% CI, 0.14-0.29]); location relative to point of maximum stenosis (distal versus isolevel: OR = 5.17 [95% CI, 2.10-12.70]); and neck-to-depth ratio (OR = 1.96 [95% CI, 1.11-3.45]) after controlling for stenosis and ulcer volume. CE-MRA detects more ulcers than TOF-MRA in carotid plaques. Missed ulcers on TOF-MRA are influenced by ulcer orientation, location relative to point of maximum stenosis, and neck-to-depth ratio.

  8. Short-term incubation of positive blood cultures in brain-heart infusion broth accelerates identification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry.

    PubMed

    Torres, Ignacio; Gimenez, Estela; Pascual, Tania; Bueno, Felipe; Huntley, Dixie; Martínez, Mireia; Navarro, David

    2017-12-01

    Fast identification of bacteria directly from positive blood cultures (BCs) by matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) can be achieved either using the MALDI Sepsityper kit (protein extraction method) or after a short-term pre-cultivation step on solid medium. We developed a new method that involves short-term enrichment of positive BCs in brain-heart infusion broth (BHI) prior to MALDI-TOF MS analysis. Eighty-four BCs flagged as positive were included in this study; these were processed in parallel either directly using the MALDI Sepsityper kit or following a short-term culture either in BHI or on Columbia blood agar with 5 % sheep blood (CBA). Bacterial species were successfully identified in 91.6, 89.2 and 65.4 % of cases after pre-cultivation for 4 h in BHI, on CBA, or by using the MALDI Sepsityper kit, respectively. Overall, the mean incubation time to correct identification was shorter when pre-cultures were performed in BHI; the mean time for Gram-negative rods was 78.2 min in BHI and 108.2 min on CBA (P=0.045), and the mean time for Gram-positive cocci was 128.5 min in BHI and 169.6 min on CBA (P=0.013). Short-term enrichment of BCs in BHI accelerates identification of a number of bacterial species by MALDI-TOF MS. Further prospective studies are needed to validate our method and gauge its potential clinical impact on the management of bloodstream bacterial infections.

  9. Line scanning time-of-flight laser sensor for intelligent transport systems, combining wide field-of-view optics of 30 deg, high scanning speed of 0.9 ms/line, and simple sensor configuration

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kameyama, Shumpei; Ishimura, Eitaro; Nakaji, Masaharu; Yoshinaga, Hideo; Hirano, Yoshihito

    2017-03-01

    We developed a line scanning time-of-flight (TOF) laser sensor for an intelligent transport system (ITS), which combines wide field-of-view (FOV) receiving optics of 30 deg and a high-speed microelectro mechanical system scanner of 0.9 ms/line with a simple sensor configuration. The newly developed high-aspect ratio photodiode realizes the scanless and wide FOV receiver. The sinusoidal wave intensity modulation method is used for the TOF measurement. This enables the noise reduction of the trans-impedance amplifier by applying the LC-resonant method. The vehicle detection and axle counting, which are the important functions in ITS, are also demonstrated.

  10. Genetic, phenotypic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based identification of anaerobic bacteria and determination of their antimicrobial susceptibility at a University Hospital in Japan.

    PubMed

    Yunoki, Tomoyuki; Matsumura, Yasufumi; Nakano, Satoshi; Kato, Karin; Hotta, Go; Noguchi, Taro; Yamamoto, Masaki; Nagao, Miki; Takakura, Shunji; Ichiyama, Satoshi

    2016-05-01

    The accuracies of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the phenotypic method using VITEK 2 were compared to the accuracy of 16S rRNA sequence analysis for the identification of 170 clinically isolated anaerobes. The antimicrobial susceptibility of the isolates was also evaluated. Genetic analysis identified 21 Gram-positive species in 14 genera and 29 Gram-negative species in 11 genera. The most frequently isolated genera were Prevotella spp. (n = 46), Bacteroides spp. (n = 25) and Clostridium spp. (n = 25). MALDI-TOF MS correctly identified more isolates compared with VITEK 2 at the species (80 vs. 58%, respectively; p < 0.01) and genus (85 vs. 71%, respectively; p < 0.01) levels. More than 90% of the isolates of the three major genera identified (Prevotella, Bacteroides, and Clostridium species other than Clostridium difficile) were susceptible to beta-lactam/beta-lactamase inhibitor combinations, carbapenems, metronidazole and chloramphenicol. MALDI-TOF MS provided better identification results than VITEK2. Commonly used anti-anaerobic agents indicated that the isolates of the three most frequently identified anaerobic genera exhibited good antimicrobial susceptibility. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Vidal-Acuña, M Reyes; Ruiz-Pérez de Pipaón, Maite; Torres-Sánchez, María José; Aznar, Javier

    2017-12-08

    An expanded library of matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been constructed using the spectra generated from 42 clinical isolates and 11 reference strains, including 23 different species from 8 sections (16 cryptic plus 7 noncryptic species). Out of a total of 379 strains of Aspergillus isolated from clinical samples, 179 strains were selected to be identified by sequencing of beta-tubulin or calmodulin genes. Protein spectra of 53 strains, cultured in liquid medium, were used to construct an in-house reference database in the MALDI-TOF MS. One hundred ninety strains (179 clinical isolates previously identified by sequencing and the 11 reference strains), cultured on solid medium, were blindy analyzed by the MALDI-TOF MS technology to validate the generated in-house reference database. A 100% correlation was obtained with both identification methods, gene sequencing and MALDI-TOF MS, and no discordant identification was obtained. The HUVR database provided species level (score of ≥2.0) identification in 165 isolates (86.84%) and for the remaining 25 (13.16%) a genus level identification (score between 1.7 and 2.0) was obtained. The routine MALDI-TOF MS analysis with the new database, was then challenged with 200 Aspergillus clinical isolates grown on solid medium in a prospective evaluation. A species identification was obtained in 191 strains (95.5%), and only nine strains (4.5%) could not be identified at the species level. Among the 200 strains, A. tubingensis was the only cryptic species identified. We demonstrated the feasibility and usefulness of the new HUVR database in MALDI-TOF MS by the use of a standardized procedure for the identification of Aspergillus clinical isolates, including cryptic species, grown either on solid or liquid media. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Validation of LC–TOF-MS Screening for Drugs, Metabolites, and Collateral Compounds in Forensic Toxicology Specimens

    PubMed Central

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P.; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T.; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic “Spice/K2” cannabinoids and cathinone “bath salt” designer drugs. The extract was applied to LC–TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC–TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149

  13. Validation of LC-TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens.

    PubMed

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic "Spice/K2" cannabinoids and cathinone "bath salt" designer drugs. The extract was applied to LC-TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC-TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework.

  14. Characterization and identification of multiple constituents in Yinhuang granules by high-performance liquid chromatography with diode-array and time-of-flight mass spectrometry detection.

    PubMed

    Liu, E-Hu; Liu, Qun; Chu, Chu; Li, Ping

    2011-10-01

    A fast high-performance liquid chromatography (HPLC) method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF/MS) has been developed for the analysis of multi-constituent in Yinhuang granules, a well-known combined herbal remedy prepared from the extract mixtures of Flos Lonicerae and Radix Scutellariae. The fast HPLC analysis was performed on an Agilent ZorBax SB-C(18) column (4.6×50 mm, 1.8 μm) and 0.2% aqueous formic acid and acetonitrile was the optimum mobile phase for gradient elution in 17 min, which is five times faster than the performance of conventional columns packed with 5.0 μm particles. With various fragmentor voltages in TOF/MS, accurate mass measurements (<5 ppm error) for molecular ions and characteristic fragment ions represented reliable identification criteria for different constituents. A total of 28 compounds, including nine phenolic acids, three iridoid glycosides and nine saponins from Flos Lonicerae and seven flavonoids from Radix Scutellariae, were identified or tentatively characterized in the extract of Yinhuang granules. The established fast HPLC-DAD-TOF/MS method turns out to be useful and efficient for quality control of this commonly used Chinese herbal preparation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The use of time-of-flight camera for navigating robots in computer-aided surgery: monitoring the soft tissue envelope of minimally invasive hip approach in a cadaver study.

    PubMed

    Putzer, David; Klug, Sebastian; Moctezuma, Jose Luis; Nogler, Michael

    2014-12-01

    Time-of-flight (TOF) cameras can guide surgical robots or provide soft tissue information for augmented reality in the medical field. In this study, a method to automatically track the soft tissue envelope of a minimally invasive hip approach in a cadaver study is described. An algorithm for the TOF camera was developed and 30 measurements on 8 surgical situs (direct anterior approach) were carried out. The results were compared to a manual measurement of the soft tissue envelope. The TOF camera showed an overall recognition rate of the soft tissue envelope of 75%. On comparing the results from the algorithm with the manual measurements, a significant difference was found (P > .005). In this preliminary study, we have presented a method for automatically recognizing the soft tissue envelope of the surgical field in a real-time application. Further improvements could result in a robotic navigation device for minimally invasive hip surgery. © The Author(s) 2014.

  16. Quantitative analysis of polypeptide pharmaceuticals by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Amini, Ahmad; Nilsson, Elin

    2008-02-13

    An accurate method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been developed for quantitative analysis of calcitonin and insulin in different commercially available pharmaceutical products. Tryptic peptides derived from these polypeptides were chemically modified at their C-terminal lysine-residues with 2-methoxy-4,5-dihydro-imidazole (light tagging) as standard and deuterated 2-methoxy-4,5-dihydro-imidazole (heavy tagging) as internal standard (IS). The heavy modified tryptic peptides (4D-Lys tag), differed by four atomic mass units from the corresponding light labelled counterparts (4H-Lys tag). The normalized peak areas (the ratio between the light and heavy tagged peptides) were used to construct a standard curve to determine the concentration of the analytes. The concentrations of calcitonin and insulin content of the analyzed pharmaceutical products were accurately determined, and less than 5% error was obtained between the present method and the manufacturer specified values. It was also found that the cysteine residues in CSNLSTCVLGK from tryptic calcitonin were converted to lanthionine by the loss of one sulfhydryl group during the labelling procedure.

  17. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  18. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria

    PubMed Central

    Pavlovic, Melanie; Huber, Ingrid; Konrad, Regina; Busch, Ulrich

    2013-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-associated bacteria is also of crucial importance for food processing and product quality. This review is concerned with the applicability of MALDI-TOF MS for routine identification of foodborne bacteria taking the specific requirements of food microbiological laboratories and the food industry into account. The current state of knowledge including recent findings and new approaches are discussed. PMID:24358065

  19. Rapid Identification of Bacteria in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Stevenson, Lindsay G.; Drake, Steven K.; Murray, Patrick R.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of <1.7) was obtained for 42 (19.8%) of the isolates, due most commonly to insufficient numbers of bacteria in the blood culture broth. Of the bacteria with a spectral score of ≥1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test. PMID:19955282

  20. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of < 1.7) was obtained for 42 (19.8%) of the isolates, due most commonly to insufficient numbers of bacteria in the blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  1. Verification of the tumor volume delineation method using a fixed threshold of peak standardized uptake value.

    PubMed

    Koyama, Kazuya; Mitsumoto, Takuya; Shiraishi, Takahiro; Tsuda, Keisuke; Nishiyama, Atsushi; Inoue, Kazumasa; Yoshikawa, Kyosan; Hatano, Kazuo; Kubota, Kazuo; Fukushi, Masahiro

    2017-09-01

    We aimed to determine the difference in tumor volume associated with the reconstruction model in positron-emission tomography (PET). To reduce the influence of the reconstruction model, we suggested a method to measure the tumor volume using the relative threshold method with a fixed threshold based on peak standardized uptake value (SUV peak ). The efficacy of our method was verified using 18 F-2-fluoro-2-deoxy-D-glucose PET/computed tomography images of 20 patients with lung cancer. The tumor volume was determined using the relative threshold method with a fixed threshold based on the SUV peak . The PET data were reconstructed using the ordered-subset expectation maximization (OSEM) model, the OSEM + time-of-flight (TOF) model, and the OSEM + TOF + point-spread function (PSF) model. The volume differences associated with the reconstruction algorithm (%VD) were compared. For comparison, the tumor volume was measured using the relative threshold method based on the maximum SUV (SUV max ). For the OSEM and TOF models, the mean %VD values were -0.06 ± 8.07 and -2.04 ± 4.23% for the fixed 40% threshold according to the SUV max and the SUV peak, respectively. The effect of our method in this case seemed to be minor. For the OSEM and PSF models, the mean %VD values were -20.41 ± 14.47 and -13.87 ± 6.59% for the fixed 40% threshold according to the SUV max and SUV peak , respectively. Our new method enabled the measurement of tumor volume with a fixed threshold and reduced the influence of the changes in tumor volume associated with the reconstruction model.

  2. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.

    PubMed

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Spanu, Teresa; Fiori, Barbara; Posteraro, Brunella; Sanguinetti, Maurizio

    2014-09-12

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection.

  3. Real-time image processing of TOF range images using a reconfigurable processor system

    NASA Astrophysics Data System (ADS)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  4. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    PubMed

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-09

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Rapid Identification of Microorganisms from Positive Blood Culture by MALDI-TOF MS After Short-Term Incubation on Solid Medium.

    PubMed

    Curtoni, Antonio; Cipriani, Raffaella; Marra, Elisa Simona; Barbui, Anna Maria; Cavallo, Rossana; Costa, Cristina

    2017-01-01

    Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a useful tool for rapid identification of microorganisms. Unfortunately, its direct application to positive blood culture is still lacking standardized procedures. In this study, we evaluated an easy- and rapid-to-perform protocol for MALDI-TOF MS direct identification of microorganisms from positive blood culture after a short-term incubation on solid medium. This protocol was used to evaluate direct identification of microorganisms from 162 positive monomicrobial blood cultures; at different incubation times (3, 5, 24 h), MALDI-TOF MS assay was performed from the growing microorganism patina. Overall, MALDI-TOF MS concordance with conventional methods at species level was 60.5, 80.2, and 93.8% at 3, 5, and 24 h, respectively. Considering only bacteria, the identification performances at species level were 64.1, 85.0, and 94.1% at 3, 5, and 24 h, respectively. This protocol applied to a commercially available MS typing system may represent, a fast and powerful diagnostic tool for pathogen direct identification and for a promptly and pathogen-driven antimicrobial therapy in selected cases.

  7. Application of proteotyping Strain Solution™ ver. 2 software and theoretically calculated mass database in MALDI-TOF MS typing of Salmonella serotype.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Nagai, Satomi; Shima, Keisuke; Akiyama, Yumi; Ota, Junji; Tamura, Hiroto

    2017-12-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based microbial identification is a popular analytical method. Strain Solution proteotyping software available for MALDI-TOF MS has great potential for the precise and detailed discrimination of microorganisms at serotype- or strain-level, beyond the conventional mass fingerprinting approaches. Here, we constructed a theoretically calculated mass database of Salmonella enterica subspecies enterica consisting of 12 biomarker proteins: ribosomal proteins S8, L15, L17, L21, L25, and S7, Mn-cofactor-containing superoxide dismutase (SodA), peptidyl-prolyl cis-trans isomerase C (PPIase C), and protein Gns, and uncharacterized proteins YibT, YaiA, and YciF, that can allow serotyping of Salmonella. Strain Solution ver. 2 software with the novel database constructed in this study demonstrated that 109 strains (94%), including the major outbreak-associated serotypes, Enteritidis, Typhimurium, and Infantis, could be correctly identified from others by colony-directed MALDI-TOF MS using 116 strains belonging to 23 kinds of typed and untyped serotypes of S. enterica from culture collections, patients, and foods. We conclude that Strain Solution ver. 2 software integrated with the accurate mass database will be useful for the bacterial proteotyping by MALDI-TOF MS-based microbial classification in the clinical and food safety fields.

  8. Simultaneous qualitative and quantitative determination of phenolic compounds in Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight and high performance liquid chromatography-diode array detector.

    PubMed

    Wu, Xiaofang; Ding, Wenjing; Zhong, Jiasheng; Wan, Jinzhi; Xie, Zhiyong

    2013-06-01

    An effective and comprehensive method was developed for the simultaneous analysis of phenolic compounds in the dried exudate of Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight (LCMS-IT-TOF) and high performance liquid chromatography-diode array detector (HPLC-DAD). Qualitative analysis of all the compounds presented in A. barbadensis Mill was performed on LCMS-IT-TOF, and the diagnostic fragmentation patterns of different types of phenolic compounds (chromones, phenyl pyrones, naphthalene derivative, anthrones and anthraquinones) were discussed on the basis of ESI-IT-TOF MS of components in A. barbadensis Mill and eleven authentic standards. Under the optimal HPLC-DAD chromatographic conditions, quantification of 11 typical phenolic compounds in 15 batches of A. barbadensis Mill was achieved on an Agilent TC-C18 column using gradient elution with a solvent system of methanol and water at a flow rate of 1.0mLmin(-1) and detected at 230nm. All calibration curves exhibited good linear relationship (r(2)>0.9991). The relative standard deviation values for intraday precision were less than 2% with accuracies between 98.21% and 104.57%. The recoveries of the eleven analytes ranged from 97.53 to 105.00% with RSDs less than 2%. This is the first simultaneous characterization and quantitative determination of multiple phenolic compounds in A. barbadensis Mill from locally grown cultivars in China by LCMS-IT-TOF and HPLC-DAD, which can be applied to standardize the quality of A. barbadensis Mill and the future design of nutraceutical and cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive technique which provides chemical information in both the mass spectra and chemical images. Published by Elsevier Ireland Ltd.

