Sample records for flight center task

  1. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  2. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  3. An experimental evaluation of the Sternberg task as a workload metric for helicopter Flight Handling Qualities (FHQ) research

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C.

    1984-01-01

    The objective was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopters engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  4. The Sternberg Task as a Workload Metric in Flight Handling Qualities Research

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C.

    1984-01-01

    The objective of this research was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopers engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to a workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  5. User and Task Analysis of the Flight Surgeon Console at the Mission Control Center of the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy A.; Shek, Molly

    2003-01-01

    Astronauts in a space station are to some extent like patients in an intensive care unit (ICU). Medical support of a mission crew will require acquisition, transmission, distribution, integration, and archiving of significant amounts of data. These data are acquired by disparate systems and will require timely, reliable, and secure distribution to different communities for the execution of various tasks of space missions. The goal of the Comprehensive Medical Information System (CMIS) Project at Johnson Space Center Flight Medical Clinic is to integrate data from all Medical Operations sources, including the reference information sources and the electronic medical records of astronauts. A first step toward the full CMIS implementation is to integrate and organize the reference information sources and the electronic medical record with the Flight Surgeons console. In order to investigate this integration, we need to understand the usability problems of the Flight Surgeon's console in particular and medical information systems in general. One way to achieve this understanding is through the use of user and task analyses whose general purpose is to ensure that only the necessary and sufficient task features that match users capacities will be included in system implementations. The goal of this summer project was to conduct user and task analyses employing cognitive engineering techniques to analyze the task of the Flight Surgeons and Biomedical Engineers (BMEs) while they worked on Console. The techniques employed were user interviews, observations and a questionnaire to collect data for which a hierarchical task analysis and an information resource assessment were performed. They are described in more detail below. Finally, based on our analyses, we make recommendations for improvements to the support structure.

  6. KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  7. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  8. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  9. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  10. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  11. Learner-Centered Instruction (LCI): Volume IV, The Simulated Maintenance Task Environment (SMTE): A Job Specific Simulator.

    ERIC Educational Resources Information Center

    Rifkin, Kenneth I.; And Others

    The purpose of the simulated maintenance task environment is to provide a means for training and job performance testing of the flight line weapon control systems mechanic/technician for the F-111A aircraft. It provides practice in flight line equipment checkout, troubleshooting, and removal and replacement of line replaceable units in the…

  12. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  13. Flight Director works out problem during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Flight Director Robert E. Castle Jr. works out a problem during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  14. Environmental modeling of trans-arctic and re-routed flights.

    DOT National Transportation Integrated Search

    2010-02-01

    Recent work by researchers at Stanford University showed potentially large impacts on Arctic temperature increases due to aircraft over-flights. The FAAs Office of Environment and Energy tasked the Volpe Center, the MITRE Corporation, and Stanford...

  15. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  16. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  17. KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  18. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  19. International Space Station ECLSS Technical Task Agreement Summary Report

    NASA Technical Reports Server (NTRS)

    Minton-Summers, S.; Ray, C. D.

    1996-01-01

    A summary of work accomplished under Technical Task Agreement by the Marshall Space Flight Center (MSFC) documents activities regarding the Environmental Control and Life Support Systems (ECLSS) of the International Space Station (ISS) program. These MSFC activities were in-line to the designing, the development, the testing, and the flight of ECLSS equipment. MSFC's unique capabilities for performing integrated system testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs are the basis for the Technical Task Agreement activities. Tasks were completed in the Water Recovery Systems, Air Revitalization Systems, and microbiology areas. The results of each task is described in this summary report.

  20. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA have undertaken the systematic validation of a ground-based piloted simulator for the UH-60A helicopter. The results of previous handling quality and task performance flight tests for this helicopter have been used as a data base for evaluating the fidelity of the present simulation, which is being conducted at the NASA Ames Research Center's Vertical Motion Simulator. Such nap-of-the-earth piloting tasks as pop-up, hover turn, dash/quick stop, sidestep, dolphin, and slalom, have been investigated. It is noted that pilot simulator performance is significantly and quantifiable degraded by comparison with flight test results for the same tasks.

  1. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From left (in flight suits) are Mission Specialists Stephen Robinson and Andy Thomas, Commander Eileen Collins and, at right, Mission Specialist Soichi Noguchi, who is with the Japan Aerospace Exploration Agency, JAXA. Accompanying them is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From left (in flight suits) are Mission Specialists Stephen Robinson and Andy Thomas, Commander Eileen Collins and, at right, Mission Specialist Soichi Noguchi, who is with the Japan Aerospace Exploration Agency, JAXA. Accompanying them is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  2. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-14

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Crawford, Winifred C.; Watson, Leela R.; Shafer, Jaclyn

    2014-01-01

    Ms. Crawford completed the final report for the dual-Doppler wind field task. Dr. Bauman completed transitioning the 915-MHz and 50-MHz Doppler Radar Wind Profiler (DRWP) splicing algorithm developed at Marshall Space Flight Center (MSFC) into the AMU Upper Winds Tool. Dr. Watson completed work to assimilate data into model configurations for Wallops Flight Facility (WFF) and Kennedy Space Center/Cape Canaveral Air Force Station (KSC/CCAFS). Ms. Shafer began evaluating the a local high-resolution model she had set up previously for its ability to forecast weather elements that affect launches at KSC/CCAFS. Dr. Watson began a task to optimize the data-assimilated model she just developed to run in real time.

  3. A study of flight control requirements for advanced, winged, earth-to-orbit vehicles with far-aft center-of-gravity locations

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.

    1982-01-01

    Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.

  4. KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.

  5. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  6. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  7. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  8. TRISTAR 1: Evaluation methods for testing head-up display (HUD) flight symbology

    NASA Technical Reports Server (NTRS)

    Newman, R. L.; Haworth, L. A.; Kessler, G. K.; Eksuzian, D. J.; Ercoline, W. R.; Evans, R. H.; Hughes, T. C.; Weinstein, L. F.

    1995-01-01

    The first in a series of piloted head-up display (HUD) flight symbology studies (TRISTAR) measuring pilot task performance was conducted at the NASA Ames Research Center by the Tri-Service Flight Symbology Working Group (FSWG). Sponsored by the U.S. Army Aeroflightdynamics Directorate, this study served as a focal point for the FSWG to examine HUD test methodology and flight symbology presentations. HUD climb-dive marker dynamics and climb-dive ladder presentations were examined as pilots performed air-to-air (A/A), air-to-ground (A/G), instrument landing system (ILS), and unusual attitude (UA) recover tasks. Symbolic presentations resembled pitch ladder variations used by the U.S. Air Force (USAF), U.S. Navy (USN), and Royal Air Force (RAF). The study was initiated by the FSWG to address HUD flight symbology deficiencies, standardization, issue identification, and test methodologies. It provided the mechanism by which the USAF, USN, RAF, and USA could integrate organizational ideas and reduce differences for comparisons. Specifically it examined flight symbology issues collectively identified by each organization and the use of objective and subjective text methodology and flight tasking proposed by the FSWG.

  9. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  10. BOY SCOUTS - SPACE TASK GROUP - ASTRONAUT SHEPARD

    NASA Image and Video Library

    1961-06-19

    S61-02455 (19 June 1961) --- Astronaut Alan B. Shepard Jr. met and talked with Boy Scouts from Franklin, Virginia on June 19, 1961. They are photographed in front of the NASA Space Task Group building at Langley Space Flight Center. Photo credit: NASA or National Aeronautics and Space Administration

  11. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  12. Marshall Space Flight Center's Education Department

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Marshall Space Flight Center's Education Department is a resource for Educator, Students and Lifelong Learners. This paper will highlight the Marshall Space Flight Center's Education Department with references to other NASA Education Departments nationwide. The principal focus will be on the responsibilities of the Pre-college Education Team which is responsible for supporting K- 12 teachers highlighting how many of the NASA Pre-college Offices engage teachers and their students in better understanding NASA's inspiring missions, unique facilities, and specialized workforce to carryout these many agency-wide tasks, goals and objectives. Attendee's will learn about the Marshall Educational Alliance Teams, as well, which is responsible for using NASA's unique assets to support all types of learning. All experience and knowledge levels, all grades K-12, and teachers in these specified groupings will gain a true appreciation of what is available for them, through Marshall Space Flight Center's Education Department. An agency-wide blue directory booklet will be distributed to all attendees, for future references and related points of contact.

  13. Range Commanders Council Meteorology Group 88th Meeting: NASA Marshall Space Flight Center Task Report, 2004

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    2004-01-01

    Supported Return-to-Flight activities by providing surface climate data from Kennedy Space Center used primarily for ice and dew formation studies, and upper air wind analysis primarily used for ascent loads analyses. The MSFC Environments Group's Terrestrial and Planetary Environments Team documented Space Shuttle day-of-launch support activities by publishing a document in support of SSP Return-to-Flight activities entitled "Space Shuttle Program Flight Operations Support". The team also formalized the Shuttle Natural Environments Technical Panel and chaired the first special session of the SSP Natural Environments Panel meeting at KSC, November 4-7,2003.58 participants from NASA, DOD and other government agencies from across the country attended the meeting.

  14. Space Station

    NASA Image and Video Library

    1991-01-01

    In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.

  15. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  16. KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-06

    KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  17. Lunar Atmosphere and Dust Environment Explorer Integration and Test

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; McCormick, John L.

    2010-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA collaborative flight project to explore the lunar exosphere. It is being developed through a unique partnership between NASA's Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). Each center brings its own experience and flight systems heritage to the task of integrating and testing the LADEE subsystems, instruments, and spacecraft. As an "in-house" flight project being implemented at low-cost and moderate risk, LADEE relies on single-string subsystems and protoflight hardware to accomplish its mission. Integration and test (l&T) of the LADEE spacecraft with the instruments will be performed at GSFC, and includes assembly, integration, functional testing, and flight qualification and acceptance testing. Due to the nature of the LADEE mission, l&T requirements include strict contamination control measures and instrument calibration procedures. Environmental testing will include electromagnetic compatibility (EMC), vibro-acoustic testing, and thermal-balance/vacuum. Upon successful completion of spacecraft l&T, LADEE will be launched from NASA's Wallops Flight Facility. Launch of the LADEE spacecraft is currently scheduled for December 2012.

  18. TASAR Certification and Operational Approval Requirements - Analyses and Results

    NASA Technical Reports Server (NTRS)

    Koczo, Stefan, Jr.

    2015-01-01

    This report documents the results of research and development work performed by Rockwell Collins in addressing the Task 1 objectives under NASA Contract NNL12AA11C. Under this contract Rockwell Collins provided analytical support to the NASA Langley Research Center (LaRC) in NASA's development of a Traffic Aware Strategic Aircrew Requests (TASAR) flight deck Electronic Flight Bag (EFB) application for technology transition into operational use. The two primary objectives of this contract were for Rockwell Collins and the University of Iowa OPL to 1) perform an implementation assessment of TASAR toward early certification and operational approval of TASAR as an EFB application (Task 1 of this contract), and 2) design, develop and conduct two Human-in-the-Loop (HITL) simulation experiments that evaluate TASAR and the associated Traffic Aware Planner (TAP) software application to determine the situational awareness and workload impacts of TASAR in the flight deck, while also assessing the level of comprehension, usefulness, and usability of the features of TAP (Task 2 of this contract). This report represents the Task 1 summary report. The Task 2 summary report is provided in [0].

  19. DRACO Flowpath Performance and Environments

    NASA Technical Reports Server (NTRS)

    Komar, D. R.; McDonald, Jon

    1999-01-01

    The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.

  20. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  1. JSC2001E21574

    NASA Image and Video Library

    2001-07-01

    JSC2001-E-21574 (16 July 2001) --- ISS Orbit 1 flight director Sally Davis and Derek Hassman monitor International Space Station (ISS) issues at their consoles in the blue flight control room (BFCR) in Houston's Mission Control Center (MCC). At the time this photo was taken, the STS-104 and Expedition Two crews had joined efforts to perform a number of station-related tasks.

  2. Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.

    1982-01-01

    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks.

  3. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  4. Development of Multi-Disciplinary Finite Element Method Analysis Courses at California State University, Los Angeles

    NASA Technical Reports Server (NTRS)

    McKinney, John; Wu, Chivey

    1998-01-01

    The NASA Dryden Flight Research Center (DFRC) Partnership Awards Grant to California State University, Los Angeles (CSULA) has two primary goals that help to achieve NASA objectives. The overall objectives of the NASA Partnership Awards are to create opportunities for joint University NASA/Government sponsored research and related activities. One of the goals of the grant is to have university faculty researchers participate and contribute to the development of NASA technology that supports NASA goals for research and development (R&D) in Aeronautics and Astronautics. The other goal is technology transfer in the other direction, where NASA developed technology is made available to the general public and more specifically, targeted to industries that can profit from utilization of government developed technology. This years NASA Dryden Partnership Awards grant to CSULA entitled, "Computer Simulation of Multi-Disciplinary Engineering Systems", has two major tasks that satisfy overall NASA objectives. The first task conducts basic and applied research that contributes to technology development at the Dryden Flight Research Center. The second part of the grant provides for dissemination of NASA developed technology, by using the teaching environment created in the CSULA classroom. The second task and how this is accomplished is the topic of this paper. The NASA STARS (Structural Analysis Routines) computer simulation program is used at the Dryden center to support flight testing of high-performance experimental aircraft and to conduct research and development of new and advanced Aerospace technology.

  5. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  6. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 4

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.

  7. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  8. Development of a Space Station Operations Management System

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  9. Development of a Space Station Operations Management System

    NASA Astrophysics Data System (ADS)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  10. NASA Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation that was a review of NASA projects that support airline operations. It covered NASA tasks that have provided new tools to the airline operations center and flight deck including the Flight Awareness Collaboration Tool, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. This material is very similar to other previously approved presentations with the same title.

  11. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As a result of the recommendations from President Nixon's Space Task Group, Marshall Space Flight Center engineers studied various ways to enhance commonality and integration in the American space program. This artist's concept from 1969 shows a possible spacecraft configuration for a marned Mars mission. In this mode, two planetary vehicles, each powered by a Nuclear Shuttle, are joined together during the flight and rotated to provide artificial gravity for crew members.

  12. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  13. Spacecraft control center automation using the generic inferential executor (GENIE)

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  14. Skylab

    NASA Image and Video Library

    1972-01-01

    This chart details Skylab's Time and Motion experiment (M151), a medical study to measure performance differences between tasks undertaken on Earth and the same tasks performed by Skylab crew members in orbit. Data collected from this experiment evaluated crew members' zero-gravity behavior for designs and work programs for future space exploration. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  15. EVA console personnel during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  16. Microgravity

    NASA Image and Video Library

    1999-05-26

    Looking for a faster computer? How about an optical computer that processes data streams simultaneously and works with the speed of light? In space, NASA researchers have formed optical thin-film. By turning these thin-films into very fast optical computer components, scientists could improve computer tasks, such as pattern recognition. Dr. Hossin Abdeldayem, physicist at NASA/Marshall Space Flight Center (MSFC) in Huntsville, Al, is working with lasers as part of an optical system for pattern recognition. These systems can be used for automated fingerprinting, photographic scarning and the development of sophisticated artificial intelligence systems that can learn and evolve. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  17. Assessment team report on flight-critical systems research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  18. Integration of altitude and airspeed information into a primary flight display via moving-tape formats: Evaluation during random tracking task

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Nataupsky, Mark; Steinmetz, George G.

    1987-01-01

    A ground-based aircraft simulation study was conducted to determine the effects on pilot preference and performance of integrating airspeed and altitude information into an advanced electronic primary flight display via moving-tape (linear moving scale) formats. Several key issues relating to the implementation of moving-tape formats were examined in this study: tape centering, tape orientation, and trend information. The factor of centering refers to whether the tape was centered about the actual airspeed or altitude or about some other defined reference value. Tape orientation refers to whether the represented values are arranged in descending or ascending order. Two pilots participated in this study, with each performing 32 runs along seemingly random, previously unknown flight profiles. The data taken, analyzed, and presented consisted of path performance parameters, pilot-control inputs, and electrical brain response measurements.

  19. Challenging Technology, and Technology Infusion into 21st Century

    NASA Technical Reports Server (NTRS)

    Chau, S. N.; Hunter, D. J.

    2001-01-01

    In preparing for the space exploration challenges of the next century, the National Aeronautics and Space Administration (NASA) Center for Integrated Space Micro-Systems (CISM) is chartered to develop advanced spacecraft systems that can be adapted for a large spectrum of future space missions. Enabling this task are revolutions in the miniaturization of electrical, mechanical, and computational functions. On the other hand, these revolutionary technologies usually have much lower readiness levels than those required by flight projects. The mission of the Advanced Micro Spacecraft (AMS) task in CISM is to bridge the readiness gap between advanced technologies and flight projects. Additional information is contained in the original extended abstract.