  10. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Dybwad, Marius; van der Laaken, Anton L; Blatny, Janet Martha; Paauw, Armand

    2013-09-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.

  11. Rapid Identification of Bacillus anthracis Spores in Suspicious Powder Samples by Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    van der Laaken, Anton L.; Blatny, Janet Martha; Paauw, Armand

    2013-01-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 106 spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min. PMID:23811517

  12. Dynamics of the reaction of atomic oxygen with ethene: Observation of all carbon-containing products by single-photon ionization

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Huang, Wen-Jian; Chen, Wei-Kan

    2007-10-01

    We measured time-of-flight (TOF) spectra of products from the reaction O( 3P/ 1D) + C 2H 4 at collision energy 6.4 kcal mol -1 using a quadrupole mass filter and tunable vacuum-ultraviolet light for ionization. All carbon-containing products from five exit channels - CH 2CHO + H, CH 2CO + H 2, CH 3 + HCO, CH 2 + HCHO, and CH 2CO + 2H - were identified. Product channels CH 2CHO + H and CH 2CO + 2H associate with 3P and 1D atomic oxygen reactants, respectively. Both 3P and 1D oxygen reactants might be responsible for the other reactions. The ionization threshold of nascent vinoxy radicals is 9.3 ± 0.1 eV.

  13. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification.

    PubMed

    Bizzini, A; Greub, G

    2010-11-01

    Until recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for the identification of microorganisms remained confined to research laboratories. In the last 2 years, the availability of relatively simple to use MALDI-TOF MS devices, which can be utilized in clinical microbiology laboratories, has changed the laboratory workflows for the identification of pathogens. Recently, the first prospective studies regarding the performance in routine bacterial identification showed that MALDI-TOF MS is a fast, reliable and cost-effective technique that has the potential to replace and/or complement conventional phenotypic identification for most bacterial strains isolated in clinical microbiology laboratories. For routine bacterial isolates, correct identification by MALDI-TOF MS at the species level was obtained in 84.1-93.6% of instances. In one of these studies, a protein extraction step clearly improved the overall valid identification yield, from 70.3% to 93.2%. This review focuses on the current state of use of MALDI-TOF MS for the identification of routine bacterial isolates and on the main difficulties that may lead to erroneous or doubtful identifications. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  14. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smijesh, N.; Chandrasekharan, K.; Joshi, Jagdish C.

    2014-07-07

    We report the experimental investigation and comparison of the temporal features of short-pulse (7 ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10⁻⁶Torr to 10²Torr, the plume intensity is found to increase rapidly as the pressure crosses 1 Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9 nm (3d⁹(²D) 4p → 3d⁹(²D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. Themore » fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5 nm (3p⁶3d⁸(³P) 4s→ 3p⁶3d⁹ 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2 mm and 4 mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.« less

  15. Contrast Enhancement in TOF cerebral angiography at 7 T using Saturation and MT pulses under SAR constraints: impact of VERSE and sparse pulses

    PubMed Central

    Schmitter, Sebastian; Bock, Michael; Johst, Sören; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2011-01-01

    Cerebral 3D time of flight (TOF) angiography significantly benefits from ultra high fields, mainly due to higher SNR and to longer T1 relaxation time of static brain tissues, however, SAR significantly increases with B0. Thus, additional RF pulses commonly used at lower field strengths to improve TOF contrast such as saturation of venous signal and improved background suppression by magnetization transfer typically cannot be used at higher fields. In this work we aimed at reducing SAR for each RF pulse category in a TOF sequence. We use the VERSE principle for the slab selective TOF excitation as well as the venous saturation RF pulses. Additionally, MT pulses are implemented by sparsely applying the pulses only during acquisition of the central k-space lines to limit their SAR contribution. Image quality, angiographic contrast and SAR reduction were investigated as a function of VERSE parameters and of the total number of MT pulses applied. Based on these results, a TOF protocol was generated that increases the angiographic contrast by more than 50% and reduces subcutaneous fat signal while keeping the resulting SAR within regulatory limits. PMID:22139829

  16. Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera

    NASA Astrophysics Data System (ADS)

    Roellinghoff, F.; Benilov, A.; Dauvergne, D.; Dedes, G.; Freud, N.; Janssens, G.; Krimmer, J.; Létang, J. M.; Pinto, M.; Prieels, D.; Ray, C.; Smeets, J.; Stichelbaut, F.; Testa, E.

    2014-03-01

    Prompt-gamma profile was measured at WPE-Essen using 160 MeV protons impinging a movable PMMA target. A single collimated detector was used with time-of-flight (TOF) to reduce the background due to neutrons. The target entrance rise and the Bragg peak falloff retrieval precision was determined as a function of incident proton number by a fitting procedure using independent data sets. Assuming improved sensitivity of this camera design by using a greater number of detectors, retrieval precisions of 1 to 2 mm (rms) are expected for a clinical pencil beam. TOF improves the contrast-to-noise ratio and the performance of the method significantly.

  17. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures.

    PubMed

    Jung, Jette S; Hamacher, Christina; Gross, Birgit; Sparbier, Katrin; Lange, Christoph; Kostrzewa, Markus; Schubert, Sören

    2016-11-01

    With the increasing prevalence of multidrug-resistant Gram-negative bacteria, rapid identification of the pathogen and its individual antibiotic resistance is crucial to ensure adequate antiinfective treatment at the earliest time point. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for the identification of bacteria directly from the blood culture bottle has been widely established; however, there is still an urgent need for new methods that permit rapid resistance testing. Recently, a semiquantitative MALDI-TOF mass spectrometry-based method for the prediction of antibiotic resistance was described. We evaluated this method for detecting nonsusceptibility against two β-lactam and two non-β-lactam antibiotics. A collection of 30 spiked blood cultures was tested for nonsusceptibility against gentamicin and ciprofloxacin. Furthermore, 99 patient-derived blood cultures were tested for nonsusceptibility against cefotaxime, piperacillin-tazobactam, and ciprofloxacin in parallel with MALDI-TOF mass spectrometry identification from the blood culture fluid. The assay correctly classified all isolates tested for nonsusceptibility against gentamicin and cefotaxime. One misclassification for ciprofloxacin nonsusceptibility and five misclassifications for piperacillin-tazobactam nonsusceptibility occurred. Identification of the bacterium and prediction of nonsusceptibility was possible within approximately 4 h. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Ashizawa, Kazuho; Murata, Syota; Terada, Takashi; Ito, Daisuke; Bunya, Masaru; Watanabe, Koji; Teruuchi, Yoko; Tsuchida, Sachio; Satoh, Mamoru; Nishimura, Motoi; Matsushita, Kazuyuki; Sugama, Yuji; Nomura, Fumio

    2017-08-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify pathogens in blood culture samples. However, sample pretreatment is needed for direct identification of microbes in blood culture bottles. Conventional protocols are complex and time-consuming. Therefore, in this study, we developed a method for collecting bacteria using polyallylamine-polystyrene copolymer for application in wastewater treatment technology. Using representative bacterial species Escherichia coli and Staphylococcus capitis, we found that polyallylamine-polystyrene can form visible aggregates with bacteria, which can be identified using MALDI-TOF MS. The processing time of our protocol was as short as 15min. Hemoglobin interference in MALDI spectra analysis was significantly decreased in our method compared with the conventional method. In a preliminary experiment, we evaluated the use of our protocol to identify clinical isolates from blood culture bottles. MALDI-TOF MS-based identification of 17 strains from five bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, S. aureus, and S. capitis) collected by our protocol was satisfactory. Prospective large-scale studies are needed to further evaluate the clinical application of this novel and simple method of collecting bacteria in blood culture bottles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Schmidt, V; Jarosch, A; März, P; Sander, C; Vacata, V; Kalka-Moll, W

    2012-03-01

    Blood culture is probably the most significant specimen used for the diagnosis of bacterial infections, especially for bloodstream infections. In the present study, we compared the resin-containing BD BACTEC™ Plus-Aerobic (Becton Dickinson), non-charcoal-containing BacT/Alert(®) SA (bioMérieux), and charcoal-containing BacT/Alert(®) FA (bioMérieux) blood culture bottles with direct identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 103 bacterial isolates, from clinical blood cultures, representing the most frequent 13 genera and 24 species were examined. Bacteria were extracted from positive blood culture broth by density centrifugation and then subjected to identification by MALDI-TOF MS using two different volumes and chemical treatments. Overall, correct identification by MALDI-TOF MS was obtained for the BD BACTEC™ Plus-Aerobic, BacT/Alert(®) SA, and BacT/Alert(®) FA blood culture bottles in 72%, 45.6%, and 23%, respectively, for gram-negative bacteria in 86.6%, 69.2%, and 47.1%, respectively, and for gram-positive bacteria in 60.0%, 28.8%, and 5.4%, respectively. The lack of identification was observed mainly with viridans streptococci. Depending on the blood culture bottles used in routine diagnostic procedures and the protocol for bacterial preparation, the applied MALDI-TOF MS represents an efficient and rapid method for direct bacterial identification.

  20. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies.

    PubMed

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S; Moses, William W; Qi, Jinyi

    2018-03-16

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1-1.3 over the TOF 500 ps and 1.5-1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  1. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi

    2018-03-01

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  2. Differential protein expression during colonic adaptation in ultra-short bowel rats.

    PubMed

    Jiang, Hai-Ping; Chen, Tao; Yan, Guang-Rong; Chen, Dan

    2011-05-28

    To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis. The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in sugar and fat metabolism, protein synthesis and oxidation reduction, which are associated with colonic adaption. Eight proteins found in this study play important roles in colonic compensation and are associated with sugar and fat metabolism, protein synthesis, and molecular chaperoning.

  3. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    DTIC Science & Technology

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  4. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    NASA Astrophysics Data System (ADS)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  5. Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Papac, D I; Hoyes, J; Tomer, K B

    1994-09-01

    We have developed a method to rapidly identify the antigenic determinant for an antibody using in situ proteolysis of an immobilized antigen-antibody complex followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF). A mouse anti-bombesin monoclonal antibody was immobilized to agarose beads and then the antigen, gastrin-releasing peptide (GRP), was allowed to bind. Direct analysis of the immobilized antigen-antibody complex by MALDI/TOF is demonstrated and allows identification of ca. 1 pmol of the bound GRP. To identify the epitope, the immobilized antigen-antibody complex was subjected to proteolysis with trypsin, chymotrypsin, thermolysin, and aminopeptidase M. Following proteolysis, the part of the antigen in contact with the antibody and protected from proteolysis was identified directly by MALDI/TOF. Subsequently, the epitope was eluted from the immobilized antibody with 0.1 M glycine buffer (pH 2.3), separated by reversed-phase HPLC, and its identity confirmed by MALDI/TOF. Using this approach, the epitope for the anti-bombesin monoclonal antibody was shown to comprise the last 7-8 residues (HWAVGHLM-NH2) of GRP.

  6. Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry.

    PubMed Central

    Papac, D. I.; Hoyes, J.; Tomer, K. B.

    1994-01-01

    We have developed a method to rapidly identify the antigenic determinant for an antibody using in situ proteolysis of an immobilized antigen-antibody complex followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF). A mouse anti-bombesin monoclonal antibody was immobilized to agarose beads and then the antigen, gastrin-releasing peptide (GRP), was allowed to bind. Direct analysis of the immobilized antigen-antibody complex by MALDI/TOF is demonstrated and allows identification of ca. 1 pmol of the bound GRP. To identify the epitope, the immobilized antigen-antibody complex was subjected to proteolysis with trypsin, chymotrypsin, thermolysin, and aminopeptidase M. Following proteolysis, the part of the antigen in contact with the antibody and protected from proteolysis was identified directly by MALDI/TOF. Subsequently, the epitope was eluted from the immobilized antibody with 0.1 M glycine buffer (pH 2.3), separated by reversed-phase HPLC, and its identity confirmed by MALDI/TOF. Using this approach, the epitope for the anti-bombesin monoclonal antibody was shown to comprise the last 7-8 residues (HWAVGHLM-NH2) of GRP. PMID:7530543

  7. Detection of Biomarkers of Pathogenic Naegleria fowleri Through Mass Spectrometry and Proteomics

    PubMed Central

    Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R.; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R.

    2017-01-01

    Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. PMID:25231600

  8. Dynamic subnanosecond time-of-flight detection for ultra-precise diffusion monitoring and optimization of biomarker preservation

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael

    2014-03-01

    Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.

  9. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.

    PubMed

    Wang, Jin; Cao, Xianshuang; Jiang, Hao; Qi, Yadong; Chin, Kit L; Yue, Yongde

    2014-12-17

    Hibiscus sabdariffa has gained attention for its antioxidant activity. There are many accessions of H. sabdariffa in the world. However, information on the quantification of antioxidant compounds in different accessions is rather limited. In this paper, a liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) method for simultaneous determination of five antioxidant compounds (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, and isoquercitrin) in H. sabdariffa leaves was developed. The method was validated for linearity, sensitivity, precision, repeatability and accuracy. The validated method has been successfully applied for determination of the five analytes in eight accessions of H. sabdariffa. The eight accessions of H. sabdariffa were evaluated for their antioxidant activities by DPPH free radical scavenging assay. The investigated accessions of H. sabdariffa were rich in rutin and exhibited strong antioxidant activity. The two accessions showing the highest antioxidant activities were from Cuba (No. 2) and Taiwan (No. 5). The results indicated that H. sabdariffa leaves could be considered as a potential antioxidant source for the food industry. The developed LC-Q-TOF-MS method is helpful for quality control of H. sabdariffa.

  10. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna

    2010-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.

  12. Complete elimination of the secondary electron background in Auger spectra using Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Kalaskar, Sushant; Satyal, Suman; Lim, L.; Weiss, Alexander

    2010-03-01

    Time of flight- positron annihilation induced Auger electron spectroscopy (TOF-PAES) is a surface analysis technique with high surface selectivity. Almost 95% of the TOF-PAES signal emerges from the topmost layer of the sample due to the trapping of positrons in an image-potential-well before annihilation. In this poster we will present new results that demonstrate how very low energy positron beams can be used together with the time of Flight (TOF) technique developed at The University of Texas at Arlington to obtain Auger spectra that are completely free of secondary electron background.

  13. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4-10), C n H2n (n = 2-12, 14, 16), C n H2n-2 (n = 3-12, 14, 16), C n H2n-4 (n = 4-12, 14, 16), C n H2n-6 (n = 4-10, 12), C n H2n-8 (n = 6-10), and C n H2n-10 (n = 6-10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  14. MALDI-TOF identification of Gram-negative bacteria directly from blood culture bottles containing charcoal: Sepsityper® kits versus centrifugation-filtration method.

    PubMed

    Riederer, Kathleen; Cruz, Kristian; Shemes, Stephen; Szpunar, Susan; Fishbain, Joel T

    2015-06-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has dramatically altered the way microbiology laboratories identify clinical isolates. Direct blood culture (BC) detection may be hampered, however, by the presence of charcoal in BC bottles currently in clinical use. This study evaluates an in-house process for extraction and MALDI-TOF identification of Gram-negative bacteria directly from BC bottles containing charcoal. Three hundred BC aliquots were extracted by a centrifugation-filtration method developed in our research laboratory with the first 96 samples processed in parallel using Sepsityper® kits. Controls were colonies from solid media with standard phenotypic and MALDI-TOF identification. The identification of Gram-negative bacteria was successful more often via the in-house method compared to Sepsityper® kits (94.7% versus 78.1%, P≤0.0001). Our in-house centrifugation-filtration method was further validated for isolation and identification of Gram-negative bacteria (95%; n=300) directly from BC bottles containing charcoal. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry.

    PubMed

    Kim, Jo-Il; Park, Jong-Min; Hwang, Seung-Ju; Kang, Min-Jung; Pyun, Jae-Chul

    2014-07-11

    Top-down synthesized TiO2 nanowires are presented as an ideal solid matrix to analyze small biomolecules at a m/z of less than 500. The TiO2 nanowires were synthesized as arrays using a modified hydrothermal process directly on the surface of a Ti plate. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix. The crystal and electronic structures of the top-down TiO2 nanowires were analyzed at each step of the hydrothermal process, and the optimal TiO2 nanowires were identified by checking their performance toward the ionization of analytes in surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix for SALDI-TOF mass spectrometry was demonstrated using eight types of amino acids and peptides as model analytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    PubMed

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  17. Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method

    NASA Astrophysics Data System (ADS)

    Markham, Jonathan P. J.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Richards, Gary J.; Burn, Paul L.; Im, Chan; Bassler, Heinz

    2002-10-01

    Measurements of the mobility of a first-generation (G1) bis-fluorene cored dendrimer have been performed on spin-coated samples of 500 nm thickness using the charge-generation-layer time-of-flight (TOF) technique. A 10 nm perylene charge generation layer was excited by the 532 nm line of a Q-switched Nd:YAG laser and the generated carriers swept through the dendrimer film under an applied field. We observe nondispersive hole transport in the dendrimer layer with a room-temperature mobility mu=2.0 x10-4 cm2/V s at a field of 0.55 MV/cm. There is a weak field dependence of the mobility and it increases from mu=1.6 x10-4 cm2/V s at 0.2 MV/cm to mu=3.0 x10-4 cm2/V s at 1.4 MV/cm. These results suggest that the measurement of mobility by TOF in spin-coated samples on thickness scales relevant to organic light-emitting diodes can yield valuable information, and that dendrimers are promising materials for device applications.