  20. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows Skylab's Time and Motion experiment (M151) control unit, a medical study to measure performance differences between tasks undertaken on Earth and the same tasks performed by Skylab crew members in orbit. Data collected from this experiment evaluated crew members' zero-gravity behavior for designs and work programs for future space exploration. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  1. Non-contact Measurement of Creep in Ultra-High-Temperature Materials

    DTIC Science & Technology

    2009-11-04

    Task 1: Process UHTC materials at the relevant temperatures in Electrostatic Levitation for extended periods. 5 3.5 Task 2: Prepare the required high...Electrostatic Levitation ITI Industrial Tectonics, Inc. MSFC NASA George C. Marshall Space Flight Center NASA National Aeronautics and Space...was divided into certain research questions: Can high-precision UHTC spheres be processed in Electrostatic Levitation (ESL) at the relevant

  2. Programmer's Reference Manual for Dynamic Display Software System

    DOT National Transportation Integrated Search

    1971-01-01

    In 1968, the display sysems group of the Systems Laboratory of the NASA/Electronics Research Center undertook a research task in the area of computer controlled flight information systems for aerospace application. The display laboratory of the Trans...

  3. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  4. A comparison of communication modes for delivery of air traffic control clearance amendments in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.; Hansman, R. J.

    1989-01-01

    A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.

  5. Objective measure of pilot workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, B. H.

    1984-01-01

    Timesharing behavior in a data-entry task, similar to a pilot entering navigation data into an on-board computer is investigated. Auditory reaction time as a function of stimulus information and dimensionality is examined. This study has direct implications for stimulus selection for secondary tasks used in the GAT flight simulator at Ames Research Center. Attenuation effects of heat and cold stress in a psychological refractory period task were studied. The focus of interest is the general effects of stress on attention rather than upon specific temperature related phenomena.

  6. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the station to perform these repairs. After the retirement of the shuttle, this is no longer an available option. As such, the need for the ISS crew members to review scenarios while on flight, either for tasks they already trained or for contingency operations has become a very critical subject. In many situations, the time between the last session of Neutral Buoyancy Laboratory (NBL) training and an Extravehicular Activity (EVA) task might be 6 to 8 months. In order to help with training for contingency repairs and to maintain EVA proficiency while on flight, the Johnson Space Center Virtual Reality Lab (VRLab) designed an onboard immersive ISS Virtual Reality Trainer (VRT), incorporating a unique optical system and making use of the already successful Dynamic Onboard Ubiquitous Graphical (DOUG) graphics software, to assist crew members with current procedures and contingency EVAs while on flight. The VRT provides an immersive environment similar to the one experienced at the VRLab crew training facility at NASA Johnson Space Center. EVA tasks are critical for a mission since as time passes the crew members may lose proficiency on previously trained tasks. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the ISS ages. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before.

  7. HARV ANSER Flight Test Data Retrieval and Processing Procedures

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1997-01-01

    Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.

  8. The First Development of Human Factors Engineering Requirements for Application to Ground Task Design for a NASA Flight Program

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.

    2008-01-01

    The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.

  9. Overview of Marshall Space Flight Center Activities for the Combustion Stability Tool Development Program

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Greene, W. D.

    2016-01-01

    This presentation covers the overall scope, schedule, and activities associated with the NASA - Marshall Space Flight Center (MSFC) involvement with the Combustion Stability Tool Development (CSTD) program. The CSTD program is funded by the Air Force Space & Missile Systems Center; it is approximately two years in duration and; and it is sponsoring MSFC to: design, fabricate, & execute multi-element hardware testing, support Air Force Research Laboratory (AFRL) single element testing, and execute testing of a small-scale, multi-element combustion chamber. Specific MSFC Engineering Directorate involvement, per CSTD-sponsored task, will be outlined. This presentation serves a primer for the corresponding works that provide details of the technical work performed by individual groups within MSFC.

  10. Apollo experience report: Postflight testing of command modules

    NASA Technical Reports Server (NTRS)

    Hamilton, D. T.

    1973-01-01

    Various phases of the postflight testing of the command modules used in the Apollo Program are presented. The specific tasks to be accomplished by the task force recovery teams, the National Aeronautics and Space Administration Lyndon B. Johnson Space Center, (formerly the Manned Spacecraft Center) and the cognizant contractors/subcontractors are outlined. The means and methods used in postflight testing and how such activities evolved during the Apollo Program and were tailored to meet specific test requirements are described. Action taken to resolve or minimize problems or anomalies discovered during the flight, the postflight test phase, or mission evaluation is discussed.

  11. Design and maintainability considerations regarding the effects of suborbital flights on composite constructed vehicles

    DOT National Transportation Integrated Search

    2010-08-13

    The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), in developing guidance for AST and indu...

  12. Evaluation of telerobotic systems using an instrumented task board

    NASA Technical Reports Server (NTRS)

    Carroll, John D.; Gierow, Paul A.; Bryan, Thomas C.

    1991-01-01

    An instrumented task board was developed at NASA Marshall Space Flight Center (MSFC). An overview of the task board design, and current development status is presented. The task board was originally developed to evaluate operator performance using the Protoflight Manipulator Arm (PFMA) at MSFC. The task board evaluates tasks for Orbital Replacement Unit (ORU), fluid connect and transfers, electrical connect/disconnect, bolt running, and other basic tasks. The instrumented task board measures the 3-D forces and torques placed on the board, determines the robot arm's 3-D position relative to the task board using IR optics, and provides the information in real-time. The PFMA joint input signals can also be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to real-time force/torque data presentation. The instrumented task board's most promising use is developing benchmarks for NASA centers for comparison and evaluation of telerobotic performance.

  13. A general-purpose development environment for intelligent computer-aided training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.

    1990-01-01

    Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.

  14. KENNEDY SPACE CENTER, FLA. - On a tour of the Tile Shop, members of the Stafford-Covey Return to Flight Task Group (SCTG) learn about PU-tiles, part of an orbiter’s Thermal Protection System. At left is Martin Wilson, with United Space Alliance. Others (left to right) around the table are James Adamson, Dr. Kathryn Clark, William Wegner, Richard Covey and Joe Engle. Covey, former Space Shuttle commander, is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-06

    KENNEDY SPACE CENTER, FLA. - On a tour of the Tile Shop, members of the Stafford-Covey Return to Flight Task Group (SCTG) learn about PU-tiles, part of an orbiter’s Thermal Protection System. At left is Martin Wilson, with United Space Alliance. Others (left to right) around the table are James Adamson, Dr. Kathryn Clark, William Wegner, Richard Covey and Joe Engle. Covey, former Space Shuttle commander, is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  15. KENNEDY SPACE CENTER, FLA. - The Return To Flight Task Group (RTFTG) holds the first public meeting at the Debus Center, KSC Visitor Complex. Members and staff at the table, from left, are retired Navy Rear Adm. Walter H. Cantrell, David Raspet, retired Air Force Col. Gary S. Geyer, Dr. Kathryn Clark, Dr. Decatur B. Rogers, Dr. Dan L. Crippen, Dr. Walter Broadnax and astronaut Carlos Noriega. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - The Return To Flight Task Group (RTFTG) holds the first public meeting at the Debus Center, KSC Visitor Complex. Members and staff at the table, from left, are retired Navy Rear Adm. Walter H. Cantrell, David Raspet, retired Air Force Col. Gary S. Geyer, Dr. Kathryn Clark, Dr. Decatur B. Rogers, Dr. Dan L. Crippen, Dr. Walter Broadnax and astronaut Carlos Noriega. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander.

  16. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Settle, Gray; Tobbe, Patrick A.; Kissel, Ralph; Glaese, John; Blanche, Jim; Wallace, L. D.

    2001-01-01

    This monthly report summarizes the work performed under contract NAS8-00114 for Marshall Space Flight Center in the following tasks: 1) Purchase Order No. H-32831D, Task Order 001A, GPB Program Software Oversight; 2) Purchase Order No. H-32832D, Task Order 002, ISS EXPRESS Racks Software Support; 3) Purchase Order No. H-32833D, Task Order 003, SSRMS Math Model Integration; 4) Purchase Order No. H-32834D, Task Order 004, GPB Program Hardware Oversight; 5) Purchase Order No. H-32835D, Task Order 005, Electrodynamic Tether Operations and Control Analysis; 6) Purchase Order No. H-32837D, Task Order 007, SRB Command Receiver/Decoder; and 7) Purchase Order No. H-32838D, Task Order 008, AVGS/DART SW and Simulation Support

  17. In-flight simulation investigation of rotorcraft pitch-roll cross coupling

    NASA Technical Reports Server (NTRS)

    Watson, Douglas C.; Hindson, William S.

    1988-01-01

    An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.

  18. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  19. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  20. Motor Sensory Performance - Skylab Student Experiment ED-41

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  1. A strategy planner for NASA robotics applications

    NASA Technical Reports Server (NTRS)

    Brodd, S. S.

    1985-01-01

    Automatic strategy or task planning is an important element of robotics systems. A strategy planner under development at Goddard Space Flight Center automatically produces robot plans for assembly, disassembly, or repair of NASA spacecraft from computer aided design descriptions of the individual parts of the spacecraft.

  2. Early Program Development

    NASA Image and Video Library

    1970-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed the use of a Nuclear Shuttle in conjunction with a space station module, illustrated in this 1970 artist's concept, as the basis for a Mars excursion module.

  3. An Investigation of Large Aircraft Handling Qualities

    NASA Astrophysics Data System (ADS)

    Joyce, Richard D.

    An analytical technique for investigating transport aircraft handling qualities is exercised in a study using models of two such vehicles, a Boeing 747 and Lockheed C-5A. Two flight conditions are employed for climb and directional tasks, and a third included for a flare task. The analysis technique is based upon a "structural model" of the human pilot developed by Hess. The associated analysis procedure has been discussed previously in the literature, but centered almost exclusively on the characteristics of high-performance fighter aircraft. The handling qualities rating level (HQRL) and pilot induced oscillation tendencies rating level (PIORL) are predicted for nominal configurations of the aircraft and for "damaged" configurations where actuator rate limits are introduced as nonlinearites. It is demonstrated that the analysis can accommodate nonlinear pilot/vehicle behavior and do so in the context of specific flight tasks, yielding estimates of handling qualities, pilot-induced oscillation tendencies and upper limits of task performance. A brief human-in-the-loop tracking study was performed to provide a limited validation of the pilot model employed.

  4. Reciprocity-based experimental determination of dynamic forces and moments: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.; Howe, Michael S.

    1994-01-01

    BBN Systems and Technologies has been tasked by the Georgia Tech Research Center to carry Task Assignment No. 7 for the NASA Langley Research Center to explore the feasibility of 'In-Situ Experimental Evaluation of the Source Strength of Complex Vibration Sources Utilizing Reciprocity.' The task was carried out under NASA Contract No. NAS1-19061. In flight it is not feasible to connect the vibration sources to their mounting points on the fuselage through force gauges to measure dynamic forces and moments directly. However, it is possible to measure the interior sound field or vibration response caused by these structureborne sound sources at many locations and invoke principle of reciprocity to predict the dynamic forces and moments. The work carried out in the framework of Task 7 was directed to explore the feasibility of reciprocity-based measurements of vibration forces and moments.

  5. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    NASA Technical Reports Server (NTRS)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications scheduling.

  6. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.

  7. Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, submerges after spending some time under water in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  8. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept illustrates the use of the Space Shuttle, Nuclear Shuttle, and Space Tug in NASA's Integrated Program. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  9. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    NASA Technical Reports Server (NTRS)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  10. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  11. Varied Human Tolerance to the Combined Conditions of Low Contrast and Diminished Luminance: A Quasi-Meta Analysis

    DTIC Science & Technology

    2017-08-30

    as being three-fold: 1) a measurement of the integrity of both the central and peripheral visual processing centers; 2) an indicator of detail...visual assessment task 12 integral to the Army’s Class 1 Flight Physical (Ginsburg, 1981 and 1984; Bachman & Behar, 1986). During a Class 1 flight...systems. Meta-analysis has been defined as the statistical analysis of a collection of analytical results for the purpose of integrating the findings

  12. Performance Support Tools for Space Medical Operations

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Schmid, Josef; Barshi, Immanuel

    2010-01-01

    Early Constellation space missions are expected to have medical capabilities similar to those currently on board the Space Shuttle and International Space Station (ISS). Flight surgeons on the ground in Mission Control will direct the Crew Medical Officer (CMO) during medical situations. If the crew is unable to communicate with the ground, the CMO will carry out medical procedures without the aid of a flight surgeon. In these situations, use of performance support tools can reduce errors and time to perform emergency medical tasks. The research presented here is part of the Human Factors in Training Directed Research Project of the Space Human Factors Engineering Project under the Space Human Factors and Habitability Element of the Human Research Program. This is a joint project consisting of human factors teams from the Johnson Space Center (JSC) and the Ames Research Center (ARC). Work on medical training has been conducted in collaboration with the Medical Training Group at JSC and with Wyle that provides medical training to crew members, biomedical engineers (BMEs), and flight surgeons under the Bioastronautics contract. Human factors personnel at Johnson Space Center have investigated medical performance support tools for CMOs and flight surgeons.

  13. The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2005-08-11

    The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  14. The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2005-08-11

    The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  15. Practical color vision tests for air traffic control applicants: en route center and terminal facilities.

    PubMed

    Mertens, H W; Milburn, N J; Collins, W E

    2000-12-01

    Two practical color vision tests were developed and validated for use in screening Air Traffic Control Specialist (ATCS) applicants for work at en route center or terminal facilities. The development of the tests involved careful reproduction/simulation of color-coded materials from the most demanding, safety-critical color task performed in each type of facility. The tests were evaluated using 106 subjects with normal color vision and 85 with color vision deficiency. The en route center test, named the Flight Progress Strips Test (FPST), required the identification of critical red/black coding in computer printing and handwriting on flight progress strips. The terminal option test, named the Aviation Lights Test (ALT), simulated red/green/white aircraft lights that must be identified in night ATC tower operations. Color-coding is a non-redundant source of safety-critical information in both tasks. The FPST was validated by direct comparison of responses to strip reproductions with responses to the original flight progress strips and a set of strips selected independently. Validity was high; Kappa = 0.91 with original strips as the validation criterion and 0.86 with different strips. The light point stimuli of the ALT were validated physically with a spectroradiometer. The reliabilities of the FPST and ALT were estimated with Chronbach's alpha as 0.93 and 0.98, respectively. The high job-relevance, validity, and reliability of these tests increases the effectiveness and fairness of ATCS color vision testing.

  16. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  17. Performance of color-dependent tasks of air traffic control specialists as a function of type and degree of color vision deficiency.

    DOT National Transportation Integrated Search

    1992-08-01

    This experiment was conducted to expand initial efforts to validate the requirement for normal color vision in Air Traffic Control Specialist (ATCS) personnel who work at en route center, terminal, and flight service station facilities. An enlarged d...

  18. Dr. von Braun Tries Out the NBS

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown fitted with suit and diving equipment as he prepares for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  19. Aging aircraft NDI Development and Demonstration Center (AANC): An overview. [nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Walter, Patrick L.

    1992-01-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  20. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  1. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  2. A Center of Excellence in Rotary Wing Aircraft Technology. Phase 2. Program Maturation Phase, 15 January 1988 - 14 January 1993

    DTIC Science & Technology

    1993-03-14

    COSTSHARING REOUIRED AND UNIVERSITY COO SHARING c ison For INCREASED . . *AFLIGHT SIMULATION TASK ADDED D ! !L ý Figure 1. _It• .. ... Avail. 2Blot S. . .. lI...Vibrations and Structnal Dynamics .................. 28 Task 4. Damage Resistance in Rotorcraft Structus ........................ 31 D . Flight Mechanics and...Twenty-Second Symposium (Volume i), ASTM STP 1131, H. A. Ernst, A. Saxena, and D . L. McDowell, Eds., American Society for Testing and Materials

  3. NASA. Marshall Space Flight Center Hydrostatic Bearing Activities

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.

    1991-01-01

    The basic approach for analyzing hydrostatic bearing flows at the Marshall Space Flight Center (MSFC) is briefly discussed. The Hydrostatic Bearing Team has responsibility for assessing and evaluating flow codes; evaluating friction, ignition, and galling effects; evaluating wear; and performing tests. The Office of Aerospace and Exploration Technology Turbomachinery Seals Tasks consist of tests and analysis. The MSFC in-house analyses utilize one-dimensional bulk-flow codes. Computational fluid dynamics (CFD) analysis is used to enhance understanding of bearing flow physics or to perform parametric analysis that are outside the bulk flow database. As long as the bulk flow codes are accurate enough for most needs, they will be utilized accordingly and will be supported by CFD analysis on an as-needed basis.

  4. Integration of altitude and airspeed information into a primary flight display via moving-tape formats

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Steinmetz, George G.

    1987-01-01

    A ground-based aircraft simulation study was conducted to determine the effect on pilot performance of replacing the electromechanical altimeter and airspeed indicators with electronically generated representations integrated into the primary flight display via moving-tape (linear moving scale) formats. Several key factors relating to moving-tape formats were examined during the study: tape centering, secondary (trend) information, and tape orientation. The factor of centering refers to whether the tape was centered about the actual airspeed or altitude or about some defined reference value. Tape orientation refers to whether the values represented are arranged in either descending or ascending order. Six pilots participated in this study, with each subject performing 18 runs along a single, known flight profile. Subjective results indicated that the moving-tape formats were generally better than that of the conventional instruments. They also indicated that an actual-centered fixed pointer was preferred to a reference-centered pointer. Performance data for a visual secondary task showed that formats not containing trend information produced better performance; however, no difference was noted in airspeed tracking or altitude tracking performance. Regarding tape orientation, subjective comments indicated that there was lower work load and better performance when the airspeed tape had the high numbers at the top.

  5. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    DTIC Science & Technology

    2017-07-07

    AFRL-RH-FS-TR-2017-0026 Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators Thomas K. Kuyk Peter A. Smith Solangia...34Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators" (AFRL-RH-FS-TR- 2017 - 0026 SHORTER.PATRI CK.D.1023156390 Digitally...SUBTITLE Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c

  6. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  7. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  8. A piloted simulator investigation of stability and control, display and crew-loading requirements for helicopter instrument approach. Part 1: Technical discussion and results

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.

    1982-01-01

    A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.

  9. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is representative of the AH-64 pilot location. Six test pilots flew three tasks that were specifically designed to represent a broad class of situations in which both lateral and yaw motion cues may be useful. For the first task, the pilot controlled only the yaw axis and was required to rapidly acquire a North heading from 15 deg yaw offsets to either the East or West. This task allowed for full, or 1:1, motion to be used in all axes (yaw, lateral, and longitudinal). The second task was a 10 sec., 180 deg. pedal turn over a runway, but with the pilot only controlling the yaw degree-of-freedom. The position of the vehicle's center-of-mass remained fixed. This maneuver was taken from a current U.S. Army rotary wing design standard5 and is representative of a maneuver performed for acceptance of military helicopters; however, it does not allow for full 1:1 motion, since the simulator cab cannot rotate 180 deg. The third task required the pilot to perform a rapid 9 ft climb at a constant heading. This task was challenging, because rapid collective lever movement in the unaugmented AH64 results in a substantial yawing moment (due to engine torque) that must be countered by the pilot. This task also had full motion in all axes, but, in this case, the pilot had two axes to control simultaneously, rather than one as in the previous tasks. Four motion configurations were examined for each task: full motion (except for the 180 deg turn, for which the motion system was configured to provide as much motion as possible), full linear with no yaw motion, full yaw with no linear motion, and no motion. Each configuration was flown four times in a randomized test matrix, and the pilots were not informed of the configuration given. Vehicle state data were recorded for objective performance comparisons, and pilots provided subjective comments and ratings. As part of the pilots' evaluation, they were asked to rate the compensation required, the overall fidelity of the motion as compared to real flight, and whether motion was detected or not in each of the six degrees of freedom. In addition, the pilots provided a numerical level-of confidence rating, between 1 and 7, corresponding to how sure they were whether or not motion was present in each degree-of-freedom. The latter rating allow classical signal detection analysis to be performed.

  10. Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown leaving the suiting-up van wearing a pressure suit prepared for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  11. Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Mayer, Jann; Cox, Timothy H.

    2003-01-01

    A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.

  12. The Space Shuttle Discovery hitched a ride on a special 747 carrier aircraft for the flight from California to the Kennedy Space Center, FL, on August 19, 2005

    NASA Image and Video Library

    2005-08-19

    The Space Shuttle Discovery hitched a ride on NASA's modified Boeing 747 Shuttle Carrier Aircraft for the flight from the Dryden Flight Research Center in California, to Kennedy Space Center, Florida, on August 19, 2005. The cross-country ferry flight to return Discovery to Florida after it's landing in California will take two days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  13. Technicians inspect external tank attachment fittings on the Space Shuttle Discovery as part of its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Robert 'Skip' Garrett; main propulsion advanced systems technician, and Chris Jacobs; main propulsion systems engineering technician, inspect external tank attachment fittings on the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle pa

  14. Technicians Todd Viddle, Robert Garrett and Dan McGrath remove a servicing unit from the Space Shuttle Discovery during its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Todd Viddle; APU advanced systems technician, Robert 'Skip' Garrett; main propulsion advanced systems technician, and Dan McGrath; main propulsion systems engineer technician, remove a servicing unit from the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items

  15. User participation in the development of the human/computer interface for control centers

    NASA Technical Reports Server (NTRS)

    Broome, Richard; Quick-Campbell, Marlene; Creegan, James; Dutilly, Robert

    1996-01-01

    Technological advances coupled with the requirements to reduce operations staffing costs led to the demand for efficient, technologically-sophisticated mission operations control centers. The control center under development for the earth observing system (EOS) is considered. The users are involved in the development of a control center in order to ensure that it is cost-efficient and flexible. A number of measures were implemented in the EOS program in order to encourage user involvement in the area of human-computer interface development. The following user participation exercises carried out in relation to the system analysis and design are described: the shadow participation of the programmers during a day of operations; the flight operations personnel interviews; and the analysis of the flight operations team tasks. The user participation in the interface prototype development, the prototype evaluation, and the system implementation are reported on. The involvement of the users early in the development process enables the requirements to be better understood and the cost to be reduced.

  16. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize that performance on the closed-loop tilt control task will be improved with this tactile display feedback of tilt orientation. The current plans include testing on eight crewmembers following Space Shuttle missions or short stay onboard the International Space Station. Measurements are obtained pre-flight at L-120 (plus or minus 30), L-90 (plus or minus 30), and L-30, (plus or minus 10) days and post-flight at R+0, R+1, R+2 or 3, R+4 or 5, and R+8 days. Pre-and post-flight testing (from R+1 on) is performed in the Neuroscience Laboratory at the NASA Johnson Space Center on both the Tilt-Translation Device and a variable radius centrifuge. A second variable radius centrifuge, provided by DLR for another joint ESA-NASA project, has been installed at the Baseline Data Collection Facility at Kennedy Space Center to collect data immediately after landing. ZAG was initiated with STS-122/1E and the first post-flight testing will take place after STS-123/1JA landing.

  17. Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.

  18. An informal analysis of flight control tasks

    NASA Technical Reports Server (NTRS)

    Andersen, George J.

    1991-01-01

    Issues important in rotorcraft flight control are discussed. A perceptual description is suggested of what is believed to be the major issues in flight control. When the task is considered of a pilot controlling a helicopter in flight, the task is decomposed in several subtasks. These subtasks include: (1) the control of altitude, (2) the control of speed, (3) the control of heading, (4) the control of orientation, (5) the control of flight over obstacles, and (6) the control of flight to specified positions in the world. The first four subtasks can be considered to be primary control tasks as they are not dependent on any other subtasks. However, the latter two subtasks can be considered hierarchical tasks as they are dependent on other subtasks. For example, the task of flight control over obstacles can be decomposed as a task requiring the control of speed, altitude, and heading. Thus, incorrect control of altitude should result in poor control of flight over an obstacle.

  19. Research and technology: 1986 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1986 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  20. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  1. Research and technology: 1985 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1985 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  2. Incorporating Data Link Features into a Multi-Function Display to Support Self-Separation and Spacing Tasks for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Adams, Catherine A.; Murdoch, Jennifer L.; Consiglio, Maria C.; WIlliams, Daniel M.

    2005-01-01

    One objective of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated Airport Management Module (AMM) and separation responsibilities to general aviation (GA) pilots. Implementation of this concept required the development of a research Multi-Function Display (MFD) to support the interactive communications between pilots and the AMM. The interface also had to accommodate traffic awareness, self-separation, and spacing tasks through dynamic messaging and symbology for flight path conformance and conflict detection and alerting (CDA). The display served as the mechanism to support the examination of the viability of executing instrument operations designed for SATS designated airports. Results of simulation and flight experiments conducted at the National Aeronautics and Space Administration's (NASA) Langley Research Center indicate that the concept, as facilitated by the research MFD, did not increase pilots subjective workload levels or reduce their situation awareness (SA). Post-test usability assessments revealed that pilots preferred using the enhanced MFD to execute flight procedures, reporting improved SA over conventional instrument flight rules (IFR) procedures.

  3. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  4. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    NASA Technical Reports Server (NTRS)

    Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)

    2011-01-01

    In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.

  5. Marshall Space Flight Center Ground Systems Development and Integration

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  6. Analysis of high-order languages for use on space station application software

    NASA Technical Reports Server (NTRS)

    Knoebel, A.

    1986-01-01

    Considered in this study is the general and not easily resolved problem of how to choose the right programming language for a particular task. This is specialized to the question of which versions of what languages should be chosen for the multitude of tasks that the Marshall Space Flight Center will be responsible for in the Space Station. Four criteria are presented: theoretical considerations, quantitative matrices, qualitative benchmarks, and the monitoring of programmers. Specific recommendations for future studies are given to resolve these questions for the Space Station.

  7. Hardware interface unit for control of shuttle RMS vibrations

    NASA Technical Reports Server (NTRS)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  8. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  9. Technicians Ray Smith and Raphael Rodriguez remove one of the Extravehicular Mobility Units from the Space Shuttle Discovery after its landing at NASA Dryden

    NASA Image and Video Library

    2005-08-12

    Flight Crew Systems Technicians Ray Smith and Raphael Rodriguez remove one of the Extravehicular Mobility Units, or EMUs, from the Space Shuttle Discovery after it's successful landing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14

  10. Technology Transfer Challenges: A Case Study of User-Centered Design in NASA's Systems Engineering Culture

    NASA Technical Reports Server (NTRS)

    Quick, Jason

    2009-01-01

    The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the user-centered process provided valuable lessons for improving future collaborative conceptual design efforts.

  11. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  12. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  13. International Space Station ECLSS Technical Task Agreement Summary Report

    NASA Technical Reports Server (NTRS)

    Ray, C. D. (Compiler); Salyer, B. H. (Compiler)

    1999-01-01

    This Technical Memorandum provides a summary of current work accomplished under Technical Task Agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). Current activities include ECLSS component design and development, computer model development, subsystem/integrated system testing, life testing, and general test support provided to the ISS program. Under ECLSS design, MSFC was responsible for the six major ECLSS functions, specifications and standard, component design and development, and was the architectural control agent for the ISS ECLSS. MSFC was responsible for ECLSS analytical model development. In-house subsystem and system level analysis and testing were conducted in support of the design process, including testing air revitalization, water reclamation and management hardware, and certain nonregenerative systems. The activities described herein were approved in task agreements between MSFC and NASA Headquarters Space Station Program Management Office and their prime contractor for the ISS, Boeing. These MSFC activities are in line to the designing, development, testing, and flight of ECLSS equipment planned by Boeing. MSFC's unique capabilities for performing integrated systems testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs, are the basis for the TTA activities.

  14. The Scintillation Prediction Observations Research Task (SPORT): A Multinational Science Mission using a CubeSat

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Habash Krause, L.; Swenson, C.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Durão, O.; Loures, L.; De Nardin, C. M.; Shibuya, L.; Casas, J.; Nash-STevenson, S.; Muralikrishana, P.; Costa, J. E. R.; Wrasse, C. M.; Fry, C. D.

    2017-12-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat pathfinder mission to address the very compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at the Jicamarca Radio Observatory from Peru, a single site, within a single longitude sector. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to allow us to understand the differences between geography and magnetic geometry. This talk will present an overview of the mission and the anticipated data products. Products include global maps of scintillation occurrence as a function of local time, and magnetic conjugacy occurrence observations. SPORT is a multinational partnership between NASA, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA). It has been encouraged by U.S. Southern Command (SOUTHCOM) to foster increased cooperation and ties between academics, civilian space programs and the militaries. NASA Marshall Space Flight Center is coordinating this investigation by overseeing the launch to orbit and the flight instruments, which are being built by the Aerospace Corporation, University of Texas Dallas, Utah State University, and NASA Goddard Space Flight Center. The Brazilian partners are contributing the spacecraft, observatory integration and test, ground observation networks, and mission operations and data management. The science data will be distributed from and archived at the INPE/EMBRACE regional space-weather forecasting center in Brazil, and mirrored at the NASA GSFC Space Physics Data Facility (SPDF).

  15. Applications of Advanced Experimental Methodologies to AWAVS Training Research. Final Report, May 1977-July 1978.

    ERIC Educational Resources Information Center

    Simon, Charles W.

    A major part of the Naval Training Equipment Center's Aviation Wide Angle Visual System (AWAVS) program involves behavioral research to provide a basis for establishing design criteria for flight trainers. As part of the task of defining the purpose and approach of this program, the applications of advanced experimental methods are explained and…

  16. Composite Structures Damage Tolerance Analysis Methodologies

    NASA Technical Reports Server (NTRS)

    Chang, James B.; Goyal, Vinay K.; Klug, John C.; Rome, Jacob I.

    2012-01-01

    This report presents the results of a literature review as part of the development of composite hardware fracture control guidelines funded by NASA Engineering and Safety Center (NESC) under contract NNL04AA09B. The objectives of the overall development tasks are to provide a broad information and database to the designers, analysts, and testing personnel who are engaged in space flight hardware production.

  17. The Baltimore applications project: A new look at technology transfer

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The history of cooperation between Goddard Space Flight Center and Baltimore City administrators in solving urban problems is summarized. NASA provided consultation and advisory services as well as technology resources and demonstrations. Research and development programs for 69 tasks are briefly described. Technology utilization for incinerator energy, data collection, Health Department problems, and solarization experiments are presented as case histories.

  18. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  19. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

  20. ESOC - The satellite operation center of the European Space Agency

    NASA Astrophysics Data System (ADS)

    Dworak, H. P.

    1980-04-01

    The operation and individual functions of the European Space Operation Center (ESOC) that controls the flight of ESA satellites are presented. The main role of the ESOC is discussed and its division into three areas: telemetry, remote piloting, and tracking is outlined. Attention is given to the manipulation of experimental data collected on board the satellites as well as to the functions of the individual ground stations. A block diagram of the information flow to the Meteosat receiving station is presented along with the network outlay of data flow between the ground stations and the ESOC. Distribution of tasks between the ground operation manager, spacecraft operations manager, and flight dynamic software coordinator is discussed with reference to a mission team. A short description of the current missions including COS-B, GEOS-1 and 2, Meteosat, OTS, and ISEE-B is presented

  1. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  2. Some Problems of Rocket-Space Vehicles' Characteristics co- ordination

    NASA Astrophysics Data System (ADS)

    Sergienko, Alexander A.

    2002-01-01

    of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.

  3. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks.

    PubMed

    Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio

    2016-10-01

    Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.

  4. Developing a Measurement for Task Complexity in Flight.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Wang, Zhen; Huang, Dan; Fu, Shan

    2015-08-01

    Task complexity is regarded as an essential metric that is related to a pilot's performance and workload. Normally, pilots follow Standard Operating Procedures (SOPs) during a flight. In this study, we developed a measurement named Task Complexity in Flight (TCIF) to represent the task complexity in the SOPs. The TCIF measurement combined four complexity components into one index: actions logic complexity (ALC), actions size complexity (ASC), information control exchange complexity (ICEC), and control mode complexity (CMC).To verify the measurement, we calculated 11 tasks during the takeoff and landing phases from the SOPs, and invited 10 pilots to perform the same tasks in a flight simulator. After flight, the TCIF results were compared with two workload measurements: the Bedford scale and heart rate. The results of TCIF and the 4 components of the 11 tasks were calculated. Further, the TCIF results showed a significant correlation with the Bedford scores (R=0.851) and were also consistent with the difference in heart rate (R=0.816). Therefore, with the increased TCIF results, both the Bedford scale and the difference in heart rate increased. TCIF was proposed based on the flight operating conditions. Although additional studies of TCIF are necessary, the results of this study suggest this measurement could effectively indicate task complexity in flight, and could also be used to guide pilot training and task allocation on the flight deck.

  5. A Validated Task Analysis of the Single Pilot Operations Concept

    NASA Technical Reports Server (NTRS)

    Wolter, Cynthia A.; Gore, Brian F.

    2015-01-01

    The current day flight deck operational environment consists of a two-person Captain/First Officer crew. A concept of operations (ConOps) to reduce the commercial cockpit to a single pilot from the current two pilot crew is termed Single Pilot Operations (SPO). This concept has been under study by researchers in the Flight Deck Display Research Laboratory (FDDRL) at the National Aeronautics and Space Administration's (NASA) Ames (Johnson, Comerford, Lachter, Battiste, Feary, and Mogford, 2012) and researchers from Langley Research Centers (Schutte et al., 2007). Transitioning from a two pilot crew to a single pilot crew will undoubtedly require changes in operational procedures, crew coordination, use of automation, and in how the roles and responsibilities of the flight deck and ATC are conceptualized in order to maintain the high levels of safety expected of the US National Airspace System. These modifications will affect the roles and the subsequent tasks that are required of the various operators in the NextGen environment. The current report outlines the process taken to identify and document the tasks required by the crew according to a number of operational scenarios studied by the FDDRL between the years 2012-2014. A baseline task decomposition has been refined to represent the tasks consistent with a new set of entities, tasks, roles, and responsibilities being explored by the FDDRL as the move is made towards SPO. Information from Subject Matter Expert interviews, participation in FDDRL experimental design meetings, and study observation was used to populate and refine task sets that were developed as part of the SPO task analyses. The task analysis is based upon the proposed ConOps for the third FDDRL SPO study. This experiment possessed nine different entities operating in six scenarios using a variety of SPO-related automation and procedural activities required to guide safe and efficient aircraft operations. The task analysis presents the roles and responsibilities in a manner that can facilitate testing future scenarios. Measures of task count and workload were defined and analyzed to assess the impact of transitioning to a SPO environment.