  18. Detection of monohydroxylated polycyclic aromatic hydrocarbons in urine and particulate matter using LC separations coupled with integrated SPE and fluorescence detection or coupled with high-resolution time-of-flight mass spectrometry.

    PubMed

    Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf

    2018-05-01

    A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.

  19. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars.

    PubMed

    Kang, Lin; Li, Nan; Li, Ping; Zhou, Yang; Gao, Shan; Gao, Hongwei; Xin, Wenwen; Wang, Jinglin

    2017-04-01

    Salmonella can cause global foodborne illnesses in humans and many animals. The current diagnostic gold standard used for detecting Salmonella infection is microbiological culture followed by serological confirmation tests. However, these methods are complicated and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis offers some advantages in rapid identification, for example, simple and fast sample preparation, fast and automated measurement, and robust and reliable identification up to genus and species levels, possibly even to the strain level. In this study, we established a reference database for species identification using whole-cell MALDI-TOF MS; the database consisted of 12 obtained main spectra of the Salmonella culture collection strains belonged to seven serotypes. Eighty-two clinical isolates of Salmonella were identified using established database, and partial 16S rDNA gene sequencing and serological method were used as comparison. We found that MALDI-TOF mass spectrometry provided high accuracy in identification of Salmonella at species level but was limited to type or subtype Salmonella serovars. We also tried to find serovar-specific biomarkers and failed. Our study demonstrated that (a) MALDI-TOF MS was suitable for identification of Salmonella at species level with high accuracy and (b) that MALDI-TOF MS method presented in this study was not useful for serovar assignment of Salmonella currently, because of its low matching with serological method and (c) MALDI-TOF MS method presented in this study was not suitable to subtype S. typhimurium because of its low discriminatory ability.

  20. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis.

    PubMed

    Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry

    2013-07-01

    The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M + Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+●) / [M + H](+) parents. [M + Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+●) / [M + H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.

  1. An integrated strategy using UPLC-QTOF-MSE and UPLC-QTOF-MRM (enhanced target) for pharmacokinetics study of wine processed Schisandra Chinensis fructus in rats.

    PubMed

    Liu, Kuangyi; Song, Yonggui; Liu, Yali; Peng, Mi; Li, Hanyun; Li, Xueliang; Feng, Bingwei; Xu, Pengfei; Su, Dan

    2017-05-30

    Currently the pharmacokinetic (PK) research of herbal medicines is still limited and facing critical technical challenges on quantitative analysis of multi-components from biological matrices which often accompanied by lacking of authentic standards and low concentration. This present work contributes to the development of an integrated strategy for extensive pharmacokinetics assessments, and a selective and sensitive method independent of authentic standards for multi-components analysis based on the use of ultra-performance liquid chromatography/quadrupole-time-of-flight/MS E (UPLC-TOF-MS E ) and UPLC-TOF-MRM (rnhanced target). Initially, phytochemicals were identified by UPLC-TOF-MS E analysis, subsequently the identified components were matched with authentic standards and pre-classified, and UPLC-QTOF-MRM method optimized and developed. To guarantee reliable results, three rules are necessary: (1) detection with a mass error of less than 5ppm; (2) same class chemical compositions with structural high similarity between analytes with and without authentic reference substance; (3) a matching retention time between TOF-MRM mode and TOF-MS E within 0.2min. The developed and validated method was applied for the simultaneous determination of 12 lignans in rat plasma after administered with wine processed Schisandra Chinensis fructus (WPSCF) extract. Such an approach was found capable of providing extensive pharmacokinetic profiles of multi-components absorbed into blood after oral administrated with WPSCF extract. The results also indicated that significant difference in pharmacokinetics parameters of dibenzocyclooctadiene lignans was observed between schizandrin and gomisin compounds. For lignans, the absorption via gastrointestinal tract were all rapid and maintained relatively long retention time, especially for schisantherin A and schisantherin B with higher plasma exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Metabolites profiling of Pulsatilla saponin D in rat by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS).

    PubMed

    Ouyang, Hui; Zhou, Maofu; Guo, Yicheng; He, Mingzhen; Huang, Hesong; Ye, Xide; Feng, Yulin; Zhou, Xin; Yang, Shilin

    2014-07-01

    Pulsatilla saponin D, an antitumor substance isolated from traditional Chinese herbal medicine Pulsatilla chinensis (Bge.) Regel, is a promising candidate for new drug development. The purpose of the present study is to establish a simple and practical strategy for the metabolite profiling of Pulsatilla saponin D in vivo. A total of 18 metabolites were identified in rat plasma, urine and feces samples based on MS and MS/MS data by using ESI-Q-TOF-MS/MS, and eight of them (M11-M18) were reported for the first time. The results indicated that deglycosylation, dehydrogenation, hydroxylation and sulfation were the major metabolic transformations of Pulsatilla saponin D in vivo. This study has improved our understanding of the metabolic fate of Pulsatilla saponin D in vivo, and the information gained from the current study is relevant to the pharmacological activity of Pulsatilla saponin D. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    PubMed

    Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun

    2016-01-29

    Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts. Copyright © 2016. Published by Elsevier B.V.

  4. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    PubMed

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  5. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn.

    PubMed

    He, Caiyun; Gao, Guori; Zhang, Jianguo; Duan, Aiguo; Luo, Hongmei

    2016-01-01

    Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn ( Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions. With the increase of cold stress intensity, the photosynthesis rate, transpiration rate, stomatal conductance in leaves and contents of abscisic acid (ABA) and indole acetic acid (IAA) in roots decreased significantly; however, water-use efficiency, ABA and zeatin riboside in leaves increased significantly, while cell membrane permeability, malondialdehyde and IAA in leaves increased at 7 d and then decreased at 14 d. DIGE and MS/MS analysis identified 32 of 39 differentially expressed protein spots under low-temperature stress, and their functions were mainly involved in metabolism, photosynthesis, signal transduction, antioxidative systems and post-translational modification. The changed protein abundance and corresponding physiological-biochemical response shed light on the molecular mechanisms related to cold tolerance in cold-tolerant plants and provide key candidate proteins for genetic improvement of plants.

  6. MALDI-TOF MS in the Microbiology Laboratory: Current Trends.

    PubMed

    Schubert, Sören; Kostrzewa, Markus

    2017-01-01

    Within less than a decade matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a gold standard for microbial identification in clinical microbiology laboratories. Besides identification of microorganisms the typing of single strains as well as the antibiotic and antimycotic resistance testing has come into focus in order to speed up the microbiological diagnostic. However, the full potential of MALDI-TOF MS has not been tapped yet and future technological advancements will certainly expedite this method towards novel applications and enhancement of current practice. So, the following chapter shall be rather a brainstorming and forecast of how MALDI-TOF MS will develop to influence clinical diagnostics and microbial research in the future. It shall open up the stage for further discussions and does not claim for overall validity.

  7. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim

    2016-06-15

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less

  8. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxin 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-light mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...

  9. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections.

    PubMed

    Sharma, Megha; Gautam, Vikas; Mahajan, Monika; Rana, Sudesh; Majumdar, Manasi; Ray, Pallab

    2017-10-01

    Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC) system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5%) bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  10. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    PubMed

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  11. Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2006-01-01

    The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and rare earth elements). These calibration curves have been used to measure impurities in a number of uranium samples. The results from the TOF-ICP-MS will be compared with other mass spectrometric methods.« less

  12. Comparison between triple quadrupole, time of flight and hybrid quadrupole time of flight analysers coupled to liquid chromatography for the detection of anabolic steroids in doping control analysis.

    PubMed

    Pozo, Oscar J; Van Eenoo, Peter; Deventer, Koen; Elbardissy, Hisham; Grimalt, Susana; Sancho, Juan V; Hernandez, Felix; Ventura, Rosa; Delbeke, Frans T

    2011-01-17

    Triple quadrupole (QqQ), time of flight (TOF) and quadrupole-time of flight (QTOF) analysers have been compared for the detection of anabolic steroids in human urine. Ten anabolic steroids were selected as model compounds based on their ionization and the presence of endogenous interferences. Both qualitative and quantitative analyses were evaluated. QqQ allowed for the detection of all analytes at the minimum required performance limit (MRPL) established by the World Anti-Doping Agency (between 2 and 10 ng mL(-1) in urine). TOF and QTOF approaches were not sensitive enough to detect some of the analytes (3'-hydroxy-stanozolol or the metabolites of boldenone and formebolone) at the established MRPL. Although a suitable accuracy was obtained, the precision was unsatisfactory (RSD typically higher than 20%) for quantitative purposes irrespective of the analyser used. The methods were applied to 30 real samples declared positives either for the misuse of boldenone, stanozolol and/or methandienone. Most of the compounds were detected by every technique, however QqQ was necessary for the detection of some metabolites in a few samples. Finally, the possibility to detect non-target steroids has been explored by the use of TOF and QTOF. The use of this approach revealed that the presence of boldenone and its metabolite in one sample was due to the intake of androsta-1,4,6-triene-3,17-dione. Additionally, the intake of methandienone was confirmed by the post-target detection of a long-term metabolite. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Time-of-flight magnetic resonance angiography imaging of a residual arteriovenous malformation nidus after Onyx embolization for stereotactic radiosurgery planning. Technical note.

    PubMed

    Loy, David N; Rich, Keith M; Simpson, Joseph; Dorward, Ian; Santanam, Lakshmi; Derdeyn, Colin P

    2009-05-01

    This report demonstrates that time-of-flight (TOF) MR angiography is a useful adjunct for planning stereotactic radiosurgery (SRS) of large arteriovenous malformations (AVMs) after staged embolization with Onyx. Onyx (ethylene vinyl copolymer), a recently approved liquid embolic agent, has been increasingly used to exclude portions of large AVMs from the parent circulation prior to SRS. Limiting SRS to regions of persistent arteriovenous shunting and excluding regions eliminated by embolization may reduce unnecessary radiation doses to eloquent brain structures. However, SRS dosimetry planning presents unique challenges after Onyx embolization because it creates extensive artifacts on CT scans, and it cannot be delineated from untreated nidus on standard MR sequences. During the radiosurgery procedure, MR images were obtained using a GE Signa 1.5-T unit. Standard axial T2 fast spin echo high-resolution images (TR 3000 msec, TE 108 msec, slice thickness 2.5 mm) were generated for optimal visualization of brain tissue and AVM flow voids. The 3D TOF MR angiography images of the circle of Willis and vertebral arteries were subsequently obtained to visualize AVM regions embolized with Onyx (TR 37 msec, TE 6.9 msec, flip angle 20 degrees). Adjunct TOF MR angiography images demonstrated excellent contrast between nidus embolized with Onyx and regions of persistent arteriovenous shunting within a large AVM prior to SRS. Additional information derived from these sequences resulted in substantial adjustments to the treatment plan and an overall reduction in the treated tissue volume.

  14. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method.

    PubMed

    Ferreira, L; Sánchez-Juanes, F; Muñoz-Bellido, J L; González-Buitrago, J M

    2011-07-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast and reliable technology for the identification of microorganisms with proteomics approaches. Here, we compare an intact cell method and a protein extraction method before application on the MALDI plate for the direct identification of microorganisms in both urine and blood culture samples from clinical microbiology laboratories. The results show that the intact cell method provides excellent results for urine and is a good initial method for blood cultures. The extraction method complements the intact cell method, improving microorganism identification from blood culture. Thus, we consider that MALDI-TOF MS performed directly on urine and blood culture samples, with the protocols that we propose, is a suitable technique for microorganism identification, as compared with the routine methods used in the clinical microbiology laboratory. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogunovic, Hrvoje; Pozo, Jose Maria; Villa-Uriol, Maria Cruz

    Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA andmore » TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.« less

  16. Species Identification of Clinical Prevotella Isolates by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Soetens, Oriane; De Bel, Annelies; Echahidi, Fedoua; Vancutsem, Ellen; Vandoorslaer, Kristof; Piérard, Denis

    2012-01-01

    The performance of matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) for species identification of Prevotella was evaluated and compared with 16S rRNA gene sequencing. Using a Bruker database, 62.7% of the 102 clinical isolates were identified to the species level and 73.5% to the genus level. Extension of the commercial database improved these figures to, respectively, 83.3% and 89.2%. MALDI-TOF MS identification of Prevotella is reliable but needs a more extensive database. PMID:22301022

  17. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media

    PubMed Central

    Li, Ying; Wang, He; Zhao, Yu-Pei; Xu, Ying-Chun; Hsueh, Po-Ren

    2017-01-01

    We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The Bruker Biotyper MALDI-TOF MS system was able to identify 30.2% (115/381) of the isolates to the species level (score values of ≥2.000) and 49.3% to the genus level (score values of 1.700–1.999). When the identification cutoff value was lowered from ≥2.000 to ≥1.700, the species-level identification rate increased to 79.5% with a slight rise of false identification from 2.6 to 5.0%. From another aspect, a correct species-level identification rate of 89% could be reached by the Bruker Biotyper MALDI-TOF MS system regardless of the score values obtained. The Bruker Biotyper MALDI-TOF MS system had a moderate performance in identification of Aspergillus directly inoculated on solid agar media. Continued expansion of the Bruker Biotyper MALDI-TOF MS database and adoption of alternative cutoff values for interpretation are required to improve the performance of the system for identifying highly diverse species of clinically encountered Aspergillus isolates. PMID:28706514

  18. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media.

    PubMed

    Li, Ying; Wang, He; Zhao, Yu-Pei; Xu, Ying-Chun; Hsueh, Po-Ren

    2017-01-01

    We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The Bruker Biotyper MALDI-TOF MS system was able to identify 30.2% (115/381) of the isolates to the species level (score values of ≥2.000) and 49.3% to the genus level (score values of 1.700-1.999). When the identification cutoff value was lowered from ≥2.000 to ≥1.700, the species-level identification rate increased to 79.5% with a slight rise of false identification from 2.6 to 5.0%. From another aspect, a correct species-level identification rate of 89% could be reached by the Bruker Biotyper MALDI-TOF MS system regardless of the score values obtained. The Bruker Biotyper MALDI-TOF MS system had a moderate performance in identification of Aspergillus directly inoculated on solid agar media. Continued expansion of the Bruker Biotyper MALDI-TOF MS database and adoption of alternative cutoff values for interpretation are required to improve the performance of the system for identifying highly diverse species of clinically encountered Aspergillus isolates.

  19. The potential role of IDEAL MRI for identification of lipids and hemorrhage in carotid artery plaques.

    PubMed

    Khosa, Faisal; Clough, Rachel E; Wang, Xiaoen; Madhuranthakam, Ananth J; Greenman, Robert L

    2018-06-01

    Hemorrhage and lipid deposits contribute to instability in atherosclerotic plaques. Unstable carotid artery plaques can lead to cerebral ischemic events. While MRI studies have shown the ability to identify plaque components, the identification of hemorrhage and lipids has proven to be problematic. The purpose of this study was to quantitatively evaluate the potential of the MRI fat/water separation method known as iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) to complement and improve existing methods for the identification of hemorrhage and lipids in carotid artery plaques. Fifteen asymptomatic subjects with 50-79% stenosis of at least one carotid artery were enrolled. Hemorrhage and lipid components within carotid plaques were identified using previously published criteria based on the multiple contrast-weighted (MCW) method (3D Time-of-Flight (3D-TOF), T1-Weighted (T1W) and T2-Weighted (T2W)). The hemorrhage:muscle, lipid:muscle and intra-plaque lipid:hemorrhage signal intensity ratios (SIR) and contrast to noise ratios (CNR) were measured on MCW and compared to IDEAL black-blood images. No differences were found between any of the MCW methods for any of the SIRs measured. The IDEAL Fat images had higher lipid:muscle and lipid/hemorrhage SIRs (p<0.001) compared to IDEAL Water and all MCW image sequence types. The mean values of IDEAL Fat hemorrhage:muscle SIR and CNR were nearly unity (1.1±0.6) and nearly zero (0.1±1.1), respectively. The IDEAL Water imaging was not significantly different than any of the MCW methods for any of the SIRs or for the hemorrhage:muscle CNR of 3D-TOF, while its CNRs were significantly higher than IDEAL Fat lipid:muscle (p<0.05) and lipid:hemorrhage (p<0.001) and all MCW methods (p<0.001). The addition of IDEAL Water and Fat imaging to the MCW method shows potential to improve the identification of hemorrhage and lipid structures in carotid artery plaques. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry.

    PubMed

    Qi, Lian-Wen; Chen, Chun-Yun; Li, Ping

    2009-10-01

    A fast liquid chromatography method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF-MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8-microm porous particles (4.6 x 50 mm), three times faster than the performance of conventional 5.0-microm columns (4.6 x 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD-TOF-MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)-TOF-MS experiments, elimination of a glucose unit (162 Da), and successive losses of H(2)O, CH(3)OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M-H-caffeoyl](-) by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H(2)O, CO, RDA and C-ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the 'full mass spectral' information of TOF-MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Multiple Time-of-Flight/Time-of-Flight Events in a Single Laser Shot for Improved Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry Quantification.

    PubMed

    Prentice, Boone M; Chumbley, Chad W; Hachey, Brian C; Norris, Jeremy L; Caprioli, Richard M

    2016-10-04

    Quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses. We describe here new methodology that allows for multiple TOF/TOF fragmentation events to be performed in a single laser shot. This technology allows the reference of analyte intensity to that of the internal standard in each laser shot, even when the analyte and internal standard are quite disparate in m/z, thereby improving quantification while maintaining chemical specificity and duty cycle. In the quantitative analysis of the drug enalapril in pooled human plasma with ramipril as an internal standard, a greater than 4-fold improvement in relative standard deviation (<10%) was observed as well as improved coefficients of determination (R 2 ) and accuracy (>85% quality controls). Using this approach we have also performed simultaneous quantitative analysis of three drugs (promethazine, enalapril, and verapamil) using deuterated analogues of these drugs as internal standards.

  2. UTOFIA: an underwater time-of-flight image acquisition system

    NASA Astrophysics Data System (ADS)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  3. A UPLC-ESI-Q-TOF method for rapid and reliable identification and quantification of major indole alkaloids in Catharanthus roseus.

    PubMed

    Jeong, Won Tae; Lim, Heung Bin

    2018-03-30

    We developed a novel ultra performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) mass spectrometry method that allows sensitive, rapid, and reliable detection and identification of six representative indole alkaloids (vincristine, vinblastine, ajmalicine, catharanthine, serpentine, and vindoline) that exhibit physiological activity in Catharanthus roseus (C. roseus). The alkaloids were eluted on a C18 column with acetonitrile and water containing 0.1% formic acid and 10 mM ammonium acetate, and separated with good resolution within 13 min. Electrospray ionization-Q-TOF (ESI-Q-TOF) analysis was performed to characterize the molecules and their fragment ions, and the characteristic ions and fragmentation patterns were used as to identify the alkaloids. The proposed analytical method was verified in reference to the ICH guidelines and the results showed excellent linearity (R 2  > 0.9988), limit of detection (1 ng/mL to 10 ng/mL), limit of quantification (3 ng/mL to 30 ng/mL), intra-day and inter-day precisions, and extraction recovery rates (92.8% to 104.1%) for all components. The validated UPLC-Q-TOF method was applied to the analysis of extracts from the root, stem, and leaves of C. roseus, allowing the identification of six alkaloids by comparison of retention times, molecular ions, and fragmentation patterns with those of reference compounds. Sixteen additional indole alkaloids were tentatively identified by comparison of chromatograms to chemical databases and literature reports. The contents of bis-indole alkaloids (vincristine and vinblastine) were high in the aerial parts, while the contents of mono-indole alkaloids (ajmalicine, catharanthine, serpentine, and vindoline) were high in the roots. The present results demonstrate that the proposed UPLC-Q-TOF method can be useful for the investigation of phytochemical constituents of medicinal plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. High-energy Collision-induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    PubMed Central

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-01-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote-fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers. PMID:24781458

  5. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates.

    PubMed

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B; Holy, Timothy E; Gross, Michael L

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  6. A method for rapid 3D scanning and replication of large paleontological specimens

    PubMed Central

    Das, Anshuman J.; Murmann, Denise C.; Cohrn, Kenneth; Raskar, Ramesh

    2017-01-01

    We demonstrate a fast and cost-effective technique to perform three dimensional (3D) scanning and replication of large paleontological specimens, in this case the entire skull of a Tyrannosaurus rex (T.rex) with a volume in the range of 2 m3. The technique involves time-of-flight (TOF) depth sensing using the Kinect scanning module commonly used in gesture recognition in gaming. Raw data from the Kinect sensor was captured using open source software and the reconstruction was done rapidly making this a viable method that can be adopted by museums and researchers in paleontology. The current method has the advantage of being low-cost as compared to industrial scanners and photogrammetric methods but also of accurately scanning a substantial volume range which is well suited for large specimens. The depth resolution from the Kinect sensor was measured to be around 0.6 mm which is ideal for scanning large specimens with reasonable structural detail. We demonstrate the efficacy of this method on the skull of FMNH PR 2081, also known as SUE, a near complete T.rex at the Field Museum of Natural History. PMID:28678817

  7. A method for rapid 3D scanning and replication of large paleontological specimens.

    PubMed

    Das, Anshuman J; Murmann, Denise C; Cohrn, Kenneth; Raskar, Ramesh

    2017-01-01

    We demonstrate a fast and cost-effective technique to perform three dimensional (3D) scanning and replication of large paleontological specimens, in this case the entire skull of a Tyrannosaurus rex (T.rex) with a volume in the range of 2 m3. The technique involves time-of-flight (TOF) depth sensing using the Kinect scanning module commonly used in gesture recognition in gaming. Raw data from the Kinect sensor was captured using open source software and the reconstruction was done rapidly making this a viable method that can be adopted by museums and researchers in paleontology. The current method has the advantage of being low-cost as compared to industrial scanners and photogrammetric methods but also of accurately scanning a substantial volume range which is well suited for large specimens. The depth resolution from the Kinect sensor was measured to be around 0.6 mm which is ideal for scanning large specimens with reasonable structural detail. We demonstrate the efficacy of this method on the skull of FMNH PR 2081, also known as SUE, a near complete T.rex at the Field Museum of Natural History.

  8. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    PubMed

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-03-13

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  9. Modeling of the energy resolution of a 1 meter and a 3 meter time of flight positron annihilation induced Auger electron spectrometers

    NASA Astrophysics Data System (ADS)

    Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.

    Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.

  10. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS(2).

    PubMed

    Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2012-01-25

    In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.

  11. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    PubMed

    Chen, Jonathan H K; Ho, Pak-Leung; Kwan, Grace S W; She, Kevin K K; Siu, Gilman K H; Cheng, Vincent C C; Yuen, Kwok-Yung; Yam, Wing-Cheong

    2013-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service.

  12. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.

    PubMed

    Rankin, Keegan; Mabury, Scott A

    2015-05-19

    The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.

  13. Non-contrast enhanced MR venography using 3D fresh blood imaging (FBI): initial experience.

    PubMed

    Yokoyama, K; Nitatori, T; Inaoka, S; Takahara, T; Hachiya, J

    2001-01-01

    This study examined the efficacy of 3D-fresh blood imaging (FBI) in patients with venous disease in the iliac region to lower extremity. Fourteen patients with venous disease were examined [8 deep venous thrombosis (DVT) and 6 varix] by 3D-FBI and 2D-TOF MRA. All FBI images and 2D-TOF images were evaluated in terms of visualization of the disease and compared with conventional X-ray venography (CV). The total scan time of 3D-FBI ranged from 3 min 24 sec to 4 min 52 sec. 3D-FBI was positive in all 23 anatomical levels in which DVT was diagnosed by CV (100% sensitivity) as well as 2D-TOF. The delineation of collateral veins was superior or equal to that of 2D-TOF. 3D-FBI allowed depiction of varices in five of six cases; however, in one case, the evaluation was limited because the separation of arteries from veins was difficult. The 3D-FBI technique, which allows iliac to peripheral MR venography without contrast medium within a short acquisition time, is considered clinically useful.

  14. MALDI-TOF mass spectrometry-based identification of group A Streptococcus isolated from areas of the 2011 scarlet fever outbreak in china.

    PubMed

    Xiao, Di; You, Yuanhai; Bi, Zhenwang; Wang, Haibin; Zhang, Yongchan; Hu, Bin; Song, Yanyan; Zhang, Huifang; Kou, Zengqiang; Yan, Xiaomei; Zhang, Menghan; Jin, Lianmei; Jiang, Xihong; Su, Peng; Bi, Zhenqiang; Luo, Fengji; Zhang, Jianzhong

    2013-03-01

    There was a dramatic increase in scarlet fever cases in China from March to July 2011. Group A Streptococcus (GAS) is the only pathogen known to cause scarlet fever. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) coupled to Biotyper system was used for GAS identification in 2011. A local reference database (LRD) was constructed, evaluated and used to identify GAS isolates. The 75 GAS strains used to evaluate the LRD were all identified correctly. Of the 157 suspected β-hemolytic strains isolated from 298 throat swab samples, 127 (100%) and 120 (94.5%) of the isolates were identified as GAS by the MALDI-TOF MS system and the conventional bacitracin sensitivity test method, respectively. All 202 (100%) isolates were identified at the species level by searching the LRD, while 182 (90.1%) were identified by searching the original reference database (ORD). There were statistically significant differences with a high degree of credibility at species level (χ(2)=6.052, P<0.05 between the LRD and ORD). The test turnaround time was shortened 36-48h, and the cost of each sample is one-tenth of the cost of conventional methods. Establishing a domestic database is the most effective way to improve the identification efficiency using a MALDI-TOF MS system. MALDI-TOF MS is a viable alternative to conventional methods and may aid in the diagnosis and surveillance of GAS. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach.

    PubMed

    Klein, Sabrina; Zimmermann, Stefan; Köhler, Christine; Mischnik, Alexander; Alle, Werner; Bode, Konrad A

    2012-03-01

    Sepsis is a major cause of mortality in hospitalized patients worldwide, with lethality rates ranging from 30 to 70 %. Sepsis is caused by a variety of different pathogens, and rapid diagnosis is of outstanding importance, as early and adequate antimicrobial therapy correlates with positive clinical outcome. In recent years, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) fingerprinting has become a powerful tool in microbiological diagnostics. The direct identification of micro-organisms in a positive blood culture by MALDI-TOF MS can shorten the diagnostic procedure significantly. Therefore, the aim of the present study was to evaluate whether identification rates could be improved by using the new Sepsityper kit from Bruker Daltonics for direct isolation and identification of bacteria from positive blood cultures by MALDI-TOF MS compared with the use of conventional separator gel columns, and to integrate the MALDI-TOF MS-based identification method into the routine course of blood culture diagnostics in the setting of a microbiological laboratory at a university hospital in Germany. The identification of Gram-negative bacteria by MALDI-TOF MS was significantly better using the Sepsityper kit compared with a separator gel tube-based method (99 and 68 % correct identification, respectively). For Gram-positive bacteria, only 73 % were correctly identified by MALDI-TOF with the Sepsityper kit and 59 % with the separator gel tube assay. A major problem of both methods was the poor identification of Gram-positive grape-like clustered cocci. As differentiation of Staphylococcus aureus from coagulase-negative staphylococci is of clinical importance, a PCR was additionally established that was capable of identifying S. aureus directly from positive blood cultures, thus closing this diagnostic gap. Another benefit of the PCR approach is the possibility of directly detecting the genes responsible for meticillin resistance in staphylococci and for vancomycin resistance in enterococci, which is of high importance for early adequate treatment. Both of the described methods were finally integrated into a protocol for fast and effective identification of bacteria from positive blood cultures.

  16. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    PubMed

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. A New Mass Spectrometer for Upper Atmospheric Measurements in the Auroral Region

    NASA Astrophysics Data System (ADS)

    Everett, E. A.; Dyer, J. S.; Watson, M.; Sanderson, W.; Schicker, S.; Work, D.; Mertens, C. J.; Bailey, S. M.; Syrstad, E. A.

    2011-12-01

    We have previously presented a new rocket-borne time-of-flight mass spectrometer (TOF-MS) for measurements in the mesosphere / lower thermosphere (MLT). Traditionally, mass spectrometry in the MLT has been difficult, mainly due to the elevated ambient pressures of the MLT and high speeds of a sounding rocket flight, which affect the direct sampling of the ambient atmosphere and spatial resolution. The TOF-MS is a versatile, inherently adaptable, axial-sampling instrument, capable of operating in a traditional TOF mode or in a multiplexing Hadamard-transform mode where high spatial resolution is desired. To minimize bow shock effects at low altitudes (~70-110km), the ram surface of the TOF-MS can be cryogenically cooled using liquid He to adsorb impinging gas particles. The vacuum pumping system for the TOF-MS is tailored to the specific mission and instrument configuration. Depending on the instrument gas load and operating altitude, cryo, miniature turbo pump or getter-based pumping systems may be employed. Terrestrial TOF-MS instruments often employ a reflectron, essentially an ion-mirror, to improve mass resolving power and compensate for the thermal velocity distribution of particles being measured. The TOF-MS can be arranged in either a simple linear or reflectron configuration. Simulations and modeling are used to compare instrument mass resolution for linear and reflectron configurations for several variable conditions including vehicle velocity and ambient temperature, ultimately demonstrating the potential to make rocket-borne mass spectrometry measurements with unit-mass resolution up to at least 48 amu. Preliminary analyses suggest that many species of interest (including He, CO2, O2, O2+ , N2, N2+, and NO+) can be measured with an uncertainty below 10% relative standard deviation on a sounding rocket flight. We also present experimental data for a laboratory prototype linear TOF-MS. Experimental data is compared to simulation and modeling efforts to validate and confirm instrument performance and capability. Two proposed rocket campaigns for investigations of the auroral region include the TOF-MS. By making accurate composition measurements of the neutral atmosphere from 70 to 120km, Mass Spectrometry of the Turbopause Region (MSTR) aims to improve the accuracy of temperature measurements in the turbopause region, improve the MSIS model atmosphere and examine the transition from the turbulently mixed lower atmosphere to the diffusive equilibrium of the upper atmosphere. The ROCKet-borne STorm Energetics of Auroral Dosing in the E-region (ROCK-STEADE) mission will study energy transfer in the E-region during an aurora by examining auroral emissions and measuring concentrations of neutrals and ions. The instrument suite for ROCK-STEADE includes two mass spectrometers, one each to measure neutrals and ions in the altitude range of 70 - 170km. The ability of the TOF-MS instrument to make accurate measurements will greatly aid in better understanding the MLT.

  18. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  19. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR.

    PubMed

    Díaz-de-Cerio, Elixabet; Aguilera-Saez, Luis Manuel; Gómez-Caravaca, Ana María; Verardo, Vito; Fernández-Gutiérrez, Alberto; Fernández, Ignacio; Arráez-Román, David

    2018-06-01

    Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively. Graphical abstract The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves.

  20. Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-01-01

    Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Even though the total RF power is maintained at the same level than in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitation, with the highest energy for one channel being a factor of 2.4 (1-spoke) and 2.2 (2-spoke) higher than in CP mode. In vivo experiments demonstrate the necessity of including ΔB0 spatial variations during 2-spoke RF pulse design, in particular in areas with strong local susceptibility variations such as the lower frontal lobe. Conclusion Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as in CP mode. These results suggest that expanding parallel transmit methods, including the use of multi-dimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging. PMID:24598439

  1. New measurement of the 242Pu(n,γ) cross section at n_TOF

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Guerrero, C.; Cortés-Giraldo, M. A.; Quesada, J. M.; Mendoza, E.; Cano-Ott, D.; Eberhardt, K.; Junghans, A.

    2016-03-01

    The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects) of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy region.

  2. Robotic Tactile Sensing

    DTIC Science & Technology

    1988-06-08

    develop a working experi- tal system which could demonstrate dexterous manipulation in a robotic assembly task. Th ,pe of work can generally be divided into...D Raviv discukse the development, implementation, and experimental evaluation tof a new method for the reconstruction of 3D images from 2D vision data...Research supervision by K. Loparo A. "Moving Shadows Methods for Inferring Three Dimensional Surfaces," D. Raviv , Ph.D. Thesis B. "Robotic Adaptive

  3. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    PubMed

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Heterologous Expression of Aspergillus niger β-d-Xylosidase (XlnD): Characterization on Lignocellulosic Substrates

    NASA Astrophysics Data System (ADS)

    Selig, Michael J.; Knoshaug, Eric P.; Decker, Stephen R.; Baker, John O.; Himmel, Michael E.; Adney, William S.

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/ TOF) mass spectroscopy of tryptic digests. The T max was determined using differential scanning microcalorimetry (DSC) to be 78.2 °C; the K m and k cat were found to be 255 μM and 13.7 s-1, respectively, using pNP-β-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K i for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.

  5. Heterologous expression of Aspergillus niger beta-D-xylosidase (XlnD): characterization on lignocellulosic substrates.

    PubMed

    Selig, Michael J; Knoshaug, Eric P; Decker, Stephen R; Baker, John O; Himmel, Michael E; Adney, William S

    2008-03-01

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T (max) was determined using differential scanning microcalorimetry (DSC) to be 78.2 degrees C; the K (m) and k (cat) were found to be 255 microM and 13.7 s(-1), respectively, using pNP-beta-D-xylopyranoside as substrate. End-product inhibition by D-xylose was also verified and shown to be competitive; the K (i) for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.

  6. Heterologous Expression of Aspergillus Niger --beta--D-Xylosidase (XInD): Characterization on Lignocellulosic Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selig, M. J.; Knoshaug, E. P.; Decker, S. R.

    2008-01-01

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T{sub max} was determined using differential scanning microcalorimetry (DSC) to be 78.2 C; the K{sub m} and k{sub cat} were found to be 255 {micro}M and 13.7 s{sup -1}, respectively, using {rho}NP-{Beta}-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K{sub i} formore » this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.« less

  7. [Evaluation of mass spectrometry for the identification of clinically interesting yeasts].