  6. Internet Protocol Display Sharing Solution for Mission Control Center Video System

    NASA Technical Reports Server (NTRS)

    Brown, Michael A.

    2009-01-01

    With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole process, while maintaining the integrity of the latest technological displayed image devices. This study will provide insights to the many possibilities that can be filtered down to a harmoniously responsive product that can be used in today's MCC environment.

  7. The space station freedom flight telerobotic servicer. The design and evolution of a dexterous space robot

    NASA Astrophysics Data System (ADS)

    McCain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the general nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  8. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  9. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  10. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  11. Lightning strikes in the distance as the Space Shuttle Discovery receives post-flight processing in the Mate-Demate Device, following its landing at NASA DFRC

    NASA Image and Video Library

    2005-08-14

    Lightning strikes in the distance as the Space Shuttle Discovery receives post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  12. A technician leaves the 'white room,' the access point for entering the Space Shuttle Discovery during post-flight processing at NASA DFRC in California

    NASA Image and Video Library

    2005-08-14

    A technician leaves the 'white room', the access point for entering the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  13. NASA's modified 747 Shuttle Carrier Aircraft is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center

    NASA Image and Video Library

    2005-08-18

    NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  14. The sun sets on the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA DFRC in California

    NASA Image and Video Library

    2005-08-14

    The sun sets on the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  15. International Space Station Medical Project

    NASA Technical Reports Server (NTRS)

    Starkey, Blythe A.

    2008-01-01

    The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.

  16. Space Station Application of Simulator-Developed Aircrew Coordination and Performance Measures

    NASA Technical Reports Server (NTRS)

    Murphy, Miles

    1985-01-01

    This paper summarizes a study in progress at NASA/Ames Research Center to develop measures of aircrew coordination and decision-making factors and to relate them to flight task performance, that is, to crew and system performance measures. The existence of some similar interpersonal process and task performance requirements suggests a potential application of these methods in space station crew research -- particularly research conducted in ground-based mock-ups. The secondary objective of this study should also be of interest: to develop information on crew process and performance for application in developing crew training programs.

  17. Antenna pattern study, task 2

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1989-01-01

    Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.

  18. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  19. Gas Emission Measurements from the RD 180 Rocket Engine

    NASA Technical Reports Server (NTRS)

    Ross, H. R.

    2001-01-01

    The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.

  20. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    S93-43752 (1 Sept 1993) --- Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators Console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a Neutral Buoyancy Simulator (NBS) tank at the Marshall Space Flight Center (MSFC) in Alabama.

  1. Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Astronaut L. Gordon Cooper checks the neck ring of a space suit worn by Marshall Space Flight Center (MSFC) Director, Dr. von Braun before he submerges into the water of the MSFC Neutral Buoyancy Simulator (NBS). Wearing a pressurized suit and weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  2. Decision Making Training in the Mission Operations Directorate

    NASA Technical Reports Server (NTRS)

    O'Keefe, William S.

    2013-01-01

    At JSC, we train our new flight controllers on a set of team skills that we call Space Flight Resource Management (SFRM). SFRM is akin to Crew Resource Management for the airlines and trains flight controllers to work as an effective team to reduce errors and improve safety. We have developed this training over the years with the assistance of Ames Research Center, Wyle Labs and University of Central Florida. One of the skills we teach is decision making/ problem solving (DM/PS). We teach DM/PS first in several classroom sessions, reinforce it in several part task training environments, and finally practice it in full-mission, full-team simulations. What I am proposing to talk about is this training flow: its content and how we teach it.

  3. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  4. Advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.

    1983-01-01

    A set of flight tests designed to evaluate the relative utility of candidate displays with advanced symbology for general aviation terminal area instrument flight rules operations are discussed. The symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a cathode ray tube (CRT) display along with the roll attitude, pitch attitude, localizer deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading, and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an instrument landing system capture and tracking task.

  5. Korean Air Lines Flight 007: Lessons from the Past and Insights for the Future

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Shafto, M. (Technical Monitor)

    2001-01-01

    The majority of the problems pilot encounter when using automated systems center around two factors: (1) the pilot has an incomplete and inadequate model of how the autopilot works; and (2) the displays and flight manuals, provided to the pilot, are inadequate for the task. The tragic accident of Korean Air Lines Flight 007, a Boeing 747 that deviated from its intended flight path, provides a compelling case-study of problems related to pilots' use of automated systems. This paper describes what had happened and exposes two types of human-automation interaction problems: (1) The pilots of KAL were not provided with adequate information about the actual behavior of the autopilot and its mode transition logic; and (2) The autopilot onboard KAL 007 did not provide adequate information to the flight crew about its active and armed modes. Both factors, according to the International Civil Aviation Organization (1993) report on the accident, contributed to the aircraft's lethal navigation error.

  6. Helicopter human factors research

    NASA Technical Reports Server (NTRS)

    Nagel, David C.; Hart, Sandra G.

    1988-01-01

    Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.

  7. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  8. Reduced Uncertainties in the Flutter Analysis of the Aerostructures Test Wing

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Lung, Shun-fat

    2010-01-01

    Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. A test validated finite element model can provide a reliable flutter analysis to define the flutter placard speed to which the aircraft can be flown prior to flight flutter testing. Minimizing the difference between numerical and experimental results is a type of optimization problem. Through the use of the National Aeronautics and Space Administration Dryden Flight Research Center s (Edwards, California, USA) multidisciplinary design, analysis, and optimization tool to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes are matched to the target data and the mass matrix orthogonality is retained. The approach in this study has been applied to minimize the model uncertainties for the structural dynamic model of the aerostructures test wing, which was designed, built, and tested at the National Aeronautics and Space Administration Dryden Flight Research Center. A 25-percent change in flutter speed has been shown after reducing the uncertainties

  9. Reduced Uncertainties in the Flutter Analysis of the Aerostructures Test Wing

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Lung, Shun Fat

    2011-01-01

    Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. A test validated finite element model can provide a reliable flutter analysis to define the flutter placard speed to which the aircraft can be flown prior to flight flutter testing. Minimizing the difference between numerical and experimental results is a type of optimization problem. Through the use of the National Aeronautics and Space Administration Dryden Flight Research Center's (Edwards, California) multidisciplinary design, analysis, and optimization tool to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes are matched to the target data, and the mass matrix orthogonality is retained. The approach in this study has been applied to minimize the model uncertainties for the structural dynamic model of the aerostructures test wing, which was designed, built, and tested at the National Aeronautics and Space Administration Dryden Flight Research Center. A 25 percent change in flutter speed has been shown after reducing the uncertainties.

  10. Challenges in the 1990's for astronaut training simulators

    NASA Technical Reports Server (NTRS)

    Brown, Patrick M.; Hajare, Ankur R.; Stark, George E.

    1990-01-01

    New challenges for the simulation community at the Johnson Space Center both in near and long terms are considered. In the near term, the challenges of supporting an increasing flight rate, maintaining operations while replacing obsolete subsystems, and incorporating forthcoming changes to the Space Shuttle are discussed, and focus is placed on a change of forward flight-deck instruments from electro-mechanical devices to electronic displays. Training astronauts for complex concurrent missions involving multiple spacecraft and geographically dispersed ground facilities is considered to be foremost of the long-term challenges, in addition to the tasks of improving the simulator reliability and the operational efficiency of the facilities.

  11. Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Results of a Space Station Data System Analysis/Architecture Study for the Goddard Space Flight Center are presented. This study, which emphasized a system engineering design for a complete, end-to-end data system, was divided into six tasks: (1); Functional requirements definition; (2) Options development; (3) Trade studies; (4) System definitions; (5) Program plan; and (6) Study maintenance. The Task inter-relationship and documentation flow are described. Information in volume 2 is devoted to Task 3: trade Studies. Trade Studies have been carried out in the following areas: (1) software development test and integration capability; (2) fault tolerant computing; (3) space qualified computers; (4) distributed data base management system; (5) system integration test and verification; (6) crew workstations; (7) mass storage; (8) command and resource management; and (9) space communications. Results are presented for each task.

  12. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  13. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  14. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  15. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  16. Muscle Feasibility for Cosmos Rhesus

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.

    1994-01-01

    The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.

  17. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  18. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 3: Fabrication

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.

    1974-01-01

    The manufacturing plan for three C-130 aircraft center wing box test articles, selectively reinforced with boron-epoxy composites, is outlined for the following tasks: (1) tooling; (2) metal parts fabrication: (3) reinforcing laminate fabrication; (4) laminate-to-metal parts bonding; and (5) wing box assembly. The criteria used for reliability and quality assurance are discussed, and several solutions to specific manufacturing problems encountered during fabrication are given. For Vol. 1, see N73-13011; for Vol. 2, see N73-22929.

  19. Flight Data Entry, Descent, and Landing (EDL) Repository

    NASA Technical Reports Server (NTRS)

    Martinez, Elmain M.; Winterhalter, Daniel

    2012-01-01

    Dr. Daniel Winterhalter, NASA Engineering and Safety Center Chief Engineer at the Jet Propulsion Laboratory, requested the NASA Engineering and Safety Center sponsor a 3-year effort to collect entry, descent, and landing material and to establish a NASA-wide archive to serve the material. The principle focus of this task was to identify entry, descent, and landing repository material that was at risk of being permanently lost due to damage, decay, and undocumented storage. To provide NASA-wide access to this material, a web-based digital archive was created. This document contains the outcome of the effort.

  20. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  1. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  2. Software Innovations Speed Scientific Computing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    To help reduce the time needed to analyze data from missions like those studying the Sun, Goddard Space Flight Center awarded SBIR funding to Tech-X Corporation of Boulder, Colorado. That work led to commercial technologies that help scientists accelerate their data analysis tasks. Thanks to its NASA work, the company doubled its number of headquarters employees to 70 and generated about $190,000 in revenue from its NASA-derived products.

  3. FLASH fly-by-light flight control demonstration results overview

    NASA Astrophysics Data System (ADS)

    Halski, Don J.

    1996-10-01

    The Fly-By-Light Advanced Systems Hardware (FLASH) program developed Fly-By-Light (FBL) and Power-By-Wire (PBW) technologies for military and commercial aircraft. FLASH consists of three tasks. Task 1 developed the fiber optic cable, connectors, testers and installation and maintenance procedures. Task 3 developed advanced smart, rotary thin wing and electro-hydrostatic (EHA) actuators. Task 2, which is the subject of this paper,l focused on integration of fiber optic sensors and data buses with cable plant components from Task 1 and actuators from Task 3 into centralized and distributed flight control systems. Both open loop and piloted hardware-in-the-loop demonstrations were conducted with centralized and distributed flight control architectures incorporating the AS-1773A optical bus, active hand controllers, optical sensors, optimal flight control laws in high speed 32-bit processors, and neural networks for EHA monitoring and fault diagnosis. This paper overviews the systems level testing conducted under the FLASH Flight Control task. Preliminary results are summarized. Companion papers provide additional information.

  4. Technology for Sustained Supersonic Combustion Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions

    DTIC Science & Technology

    2013-01-01

    flight vehicle . Many facilities are not large enough to perform free-jet testing of scramjet engines which include an inlet. Rather, testing is often...AFRL-RQ-WP-TR-2013-0029 TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow...TITLE AND SUBTITLE TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions 5a

  5. Flight deck task management

    DOT National Transportation Integrated Search

    2016-12-21

    This report documents the work undertaken in support of Volpe Task Order No. T0026, Flight Deck Task Management. The objectives of this work effort were to: : 1) Develop a specific and standard definition of task management (TM) : 2) Conduct a ...

  6. Evolving the Reuse Process at the Flight Dynamics Division (FDD) Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, S.; Seaman, C.; Basili, Victor; Kraft, S.; Kontio, J.; Kim, Y.

    1996-01-01

    This paper presents the interim results from the Software Engineering Laboratory's (SEL) Reuse Study. The team conducting this study has, over the past few months, been studying the Generalized Support Software (GSS) domain asset library and architecture, and the various processes associated with it. In particular, we have characterized the process used to configure GSS-based attitude ground support systems (AGSS) to support satellite missions at NASA's Goddard Space Flight Center. To do this, we built detailed models of the tasks involved, the people who perform these tasks, and the interdependencies and information flows among these people. These models were based on information gleaned from numerous interviews with people involved in this process at various levels. We also analyzed effort data in order to determine the cost savings in moving from actual development of AGSSs to support each mission (which was necessary before GSS was available) to configuring AGSS software from the domain asset library. While characterizing the GSS process, we became aware of several interesting factors which affect the successful continued use of GSS. Many of these issues fall under the subject of evolving technologies, which were not available at the inception of GSS, but are now. Some of these technologies could be incorporated into the GSS process, thus making the whole asset library more usable. Other technologies are being considered as an alternative to the GSS process altogether. In this paper, we outline some of issues we will be considering in our continued study of GSS and the impact of evolving technologies.

  7. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    NASA Technical Reports Server (NTRS)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  8. Evaluation of a strapless heart rate monitor during simulated flight tasks.

    PubMed

    Wang, Zhen; Fu, Shan

    2016-01-01

    Pilots are under high task demands during flight. Monitoring pilot's physiological status is very important in the evaluation of pilot's workload and flight safety. Recently, physiological status monitor (PSM) has been embedded into a watch that can be used without a conventional chest strap. This makes it possible to unobtrusively monitor, log and transmit pilot's physiological measurements such as heart rate (HR) during flight tasks. The purpose of this study is to validate HR recorded by a strapless heart rate watch against criterion ECG-derived HR. Ten commercial pilots (mean ± SD : age: 39.1 ± 7.8 years; total flight hours 7173.2 ± 5270.9 hr) performed three routinely trained flight tasks in a full flight simulator: wind shear go-around (WG), takeoff and climb (TC), and hydraulic failure (HF). For all tasks combined (overall) and for each task, differences between the heart rate watch measurements and the criterion data were small (mean difference [95% CI]: overall: -0.71 beats/min [-0.85, -0.57]; WG: -0.90 beats/min [-1.15, -0.65]; TC: -0.69 beats/min [-0.98, -0.40]; HF: -0.61 beats/min [-0.80, -0.42]). There were high correlations between the heart rate watch measurements and the ECG-derived HR for all tasks (r ≥ 0.97, SEE < 3). Bland-Altman plots also show high agreements between the watch measurements and the criterion HR. These results suggest that the strapless heart rate watch provides valid measurements of HR during simulated flight tasks and could be a useful tool for pilot workload evaluation.

  9. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  10. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

  11. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  12. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2015-01-01

    Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  13. Transfer of training for aerospace operations: How to measure, validate, and improve it

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.

    1993-01-01

    It has been a commonly accepted practice to train pilots and astronauts in expensive, extremely sophisticated, high fidelity simulators, with as much of the real-world feel and response as possible. High fidelity and high validity have often been assumed to be inextricably interwoven, although this assumption may not be warranted. The Project Mercury rate-damping task on the Naval Air Warfare Center's Human Centrifuge Dynamic Flight Simulator, the shuttle landing task on the NASA-ARC Vertical Motion Simulator, and the almost complete acceptance by the airline industry of full-up Boeing 767 flight simulators, are just a few examples of this approach. For obvious reasons, the classical models of transfer of training have never been adequately evaluated in aerospace operations, and there have been few, if any, scientifically valid replacements for the classical models. This paper reviews some of the earlier work involving transfer of training in aerospace operations, and discusses some of the methods by which appropriate criteria for assessing the validity of training may be established.

  14. Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.

    2009-01-01

    Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.

  15. Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.

    2008-01-01

    Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.

  16. 2007 Research and Engineering Annual Report

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data Rack; Intelligent Data Mining Capabilities as Applied to Integrated Vehicle Health Management; STARS Flight Demonstration No. 2 IP Data Formatter; Space-Based Telemetry and Range Safety (STARS) Flight Demonstration No. 2 Range User Flight Test Results; Aerodynamic Effects of the Quiet Spike(tm) on an F-15B Aircraft; F-15 Intelligent Flight Controls-Increased Destabilization Failure; F-15 Integrated Resilient Aircraft Control (IRAC) Improved Adaptive Controller; Aeroelastic Analysis of the Ikhana/Fire Pod System; Ikhana: Western States Fire Missions Utilizing the Ames Research Center Fire Sensor; Ikhana: Fiber-Optic Wing Shape Sensors; Ikhana: ARTS III; SOFIA Closed-Door Flutter Envelope Flight Testing; F-15B Quiet Spike(TM) Aeroservoelastic Flight Test Data Analysis; and UAVSAR Platform Precision Autopilot Flight Results.