    PubMed

    Galán, Fátima; García-Agudo, Lidia; Guerrero, Inmaculada; Marín, Pilar; García-Tapia, Ana; García-Martos, Pedro; Rodríguez-Iglesias, Manuel

    2015-01-01

    Identification of yeasts is based on morphological, biochemical and nutritional characteristics, and using molecular methods. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, a new method for the identification of microorganisms, has demonstrated to be very useful. The aim of this study is to evaluate this new method in the identification of yeasts. A total of 600 strains of yeasts isolated from clinical specimens belonging to 9 genera and 43 species were tested. Identification was made by sequencing of the ITS regions of ribosomal DNA, assimilation of carbon compounds (ID 32C), and mass spectrometry on a Microflex spectrometer (Bruker Daltonics GmbH, Germany). A total of 569 strains (94.8%) were identified to species level by ID 32C, and 580 (96.7%) by MALDI-TOF. Concordance between both methods was observed for 553 strains (92.2%), with 100% in clinically relevant species: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and almost 100% in C. krusei. MALDI-TOF identified species requiring molecular methods: Candida dubliniensis, C. nivariensis, C. metapsilosis and C. orthopsilosis. Some irregularities were observed in the identification of arthroconidia yeast and basidiomycetes. MALDI-TOF is a rapid, effective and economic method, which enables the identification of most clinically important yeasts and the differentiation of closely related species. It would be desirable to include more species in its database to expand its performance. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  8. Fast internal dynamics in alcohol dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in themore » fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.« less

  9. Detection of biomarkers of pathogenic Naegleria fowleri through mass spectrometry and proteomics.

    PubMed

    Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R

    2015-01-01

    Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  10. Recombinant overexpression of camel hepcidin cDNA in Pichia pastoris: purification and characterization of the polyHis-tagged peptide HepcD-His.

    PubMed

    Boumaiza, Mohamed; Chahed, Haifa; Ezzine, Aymen; Jaouan, Maryse; Gianoncelli, Alessandra; Longhi, Giovanna; Carmona, Fernando; Arosio, Paolo; Sari, Marie-Agnès; Marzouki, Mohamed Nejib

    2017-01-01

    Hepcidin, a liver-expressed antimicrobial peptide, has been demonstrated to act as an iron regulatory hormone as well as to exert a wide spectrum of antimicrobial activity. The aim of this work was the expression, as secreted peptide, purification, and characterization of a new recombinant polyHis-tagged camel hepcidin (HepcD-His) in yeast Pichia pastoris. The use of this eukaryotic expression system, for the production of HepcD-His, having 6 histidine residues at its C terminus, was simpler and more efficient compared with the use of the prokaryotic system Escherichia coli. Indeed, a single purification step was required to isolate the soluble hepcidin with purity estimated more that 94% and a yield of 2.8 against 0.2 mg/L for the E coli system. Matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF mass spectrometry of the purified HepcD-His showed 2 major peaks at m/z 4524.64 and 4634.56 corresponding to camel hepcidin with 39 and 40 amino acids. Evaluation of disulfide bond connectivity with the Ellman method showed an absence of free thiol groups, testifying that the 8 cysteine residues in the peptide are displayed, forming 4 disulfide bridges. Circular dichroism spectroscopy showed that camel hepcidin structure was significantly modified at high temperature of 90°C and returns to its original structure when incubation temperature drops back to 20°C. Interestingly, this peptide showed also a greater bactericidal activity, at low concentration of 9.5μM, against E coli, than the synthetic analog DH3. Thus, the production, at a large scale, of the recombinant camel hepcidin, HepcD-His, may be helpful for future therapeutic applications including bacterial infection diseases. Copyright © 2016 John Wiley & Sons, Ltd.

  11. The use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis.

    PubMed

    Karatuna, Onur; Celebi, Bekir; Can, Simge; Akyar, Isin; Kilic, Selcuk

    2016-01-15

    Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institute of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica due to RD1 subspecies-specific PCR result. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories.

  12. The use of matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis

    PubMed Central

    Karatuna, Onur; Çelebi, Bekir; Can, Simge; Akyar, Işın; Kiliç, Selçuk

    2016-01-01

    Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institution of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica according to region of difference 1 (RD1) subspecies-specific PCR results. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories. PMID:26773181

  13. Composition and structure of surfaces by time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongheon

    1997-10-01

    Time-of-flight scattering and recoiling spectrometry (TOF-SARS) was applied to characterize surface structures in order to understand the chemical and physical phenomena on various surfaces. The combination of TOF-SARS, LEED, and classical ion trajectory simulations has allowed characterization of the elemental composition in the outermost atomic layers, surface symmetry, and possible reconstruction or relaxation. The composition and structure of the CdS\\{0001\\}-(1 x 1) and CdS\\{000bar1\\}-(1 x 1) surfaces were investigated. The termination layer of each surface was determined by grazing incidence TOF-SARS. Both (1 x 1) surfaces are bulk-terminated without any reconstruction or relaxation detected by TOF-SARS. Each surface has two domains which are rotated by 60sp° from each other and there exist steps on both surfaces. The CdS\\{0001\\}-(1 x 1) surface is stabilized by O and H covering half a monolayer which are structurally ordered on the surface, while the O and H on the CdS\\{000bar1\\}-(1 x 1) stabilize the surface without ordering. The study of GaN\\{000bar1\\}-(1 x 1) shows the bulk-termination of the surface with no detectable reconstruction or relaxation. The surface is terminated in a N layer with Ga in the 2sp{nd}-layer. H atoms are bound to the outermost N atoms with a coverage of ˜3/4 monolayer and protrude outward from the surface. The surface termination, composition and structure of the Alsb2Osb3 (sapphire) were examined. The surface relaxation was studied quantitatively using classical ion trajectory simulations along with TOF-SARS. The surface undergoes 1sp{st}{-}2sp{nd}-layer relaxation as large as 0.5 A from the bulk value resulting in near coplanarity of Al and O atoms. The reconstruction of the Ni\\{100\\}-(2 x 2)-C surface was studied by TOF-SARS. The surface contained 80% of the (2 x 2)p4g phase and 20% of the unreconstructed (2 x 2) phase. The displacement of Ni atoms was determined by comparing the experimental and simulated results.

  14. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast.

    PubMed

    Dhiman, Neelam; Hall, Leslie; Wohlfiel, Sherri L; Buckwalter, Seanne P; Wengenack, Nancy L

    2011-04-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was compared to phenotypic testing for yeast identification. MALDI-TOF mass spectrometry yielded 96.3% and 84.5% accurate species level identifications (spectral scores, ≥ 1.8) for 138 common and 103 archived strains of yeast. MALDI-TOF mass spectrometry is accurate, rapid (5.1 min of hands-on time/identification), and cost-effective ($0.50/sample) for yeast identification in the clinical laboratory.

  15. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanningmore » transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.« less

  16. The application of Gaussian mixture models for signal quantification in MALDI-TOF mass spectrometry of peptides.

    PubMed

    Spainhour, John Christian G; Janech, Michael G; Schwacke, John H; Velez, Juan Carlos Q; Ramakrishnan, Viswanathan

    2014-01-01

    Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of error.

  17. Avalanche photodiode based time-of-flight mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less

  18. Particle identification with the ALICE Time-Of-Flight detector at the LHC

    NASA Astrophysics Data System (ADS)

    Alici, A.

    2014-12-01

    High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m2, covering the pseudorapidity interval [-0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported.

  19. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    PubMed

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  20. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  1. Quantitation of quinapril in human plasma by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with quinolone matrix additives.

    PubMed

    Lu, Chi-Yu; Liu, Fei-Tsui; Feng, Chia-Hsien

    2011-09-15

    The renin-angiotensin-aldosterone system (RAAS) is an essential body fluid maintenance system that controls pressure in the human body. The conversion of angiotensin I to angiotensin II by angiotensin-converting enzyme (ACE) is a key process in the RAAS because angiotensin II causes the vasoconstriction association with hypertension. Because of its effectiveness as an ACE blocker, quinipril is widely used for clinical treatment of hypertension and chronic congestive heart failure(.) Matrix-assisted laser desorption/ionization coupled with time-of-flight analyzer (MALDI-TOF) is a high throughput instrument for biological sample analysis. This study developed a micro-scale approach for using MALDI-TOF to detect quinapril in biological samples. A micro-liquid-liquid-extraction strategy combined with ion-pair interaction successfully extracted quinapril from aqueous layer to organic layer. Quinolones were then used as matrix additives to suppress undesired substances in plasma produce signals. Several factors affecting extraction efficiency were investigated in a biosample with a volume of only 10 μL. This method is successful to monitor quinapril in the clinical therapeutic range. The proposed method proved effective for monitoring the trace amounts of quinapril typically used for clinical therapy. The relative standard deviation (R.S.D.) and relative error (R.E.) used for evaluating within- and between-day assays of quinapril in plasma consistently remained below 15%. Copyright © 2011. Published by Elsevier B.V.

  2. Detection of methicillin-resistant and methicillin-susceptible Staphylococcus aureus colonization of healthy military personnel by traditional culture, PCR, and mass spectrometry.

    PubMed

    Shaw, Ashley G; Vento, Todd J; Mende, Katrin; Kreft, Rachael E; Ehrlich, Garth D; Wenke, Joseph C; Spirk, Tracy; Landrum, Michael L; Zera, Wendy; Cheatle, Kristelle A; Guymon, Charles; Calvano, Tatjana P; Rini, Elizabeth A; Tully, Charla C; Beckius, Miriam L; Murray, Clinton K

    2013-10-01

    Methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) Staphylococcus aureus colonization is associated with increased rates of infection. Rapid and reliable detection methods are needed to identify colonization of nares and extra-nare sites, particularly given recent reports of oropharynx-only colonization. Detection methods for MRSA/MSSA colonization include culture, PCR, and novel methods such as PCR/electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). We evaluated 101 healthy military members for S. aureus colonization in the nares, oropharynx, axilla, and groin, using CHROMagar S. aureus medium and Xpert SA Nasal Complete PCR for MRSA/MSSA detection. The same subjects were screened in the nares, oropharynx, and groin using PCR/ESI-TOF-MS. By culture, 3 subjects were MRSA-colonized (all oropharynx) and 34 subjects were MSSA-colonized (all 4 sites). PCR detected oropharyngeal MRSA in 2 subjects, which correlated with culture findings. By PCR, 47 subjects were MSSA-colonized (all 4 sites); however, 43 axillary samples were invalid, 39 of which were associated with deodorant/anti-perspirant use (93%, p < 0.01). By PCR/ESI-TOF-MS, 4 subjects were MRSA-colonized, 2 in the nares and 2 in the oropharynx; however, neither of these correlated with positive MRSA cultures. Twenty-eight subjects had MSSA by PCR/ESI-TOF-MS, and 41 were found to have possible MRSA (S. aureus with mecA and coagulase-negative Staphylococcus (CoNS)). The overall 3% MRSA colonization rate is consistent with historical reports, but the oropharynx-only colonization supports more recent findings. In addition, the use of deodorant/anti-perspirant invalidated axillary PCR samples, limiting its utility. Defining MRSA positivity by PCR/ESI-TOF-MS is complicated by co-colonization of S. aureus with CoNS, which can also carry mecA.

  3. YahO protein as a calibrant for top-down proteomic identification of Shiga toxin using MALDI-TOF-TOF-MS/MS and post-source decay

    USDA-ARS?s Scientific Manuscript database

    Matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF-TOF) mass spectrometry is increasingly utilized for rapid top-down proteomic identification of proteins. This identification may involve analysis of either a pure protein or a protein mixture. For analysis of a pure protein...

  4. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    PubMed Central

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  5. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  6. Determination of vitamins D2 and D3 in selected food matrices by online high-performance liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS).

    PubMed

    Nestola, Marco; Thellmann, Andrea

    2015-01-01

    An online normal-phase liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS) method was developed for the determination of vitamins D2 and D3 in selected food matrices. Transfer of the sample from HPLC to GC was realized by large volume on-column injection; detection was performed with a time-of-flight mass spectrometer (TOF-MS). Typical GC problems in the determination of vitamin D such as sample degradation or sensitivity issues, previously reported in the literature, were not observed. Determination of total vitamin D content was done by quantitation of its pyro isomer based on an isotopically labelled internal standard (ISTD). Extracted ion traces of analyte and ISTD showed cross-contribution, but non-linearity of the calibration curve was not determined inside the chosen calibration range by selection of appropriate quantifier ions. Absolute limits of detection (LOD) and quantitation (LOQ) for vitamins D2 and D3 were calculated as approximately 50 and 150 pg, respectively. Repeatability with internal standard correction was below 2 %. Good agreement between quantitative results of an established high-performance liquid chromatography with UV detection (HPLC-UV) method and HPLC-GC-MS was found. Sterol-enriched margarine was subjected to HPLC-GC-MS and HPLC-MS/MS for comparison, because HPLC-UV showed strong matrix interferences. HPLC-GC-MS produced comparable results with less manual sample cleanup. In summary, online hyphenation of HPLC and GC allowed a minimization in manual sample preparation with an increase of sample throughput.

  7. Automated protein identification by the combination of MALDI MS and MS/MS spectra from different instruments.

    PubMed

    Levander, Fredrik; James, Peter

    2005-01-01

    The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.

  8. Erratum: Correction to: The sTOF, a Favorable Geometry for a Time-of-Flight Analyzer

    NASA Astrophysics Data System (ADS)

    Murphy, Daniel M.

    2018-05-01

    In the article "The sTOF, a Favorable Geometry for a Time-of-Flight Analyzer", the electric sectors in the prototype analyzer used to generate the data in Figure 4 were mistakenly listed as having a radius of 165 mm. The correct size is a diameter of 165 mm.

  9. How Constant Momentum Acceleration Decouples Energy and Space Focusing in Distance-of-Flight and Time-of-Flight Mass Spectrometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Elise; Gundlach-Graham, Alexander W.; Enke, Chris

    2013-05-01

    Time-of-flight (TOF) and distance-of-flight (DOF) mass spectrometers require means for focusing ions at the detector(s) because of initial dispersions of position and energy at the time of their acceleration. Time-of-flight mass spectrometers ordinarily employ constant energy acceleration (CEA), which creates a space-focus plane at which the initial spatial dispersion is corrected. In contrast, constant-momentum acceleration (CMA), in conjunction with an ion mirror, provides focus of the initial energy dispersion at the energy focus time for ions of all m/z at their respective positions along the flight path. With CEA, the initial energy dispersion is not simultaneously correctable as its effectmore » on ion velocity is convoluted with that of the spatial dispersion. The initial spatial dispersion with CMA remains unchanged throughout the field-free region of the flight path, so spatial dispersion can be reduced before acceleration. Improved focus is possible when each dispersion can be addressed independently. With minor modification, a TOF mass spectrometer can be operated in CMA mode by treating the TOF detector as though it were a single element in the array of detectors that would be used in a DOF mass spectrometer. Significant improvement in mass resolution is thereby achieved, albeit over a narrow range of m/z values. In this paper, experimental and theoretical results are presented that illustrate the energy-focusing capabilities of both DOF and TOF mass spectrometry.« less

  10. Urea free and more efficient sample preparation method for mass spectrometry based protein identification via combining the formic acid-assisted chemical cleavage and trypsin digestion.

    PubMed

    Wu, Shuaibin; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-10-30

    A formic acid (FA)-assisted sample preparation method was presented for protein identification via mass spectrometry (MS). Detailedly, an aqueous solution containing 2% FA and dithiothreitol was selected to perform protein denaturation, aspartic acid (D) sites cleavage and disulfide linkages reduction simultaneously at 108°C for 2h. Subsequently, FA wiped off via vacuum concentration. Finally, iodoacetamide (IAA) alkylation and trypsin digestion could be performed ordinally. A series of model proteins (BSA, β-lactoglobulin and apo-Transferrin) were treated respectively using such method, followed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The identified peptide number was increased by ∼ 80% in comparison with the conventional urea-assisted sample preparation method. Moreover, BSA identification was achieved efficiently down to femtomole (25 ± 0 sequence coverage and 16 ± 1 peptides) via such method. In contrast, there were not peptides identified confidently via the urea-assisted method before desalination via the C18 zip tip. The absence of urea in this sample preparation method was an advantage for the more favorable digestion and MALDI-TOF MS analysis. The performances of two methods for the real sample (rat liver proteome) were also compared, followed by a nanoflow reversed-phase liquid chromatography with electrospray ionization tandem mass spectrometry system analysis. As a result, 1335 ± 43 peptides were identified confidently (false discovery rate <1%) via FA-assisted method, corresponding to 295 ± 12 proteins (of top match=1 and requiring 2 unique peptides at least). In contrast, there were only 1107 ± 16 peptides (corresponding to 231 ± 10 proteins) obtained from the conventional urea-assisted method. It was serving as a more efficient protein sample preparation method for researching specific proteomes better, and providing assistance to develop other proteomics analysis methods, such as, peptide quantitative analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. DIGE Analysis Software and Protein Identification Approaches.

    PubMed

    Hmmier, Abduladim; Dowling, Paul

    2018-01-01

    DIGE is a high-resolution two-dimensional gel electrophoresis method, with excellent dynamic range obtained by fluorescent tag labeling of protein samples. Scanned images of DIGE gels show thousands of protein spots, each spot representing a single or a group of protein isoforms. By using commercially available software, each protein spot is defined by an outline, which is digitized and correlated with the quantity of proteins present in each spot. Software packages include DeCyder, SameSpots, and Dymension 3. In addition, proteins of interest can be excised from post-stained gels and identified with conventional mass spectrometry techniques. High-throughput mass spectrometry is performed using sophisticated instrumentation including matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), MALDI-TOF/TOF, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Tandem MS (MALDI-TOF/TOF or LC-MS/MS), analyzes fragmented peptides, resulting in amino acid sequence information, especially useful when protein spots are low abundant or where a mixture of proteins is present.

  12. Preliminary Application of WCX Magnetic Bead-Based Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Analyzing the Urine of Renal Clear Cell Carcinoma.