  17. Use of nontraditional flight displays for the reduction of central visual overload in the cockpit

    NASA Technical Reports Server (NTRS)

    Weinstein, Lisa F.; Wickens, Christopher D.

    1992-01-01

    The use of nontraditional flight displays to reduce visual overload in the cockpit was investigated in a dual-task paradigm. Three flight displays (central, peripheral, and ecological) were used between subjects for the primary tasks, and the type of secondary task (object identification or motion judgment) and the presentation of the location of the task in the visual field (central or peripheral) were manipulated with groups. The two visual-spatial tasks were time-shared to study the possibility of a compatibility mapping between task type and task location. The ecological display was found to allow for the most efficient time-sharing.

  18. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  19. Hypermedia and intelligent tutoring applications in a mission operations environment

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Baker, Clifford

    1990-01-01

    Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).

  20. From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator

    NASA Technical Reports Server (NTRS)

    Cary, Ron

    1992-01-01

    The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.

  1. Evaluation of COTS SiGe, SOI, and Mixed Signal Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.

  2. Applied Meteorology Unit Quarterly Report. First Quarter FY-13

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The AMU team worked on five tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida. (2) Ms. Shafer continued work on the task for Vandenberg Air Force Base to create an automated tool that will help forecasters relate pressure gradients to peak wind values. (3) Dr. Huddleston began work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area. (3) Dr. Bauman began work on a severe weather forecast tool focused on east-central Florida. (4) Dr. Watson completed testing high-resolution model configurations for Wallops Flight Facility and the Eastern Range, and wrote the final report containing the AMU's recommendations for model configurations at both ranges.

  3. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  4. Project LASER: Learning about science, engineering, and research

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.

  5. Degradation of learned skills. Effectiveness of practice methods on simulated space flight skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Berge, W. A.

    1972-01-01

    Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from 1 to 6 months. The tasks were associated with a simulated launch through the orbit insertion flight phase of a space vehicle. The results showed that acceptable flight control performance was retained for 2 months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only 1 month, and exceeded an order of magnitude after 4 months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warmup (simulator practice) retraining methods were compared for the two tasks. Static rehearsal effectively countered procedural skill degradation, while some combination of dynamic warmup appeared necessary for flight control skill retention. It was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.

  6. Bibliography of Research Reports and Publications Issued by the Human Engineering Division, January 1987 - December 1993

    DTIC Science & Technology

    1994-03-01

    cues in an aircraft simulator. AMAA Flight Simulation Technologies Conference, 63- 70. Marasco , P. L., & Dereniak, E. L. (1993). Uncooled infrared...Space Center, TX: National Aeronautics and Space Administration. Task, H. L., Hartman, R. T., Marasco , P. L., & Zobel, A. R. (1993). Methods for...Aerospace VIIJ Conference, 2, 623-644. Marasco , P. L., & Dereniak, E. L. (1993). Uncooled infrared sensor performance. In B. F. Andresen, & F. D

  7. Armstrong Flight Research Center Research Technology and Engineering 2017

    NASA Technical Reports Server (NTRS)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  8. On-Orbit Constraints Test - Performing Pre-Flight Tests with Flight Hardware, Astronauts and Ground Support Equipment to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad, Michael E.

    2008-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  9. Influence of the helicopter environment on patient care capabilities: Flight crew perceptions

    NASA Technical Reports Server (NTRS)

    Meyers, K. Jeffrey; Rodenberg, Howard; Woodard, Daniel

    1994-01-01

    Flight crew perceptions of the effect of the rotary wing environment on patient care capabilities have not been subject to statistical analysis. We hypothesized that flight crew perceived significant difficulties in performing patient care tasks during air medical transport. A survey instrument was distributed to a convenience sample of flight crew members from twenty flight programs. Respondents were asked to compare the difficulty of performing patient care tasks in rotary wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position, and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type 111 sum of squares, and analysis of variance. Alpha was defined as p is less than or equal to .05. Fifty-five percent of programs (90 individuals) responded. All tasks were rated significantly more difficult in the rotary wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month, or aircraft used. We conclude that the performance of patient care tasks are perceived by air medical flight crew to be significantly more difficult during rotary wing air medical transport than in hospital settings.

  10. Influence of the helicopter environment on patient care capabilities: flight crew perceptions

    NASA Technical Reports Server (NTRS)

    Myers, K. J.; Rodenberg, H.; Woodard, D.

    1995-01-01

    INTRODUCTION: Flight crew perceptions of the effect of the rotary-wing environment on patient-care capabilities have not been subject to statistical analysis. We hypothesized that flight crew members perceived significant difficulties in performing patient-care tasks during air medical transport. METHODS: A survey was distributed to a convenience sample of flight crew members from 20 flight programs. Respondents were asked to compare the difficulty of performing patient-care tasks in rotary-wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type III sum of squares, and analysis of variance. Alpha was defined as p < 0.05. RESULTS: Fifty-five percent of programs (90 individuals) responded. All tasks were significantly rated more difficult in the rotary-wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month or aircraft used. CONCLUSIONS: We conclude that the performance of patient-care tasks are perceived by air medical flight crew to be significantly more difficult during rotary-wing air medical transport than in hospital settings.

  11. Dryden Flight Research Center Critical Chain Project Management Implementation

    NASA Technical Reports Server (NTRS)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  12. Special Aspects of Flight Dynamics of a Reusable Cryogenic Booster Stage

    NASA Astrophysics Data System (ADS)

    Klevanski, J.; Sippel, M.

    2005-02-01

    The semi-reusable Space Transportation System (STS) investigated in the German ASTRA research program consists of two reusable winged liquid fly-back booster stages called LFBB attached to the expendable Ariane 5 core at an upgraded technology level. The focus of the presented study is the in-depth research of the special aspects of flight dynamics of a LFBB in all flight phases and especially the investigation of the trimmablity, stability and controllability. The LFBB-layout is developed under consideration of tight structural and geometrical constraints of using European cryogenic rocket engine technology [1]. These design conditions result in the special LFBB layout features, such as its large diameter fuselage and a forward position of the air-breathing engines. The great variation in the location of the center of pressure for different Mach numbers caused by large diameter fuselage and a wide range of center of gravity position demand canards for trim and control purposes. The aerodynamic investigation loop performed by the DLR Institute of Aerodynamics and Flow Technology in Braunschweig [2],[3] and in the DLR Wind Tunnel in Cologne [6] allowed optimizing the key features of the aerodynamical layout, such as the canards shape and the wing profile. The main task of this study is the investigation of the longitudinal flight dynamics of the LFBB using the obtained aerodynamic data within a closed loop simulation taking into account rigid body equations of motion, control law and actuators by realistic assumption. This paper discusses the controllability of the whole STS during the ascent phase until separation including wind gust influence, guaranteeing of the structural constraints during re-entry phase and the trimmablity and controllability of the LFBB during the cruise return flight. The flight dynamics behavior of the LFBB is investigated for different center of gravity positions with reasonable margins.

  13. Hall Propulsion Technology Development, NASA Glenn Research Center: 50 kW Thruster Technology EXPRESS Ground/Space Correlation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Elliott, Fred

    2000-01-01

    It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.

  14. Measuring moment-to-moment pilot workload using synchronous presentations of secondary tasks in a motion-base trainer

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R.; Hart, Sandra G.; Shively, Robert J.

    1987-01-01

    A simulation was conducted to determine whether the sensitivity of secondary task measures of pilot workload could be improved by synchronizing their presentation to the occurrence of specific events or pilot actions. This synchronous method of presentation was compared to the more typical asynchronous method, where secondary task presentations are independent of pilot's flight-related activities. Twelve pilots flew low- and high-difficulty scenarios in a motion-base trainer with and without concurrent secondary tasks (e.g., choice reaction time and time production). The difficulty of each scenario was manipulated by the addition of 21 flight-related tasks superimposed on a standard approach and landing sequence. The insertion of the secondary tasks did not affect primary flight performance. However, secondary task performance did reflect workload differences between scenarios and among flight segments within scenarios, replicating the results of an earlier study in which the secondary tasks were presented asynchronously (Bortolussi et al., 1986).

  15. Transfer from Audiovisual Pretraining to a Continuous Perceptual Motor Task. Final Report for Period June 1972 - August 1973.

    ERIC Educational Resources Information Center

    Wood, Milton E.; Gerlach, Vernon S.

    A technique was developed for providing transfer-of-training from a form of audiovisual pretraining to an instrument flight task. The continuous flight task was broken into discrete categories of flight; each category combined an instrument configuration with a return-to-criterion aircraft control response. Three methods of sequencing categories…

  16. Knowledge-based system for flight information management. Thesis

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1990-01-01

    The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment.

  17. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  18. Sensorimotor adaptations to microgravity in humans.

    PubMed

    Edgerton, V R; McCall, G E; Hodgson, J A; Gotto, J; Goulet, C; Fleischmann, K; Roy, R R

    2001-09-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  19. Sensorimotor adaptations to microgravity in humans

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.

    2001-01-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  20. Introduction: Prediction of F-16XL Flight Flow Physics

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    2009-01-01

    This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.

  1. Multi-team dynamics and distributed expertise in imission operations.

    PubMed

    Caldwell, Barrett S

    2005-06-01

    The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.

  2. A psychophysiological assessment of operator workload during simulated flight missions

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1987-01-01

    The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.

  3. Aerothermodynamics of expert ballistic vehicle at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Kharitonov, A. M.; Adamov, N. P.; Chirkashenko, V. F.; Mazhul, I. I.; Shpak, S. I.; Shiplyuk, A. N.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2012-01-01

    The European EXPErimental Re-entry Test bed (EXPERT) vehicle is intended for studying various basic phenomena, such as the boundary-layer transition on blunted bodies, real gas effects during shock wave/boundary layer interaction, and effect of surface catalycity. Another task is to develop methods for recalculating the results of windtunnel experiments to flight conditions. The EXPERT program implies large-scale preflight research, in particular, various calculations with the use of advanced numerical methods, experimental studies of the models in various wind tunnels, and comparative analysis of data obtained for possible extrapolation of data to in-flight conditions. The experimental studies are performed in various aerodynamic centers of Europe and Russia under contracts with ESA-ESTEC. In particular, extensive experiments are performed at the Von Karman Institute for Fluid Dynamics (VKI, Belgium) and also at the DLR aerospace center in Germany. At ITAM SB RAS, the experimental studies of the EXPERT model characteristic were performed under ISTC Projects 2109, 3151, and 3550, in the T-313 supersonic wind tunnel and AT-303 hypersonic wind tunnel.

  4. Electronic Handbooks Simplify Process Management

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Getting a multitude of people to work together to manage processes across many organizations for example, flight projects, research, technologies, or data centers and others is not an easy task. Just ask Dr. Barry E. Jacobs, a research computer scientist at Goddard Space Flight Center. He helped NASA develop a process management solution that provided documenting tools for process developers and participants to help them quickly learn, adapt, test, and teach their views. Some of these tools included editable files for subprocess descriptions, document descriptions, role guidelines, manager worksheets, and references. First utilized for NASA's Headquarters Directives Management process, the approach led to the invention of a concept called the Electronic Handbook (EHB). This EHB concept was successfully applied to NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, among other NASA programs. Several Federal agencies showed interest in the concept, so Jacobs and his team visited these agencies to show them how their specific processes could be managed by the methodology, as well as to create mockup versions of the EHBs.

  5. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  6. Development of flight experiment task requirements. Volume 2: Technical Report. Part 1: Program report and Appendices A-G

    NASA Technical Reports Server (NTRS)

    Hatterick, G. R.

    1972-01-01

    Activities are documented of the study to determine skills required of on-orbit crew personnel of the space shuttle. The material is presented in four sections that include: (1) methodology for identifying flight experiment task-skill requirements, (2) task-skill analysis of selected flight experiments, (3) study results and conclusions, and (4) new technology.

  7. Ares I-X Flight Data Evaluation: Executive Overview

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Waits, David A.; Lewis, Donny L.; Richards, James S.; Coates, R. H., Jr.; Cruit, Wendy D.; Bolte, Elizabeth J.; Bangham, Michal E.; Askins, Bruce R.; Trausch, Ann N.

    2011-01-01

    NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files.

  8. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  9. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  10. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept represents a typical configuration required to conduct operations and tasks in Earth orbit. The Space Tug program was cancelled and did not become a reality.

  11. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  12. A testbed for the evaluation of computer aids for enroute flight path planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.

    1990-01-01

    A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.

  13. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.

  14. GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.

  15. STS-65 crewmembers don LES equipment for MAIL Bldg 9NE egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Attired in partial pressure launch and entry suits (LESs), two mission specialists and a payload specialist for the STS-65 International Microgravity Laboratory 2 (IML-2) mission, prepare to rehearse emergency escape procedures and other flight tasks. Technicians help crewmembers (left to right) Mission Specialist (MS) Leroy Chiao, MS Donald A. Thomas, and Japanese Payload Specialist Chiaki Mukai don LES equipment. Mukai represents Japan's National Space Development Agency (NASDA). In addition to the emergency egress training, the seven crewmembers also simulated their duties for launch and entry phases of the scheduled 13-day flight aboard Columbia, Orbiter Vehicle (OV) 102. The training session was held in Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  16. Human Factors in Training

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Byrne, Vicky; Arsintescu, Lucia; Connell, Erin

    2010-01-01

    Future space missions will be significantly longer than current shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. By researching established training principles, examining future needs, and by using current practices in space flight training as test beds, both in Flight Controller and Crew Medical domains, this research project is mitigating program risks and generating templates and requirements to meet future training needs. Training efforts in Fiscal Year 09 (FY09) strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center (MCC) operations. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; and 3) Risk associated with reduced safety and efficiency due to poor human factors design.

  17. Human Factors in Training

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Byrne, Vicky; Arsintescu, Lucia; Connell, Erin; Sandor, Aniko

    2009-01-01

    Future space missions will be significantly longer than current shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. By researching established training principles, examining future needs, and by using current practices in space flight training as test beds, both in Flight Controller and Crew Medical domains, this research project is mitigating program risks and generating templates and requirements to meet future training needs. Training efforts in Fiscal Year 08 (FY08) strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center (MCC) operations. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: (1) Risk associated with poor task design (2) Risk of error due to inadequate information (3) Risk associated with reduced safety and efficiency due to poor human factors design

  18. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  19. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  20. [Development of fixed-base full task space flight training simulator].

    PubMed

    Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng

    2003-01-01

    Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.

  1. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  2. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  3. Ares I-X Flight Evaluation Tasks in Support of Ares I Development

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Coates, Ralph H., III; Cruit, Wendy D.; Ramsey, Matthew N.

    2010-01-01

    NASA s Constellation Program successfully launched the Ares I-X Flight Test Vehicle on October 28, 2009. The Ares I-X flight was a development flight test that offered a unique opportunity for early engineering data to impact the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office established a set of 33 flight evaluation tasks to correlate fight results with prospective design assumptions and models. Included within these tasks were direct comparisons of flight data with pre-flight predictions and post-flight assessments utilizing models and modeling techniques being applied to design and develop Ares I. A discussion of the similarities and differences in those comparisons and the need for discipline-level model updates based upon those comparisons form the substance of this paper. The benefits of development flight testing were made evident by implementing these tasks that used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. The areas in which partial validation from the flight test was most significant included flight control system algorithms to predict liftoff clearance, ascent, and stage separation; structural models from rollout to separation; thermal models that have been updated based on these data; pyroshock attenuation; and the ability to predict complex flow fields during time-varying conditions including plume interactions.

  4. Atmospheric environment for Space Shuttle (STS-5) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1983-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

  5. Degradation of learned skills: Effectiveness of practice methods on visual approach and landing skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Zaitzeff, L. P.; Berge, W. A.

    1972-01-01

    Flight control and procedural task skill degradation, and the effectiveness of retraining methods were evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Fifteen experienced pilots were trained and then tested after 4 months either without the benefits of practice or with static rehearsal, dynamic rehearsal or with dynamic warmup practice. Performance on both the flight control and procedure tasks degraded significantly after 4 months. The rehearsal methods effectively countered procedure task skill degradation, while dynamic rehearsal or a combination of static rehearsal and dynamic warmup practice was required for the flight control tasks. The quality of the retraining methods appeared to be primarily dependent on the efficiency of visual cue reinforcement.

  6. NASA's 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off to begin its ferry flight back to the Kennedy Space Center in Florida

    NASA Image and Video Library

    2005-08-19

    NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  7. Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model

    NASA Technical Reports Server (NTRS)

    Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.

    2002-01-01

    A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.

  8. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  9. Using SFOC to fly the Magellan Venus mapping mission

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

    1993-01-01

    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

  10. Sit Up Straight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    BioMetric Systems has an exclusive license to the Posture Video Analysis Tool (PVAT) developed at Johnson Space Center. PVAT uses videos from Space Shuttle flights to identify limiting posture and other human factors in the workplace that could be limiting. The software also provides data that recommends appropriate postures for certain tasks and safe duration for potentially harmful positions. BioMetric Systems has further developed PVAT for use by hospitals, physical rehabilitation facilities, insurance companies, sports medicine clinics, oil companies, manufacturers, and the military.

  11. Support of the Laboratory for Terrestrial Physics for Dynamics of the Solid Earth (DOSE)

    NASA Technical Reports Server (NTRS)

    Vandenberg, Nancy R.; Ma, C. (Technical Monitor)

    2001-01-01

    This final report summarizes the accomplishments during the contract period. Under the contract NVI, Inc. provided support to the VLBI group at NASA's Goddard Space Flight Center. The contract covered a period of approximately eight years during which geodetic and astrometric VLBI evolved through several major changes. This report is divided into four sections which correspond to major task areas in the contract: A) Coordination and Scheduling, B) Field System, C) Station Support, and D) Analysis and Research and Development.

  12. Support for the Laboratory for Terrestrial Physics for Dynamics of the Solid Earth (DOSE)

    NASA Technical Reports Server (NTRS)

    Ma, C. (Technical Monitor)

    2001-01-01

    This final report summarizes the accomplishments during the contract period. Under the contract NVI, Inc. provided support to the VLBI group at NASA's Goddard Space Flight Center. The contract covered a period of approximately eight years during which geodetic and astrometric VLBI evolved through several major changes. This report is divided into four sections which correspond to major task areas in the contract: A) Coordination and Scheduling, B) Field System, C) Station Support, and D) Analysis and Research and Development.

  13. Helicopter pilots' views of air traffic controller responsibilities: a mismatch.

    PubMed

    Martin, Daniel; Nixon, Jim

    2018-02-21

    Controllers and pilots must work together to ensure safe and efficient helicopter flight within the London control zone. Subjective ratings of pilot perception of controller responsibility for five key flight tasks were obtained from thirty helicopter pilots. Three types of airspace were investigated. Results indicate that there is variation in pilot understanding of controller responsibility compared to the formal regulations that define controller responsibility. Significant differences in the perception of controller responsibility were found for the task of aircraft separation in class D airspace and along helicopter routes. Analysis of the patterns of response suggests that task type rather than the airspace type may be the key factor. Results are framed using the concept of a shared mental model. This research demonstrates that pilots flying in complex London airspace have an expectation of controller responsibility for certain flight tasks, in certain airspace types that is not supported by aviation regulation. Practitioner Summary: The responsibility for tasks during flight varies according to the flight rules used and airspace type. Helicopter pilots may attribute responsibility to controllers for tasks when controllers have no responsibility as defined by regulation. This variation between pilot perceptions of controller responsibility could affect safety within the London control zone.

  14. X-48B Phase 1 Flight Maneuver Database and ICP Airspace Constraint Analysis

    NASA Technical Reports Server (NTRS)

    Fast, Peter Alan

    2010-01-01

    The work preformed during the Summer 2010 by Peter Fast. The main tasks assigned were to update and improve the X-48 Flight Maneuver Database and conduct an Airspace Constraint Analysis for the Remotely Operated Aircraft Area used to flight test Unmanned Arial Vehicles. The final task was to develop and demonstrate a working knowledge of flight control theory.

  15. Analytical display design for flight tasks conducted under instrument meteorological conditions. [human factors engineering of pilot performance for display device design in instrument landing systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.

  16. GenSAA: A tool for advancing satellite monitoring with graphical expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  17. ISS-12A.1 Orbit 1 Flight Control Team in FCR-1 with Flight Director Derek Hassmann

    NASA Image and Video Library

    2006-12-15

    JSC2006-E-54411 (15 Dec. 2006) --- The members of the STS-116/12A.1 ISS Orbit 1 flight control team pose for a group portrait in the station flight control room of Houston's Mission Control Center (MCC). Flight director Derek Hassman (center right) holds the STS-116 mission logo. Astronaut Terry W. Virts Jr., spacecraft communicator (CAPCOM), is at center. PHALCON flight controller Scott Stover (center left) holds the P5 truss power reconfiguration logo.

  18. NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 4

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy arrows show control of subordinate tasks. The aircraft description consists of all the information, input and derived, that denes the aircraft. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in a previous case or previous job. The aircraft description information is available to all tasks and all solutions. The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed), as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor radius can be sized. Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted so the fuel required for the mission equals the takeoff fuel weight. The mission iteration is on fuel weight or energy. Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for anti-torque or auxiliary thrust rotor sizing. The flight condition parameters include gross weight and useful load. For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available. A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude.

  19. KSC-2013-1097

    NASA Image and Video Library

    2013-01-17

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, Jacobs Technology General Manager Andy Allen speaks at a town hall meeting providing attendees an opportunity to learn about the Test and Operations Support Contract, or TOSC, hiring process and to introduce the organization's management team. NASA recently awarded its TOSC contract to Jacobs Technology Inc. of Tullahoma, Tenn. Jacobs will provide overall management and implementation of ground systems capabilities, flight hardware processing and launch operations at Kennedy. These tasks will support the International Space Station, Ground Systems Development and Operations, and the Space Launch System, Orion Multi-Purpose Crew Vehicle and Launch Services programs. For more information, visit http://www.nasa.gov/centers/kennedy/news/tosc_awarded.html Photo credit: NASA/Dimitri Gerondidakis

  20. Onboard Systems Record Unique Videos of Space Missions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

  1. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  2. Aircrew perceived stress: examining crew performance, crew position and captains personality.

    PubMed

    Bowles, S; Ursin, H; Picano, J

    2000-11-01

    This study was conducted at NASA Ames Research Center as a part of a larger research project assessing the impact of captain's personality on crew performance and perceived stress in 24 air transport crews (5). Three different personality types for captains were classified based on a previous cluster analysis (3). Crews were comprised of three crewmembers: captain, first officer, and second officer/flight engineer. A total of 72 pilots completed a 1.5-d full-mission simulation of airline operations including emergency situations in the Ames Manned Vehicle System Research Facility B-727 simulator. Crewmembers were tested for perceived stress on four dimensions of the NASA Task Load Index after each of five flight legs. Crews were divided into three groups based on rankings from combined error and rating scores. High performance crews (who committed the least errors in flight) reported experiencing less stress in simulated flight than either low or medium crews. When comparing crew positions for perceived stress over all the simulated flights no significant differences were found. However, the crews led by the "Right Stuff" (e.g., active, warm, confident, competitive, and preferring excellence and challenges) personality type captains typically reported less stress than crewmembers led by other personality types.

  3. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  4. Orion Capsule Handling Qualities for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Tigges, Michael A.; Bihari, Brian D.; Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Law, Howard G.; Johnson, Wyatt; Bailey, Randall E.; Jackson, Bruce

    2011-01-01

    Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects.

  5. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.

  6. MSFC personnel management tasks: Recruitment and orientation of new employees

    NASA Technical Reports Server (NTRS)

    Brindley, T. A.

    1980-01-01

    In order to encourage highly motivated young students to learn about NASA and consider it for a career, a formal program is to be initiated whereby selected students can work on a voluntary basis at Marshall Space Flight Center (MSFC). The first task was to develop the working plan and procedures for this program, called Student Volunteer Service Program, in the writing of MSFC official guidelines, the Marshall Management Instruction (the MMI) which is a binding document that defines policy and establishes procedures and guidelines. Particular considerations written into the MMI after numerous consultations, interviews, and discussions about a satisfactory policy, include: arrangements to be made between the student, the school authorities, and concerned MSFC employees; management of the work assignments; and procedures for the student's welfare and safety. The second task was the development of a recruitment brochure for the attraction of new employees, especially scientists and engineers. The third task assigned was to develop a plan called Orientation of New Employees.

  7. Pilots strategically compensate for display enlargements in surveillance and flight control tasks.

    PubMed

    Stelzer, Emily Muthard; Wickens, Christopher D

    2006-01-01

    Experiments were conducted to assess the impact of display size on flight control, airspace surveillance, and goal-directed target search. Research of 3-D displays has shown that display scale compression influences the perception of flight path deviation, though less is known about the causes that drive this effect. In addition, research on attention-based tasks has shown that information displaced to significant eccentricities can amplify effort, but it is unclear whether the effect generates a performance difference in complex displays. In Experiment 1, 16 pilots completed a low-fidelity flight control task under single- and dual-axis control. In Experiment 2, the control task from Experiment 1 was scaled up to a more realistic flight environment, and pilots performed hazard surveillance and target search tasks. For flight control, pilots exhibited less path error and greater stick activity with a large display, which was attributed both to greater enhanced resolution and to the fact that larger depictions of error lead to greater urgency in correcting deviations. Size did not affect hazard surveillance or search, as pilots were adaptive in altering scanning patterns in response to the enlargement of the displays. Although pilots were adaptive to display changes in search and surveillance, display size reduction diminished estimates of flight path deviation and control performance because of lowered resolution and control urgency. Care should be taken when manipulating display size, as size reduction can diminish control performance.

  8. Space transportation nodes assumptions and requirements: Lunar base systems study task 2.1

    NASA Technical Reports Server (NTRS)

    Kahn, Taher Ali; Simonds, Charles H.; Stump, William R.

    1988-01-01

    The Space Transportation Nodes Assumptions and Requirements task was performed as part of the Advanced Space Transportation Support Contract, a NASA Johnson Space Center (JSC) study intended to provide planning for a Lunar Base near the year 2000. The original task statement has been revised to satisfy the following queries: (1) What vehicles are to be processed at the transportation node; (2) What is the flow of activities involved in a vehicle passing through the node; and (3) What node support resources are necessary to support a lunar scenario traffic model composed of a mix of vehicles in an active flight schedule. The Lunar Base Systems Study is concentrating on the initial years of the Phase 2 Lunar Base Scenario. The study will develop the first five years of that phase in order to define the transportation and surface systems (including mass, volumes, power requirements, and designs).

  9. STS-119 Flight Control Team in WFCR - Orbit 3 - Flight Director Bryan Lunney

    NASA Image and Video Library

    2009-03-24

    JSC2009-E-061542 (24 March 2009) --- The members of the STS-119 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center. Flight director Bryan Lunney (center) near the front.

  10. STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.

  11. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Astrophysics Data System (ADS)

    He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.

    2010-12-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft’s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.

  12. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2010-01-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.

  13. A Flexible Evolvable Architecture for Constellation Mission Systems User Applications

    NASA Technical Reports Server (NTRS)

    Trimble, Jay P.; Crocker, Alan R.

    2008-01-01

    While simulating a complex set of repair tasks to be performed by EVA crewmembers on an upcoming mission, flight controllers and astronauts determine that the repair will take much longer than originally anticipated. All equipment in the vicinity of the worksite must be powered off to maintain a safe environment for the astronauts. Because heater power will be unavailable, several critical components will now be at risk of freezing and permanent damage. If an impending thermal violation is detected, Mission Control will have very limited time to react. Therefore, flight controllers must not only modify their procedures to account for these risks, they must also incorporate into their displays outputs from thermal models, alternate temperature measurements, new alarm limits, and emergency power-on commands to enable the detection and response to freezing conditions. Current software for mission control systems makes scenarios like this difficult to address. Given the time frame for modifying software, operations teams are left with labor-intensive operational workarounds as their only options. NASA Ames Research Center (ARC) and NASA Johnson Space Center (JSC) are collaborating on the development of a flexible software system for mission operations that will enable greater user flexibility than has been available to date. Using composable software, end users in the scenario described above could recompose procedures and command and control displays to allow flight controllers to monitor temperature measurements, identify time-critical conditions, and execute the procedures required to respond to these conditions before flight hardware is permanently damaged.

  14. An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    NASA Technical Reports Server (NTRS)

    Baron, S.; Feehrer, C.

    1985-01-01

    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research.

  15. Measuring Pilot Workload in a Moving-base Simulator. Part 2: Building Levels of Workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, B. H.; Hart, S. G.; Bortolussi, M. R.; Shively, R. J.; Kantowitz, S. C.

    1984-01-01

    Pilot behavior in flight simulators often use a secondary task as an index of workload. His routine to regard flying as the primary task and some less complex task as the secondary task. While this assumption is quite reasonable for most secondary tasks used to study mental workload in aircraft, the treatment of flying a simulator through some carefully crafted flight scenario as a unitary task is less justified. The present research acknowledges that total mental workload depends upon the specific nature of the sub-tasks that a pilot must complete as a first approximation, flight tasks were divided into three levels of complexity. The simplest level (called the Base Level) requires elementary maneuvers that do not utilize all the degrees of freedom of which an aircraft, or a moving-base simulator; is capable. The second level (called the Paired Level) requires the pilot to simultaneously execute two Base Level tasks. The third level (called the Complex Level) imposes three simultaneous constraints upon the pilot.

  16. STS-125 Flight Control Team in WFCR - Orbit 3 - Flight Director Paul Dye

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120846 (20 May 2009) --- The members of the STS-125 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Paul Dye (center left) is visible on the front row.

  17. Single pilot scanning behavior in simulated instrument flight

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1979-01-01

    A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.

  18. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  19. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  20. Interchangeable end effector tools utilized on the PFMA

    NASA Technical Reports Server (NTRS)

    Cody, Joe; Carroll, John; Crow, George; Gierow, Paul; Littles, Jay; Maness, Michael; Morrison, Jim

    1992-01-01

    An instrumented task board, used for measuring forces applied by the Protoflight Manipulator Arm (PFMA) to the task board, was fabricated and delivered to Marshall Space Flight Center. SRS Technologies phased out the existing IBM compatible data acquisition system, used with a instrumented task board, and integrated the force measuring electronic hardware in with the Macintosh II data acquisition system. The purpose of this change was to acquire all data with the same time tag, allowing easier and more accurate data reduction in addition to real-time graphics. A three-dimensional optical position sensing system for determining the location of the PFMA's end effect or in reference to the center of the instrumented task board was also designed and delivered under. An improved task board was fabricated which included an improved instrumented beam design. The modified design of the task board improved the force/torque measurement system by increasing the sensitivity, reliability, load range and ease of maintenance. A calibration panel for the optical position system was also designed and fabricated. The calibration method developed for the position sensors enhanced the performance of the sensors as well as simplified the installation and calibration procedures required. The modifications made under this effort expanded the capabilities of the task board system. The system developed determines the arm's position relative to the task board and measures the signals to the joints resulting from the operator's control signals in addition to the task board forces. The software and hardware required to calculate and record the position of the PFMA during the performance of tasks with the instrumented task board were defined, designed and delivered to MSFC. PFMA joint input signals can be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to realtime force and position sensor data presentation.

  1. Interchangeable end effector tools utilized on the PFMA

    NASA Astrophysics Data System (ADS)

    Cody, Joe; Carroll, John; Crow, George; Gierow, Paul; Littles, Jay; Maness, Michael; Morrison, Jim

    1992-02-01

    An instrumented task board, used for measuring forces applied by the Protoflight Manipulator Arm (PFMA) to the task board, was fabricated and delivered to Marshall Space Flight Center. SRS Technologies phased out the existing IBM compatible data acquisition system, used with a instrumented task board, and integrated the force measuring electronic hardware in with the Macintosh II data acquisition system. The purpose of this change was to acquire all data with the same time tag, allowing easier and more accurate data reduction in addition to real-time graphics. A three-dimensional optical position sensing system for determining the location of the PFMA's end effect or in reference to the center of the instrumented task board was also designed and delivered under. An improved task board was fabricated which included an improved instrumented beam design. The modified design of the task board improved the force/torque measurement system by increasing the sensitivity, reliability, load range and ease of maintenance. A calibration panel for the optical position system was also designed and fabricated. The calibration method developed for the position sensors enhanced the performance of the sensors as well as simplified the installation and calibration procedures required. The modifications made under this effort expanded the capabilities of the task board system. The system developed determines the arm's position relative to the task board and measures the signals to the joints resulting from the operator's control signals in addition to the task board forces. The software and hardware required to calculate and record the position of the PFMA during the performance of tasks with the instrumented task board were defined, designed and delivered to MSFC. PFMA joint input signals can be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to realtime force and position sensor data presentation.

  2. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  3. Computer aiding for low-altitude helicopter flight

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    1991-01-01

    A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  4. Development of automatic and manual flight director landing systems for the XV-15 tilt rotor aircraft in helicopter mode

    NASA Technical Reports Server (NTRS)

    Hofmann, L. G.; Hoh, R. H.; Jewell, W. F.; Teper, G. L.; Patel, P. D.

    1978-01-01

    The objective of this effort is to determine IFR approach path and touchdown dispersions for manual and automatic XV-15 tilt rotor landings, and to develop missed approach criteria. Only helicopter mode XV-15 operation is considered. The analysis and design sections develop the automatic and flight director guidance equations for decelerating curved and straight-in approaches into a typical VTOL landing site equipped with an MLS navigation aid. These system designs satisfy all known pilot-centered, guidance and control requirements for this flying task. Performance data, obtained from nonstationary covariance propagation dispersion analysis for the system, are used to develop the approach monitoring criteria. The autoland and flight director guidance equations are programmed for the VSTOLAND 1819B digital computer. The system design dispersion data developed through analysis and the 1819B digital computer program are verified and refined using the fixed-base, man-in-the-loop XV-15 VSTOLAND simulation.