    PubMed

    Dong, De-Xin; Ji, Zhi-Gang; Li, Han-Zhong; Yan, Wei-Gang; Zhang, Yu-Shi

    2017-12-30

    Objective To evaluate the application of weak cation exchange (WCX) magnetic bead-based Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in detecting differentially expressed proteins in the urine of renal clear cell carcinoma (RCCC) and its value in the early diagnosis of RCCC.Methods Eleven newly diagnosed patients (10 males and 1 female, aged 46-78, mean 63 years) of renal clear cell carcinoma by biopsy and 10 healthy volunteers (all males, aged 25-32, mean 29.7 years) were enrolled in this study. Urine samples of the RCCC patients and healthy controls were collected in the morning. Weak cation exchange (WCX) bead-based MALDI-TOF MS technique was applied in detecting differential protein peaks in the urine of RCCC. ClinProTools2.2 software was utilized to determine the characteristic proteins in the urine of RCCC patients for the predictive model of RCCC. Results The technique identified 160 protein peaks in the urine that were different between RCCC patients and health controls; and among them, there was one peak (molecular weight of 2221.71 Da) with statistical significance (P=0.0304). With genetic algorithms and the support vector machine, we screened out 13 characteristic protein peaks for the predictive model. Conclusions The application of WCX magnetic bead-based MALDI-TOF MS in detecting differentially expressed proteins in urine may have potential value for the early diagnosis of RCCC.

  13. Characterizing ICF Neutron Diagnostics on the nTOF line at SUNY Geneseo

    NASA Astrophysics Data System (ADS)

    Simone, Angela; Padalino, Stephen; Turner, Ethan; Ginnane, Mary Kate; Dubois, Natalie; Fletcher, Kurtis; Giordano, Michael; Lawson-Keister, Patrick; Harrison, Hannah; Visca, Hannah; Sangster, Craig; Regan, Sean

    2014-10-01

    Charged particle beams from the Geneseo 1.7 MV tandem Pelletron accelerator produce nuclear reactions that emit neutrons in the range of 0.5 to 17.9 MeV via the d(d,n)3He and 11B(d,n)12C reactions. The neutron energy and flux can be adjusted by controlling the accelerator beam current and potential. This adjustable neutron source makes it possible to calibrate ICF and HEDP neutron scintillator diagnostics. However, gamma rays which are often present during an accelerator-based calibration are difficult to differentiate from neutron signals in scintillators. To identify neutrons from gamma rays and to determine their energy, a permanent neutron time-of-flight (nTOF) line is being constructed. By detecting the scintillator signal in coincidence with an associated charged particle (ACP) produced in the reaction, the identity of the neutron can be known and its energy determined by time of flight. Using a 100% efficient surface barrier detector to count the ACPs, the absolute efficiency of the scintillator as a function of neutron energy can be determined. This is done by determining the ratio of the ACP counts in the singles spectrum to coincidence counts for matched solid angles of the SBD and scintillator. Funded in part by a LLE contract through the DOE.

  14. Use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for bacterial monitoring in routine analysis at a drinking water treatment plant.

    PubMed

    Sala-Comorera, Laura; Vilaró, Carles; Galofré, Belén; Blanch, Anicet R; García-Aljaro, Cristina

    2016-10-01

    The study of bacterial communities throughout a drinking water treatment plant could provide a basic understanding of the effects of water processing that could then be used to improve the management of such plants. However, it is necessary to develop new analytical techniques that are sufficiently efficient, robust and fast for their effective and useful application in routine analysis. The aim of this study is therefore to assess the performance of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), as compared to the PhenePlate™ system, for routine analysis in a drinking water treatment plant. To this end we studied a total of 277 colonies isolated in different seasons and from different points throughout the water treatment process, including: raw water, sand filtration, ultrafiltration, reverse osmosis and chlorination. The colonies were analysed using MALDI-TOF MS by direct deposition of the cells on the plate. The colonies were also biochemically fingerprinted using the PhenePlate™ system, clustered according to their similarity and a representative strain was selected for 16S rRNA gene sequencing and API ® gallery-based identification. The use of MALDI-TOF MS was reliable compared to the PhenePlate™ system and has the advantage of being faster and relatively cheap. Bacteria typing by MALDI-TOF MS is therefore a promising method to replace conventional routine phenotypic methods for the identification of bacteria in drinking water laboratories, thanks to its robustness. The major limiting factor for MALDI-TOF MS is the lack of a suitable mass spectra database; although each laboratory can develop its own library. This methodology will provide a tracking tool for companies to use in risk management and the detection of possible failures in both the water treatment processes and the distribution network, as well as offering characterization of the intrinsic microbial populations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper™ and time of flight mass spectrometry.

    PubMed

    Kok, Jen; Thomas, Lee C; Olma, Thomas; Chen, Sharon C A; Iredell, Jonathan R

    2011-01-01

    Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper™ Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer's specified bacterial identification criteria (spectral scores ≥1.700-1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification) were obtained in 128/507 (25.2%) positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001). Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.

  16. TITAN's multiple-reflection time-of-flight isobar separator

    NASA Astrophysics Data System (ADS)

    Reiter, Moritz Pascal; Titan Collaboration

    2016-09-01

    At the ISAC facility located at TRIUMF exotic nuclei are produced by the ISOL method. Exotic nuclei are separated by a magnetic separator and transported to TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). TITAN is a system of multiple ion traps for high precision mass measurements and in-trap decay spectroscopy. Although ISAC can deliver some of the highest yields for even many of the most exotic species many measurements suffer from a strong isobaric background. This background often prevents the high precision measurement of the species of interest. To overcome this limitation an additional isobar separator based on the Multiple-Reflection Time-Of-Flight Mass Spectrometry (MR-TOF-MS) technique has been developed for TITAN. Mass selection is achieved using dynamic re-trapping of the species of interest after a time-of-flight analysis in an electrostatic isochronous reflector system. Additionally the MR-TOF-MS will, on its own, enable mass measurements of very short-lived nuclides that are weakly produced. Being able to measure all isobars of a given mass number at the same time the MR-TOF-MS can be used for beam diagnostics or determination of beam compositions. Results from the offline commissioning showing mass resolving power and separation power will be presented.

  17. Time of flight MR angiography assessment casts doubt on the association between transient global amnesia and intracranial jugular venous reflux.

    PubMed

    Kang, Yeonah; Kim, Eunhee; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu; Bae, Yun Jung; Lee, Kyung Mi; Lee, Dong Hoon

    2015-03-01

    Evidence of intracranial venous reflux flow due to jugular venous reflux (JVR) on time of flight (TOF) MR angiography (MRA) is thought to be highly associated with transient global amnesia (TGA)-evidence that supports the venous congestion theory of TGA pathophysiology. However, recent studies indicate that intracranial JVR on TOF MRA is occasionally observed in normal elderly. Therefore, the purpose of this study was to compare the prevalence of intracranial JVR on TOF MRA in patients with TGA and two control groups. Three age- and sex-matched groups of subjects that received MRI and MRA were enrolled. The groups comprised 167 patients with TGA, 167 visitors to the emergency room (ER) and 167 visitors to a health promotion centre (HPC). Intracranial JVR was defined as abnormal venous signals in the inferior petrosal, sigmoid and/or transverse sinuses on TOF MRA. The prevalence of intracranial JVR was assessed across the three groups. Intracranial JVR was seen in seven (4.2 %) TGA patients, eight (4.8 %) ER visitors and three (1.8 %) HPC visitors, respectively. No statistically significant differences were observed among the three groups. TGA patients showed a low prevalence of intracranial JVR on TOF MRA, and no statistical differences were found in comparison with control groups.

  18. Quantification and application of a liquid chromatography-tandem mass spectrometric method for the determination of WKYMVm peptide in rat using solid-phase extraction.

    PubMed

    Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G

    2018-03-01

    A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2  + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Identification of Candida species isolated from vulvovaginitis using matrix assisted laser desorption ionization-time of flight mass spectrometry

    PubMed Central

    Alizadeh, Majid; Kolecka, Anna; Boekhout, Teun; Zarrinfar, Hossein; Ghanbari Nahzag, Mohamad. A; Badiee, Parisa; Rezaei-Matehkolaei, Ali; Fata, Abdolmajid; Dolatabadi, Somayeh; Najafzadeh, Mohammad. J

    2017-01-01

    Background and Purpose: Vulvovaginal candidiasis (VVC) is a common problem in women. The purpose of this study was to identify Candida isolates by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from women with vulvovaginitis that were referred to Ghaem Hospital, Mashhad, Iran. Materials and Methods: This study was conducted on 65 clinical samples isolated from women that were referred to Ghaem Hospital. All specimens were identified using phenotyping techniques, such as microscopy and culture on Sabouraud dextrose agar and corn meal agar. In addition, all isolates were processed for MALDI-TOF MS identification. Results: Out of the 65 analyzed isolates, 61 (94%) samples were recognized by MALDI-TOF MS. However, the remaining four isolates (6%) had no reliable identification. According to the results, C. albicans (58.5%) was the most frequently isolated species, followed by C. tropicalis (16.9%), C. glabrata (7.7%), C. parapsilosis (7.7%), and guilliermondii (3.1%). Conclusion: As the findings indicated, MALDI TOF MS was successful in the identification of clinical Candida species. C. albicans was identified as the most common Candida species isolated from the women with VVC. Moreover, C. tropicalis was the most common species among the non-albicans Candida species. PMID:29707675

  20. Dynamic of negative ions in potassium-D-ribose collisions.

    PubMed

    Almeida, D; Ferreira da Silva, F; García, G; Limão-Vieira, P

    2013-09-21

    We present negative ion formation from collisions of neutral potassium atoms with D-ribose (C5H10O5), the sugar unit in the DNA/RNA molecule. From the negative ion time-of-flight (TOF) mass spectra, OH(-) is the main fragment detected in the collision range 50-100 eV accounting on average for 50% of the total anion yield. Prominence is also given to the rich fragmentation pattern observed with special attention to O(-) (16 m/z) formation. These results are in sharp contrast to dissociative electron attachment experiments. The TOF mass spectra assignments show that these channels are also observed, albeit with a much lower relative intensity. Branching ratios of the most abundant fragment anions as a function of the collision energy are obtained, allowing to establish a rationale on the collision dynamics.

  1. Study on the application of shear-wave elastography to thin-layered media and tubular structure: Finite-element analysis and experiment verification

    NASA Astrophysics Data System (ADS)

    Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).

  2. Conventional Morphology Versus PCR Sequencing, rep-PCR, and MALDI-TOF-MS for Identification of Clinical Aspergillus Isolates Collected Over a 2-Year Period in a University Hospital at Kayseri, Turkey.

    PubMed

    Atalay, Altay; Koc, Ayse Nedret; Suel, Ahmet; Sav, Hafize; Demir, Gonca; Elmali, Ferhan; Cakir, Nuri; Seyedmousavi, Seyedmojtaba

    2016-09-01

    Aspergillus species cause a wide range of diseases in humans, including allergies, localized infections, or fatal disseminated diseases. Rapid detection and identification of Aspergillus spp. facilitate effective patient management. In the current study we compared conventional morphological methods with PCR sequencing, rep-PCR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the identification of Aspergillus strains. A total of 24 consecutive clinical isolates of Aspergillus were collected during 2012-2014. Conventional morphology and rep-PCR were performed in our Mycology Laboratory. The identification, evaluation, and reporting of strains using MALDI-TOF-MS were performed by BioMérieux Diagnostic, Inc. in Istanbul. DNA sequence analysis of the clinical isolates was performed by the BMLabosis laboratory in Ankara. Samples consisted of 18 (75%) lower respiratory tract specimens, 3 otomycosis (12.5%) ear tissues, 1 sample from keratitis, and 1 sample from a cutaneous wound. According to DNA sequence analysis, 12 (50%) specimens were identified as A. fumigatus, 8 (33.3%) as A. flavus, 3 (12.5%) as A. niger, and 1 (4.2%) as A. terreus. Statistically, there was good agreement between the conventional morphology and rep-PCR and MALDI-TOF methods; kappa values were κ = 0.869, 0.871, and 0.916, respectively (P < 0.001). The good level of agreement between the methods included in the present study and sequence method could be due to the identification of Aspergillus strains that were commonly encountered. Therefore, it was concluded that studies conducted with a higher number of isolates, which include other Aspergillus strains, are required. © 2016 Wiley Periodicals, Inc.

  3. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry.

    PubMed

    Paauw, Armand; Jonker, Debby; Roeselers, Guus; Heng, Jonathan M E; Mars-Groenendijk, Roos H; Trip, Hein; Molhoek, E Margo; Jansen, Hugo-Jan; van der Plas, Jan; de Jong, Ad L; Majchrzykiewicz-Koehorst, Joanna A; Speksnijder, Arjen G C L

    2015-01-01

    E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Cosensitized Porphyrin System for High-Performance Solar Cells with TOF-SIMS Analysis.

    PubMed

    Wu, Wenjun; Xiang, Huaide; Fan, Wei; Wang, Jinglin; Wang, Haifeng; Hua, Xin; Wang, Zhaohui; Long, Yitao; Tian, He; Zhu, Wei-Hong

    2017-05-17

    To date, development of organic sensitizers has been predominately focused on light harvesting, highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels, and the electron transferring process. In contrast, their adsorption mode as well as the dynamic loading behavior onto nanoporous TiO 2 is rarely considered. Herein, we have employed the time-of-flight secondary ion mass spectrometry (TOF-SIMS) to gain insight into the competitive dye adsorption mode and kinetics in the cosensitized porphyrin system. Using novel porphyrin dye FW-1 and D-A-π-A featured dye WS-5, the different bond-breaking mode in TOF-SIMS and dynamic dye-loading amount during the coadsorption process are well-compared with two different anchoring groups, such as benzoic acid and cyanoacrylic acid. With the bombardment mode in TOF-SIMS spectra, we have speculated that the cyano group grafts onto nanoporous TiO 2 as tridentate binding for the common anchoring unit of cyanoacrylic acid and confirmed it through extensive first-principles density functional theory calculation by anchoring either the carboxyl or cyano group, which shows that the cyano group can efficiently participate in the adsorption of the WS-5 molecule onto the TiO 2 nanocrystal. The grafting reinforcement interaction between the cyano group and TiO 2 in WS-5 can well-explain the rapid adsorption characteristics. A strong coordinate bond between the lone pair of electrons on the nitrogen or oxygen atom and the Lewis acid sites of TiO 2 can increase electron injection efficiencies with respect to those from the bond between the benzoic acid group and the Brønsted acid sites of the TiO 2 surface. Upon optimization of the coadsorption process with dye WS-5, the photoelectric conversion efficiency based on porphyrin dye FW-1 is increased from 6.14 to 9.72%. The study on the adsorption dynamics of organic sensitizers with TOF-SIMS analysis might provide a new venue for improvement of cosensitized solar cells.

  5. Evaluation of Three MALDI-TOF Mass Spectrometry Libraries for the Identification of Filamentous Fungi in Three Clinical Microbiology Laboratories in Manitoba, Canada.

    PubMed

    Stein, Markus; Tran, Vanessa; Nichol, Kimberly A; Lagacé-Wiens, Philippe; Pieroni, Peter; Adam, Heather J; Turenne, Christine; Walkty, Andrew J; Normand, Anne-Cécile; Hendrickx, Marijke; Piarroux, Renaud; Karlowsky, James A

    2018-06-12

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is commonly used by clinical microbiology laboratories to identify bacterial pathogens and yeasts, but not for the identification of moulds. Recent progress in extraction protocols and the composition of comparative libraries support potential application of MALDI-TOF MS for mould identification in clinical microbiology laboratories. We evaluated the performance of the Bruker Microflex ™ MALDI-TOF MS instrument (Billerica, MA, USA) to identify clinical isolates and reference strains of moulds using three libraries, the Bruker mould library, the National Institutes of Health (NIH) library, and the Mass Spectrometry Identification (MSI) online library, and compared those results to conventional (morphological) and molecular (18S/ITS; gold standard) identification methods. All three libraries demonstrated greater accuracy in genus identification (≥94.9%) than conventional methods (86.4%). MALDI-TOF MS identified 73.3% of isolates to species-level compared to only 31.7% by conventional methods. The MSI library demonstrated the highest rate of species-level identification (72.0%) compared to NIH (19.5%) and Bruker (13.6%) libraries. Greater than 20% of moulds remained unidentified to species-level by all three MALDI-TOF MS libraries primarily because of library limitations or imperfect spectra. The overall identification rate of each MALDI-TOF MS library depended on the number of species and the number of spectra representing each species in the library. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Performance advantages of maximum likelihood methods in PRBS-modulated time-of-flight electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu

    This thesis describes the design, experimental performance, and theoretical simulation of a novel time-of-flight analyzer that was integrated into a high resolution electron energy loss spectrometer (TOF-HREELS). First we examined the use of an interleaved comb chopper for chopping a continuous electron beam. Both static and dynamic behaviors were simulated theoretically and measured experimentally, with very good agreement. The finite penetration of the field beyond the plane of the chopper leads to non-ideal chopper response, which is characterized in terms of an "energy corruption" effect and a lead or lag in the time at which the beam responds to the chopper potential. Second we considered the recovery of spectra from pseudo-random binary sequence (PRBS) modulated TOF-HREELS data. The effects of the Poisson noise distribution and the non-ideal behavior of the "interleaved comb" chopper were simulated. We showed, for the first time, that maximum likelihood methods can be combined with PRBS modulation to achieve resolution enhancement, while properly accounting for the Poisson noise distribution and artifacts introduced by the chopper. Our results indicate that meV resolution, similar to that of modern high resolution electron energy loss spectrometers, can be achieved with a dramatic performance advantage over conventional, serial detection analyzers. To demonstrate the capabilities of the TOF-HREELS instrument, we made measurements on a highly oriented thin film polytetrafluoroethylene (PTFE) sample. We demonstrated that the TOF-HREELS can achieve a throughput advantage of a factor of 85 compared to the conventional HREELS instrument. Comparisons were made between the experimental results and theoretical simulations. We discuss various factors which affect inversion of PRBS modulated Time of Flight (TOF) data with the Lucy algorithm. Using simulations, we conclude that the convolution assumption was good under the conditions of our experiment. The chopper rise time, Poisson noise, and artifacts of the chopper response are evaluated. Finally, we conclude that the maximum likelihood algorithms are able to gain a multiplex advantage in PRBS modulation, despite the Poisson noise in the detector.

  7. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi.

    PubMed

    McMullen, Allison R; Wallace, Meghan A; Pincus, David H; Wilkey, Kathy; Burnham, C A

    2016-08-01

    Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may lack resolution. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for identification of bacteria and yeasts, but a paucity of data exists on the performance characteristics of this method for identification of filamentous fungi. The objective of our study was to evaluate the accuracy of the Vitek MS for mold identification. A total of 319 mold isolates representing 43 genera recovered from clinical specimens were evaluated. Of these isolates, 213 (66.8%) were correctly identified using the Vitek MS Knowledge Base, version 3.0 database. When a modified SARAMIS (Spectral Archive and Microbial Identification System) database was used to augment the version 3.0 Knowledge Base, 245 (76.8%) isolates were correctly identified. Unidentified isolates were subcultured for repeat testing; 71/319 (22.3%) remained unidentified. Of the unidentified isolates, 69 were not in the database. Only 3 (0.9%) isolates were misidentified by MALDI-TOF MS (including Aspergillus amoenus [n = 2] and Aspergillus calidoustus [n = 1]) although 10 (3.1%) of the original phenotypic identifications were not correct. In addition, this methodology was able to accurately identify 133/144 (93.6%) Aspergillus sp. isolates to the species level. MALDI-TOF MS has the potential to expedite mold identification, and misidentifications are rare. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. A rapid diagnostic workflow for cefotaxime-resistant Escherichia coli and Klebsiella pneumoniae detection from blood cultures by MALDI-TOF mass spectrometry.

    PubMed

    De Carolis, Elena; Paoletti, Silvia; Nagel, Domenico; Vella, Antonietta; Mello, Enrica; Palucci, Ivana; De Angelis, Giulia; D'Inzeo, Tiziana; Sanguinetti, Maurizio; Posteraro, Brunella; Spanu, Teresa

    2017-01-01

    Nowadays, the global spread of resistance to oxyimino-cephalosporins in Enterobacteriaceae implies the need for novel diagnostics that can rapidly target resistant organisms from these bacterial species. In this study, we developed and evaluated a Direct Mass Spectrometry assay for Beta-Lactamase (D-MSBL) that allows direct identification of (oxyimino)cephalosporin-resistant Escherichia coli or Klebsiella pneumoniae from positive blood cultures (BCs), by using the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technology. The D-MSBL assay was performed on 93 E. coli or K. pneumoniae growing BC samples that were shortly co-incubated with cefotaxime (CTX) as the indicator cephalosporin. Susceptibility and resistance defining peaks from the samples' mass spectra were analyzed by a novel algorithm for bacterial organism classification. The D-MSBL assay allowed discrimination between E. coli and K. pneumoniae that were resistant or susceptible to CTX with a sensitivity of 86.8% and a specificity of 98.2%. The proposed algorithm-based D-MSBL assay, if integrated in the routine laboratory diagnostic workflow, may be useful to enhance the establishment of appropriate antibiotic therapy and to control the threat of oxyimino-cephalosporin resistance in hospital.

  9. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs.

  10. Identification and Characterization of Cell Wall Proteins of a Toxic Dinoflagellate Alexandrium catenella Using 2-D DIGE and MALDI TOF-TOF Mass Spectrometry

    PubMed Central

    Wang, Da-Zhi; Dong, Hong-Po; Li, Cheng; Xie, Zhang-Xian; Lin, Lin; Hong, Hua-Sheng

    2011-01-01

    The cell wall is an important subcellular component of dinoflagellate cells with regard to various aspects of cell surface-associated ecophysiology, but the full range of cell wall proteins (CWPs) and their functions remain to be elucidated. This study identified and characterized CWPs of a toxic dinoflagellate, Alexandrium catenella, using a combination of 2D fluorescence difference gel electrophoresis (DIGE) and MALDI TOF-TOF mass spectrometry approaches. Using sequential extraction and temperature shock methods, sequentially extracted CWPs and protoplast proteins, respectively, were separated from A. catenella. From the comparison between sequentially extracted CWPs labeled with Cy3 and protoplast proteins labeled with Cy5, 120 CWPs were confidently identified in the 2D DIGE gel. These proteins gave positive identification of protein orthologues in the protein database using de novo sequence analysis and homology-based search. The majority of the prominent CWPs identified were hypothetical or putative proteins with unknown function or no annotation, while cell wall modification enzymes, cell wall structural proteins, transporter/binding proteins, and signaling and defense proteins were tentatively identified in agreement with the expected role of the extracellular matrix in cell physiology. This work represents the first attempt to investigate dinoflagellate CWPs and provides a potential tool for future comprehensive characterization of dinoflagellate CWPs and elucidation of their physiological functions. PMID:21904561

  11. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by amore » factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.« less

  12. Harmful Algae Records in Venice Lagoon and in Po River Delta (Northern Adriatic Sea, Italy)

    PubMed Central

    Bilaničovà, Dagmar; Marcomini, Antonio

    2014-01-01

    A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide “updated reference conditions” for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance. PMID:24683360

  13. Harmful algae records in Venice lagoon and in Po River Delta (northern Adriatic Sea, Italy).

    PubMed

    Facca, Chiara; Bilaničovà, Dagmar; Pojana, Giulio; Sfriso, Adriano; Marcomini, Antonio

    2014-01-01

    A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide "updated reference conditions" for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance.

  14. Rapid analysis of N-linked oligosaccharides in glycoproteins (ovalbumin, ribonuclease B and fetuin) by reversed-phase ultra-performance liquid chromatography with fluorescence detection and electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Kurihara, Takamasa; Min, Jun Zhe; Hirata, Asuka; Toyo'oka, Toshimasa; Inagaki, Shinsuke

    2009-05-01

    Rapid, selective and sensitive determination of N-linked oligosaccharides in glycoproteins (ovalbumin, ribonuclease B and fetuin) was performed by ultra-performance liquid chromatography (UPLC) with fluorescence (FL) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The asparaginyl-oligosaccharide moiety was first liberated from each glycoprotein by pronase E (a proteolitic enzyme). The oligosaccharide fractions separated by gel-permeation chromatography were labeled with 1-pyrenesulfonyl chloride (PSC, a fluorescence reagent), separated by UPLC in a short run time, and then detected by FL and TOF-MS. The PSC-labeled oligosaccharides were selectively identified from the FL detection and then sensitively determined by ESI-TOF-MS. As the results, 15, eight and four kinds of N-linked oligosaccharides were detected from ovalbumin, ribonuclease B and fetuin, respectively. Because the present method is rapid (within 9 min), selective and sensitive (approximate 60 fmol, S/N = 5), the determination of N-linked oligosaccharides in various glycoproteins seems to be possible.

  15. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Khot, Prasanna D; Fisher, Mark A

    2013-11-01

    Shigella species are so closely related to Escherichia coli that routine matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) cannot reliably differentiate them. Biochemical and serological methods are typically used to distinguish these species; however, "inactive" isolates of E. coli are biochemically very similar to Shigella species and thus pose a greater diagnostic challenge. We used ClinProTools (Bruker Daltonics) software to discover MALDI-TOF MS biomarker peaks and to generate classification models based on the genetic algorithm to differentiate between Shigella species and E. coli. Sixty-six Shigella spp. and 72 E. coli isolates were used to generate and test classification models, and the optimal models contained 15 biomarker peaks for genus-level classification and 12 peaks for species-level classification. We were able to identify 90% of E. coli and Shigella clinical isolates correctly to the species level. Only 3% of tested isolates were misidentified. This novel MALDI-TOF MS approach allows laboratories to streamline the identification of E. coli and Shigella species.

  16. Static Time-of-Flight Secondary Ion Mass Spectrometry (SIMS) | Materials

    Science.gov Websites

    -Flight Secondary Ion Mass Spectrometry (SIMS) Image of high mass resolution and mass accuracy provided by TOF SIMS We used the high mass resolution and mass accuracy of TOF SIMS to study surface cleanliness acidic wash resulted in contamination by Fe and other metals. Without high mass accuracy, the CaO signal

  17. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging.

    PubMed

    Bai, Hangrui; Wang, Shujuan; Liu, Jianjun; Gao, Dan; Jiang, Yuyang; Liu, Hongxia; Cai, Zongwei

    2016-07-15

    The root of Panax ginseng C.A. Mey. (P. ginseng) is one of the most popular traditional Chinese medicines, with ginsenosides as its main bioactive components. Because different ginsenosides have varied pharmacological effects, extraction and separation of ginsenosides are usually required for the investigation of pharmacological effects of different ginsenosides. However, the contents of ginsenosides vary with the ages and tissues of P. ginseng root. In this research, an efficient method to explore the distribution of ginsenosides and differentiate P. ginseng roots with different ages was developed based on matrix assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI). After a simple sample preparation, there were 18 peaks corresponding to 31 ginsenosides with distinct localization in the mass range of m/z 700-1400 identified by MALDI-TOF-MSI and MALDI-TOF-MS/MS. All the three types of ginsenosides were successfully detected and visualized in images, which could be correlated with anatomical features. The P. ginseng at the ages of 2, 4 and 6 could be differentiated finely through the principal component analysis of data collected from the cork based on the ion images but not data from the whole tissue. The experimental result implies that the established method for the direct analysis of metabolites in plant tissues has high potential for the rapid identification of metabolites and analysis of their localizations in medicinal herbs. Furthermore, this technique also provides valuable information for the component-specific extraction and pharmacological research of herbs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats

    PubMed Central

    Ma, Bo; Zhang, Qi; Wang, Guang-ji; A, Ji-ye; Wu, Di; Liu, Ying; Cao, Bei; Liu, Lin-sheng; Hu, Ying-ying; Wang, Yong-lu; Zheng, Ya-ya

    2011-01-01

    Aim: To explore the alteration of endogenous metabolites and identify potential biomarkers using metabolomic profiling with gas chromatography coupled a time-of-flight mass analyzer (GC/TOF-MS) in a rat model of estrogen-deficiency-induced obesity. Methods: Twelve female Sprague-Dawley rats six month of age were either sham-operated or ovariectomized (OVX). Rat blood was collected, and serum was analyzed for biomarkers using standard colorimetric methods with commercial assay kits and a metabolomic approach with GC/TOF-MS. The data were analyzed using multivariate statistical techniques. Results: A high body weight and body mass index inversely correlated with serum estradiol (E2) in the OVX rats compared to the sham rats. Estrogen deficiency also significantly increased serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Utilizing GC/TOF-MS-based metabolomic analysis and the partial least-squares discriminant analysis, the OVX samples were discriminated from the shams. Elevated levels of cholesterol, glycerol, glucose, arachidonic acid, glutamic acid, glycine, and cystine and reduced alanine levels were observed. Serum glucose metabolism, energy metabolism, lipid metabolism, and amino acid metabolism were involved in estrogen-deficiency-induced obesity in OVX rats. Conclusion: The series of potential biomarkers identified in the present study provided fingerprints of rat metabolomic changes during obesity and an overview of multiple metabolic pathways during the progression of obesity involving glucose metabolism, lipid metabolism, and amino acid metabolism. PMID:21293480

  19. Identification of Medically Relevant Species of Arthroconidial Yeasts by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories. PMID:23678074

  20. Biotransformation and metabolic profile of caudatin-2,6-dideoxy-3-O-methy-β-d-cymaropyranoside with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhang, Wei; Peng, Yun-ru; Ding, Yong-fang

    2015-11-01

    In our previous studies, caudatin-2,6-dideoxy-3-O-methy-β-d- cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technique combined with Metabolynx(TM) software was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC-Q-TOF-MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C{sub 2}H{sub 4}) and D4-Ethylene (C{sub 2}D{sub 4}) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abplanalp, Matthew J.; Kaiser, Ralf I., E-mail: ra

    The processing of the hydrocarbon ice, ethylene (C{sub 2}H{sub 4}/C{sub 2}D{sub 4}), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH{sub 4} (CD{submore » 4})], acetylene [C{sub 2}H{sub 2} (C{sub 2}D{sub 2})], the ethyl radical [C{sub 2}H{sub 5} (C{sub 2}D{sub 5})], ethane [C{sub 2}H{sub 6} (C{sub 2}D{sub 6})], 1-butene [C{sub 4}H{sub 8} (C{sub 4}D{sub 8})], and n -butane [C{sub 4}H{sub 10} (C{sub 4}D{sub 10})]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C{sub n}H{sub 2n+2} (n = 4–10), C{sub n}H{sub 2n} ( n = 2–12, 14, 16), C{sub n}H{sub 2n−2} ( n = 3–12, 14, 16), C{sub n}H{sub 2n−4} (n = 4–12, 14, 16), C{sub n}H{sub 2n−6} (n = 4–10, 12), C{sub n}H{sub 2n−8} ( n = 6–10), and C{sub n}H{sub 2n−10} ( n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C{sub 3}H{sub 4}) or 1, 3-butadiene (C{sub 4}H{sub 6}) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.« less

  2. Tree crown structural characterization: A study using terrestrial laser scanning and three-dimensional radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Moorthy, Inian

    Spectroscopic observational data for vegetated environments, have been coupled with 3D physically-based radiative transfer models for retrievals of biochemical and biophysical indicators of vegetation health and condition. With the recent introduction of Terrestrial Laser Scanning (TLS) units, there now exists a means of rapidly measuring intricate structural details of vegetation canopies, which can also serve as input into 3D radiative transfer models. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns in laboratory, and field-based experiments. The ILRIS-3D uses the Time-Of-Flight (TOF) principle to measure the distances of objects based on the time interval between laser pulse exitance and return, upon reflection from an object. At the laboratory-level, this exploratory study demonstrated and validated innovative approaches for retrieving crown-level estimates of Leaf Area Index (LAI) (r2 = 0.98, rmse = 0.26m2/m2), a critical biophysical parameter for vegetation monitoring and modeling. These methods were implemented and expanded in field experiments conducted in olive (Olea europaea L.) orchards in Cordoba, Spain, where ILRIS-3D observations for 24 structurally-variable trees were made. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21m), crown width (r 2 = 0.98, rmse = 0.12m), crown height (r2 = 0.81, rmse = 0.11m), crown volume (r2 = 0.99, rmse = 2.6m3), and LAI (r2 = 0.76, rmse = 0.27m2/ m2). These parameters were subsequently used as direct inputs into the Forest LIGHT (FLIGHT) 3D ray tracing model for characterization of the spectral behavior of the olive crowns. Comparisons between FLIGHT-simulated spectra and measured data showed small differences in the visible (< 3%) and near infrared (< 10%) spectral ranges. These differences between model simulations and measurements were significantly correlated to TLS-derived tree crown complexity metrics. The specific implications of internal crown complexity on estimating leaf chlorophyll concentration, a pertinent physiological health indicator, is highlighted. This research demonstrates that TLS systems can potentially be the new observational tool and benchmark for precise characterization of vegetation architecture for synergy with 3D radiative transfer models for improved operational management of agricultural crops.

  3. Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix assisted laser desorption ionization time-of- flight mass spectrometry.

    PubMed

    Jakovljev, Aleksandra; Bergh, Kåre

    2015-11-06

    Bloodstream infections represent serious conditions carrying a high mortality and morbidity rate. Rapid identification of microorganisms and prompt institution of adequate antimicrobial therapy is of utmost importance for a successful outcome. Aiming at the development of a rapid, simplified and efficient protocol, we developed and compared two in-house preparatory methods for the direct identification of bacteria from positive blood culture flasks (BD BACTEC FX system) by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS). Both methods employed saponin and distilled water for erythrocyte lysis. In method A the cellular pellet was overlaid with formic acid on the MALDI TOF target plate for protein extraction, whereas in method B the pellet was exposed to formic acid followed by acetonitrile prior to placing on the target plate. Best results were obtained by method A. Direct identification was achieved for 81.9 % and 65.8 % (50.3 % and 26.2 % with scores >2.0) of organisms by method A and method B, respectively. Overall concordance with final identification was 100 % to genus and 97.9 % to species level. By applying a lower cut-off score value, the levels of identification obtained by method A and method B increased to 89.3 % and 77.8 % of organisms (81.9 % and 65.8 % identified with scores >1.7), respectively. Using the lowered score criteria, concordance with final results was obtained for 99.3 % of genus and 96.6 % of species identifications. The reliability of results, rapid performance (approximately 25 min) and applicability of in-house method A have contributed to implementation of this robust and cost-effective method in our laboratory.