  5. Improving pilot mental workload evaluation with combined measures.

    PubMed

    Wanyan, Xiaoru; Zhuang, Damin; Zhang, Huan

    2014-01-01

    Behavioral performance, subjective assessment based on NASA Task Load Index (NASA-TLX), as well as physiological measures indexed by electrocardiograph (ECG), event-related potential (ERP), and eye tracking data were used to assess the mental workload (MW) related to flight tasks. Flight simulation tasks were carried out by 12 healthy participants under different MW conditions. The MW conditions were manipulated by setting the quantity of flight indicators presented on the head-up display (HUD) in the cruise phase. In this experiment, the behavioral performance and NASA-TLX could reflect the changes of MW ideally. For physiological measures, the indices of heart rate variability (HRV), P3a, pupil diameter and eyelid opening were verified to be sensitive to MW changes. Our findings can be applied to the comprehensive evaluation of MW during flight tasks and the further quantitative classification.

  6. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT) provides an immersive 3D environment similar to the one experienced at the VRLab crew training facility at the NASA Johnson Space Center. VRT bridges the gap by allowing crew members to experience an interactive, 3D environment to reinforce skills already learned and to explore new work sites and repair procedures outside the Station.

  7. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization

    PubMed Central

    Kress, Daniel; van Bokhorst, Evelien; Lentink, David

    2015-01-01

    Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones. PMID:26107413

  8. PTS performance by flight- and control-group macaques

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.; Gulledge, J. P.; Shlyk, G. G.; Vasilieva, O. N.

    2000-01-01

    A total of 25 young monkeys (Macaca mulatta) were trained with the Psychomotor Test System, a package of software tasks and computer hardware developed for spaceflight research with nonhuman primates. Two flight monkeys and two control monkeys were selected from this pool and performed a psychomotor task before and after the Bion 11 flight or a ground-control period. Monkeys from both groups showed significant disruption in performance after the 14-day flight or simulation (plus one anesthetized day of biopsies and other tests), and this disruption appeared to be magnified for the flight animal.

  9. STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Courtney McMillan

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052979 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Courtenay McMillan (center) stands on the front row.

  10. Refurbishment of one-person regenerative air revitalization system

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.

    1989-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.

  11. RB-ARD: A proof of concept rule-based abort

    NASA Technical Reports Server (NTRS)

    Smith, Richard; Marinuzzi, John

    1987-01-01

    The Abort Region Determinator (ARD) is a console program in the space shuttle mission control center. During shuttle ascent, the Flight Dynamics Officer (FDO) uses the ARD to determine the possible abort modes and make abort calls for the crew. The goal of the Rule-based Abort region Determinator (RB/ARD) project was to test the concept of providing an onboard ARD for the shuttle or an automated ARD for the mission control center (MCC). A proof of concept rule-based system was developed on a LMI Lambda computer using PICON, a knowdedge-based system shell. Knowdedge derived from documented flight rules and ARD operation procedures was coded in PICON rules. These rules, in conjunction with modules of conventional code, enable the RB-ARD to carry out key parts of the ARD task. Current capabilities of the RB-ARD include: continuous updating of the available abort mode, recognition of a limited number of main engine faults and recommendation of safing actions. Safing actions recommended by the RB-ARD concern the Space Shuttle Main Engine (SSME) limit shutdown system and powerdown of the SSME Ac buses.

  12. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  13. An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Aiken, E. W.

    1982-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.

  14. NASA's Space Shuttle Discovery is raised to allow ample clearance for the modified 747 Shuttle Carrier Aircraft to position underneath for attachment

    NASA Image and Video Library

    2005-08-18

    NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  15. Visitor center flight room, detail of twin structural piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Visitor center flight room, detail of twin structural piers at northeast corner supporting flight room dome - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC

  16. The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.; hide

    2011-01-01

    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  17. Cognitive models of pilot categorization and prioritization of flight-deck information

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon E.; Ricks, Wendell R.

    1995-01-01

    In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation.

  18. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  19. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  20. Model-based software engineering for an optical navigation system for spacecraft

    NASA Astrophysics Data System (ADS)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2017-09-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  1. Model-based software engineering for an optical navigation system for spacecraft

    NASA Astrophysics Data System (ADS)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2018-06-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  2. Thoughts in flight: automation use and pilots' task-related and task-unrelated thought.

    PubMed

    Casner, Stephen M; Schooler, Jonathan W

    2014-05-01

    The objective was to examine the relationship between cockpit automation use and task-related and task-unrelated thought among airline pilots. Studies find that cockpit automation can sometimes relieve pilots of tedious control tasks and afford them more time to think ahead. Paradoxically, automation has also been shown to lead to lesser awareness. These results prompt the question of what pilots think about while using automation. A total of 18 airline pilots flew a Boeing 747-400 simulator while we recorded which of two levels of automation they used. As they worked, pilots were verbally probed about what they were thinking. Pilots were asked to categorize their thoughts as pertaining to (a) a specific task at hand, (b) higher-level flight-related thoughts (e.g.,planning ahead), or (c) thoughts unrelated to the flight. Pilots' performance was also measured. Pilots reported a smaller percentage of task-at-hand thoughts (27% vs. 50%) and a greater percentage of higher-level flight-related thoughts (56% vs. 29%) when using the higher level of automation. However, when all was going according to plan, using either level of automation, pilots also reported a higher percentage of task-unrelated thoughts (21%) than they did when in the midst of an unsuccessful performance (7%). Task-unrelated thoughts peaked at 25% when pilots were not interacting with the automation. Although cockpit automation may provide pilots with more time to think, it may encourage pilots to reinvest only some of this mental free time in thinking flight-related thoughts. This research informs the design of human-automation systems that more meaningfully engage the human operator.

  3. Simulator Investigation of Pilot Aids for Helicopter Terminal Area Operations with One Engine Inoperative

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.

  4. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  5. KSC-2013-1098

    NASA Image and Video Library

    2013-01-17

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, Jacobs Technology Deputy General Manager Lorna Kenna speaks at a town hall meeting providing attendees an opportunity to learn about the Test and Operations Support Contract, or TOSC, hiring process and to introduce the organization's management team. NASA recently awarded its TOSC contract to Jacobs Technology Inc. of Tullahoma, Tenn. Jacobs will provide overall management and implementation of ground systems capabilities, flight hardware processing and launch operations at Kennedy. These tasks will support the International Space Station, Ground Systems Development and Operations, and the Space Launch System, Orion Multi-Purpose Crew Vehicle and Launch Services programs. For more information, visit http://www.nasa.gov/centers/kennedy/news/tosc_awarded.html Photo credit: NASA/Dimitri Gerondidakis

  6. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-07-30

    S71-41836 (2 Aug. 1971) --- Scientist-astronaut Joseph P. Allen, left, directs the attention of astronaut Richard F. Gordon Jr., to an occurrence out of view at right in the Mission Control Center's (MCC) Mission Operations Control Room (MOCR), while Dr. Donald K. (Deke) Slayton, on right with back to camera, views activity of Apollo 15 on a large screen at the front of the MOCR. Astronauts David R. Scott and James B. Irwin are seen on the screen performing tasks of the mission's third extravehicular activity (EVA), on Aug. 2, 1971. Dr. Slayton is director of Flight Crew Operations, NASA-MSC; Gordon is Apollo 15 backup commander; and Dr. Allen is an Apollo 15 spacecraft communicator.

  7. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  8. Pilot GPS LORAN Receiver Programming Performance A Laboratory Evaluation

    DOT National Transportation Integrated Search

    1994-02-01

    This study was designed to explore GPS/LORAN receiver programming performance under : simulated flight conditions. The programming task consisted of entering, editing, and : verifying a four-waypoint flight plan. The task demands were manipulated by ...

  9. Surrounded by work platforms, the full-scale Orion AFT crew module (center) is undergoing preparations for the first flight test of Orion's launch abort system.

    NASA Image and Video Library

    2008-05-20

    Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system.

  10. STS-124/1J ISS Orbit 3 flight control team portrait

    NASA Image and Video Library

    2008-06-09

    JSC2008-E-045777 (9 June 2008) --- The members of the STS-124/1J ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson stands in the center foreground.

  11. STS-132 Flight Control Team in WFCR - Orbit 1

    NASA Image and Video Library

    2010-05-22

    JSC2010-E-086698 (22 May 2010) --- The members of the STS-132 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin (center) is visible on the front row.

  12. Astronaut Voss Works in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  13. Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshall Space Flight Center. Executive summary

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.

    1982-01-01

    The combination of human and machine capabilities into an integrated engineering system which is complex and interactive interdisciplinary undertaking is discussed. Human controlled remote systems referred to as teleoperators, are reviewed. The human factors requirements for remotely manned systems are identified. The data were developed in three principal teleoperator laboratories and the visual, manipulator and mobility laboratories are described. Three major sections are identified: (1) remote system components, (2) human operator considerations; and (3) teleoperator system simulation and concept verification.

  14. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  15. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    NASA Technical Reports Server (NTRS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS). GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  16. Support of the Laboratory for Terrestrial Physics for Dynamics of the Solid Earth (DOSE)

    NASA Technical Reports Server (NTRS)

    Vandenberg, N. R.; Ma, C. (Technical Monitor)

    2002-01-01

    This final report summarizes the accomplishments during the contract period. Under the contract Nepal, Inc. provided support to the VLBI group at NASA's Goddard Space Flight Center. The contract covered a period of approximately eight years during high geodetic and astrometric VLBI evolved through several major changes. This report is divided into five sections that correspond to major task areas in the contract: A) Coordination rid Scheduling, B) Field System, CN Station Support, D) Analysis and Research and Development, and E) Computer Support.

  17. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    NASA Technical Reports Server (NTRS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  18. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  19. Mower/Litter Removal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Burg Corporation needed to get more power out of the suction system in their Vac 'N Bag grass mower/litter remover. The president submitted a problem statement to the Marshall Space Flight Center Technology Transfer Office, which devised a way to guide heavier items of trash to a point where suction was greatest, and made changes to the impeller and the exhaust port, based on rocket propulsion technology. The improved system is used by highway departments, city governments and park authorities, reducing work time by combining the tasks of grass cutting and vacuuming trash and grass clippings.

  20. Source Contaminant Control for the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Howard, David

    2015-01-01

    The Logistics Reduction and Repurposing project includes the heat melt compactor (HMC), a device that compacts waste containing plastic into a tile that will minimize volume, and may be used as materials for radiation shielding. During the process, a small purge gas stream is directed through the HMC chamber to transport out gasses and humidity released from the process. NASA Marshall Space Flight Center is tasked with developing and delivering a contamination control system to clean the purge gas prior to exhausting it back into the cabin for crew inhalation.

  1. High Velocity Jet Noise Source Location and Reduction. Task 2. Theoretical Developments and Basic Experiments.

    DTIC Science & Technology

    1978-05-01

    Measured Flight Effect for J85/ Aerotrain Conical Nozzle, 400 ft Sideline. 360 4-149. Comparison of Predicted and Measured Flight Velocity Exponent m for J85... Aerotrain Conical Nozzle. 362 4-150. Comparison of Measured and Predicted Flight Noise Spectra for J85/ Aerotrain Conical Nozzle, V = 2200 fps, 400 ft...Bertin Aerotrain simulated flight noise results which were obtained by Clapper, et al.( 72) in Task 4 of this program. Fig- ure 4-148 shows the

  2. Definition of ground test for verification of large space structure control

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    1994-01-01

    Under this contract, the Large Space Structure Ground Test Verification (LSSGTV) Facility at the George C. Marshall Space Flight Center (MSFC) was developed. Planning in coordination with NASA was finalized and implemented. The contract was modified and extended with several increments of funding to procure additional hardware and to continue support for the LSSGTV facility. Additional tasks were defined for the performance of studies in the dynamics, control and simulation of tethered satellites. When the LSSGTV facility development task was completed, support and enhancement activities were funded through a new competitive contract won by LCD. All work related to LSSGTV performed under NAS8-35835 has been completed and documented. No further discussion of these activities will appear in this report. This report summarizes the tether dynamics and control studies performed.

  3. RLV Turbine Performance Optimization

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    A task was developed at NASA/Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. There are four major objectives of this task: 1) to develop, enhance, and integrate advanced turbine aerodynamic design and analysis tools; 2) to develop the methodology for application of the analytical techniques; 3) to demonstrate the benefits of the advanced turbine design procedure through its application to a relevant turbine design point; and 4) to verify the optimized design and analysis with testing. Final results of the preliminary design and the results of the two-dimensional (2D) detailed design of the first-stage vane of a supersonic turbine suitable for a reusable launch vehicle (R-LV) are presented. Analytical techniques for obtaining the results are also discussed.

  4. A Strategy for Integrating a Large Finite Element Model: X-33 Lessons Learned

    NASA Technical Reports Server (NTRS)

    McGhee, David S.

    2000-01-01

    The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past three years the Structural Dynamics & Loads Group of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made. These six decisions are: purpose of model, units, common material list, model numbering, interface control, and archive format. This strategy has been proved and expanded from experience on the X-33 vehicle.

  5. Effects of workload preview on task scheduling during simulated instrument flight.

    PubMed

    Andre, A D; Heers, S T; Cashion, P A

    1995-01-01

    Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.

  6. Evaluation of two cockpit display concepts for civil tiltrotor instrument operations on steep approaches

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.

    1993-01-01

    A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.

  7. Space Shuttle Projects

    NASA Image and Video Library

    2004-04-15

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  8. Space Shuttle Drawing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  9. STS-55 MS3 Bernard A. Harris, Jr in EMU at JSC's WETF for EVA simulation

    NASA Image and Video Library

    1991-11-08

    S91-51058 (Dec 1991) --- Partially attired in a special training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Bernard A. Harris Jr. is pictured before a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Minutes later the STS-55 mission specialist was in a 25-feet deep pool simulating a contingency extravehicular activity (EVA). The platform on which he is standing was used to lower him into the water where, with the aid of weights on his environmentally-controlled pressurized suit, he was able to achieve neutral buoyancy. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  10. Assembly and Thermal Hydraulic Test of a Stainless Steel Sodium-Potassium Circuit

    NASA Technical Reports Server (NTRS)

    Garber, A.; Godfroy, T.; Webster, K.

    2007-01-01

    Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system was originally built for use with lithium, but due to a shift in focus, it was redesigned for use with a eutectic mixture of sodium potassium (NaK). Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the first fill and checkout testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  11. HH-65A Dolphin digital integrated avionics

    NASA Technical Reports Server (NTRS)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  12. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  13. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  14. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119382 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities. Flight director Chris Edelen is at right.

  15. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  16. KSC-2009-3266

    NASA Image and Video Library

    2009-02-02

    JOHNSON SPACE CENTER, Houston – STS127-S-001 (JSC) -- Space shuttle mission STS-127 is the 32nd construction flight of the International Space Station, or ISS, and the final of a series of three flights dedicated to the assembly of the Japanese "Kibo" laboratory complex. In addition to delivering, installing and servicing an external scientific platform that will be attached to the end of the Japanese module, STS-127 will bring up a new ISS crew member and return another one to Earth, replace vital components of the ISS electrical production system, and transfer various pieces of hardware to ISS. Five spacewalks and the operation of four different robotic arms will be required to accomplish these tasks over 10 days. A crew spokesperson had the following words for the patch: "Bathed in sunlight, the blue Earth is represented without boundaries to remind us that we all share this world. In the center, the golden flight path of the space shuttle turns into the three distinctive rays of the astronaut symbol culminating in the star-like emblem characteristic of the Japanese space agency, yet soaring further into space as it paves the way for future voyages and discoveries for all humankind." The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  17. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  18. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  19. Test and evaluation of a multifunction keyboard and a dedicated keyboard for control of a flight management computer

    NASA Technical Reports Server (NTRS)

    Crane, J. M.; Boucek, G. P., Jr.; Smith, W. D.

    1986-01-01

    A flight management computer (FMC) control display unit (CDU) test was conducted to compare two types of input devices: a fixed legend (dedicated) keyboard and a programmable legend (multifunction) keyboard. The task used for comparison was operation of the flight management computer for the Boeing 737-300. The same tasks were performed by twelve pilots on the FMC control display unit configured with a programmable legend keyboard and with the currently used B737-300 dedicated keyboard. Flight simulator work activity levels and input task complexity were varied during each pilot session. Half of the points tested were previously familiar with the B737-300 dedicated keyboard CDU and half had no prior experience with it. The data collected included simulator flight parameters, keystroke time and sequences, and pilot questionnaire responses. A timeline analysis was also used for evaluation of the two keyboard concepts.