  4. Analysis of small biomolecules and xenobiotic metabolism using converted graphene-like monolayer plates and laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kang, Hyunook; Yun, Hoyeol; Lee, Sang Wook; Yeo, Woon-Seok

    2017-06-01

    We report a method of small molecule analysis using a converted graphene-like monolayer (CGM) plate and laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) without organic matrices. The CGM plate was prepared from self-assembled monolayers of biphenyl-4-thiol on gold using electron beam irradiation followed by an annealing step. The above plate was utilized for the LDI-TOF MS analyses of various small molecules and their mixtures, e.g., amino acids, sugars, fatty acids, oligoethylene glycols, and flavonoids. The CGM plate afforded high signal-to-noise ratios, good limits of detection (1pmol to 10fmol), and reusability for up to 30 cycles. As a practical application, the enzymatic activity of the cytochrome P450 2A6 (CYP2A6) enzyme in human liver microsomes was assessed in the 7-hydroxylation of coumarin using the CGM plate without other purification steps. We believe that the prepared CGM plate can be practically used with the advantages of simplicity, sensitivity, and reusability for the matrix-free analysis of small biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Quantification of Tumor Vessels in Glioblastoma Patients Using Time-of-Flight Angiography at 7 Tesla: A Feasibility Study

    PubMed Central

    Radbruch, Alexander; Eidel, Oliver; Wiestler, Benedikt; Paech, Daniel; Burth, Sina; Kickingereder, Philipp; Nowosielski, Martha; Bäumer, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Ladd, Mark; Nagel, Armin Michael; Heiland, Sabine

    2014-01-01

    Purpose To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering. Materials and Methods Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. Results Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (p<0.035)) and number of branches (3.5±1.8 vs. 1.0±0.6 (p<0.001) per cubic centimeter were significantly higher, while mean vessel branch length was significantly lower (3.8±1.5 mm vs 7.2±2.8 mm (p<0.001)) in the tumor. Discussion ToF angiography at 7-Tesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies. PMID:25415327

  6. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions.

    PubMed

    Wang, Hong-Ping; Zhang, You-Bo; Yang, Xiu-Wei; Yang, Xin-Bao; Xu, Wei; Xu, Feng; Cai, Shao-Qing; Wang, Ying-Ping; Xu, Yong-Hua; Zhang, Lian-Xue

    2016-05-09

    Ginseng, Panax ginseng C. A. Meyer, is an industrial crop in China and Korea. The functional components in ginseng roots and rhizomes are characteristic ginsenosides. This work developed a new high-performance liquid chromatography coupled with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC-ESI-IT-TOF-MS(n)) method to identify the triterpenoids. Sixty compounds (1-60) including 58 triterpenoids were identified from the ginseng cultivated in China. Substances 1, 2, 7, 15-20, 35, 39, 45-47, 49, 55-57, 59, and 60 were identified for the first time. To evaluate the quality of ginseng cultivated in Northeast China, this paper developed a practical liquid chromatography-diode array detection (LC-DAD) method to simultaneously quantify 14 interesting ginsenosides in ginseng collected from 66 different producing areas for the first time. The results showed the quality of ginseng roots and rhizomes from different sources was different due to growing environment, cultivation technology, and so on. The developed LC-ESI-IT-TOF-MS(n) method can be used to identify many more ginsenosides and the LC-DAD method can be used not only to assess the quality of ginseng, but also to optimize the cultivation conditions for the production of ginsenosides.

  7. High-energy and low-energy collision-induced dissociation of protonated flavonoids generated by MALDI and by electrospray ionization

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Li, Hongxia; Belgacem, Omar; Papanastasiou, Dimitris

    2007-04-01

    Product ion mass spectra of a series of nine protonated flavonoids have been observed by electrospray ionization combined with quadrupole/time-of-flight (ESI QTOF), and matrix-assisted laser desorption ionization combined either with quadrupole ion trap (MALDI QIT) tandem mass spectrometry or time-of-flight tandem mass spectrometry (MALDI TOF ReTOF). The compounds examined are 3,6-, 3,2'-, and 3,3'-dihydoxyflavone, apigenin (5,7,4'-trihydroxyflavone), luteolin (5,7,3',4'-tetrahydroxyflavone), apigenin-7-O-glucoside, hesperidin (5,7,3'-trihydroxy-4'-methoxyflavanone), daidzen (7,4'-dihydroxyisoflavone), and rutin (quercitin-3-O-rutinoside) where quercitin is 3,5,7,3',4'-pentahydroxyflavone; sodiated rutin was examined also. The center-of-mass energies in ESI QTOF and MALDI QIT are similar (1-4 eV) and their product ion mass spectra are virtually identical. In the MALDI TOF ReTOF instrument, center-of-mass energies range from 126-309 eV for sodiated rutin to protonated dihydroxyflavones, respectively. Due to the high center-of-mass energies available with the MALDI TOF ReTOF instrument, some useful structural information may be obtained; however, with increasing precursor mass/charge ratio, product ion mass spectra become simplified so as to be of limited structural value. Electronic excitation of the protonated (and sodiated) species examined here offers an explanation for the very simple product ion mass spectra observed particularly for glycosylated flavonoids.

  8. Proteome reference map and regulation network of neonatal rat cardiomyocyte

    PubMed Central

    Li, Zi-jian; Liu, Ning; Han, Qi-de; Zhang, You-yi

    2011-01-01

    Aim: To study and establish a proteome reference map and regulation network of neonatal rat cardiomyocyte. Methods: Cultured cardiomyocytes of neonatal rats were used. All proteins expressed in the cardiomyocytes were separated and identified by two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Biological networks and pathways of the neonatal rat cardiomyocytes were analyzed using the Ingenuity Pathway Analysis (IPA) program (www.ingenuity.com). A 2-DE database was made accessible on-line by Make2ddb package on a web server. Results: More than 1000 proteins were separated on 2D gels, and 148 proteins were identified. The identified proteins were used for the construction of an extensible markup language-based database. Biological networks and pathways were constructed to analyze the functions associate with cardiomyocyte proteins in the database. The 2-DE database of rat cardiomyocyte proteins can be accessed at http://2d.bjmu.edu.cn. Conclusion: A proteome reference map and regulation network of the neonatal rat cardiomyocytes have been established, which may serve as an international platform for storage, analysis and visualization of cardiomyocyte proteomic data. PMID:21841810

  9. Registration of partially overlapping surfaces for range image based augmented reality on mobile devices

    NASA Astrophysics Data System (ADS)

    Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.

    2012-02-01

    Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.

  10. Direct Detection and Identification of Bacterial Pathogens from Urine with Optimized Specimen Processing and Enhanced Testing Algorithm

    PubMed Central

    Huang, Bin; Zhang, Lei; Zhang, Weizheng; Liao, Kang; Zhang, Shihong; Zhang, Zhiquan; Ma, Xingyan; Chen, Jialong; Zhang, Xiuhong; Qu, Pinghua; Wu, Shangwei

    2017-01-01

    ABSTRACT Rapid and accurate detection and identification of microbial pathogens causing urinary tract infections allow prompt and specific treatment. We optimized specimen processing to maximize the limit of detection (LOD) by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and evaluated the capacity of combination of MALDI-TOF MS and urine analysis (UA) for direct detection and identification of bacterial pathogens from urine samples. The optimal volumes of processed urine, formic acid/acetonitrile, and supernatant spotted onto the target plate were 15 ml, 3 μl, and 3 μl, respectively, yielding a LOD of 1.0 × 105 CFU/ml. Among a total of 1,167 urine specimens collected from three hospital centers, 612 (52.4%) and 351 (30.1%) were, respectively, positive by UA and urine culture. Compared with a reference method comprised of urine culture and 16S rRNA gene sequencing, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MALDI-TOF MS alone and MALDI-TOF MS coupled with UA were 86.6% versus 93.4% (χ2 = 8.93; P < 0.01), 91.5% versus 96.3% (χ2 = 7.06; P < 0.01), 81.5% versus 96.4% (χ2 = 37.32; P < 0.01), and 94.1% versus 93.1% (χ2 = 0.40; P > 0.05), respectively. No significant performance differences were revealed among the three sites, while specificity and NPV of MALDI-TOF MS for males were significantly higher than those for females (specificity, 94.3% versus 77.3%, χ2 = 44.90, P < 0.01; NPV, 95.5% versus 86.1%, χ2 = 18.85, P < 0.01). Our results indicated that the optimization of specimen processing significantly enhanced analytical sensitivity and that the combination of UA and MALDI-TOF MS provided an accurate and rapid detection and identification of bacterial pathogens directly from urine. PMID:28249997

  11. Direct Detection and Identification of Bacterial Pathogens from Urine with Optimized Specimen Processing and Enhanced Testing Algorithm.

    PubMed

    Huang, Bin; Zhang, Lei; Zhang, Weizheng; Liao, Kang; Zhang, Shihong; Zhang, Zhiquan; Ma, Xingyan; Chen, Jialong; Zhang, Xiuhong; Qu, Pinghua; Wu, Shangwei; Chen, Cha; Tang, Yi-Wei

    2017-05-01

    Rapid and accurate detection and identification of microbial pathogens causing urinary tract infections allow prompt and specific treatment. We optimized specimen processing to maximize the limit of detection (LOD) by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and evaluated the capacity of combination of MALDI-TOF MS and urine analysis (UA) for direct detection and identification of bacterial pathogens from urine samples. The optimal volumes of processed urine, formic acid/acetonitrile, and supernatant spotted onto the target plate were 15 ml, 3 μl, and 3 μl, respectively, yielding a LOD of 1.0 × 10 5 CFU/ml. Among a total of 1,167 urine specimens collected from three hospital centers, 612 (52.4%) and 351 (30.1%) were, respectively, positive by UA and urine culture. Compared with a reference method comprised of urine culture and 16S rRNA gene sequencing, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MALDI-TOF MS alone and MALDI-TOF MS coupled with UA were 86.6% versus 93.4% (χ 2 = 8.93; P < 0.01), 91.5% versus 96.3% (χ 2 = 7.06; P < 0.01), 81.5% versus 96.4% (χ 2 = 37.32; P < 0.01), and 94.1% versus 93.1% (χ 2 = 0.40; P > 0.05), respectively. No significant performance differences were revealed among the three sites, while specificity and NPV of MALDI-TOF MS for males were significantly higher than those for females (specificity, 94.3% versus 77.3%, χ 2 = 44.90, P < 0.01; NPV, 95.5% versus 86.1%, χ 2 = 18.85, P < 0.01). Our results indicated that the optimization of specimen processing significantly enhanced analytical sensitivity and that the combination of UA and MALDI-TOF MS provided an accurate and rapid detection and identification of bacterial pathogens directly from urine. Copyright © 2017 American Society for Microbiology.

  12. Neutron capture studies with a short flight path

    NASA Astrophysics Data System (ADS)

    Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René

    The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.

  13. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    PubMed Central

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-01-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834

  14. Using cell membrane chromatography and HPLC-TOF/MS method for in vivo study of active components from roots of Aconitum carmichaeli

    PubMed Central

    Cao, Yan; Chen, Xiao-Fei; Lü, Di-Ya; Dong, Xin; Zhang, Guo-Qing; Chai, Yi-Feng

    2012-01-01

    An offline two-dimensional system combining a rat cardiac muscle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high Performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis ofthe analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc.) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the System suggest that the CMC can be applied to in vivo study. PMID:29403691

  15. MALDI-TOF MS Distinctly Differentiates Nontypable Haemophilus influenzae from Haemophilus haemolyticus

    PubMed Central

    Zhang, Huifang; Zhang, Yongchan; Gao, Yuan; Xu, Li; Lv, Jing; Wang, Yingtong; Zhang, Jianzhong; Shao, Zhujun

    2013-01-01

    Nontypable Haemophilus influenzae (NTHi) and Haemophilus haemolyticus exhibit different pathogenicities, but to date, there remains no definitive and reliable strategy for differentiating these strains. In this study, we evaluated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a potential method for differentiating NTHi and H. haemolyticus. The phylogenetic analysis of concatenated 16S rRNA and recombinase A (recA) gene sequences, outer membrane protein P6 gene sequencing and single-gene PCR were used as reference methods. The original reference database (ORD, provided with the Biotyper software) and new reference database (NRD, extended with Chinese strains) were compared for the evaluation of MALDI-TOF MS. Through a search of the ORD, 76.9% of the NTHi (40/52) and none of the H. haemolyticus (0/20) strains were identified at the species level. However, all NTHi and H. haemolyticus strains used for identification were accurately recognized at the species level when searching the NRD. From the dendrogram clustering of the main spectra projections, the Chinese and foreign H. influenzae reference strains were categorized into two distinct groups, and H. influenzae and H. haemolyticus were also separated into two categories. Compared to the existing methods, MALDI-TOF MS has the advantage of integrating high throughput, accuracy and speed. In conclusion, MALDI-TOF MS is an excellent method for differentiating NTHi and H. haemolyticus. This method can be recommended for use in appropriately equipped laboratories. PMID:23457514

  16. High Throughput Detection of Tetracycline Residues in Milk Using Graphene or Graphene Oxide as MALDI-TOF MS Matrix

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    In this work, a new pre-analysis method for tetracyclines (TCs) detection from the milk samples was established. As a good accomplishment for the existing accurate quantification strategies for TCs detection, the new pre-analysis method was demonstrated to be simple, sensitive, fast, cost effective, and high throughput, which would do a great favor to the routine quality pre-analysis of TCs from milk samples. Graphene or graphene oxide was utilized, for the first time, as a duel-platform to enrich and detect the TCs by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). All together, four TCs were chosen as models: tetracycline, oxytetracycline, demeclocycline, and chlortetracycline. Due to the excellent electronic, thermal, and mechanical properties, graphene and graphene oxide were successfully applied as matrices for MALDI-TOF MS with free background inference in low mass range. Meanwhile, graphene or graphene oxide has a large surface area and strong interaction force with the analytes. By taking the advantage of these features, TCs were effectively enriched with the limit of detection (LOD) as low as 2 nM.

  17. Time-resolved imaging of contrast kinetics does not improve performance of follow-up MRA of embolized intracranial aneurysms.

    PubMed

    Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-07-01

    The use of contrast media and the time-resolved imaging of contrast kinetics (TRICKS) technique have some theoretical advantages over time-of-flight magnetic resonance angiography (TOF-MRA) in the follow-up of intracranial aneurysms after endovascular treatment. We prospectively compared the diagnostic performance of TRICKS and TOF-MRA with digital subtracted angiography (DSA) in the assessment of occlusion of embolized aneurysms. Seventy-two consecutive patients with 72 aneurysms were examined 3 months after embolization. Test characteristics of TOF-MRA and TRICKS were calculated for the detection of residual flow. The results of quantification of flow were compared with weighted kappa. Intraobserver and interobserver reproducibility was determined. The sensitivity of TOF-MRA was 85% (95% CI, 65-96%) and of TRICKS, 89% (95% CI, 70-97%). The specificity of both methods was 91% (95% CI, 79-98%). The accuracy of the flow quantification ranged from 0.76 (TOF-MRA) to 0.83 (TRICKS). There was no significant difference between the methods in the area under the ROC curve regarding both the detection and the quantification of flow. Intraobserver reproducibility was very good with both techniques (kappa, 0.86-0.89). The interobserver reproducibility was moderate for TOF-MRA and very good for TRICKS (kappa, 0.74-0.80). In this study, TOF-MRA and TRICKS presented similar diagnostic performance; therefore, the use of time-resolved contrast-enhanced MRA is not justified in the follow-up of embolized aneurysms.

  18. Comparative analysis of Campylobacter isolates from wild birds and chickens using MALDI-TOF MS, biochemical testing, and DNA sequencing.

    PubMed

    Lawton, Samantha J; Weis, Allison M; Byrne, Barbara A; Fritz, Heather; Taff, Conor C; Townsend, Andrea K; Weimer, Bart C; Mete, Aslı; Wheeler, Sarah; Boyce, Walter M

    2018-05-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared to conventional biochemical testing methods and nucleic acid analyses (16S rDNA sequencing, hippurate hydrolysis gene testing, whole genome sequencing [WGS]) for species identification of Campylobacter isolates obtained from chickens ( Gallus gallus domesticus, n = 8), American crows ( Corvus brachyrhynchos, n = 17), a mallard duck ( Anas platyrhynchos, n = 1), and a western scrub-jay ( Aphelocoma californica, n = 1). The test results for all 27 isolates were in 100% agreement between MALDI-TOF MS, the combined results of 16S rDNA sequencing, and the hippurate hydrolysis gene PCR ( p = 0.0027, kappa = 1). Likewise, the identifications derived from WGS from a subset of 14 isolates were in 100% agreement with the MALDI-TOF MS identification. In contrast, biochemical testing misclassified 5 isolates of C. jejuni as C. coli, and 16S rDNA sequencing alone was not able to differentiate between C. coli and C. jejuni for 11 sequences ( p = 0.1573, kappa = 0.0857) when compared to MALDI-TOF MS and WGS. No agreement was observed between MALDI-TOF MS dendrograms and the phylogenetic relationships revealed by rDNA sequencing or WGS. Our results confirm that MALDI-TOF MS is a fast and reliable method for identifying Campylobacter isolates to the species level from wild birds and chickens, but not for elucidating phylogenetic relationships among Campylobacter isolates.

  19. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  20. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI-TOF MS and Polygenetic Analysis.

    PubMed

    Sun, Li-Wei; Jiang, Wen-Jing; Sato, Hiroaki; Kawachi, Masanobu; Lu, Xi-Wu

    2016-01-01

    Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI-TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI-TOF MS.

Top