  20. Assessment of pilot workload - Converging measures from performance based, subjective and psychophysiological techniques

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1986-01-01

    This study explores the relationship between the P300 component of the event-related brain potential (ERP) and the processing demands of a complex real-world task. Seven male volunteers enrolled in an Instrument Flight Rule (IFR) aviation course flew a series of missions in a single engine fixed-based simulator. In dual task conditions subjects were also required to discriminate between two tones differing in frequency. ERPs time-locked to the tones, subjective effort ratings and overt performance measures were collected during two 45 min flights differing in difficulty (manipulated by varying both atmospheric conditions and instrument reliability). The more difficult flight was associated with poorer performance, increased subjective effort ratings, and smaller secondary task P300s. Within each flight, P300 amplitude was negatively correlated with deviations from command headings indicating that P300 amplitude was a sensitive workload metric both between and within the flight missions.

  1. Applications of Meteorological Tower Data at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Barbre, Robert E., Jr.

    2009-01-01

    Members of the National Aeronautics and Space Administration (NASA) design and operation communities rely on meteorological information collected at Kennedy Space Center (KSC), located near Cape Canaveral, Florida, to correctly apply the ambient environment to various tasks. The Natural Environments Branch/EV44, located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for providing its NASA customers with meteorological data using various climatological data sources including balloons, surface stations, aircraft, hindcast models, and meteorological towers. Of the many resources available within the KSC region, meteorological towers are preferred for near-surface applications because they record data at regular, frequent intervals over an extensive period of record at a single location. This paper discusses the uses of data measured at several different meteorological towers for a common period of record and how the data can be applied to various engineering decisions for the new Constellation Program Ares and Orion space vehicles.

  2. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  3. Measuring pilot workload in a motion base simulator. III - Synchronous secondary task

    NASA Technical Reports Server (NTRS)

    Kantowitz, Barry H.; Bortolussi, Michael R.; Hart, Sandra G.

    1987-01-01

    This experiment continues earlier research of Kantowitz et al. (1983) conducted in a GAT-1 motion-base trainer to evaluate choice-reaction secondary tasks as measures of pilot work load. The earlier work used an asynchronous secondary task presented every 22 sec regardless of flying performance. The present experiment uses a synchronous task presented only when a critical event occurred on the flying task. Both two- and four-choice visual secondary tasks were investigated. Analysis of primary flying-task results showed no decrement in error for altitude, indicating that the key assumption necessary for using a choice secondary task was satisfied. Reaction times showed significant differences between 'easy' and 'hard' flight scenarios as well as the ability to discriminate among flight tasks.

  4. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119390 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  5. A-5A on lakebed.

    NASA Image and Video Library

    1963-03-25

    A North American Aviation A-5A Vigilante (Navy serial number 147858/NASA tail number 858) arrived from the Naval Air Test Center, Patuxent River, MD, on December 19, 1962, at the NASA Flight Research Center (now, Dryden Flight Research Center, Edwards, CA). The Center flew the A-5A in a year-long series of flights in support of the U.S. supersonic transport program. The Center flew the aircraft to determine the let-down and approach conditions of a supersonic transport flying into a dense air traffic network. With the completion of the research flights, the Center sent the A-5A back to the Navy on December 20, 1963.

  6. A-5A on lakebed.

    NASA Image and Video Library

    1963-10-25

    A North American Aviation A-5A Vigilante (Navy serial number 147858/NASA tail number 858) arrived from the Naval Air Test Center, Patuxent River, MD, on December 19, 1962, at the NASA Flight Research Center (now, Dryden Flight Research Center, Edwards, CA). The Center flew the A-5A in a year-long series of flights in support of the U.S. supersonic transport program. The Center flew the aircraft to determine the let-down and approach conditions of a supersonic transport flying into a dense air traffic network. With the completion of the research flights, the Center sent the A-5A back to the Navy on December 20, 1963.

  7. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    NASA Technical Reports Server (NTRS)

    Hall, Timothy A.

    2011-01-01

    In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow, archiving f data, and generating console logs. This technology called OCAMS (OCA (Orbital Communication System) Management System), is now considered TRL level 9 and is in daily use in the Mission Control Center in support of ISS operations. These solutions have not only allowed for improved efficiency on console; but since many of the previously manual data transfers are now automated, many of the human error prone steps have been removed, and the quality of the planning products has improved tremendously. This has also allowed our Planning Flight Controllers more time to focus on the abstract areas of the job, (like the complexities of planning a mission for 6 international crew members with a global planning team), instead of being burdened with the administrative tasks that took significant time each console shift to process. The resulting automation solutions have allowed the Operations and Planning organization to realize significant cost savings for the ISS program through 2020 and many of these solutions could be a viable

  8. A queueing model of pilot decision making in a multi-task flight management situation

    NASA Technical Reports Server (NTRS)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  9. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119397 (12 May 2009) --- Flight directors Rick LaBrode (left) and Chris Edelen monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  10. STS-97 flight control team in WFCR - JSC - MCC

    NASA Image and Video Library

    2000-11-24

    JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.

  11. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.

    1984-01-01

    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  12. Cost Estimate for Molybdenum and Tantalum Refractory Metal Alloy Flow Circuit Concepts

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Martin, James J.; Schmidt, George R.; Godfroy, Thomas J.; Bryhan, A.J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team at NASA Marshall Space Flight Center (MSFC) has been tasked by the Naval Reactors Prime Contract Team (NRPCT) to provide a cost and delivery rough order of magnitude estimate for a refractory metal-based lithium (Li) flow circuit. The design is based on the stainless steel Li flow circuit that is currently being assembled for an NRPCT task underway at the EFF-TF. While geometrically the flow circuit is not representative of a final flight prototype, knowledge has been gained to quantify (time and cost) the materials, manufacturing, fabrication, assembly, and operations to produce a testable configuration. This Technical Memorandum (TM) also identifies the following key issues that need to be addressed by the fabrication process: Alloy selection and forming, cost and availability, welding, bending, machining, assembly, and instrumentation. Several candidate materials were identified by NRPCT including molybdenum (Mo) alloy (Mo-47.5 %Re), tantalum (Ta) alloys (T-111, ASTAR-811C), and niobium (Nb) alloy (Nb-1 %Zr). This TM is focused only on the Mo and Ta alloys, since they are of higher concern to the ongoing effort. The initial estimate to complete a Mo-47%Re system ready for testing is =$9,000k over a period of 30 mo. The initial estimate to complete a T-111 or ASTAR-811C system ready for testing is =$12,000k over a period of 36 mo.

  13. In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities

    NASA Technical Reports Server (NTRS)

    Lusardi, Jeff A.; Blanken, Chris L.; Ott, Carl Raymond; Malpica, Carlos A.; von Gruenhagen, Wolfgang

    2012-01-01

    The effect of inceptor feel-system characteristics on piloted handling qualities has been a research topic of interest for many years. Most of the research efforts have focused on advanced fly-by-wire fixed-wing aircraft with only a few studies investigating the effects on rotorcraft. Consequently, only limited guidance is available on how cyclic force-feel characteristics should be set to obtain optimal handling qualities for rotorcraft. To study this effect, the U.S. Army Aeroflightdynamics Directorate working with the DLR Institute of Flight Systems in Germany under Task X of the U.S. German Memorandum of Understanding have been conducting flight test evaluations. In the U.S., five experimental test pilots have completed evaluations of two Mission Task Elements (MTEs) from ADS-33E-PRF and two command/response types for a matrix of center-stick cyclic force-feel characteristics at Moffett Field. In Germany, three experimental test Pilots have conducted initial evaluations of the two MTEs with two command/response types for a parallel matrix of side-stick cyclic force-feel characteristics at WTD-61 in Manching. The resulting data set is used to correlate the effect of changes in natural frequency and damping ratio of the cyclic inceptor on the piloted handling qualities. Existing criteria in ADS-33E and a proposed Handling Qualities Sensitivity Function that includes the effects of the cyclic force-feel characteristics are also evaluated against the data set and discussed.

  14. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  15. FLIGHT LINE, LOOKING TOWARD FLIGHT LINE FIRE STATION (BUILDING 2748)CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLIGHT LINE, LOOKING TOWARD FLIGHT LINE FIRE STATION (BUILDING 2748)CENTER AND AIRCRAFT MAINTENANCE DOCKS (BUILDINGS 2741 AND 2766)LEFT. VIEW TO NORTH - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  16. STS-106 Orbit 2 Flight Team

    NASA Image and Video Library

    2000-09-14

    JSC2000-06244 (September 2000)--- Flight director Jeff Hanley, front center, and the fifty-odd flight controllers making up the ISS Orbit 2 Team pose for their group portrait in the ISS Flight Control Room of Houston's Mission Control Center.

  17. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-23

    The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  18. System for Anomaly and Failure Detection (SAFD) system development

    NASA Technical Reports Server (NTRS)

    Oreilly, D.

    1992-01-01

    This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.

  19. Cardiovascular correlates of emotional state, cognitive workload and time-on-task effect during a realistic flight simulation.

    PubMed

    Hidalgo-Muñoz, Antonio R; Mouratille, Damien; Matton, Nadine; Causse, Mickaël; Rouillard, Yves; El-Yagoubi, Radouane

    2018-04-05

    In aviation, emotion and cognitive workload can considerably increase the probability of human error. An accurate online physiological monitoring of pilot's mental state could prevent accidents. The heart rate (HR) and heart rate variability (HRV) of 21 private pilots were analysed during two realistic flight simulator scenarios. Emotion was manipulated by a social stressor and cognitive workload with the difficulty of a secondary task. Our results confirmed the sensitivity of the HR to cognitive demand and training effects, with increased HR when the task was more difficult and decreased HR with training (time-on-task). Training was also associated with an increased HRV, with increased values along the flight scenario time course. Finally, the social stressor seemed to provoke an emotional reaction that enhanced motivation and performance on the secondary task. However, this was not reflected by the cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  1. STS-118 Ascent/Entry Flight Control Team in White Flight Control Room (WFCR) with Flight Director Steve Stitch

    NASA Image and Video Library

    2007-07-20

    JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.

  2. Overview of crew member energy expenditure during Shuttle Flight 61-8 EASE/ACCESS task performance

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Waligora, J. W.; Stanford, J.; Edwards, B. F.

    1987-01-01

    The energy expenditure of the Shuttle Flight 61-B crewmembers during the extravehicular performance of Experimental Assembly of Structures in EVA (EASE) and Assembly Concept of Construction of Space Structures (ACCESS) construction system tasks are reported. These data consist of metabolic rate time profiles correlated with specific EASE and ACCESS tasks and crew comments. Average extravehicular activity metabolic rates are computed and compared with those reported from previous Apollo, Shylab, and Shuttle flights. These data reflect total energy expenditure and not that of individual muscle groups such as hand and forearm. When correlated with specific EVA tasks and subtasks, the metabolic profile data is expected to be useful in planning future EVA protocols. For example, after experiencing high work rates and apparent overheating during some Gemini EVAs, it was found useful to carefully monitor work rates in subsequent flights to assess the adequacy of cooling garments and as an aid to preplanning EVA procedures. This presentation is represented by graphs and charts.

  3. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  4. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.

  5. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors. Decatur Mayor Tab Bowling greets David Brock.

  6. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts. MSFC Director Todd May shares opening remarks.

  7. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. Decatur Mayor Tab Bowling welcomes attendees.

  8. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  9. KSC-07pd3496

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-123 crew get ready to inspect part of the payload for the mission, the Special Purpose Dexterous Manipulator, known as Dextre. Seen in front are Pilot Gregory Johnson and Mission Specialist Takao Doi, who represents the Japanese Aerospace and Exploration Agency. Dextre will work with the mobile base and Canadarm2 on the International Space Station to perform critical construction and maintenance tasks. The crew is at Kennedy for crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  10. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119632 (13 May 2009) --- Flight director Tony Ceccacci and astronaut Dan Burbank (background), STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.

  11. STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.

  12. STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.

  13. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  14. Defining the subjective experience of workload

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Childress, M. E.; Bortolussi, M.

    1981-01-01

    Flight scenarios that represent different types and levels of pilot workload are needed in order to conduct research about, and develop measures of, pilot workload. In order to be useful, however, the workload associated with such scenarios and the component tasks must be determined independently. An initial study designed to provide such information was conducted by asking a panel of general aviation pilots to evaluate flight-related tasks for the overall, perceptual, physical, and cognitive workload they impose. These ratings will provide the nucleus for a data base of flight-related primary tasks that have been independently rated for workload to use in workload assessment research.

  15. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  16. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  17. A Strategy for Integrating a Large Finite Element Model Using MSC NASTRAN/PATRAN: X-33 Lessons Learned

    NASA Technical Reports Server (NTRS)

    McGhee, D. S.

    1999-01-01

    The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past 3 years the Structural Dynamics and Loads Branch of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made: purpose of models, units, common materials list, model numbering, interface control, and archive format. This strategy has been proven and expanded from experience on the X-33 vehicle.

  18. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  19. Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph

    2007-01-01

    The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.

  20. Surrounded by work platforms, the full-scale Orion AFT crew module (center) is undergoing preparations for the first flight test of Orion's launch abort system.

    NASA Image and Video Library

    2008-05-20

    Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system. To the left is a space shuttle orbiter purge vehicle sharing the hangar.

  1. STS-134 Orbit 2 flight controllers on consoles

    NASA Image and Video Library

    2011-05-17

    JSC2011-E-045475 (17 May 2011) --- Flight director Paul Dye monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA

  2. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084363 (17 May 2010) --- Flight director Chris Edelen monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 flight day four activities.

  3. Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Dorr, D. W.; Moralez, E., III; Merrick, V. K.

    1994-01-01

    Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.

  4. KSC-2014-2361

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  5. KSC-2014-2359

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  6. KSC-2014-2358

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  7. KSC-2014-2362

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  8. KSC-2014-2360

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  9. Small Rocket/Spacecraft Technology (SMART) Platform

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  10. Flight Research Center, Edwards, California. Environmental Impact Statement

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is an institutional environmental impact statement relating to the overall operation of the NASA, Flight Research Center. The Center is located in Kern County, California, approximately 100 miles northeast of Los Angeles. Flight activities relate primarily to areas in the vicinity of Los Angeles, Kern, Inyo and San Bernardino counties in Southern California; and to areas in Southern Nevada (principally Nye and Clark counties. Operations of the Flight Research Center have a very neglibible impact on the environment; and they are planned and controlled to eliminate or minimize effects on water, air and noise.

  11. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots

    PubMed Central

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C.

    2015-01-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real world tasks. In this study, we took advantage of existing practice data from five simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by FAA proficiency ratings). We developed a new STEP (Simultaneous Time Effects on Practice) model to: (1) model the simultaneous effects of practice and interval on performance of the five flights, and (2) examine the effects of selected covariates (age, flight expertise, and three composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intra-individual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with either practice or interval. Results indicate that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real world tasks. PMID:26280383

  12. Team Performance and Error Management in Chinese and American Simulated Flight Crews: The Role of Cultural and Individual Differences

    NASA Technical Reports Server (NTRS)

    Davis, Donald D.; Bryant, Janet L.; Tedrow, Lara; Liu, Ying; Selgrade, Katherine A.; Downey, Heather J.

    2005-01-01

    This report describes results of a study conducted for NASA-Langley Research Center. This study is part of a program of research conducted for NASA-LARC that has focused on identifying the influence of national culture on the performance of flight crews. We first reviewed the literature devoted to models of teamwork and team performance, crew resource management, error management, and cross-cultural psychology. Davis (1999) reported the results of this review and presented a model that depicted how national culture could influence teamwork and performance in flight crews. The second study in this research program examined accident investigations of foreign airlines in the United States conducted by the National Transportation Safety Board (NTSB). The ability of cross-cultural values to explain national differences in flight outcomes was examined. Cultural values were found to covary in a predicted way with national differences, but the absence of necessary data in the NTSB reports and limitations in the research method that was used prevented a clear understanding of the causal impact of cultural values. Moreover, individual differences such as personality traits were not examined in this study. Davis and Kuang (2001) report results of this second study. The research summarized in the current report extends this previous research by directly assessing cultural and individual differences among students from the United States and China who were trained to fly in a flight simulator using desktop computer workstations. The research design used in this study allowed delineation of the impact of national origin, cultural values, personality traits, cognitive style, shared mental model, and task workload on teamwork, error management and flight outcomes. We briefly review the literature that documents the importance of teamwork and error management and its impact on flight crew performance. We next examine teamwork and crew resource management training designed to improve teamwork. This is followed by discussion of the potential influence of national culture on teamwork and crew resource management. We then examine the influence of other individual and team differences, such as personality traits, cognitive style, shared mental model, and task workload. We provide a heuristic model that depicts the influence of national culture and individual differences on teamwork, error management and flight outcomes. The results demonstrate the usefulness of the model for future research.

  13. Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.

    1999-01-01

    This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.

  14. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  15. A fault-tolerant avionics suite for an entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, Mark; Stone, Howard

    1988-01-01

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  16. Longitudinal handling qualities during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Longitudinal handling qualities evaluations were conducted on the Ames Research Center Flight Simulator for Advanced Aircraft (FSAA) for the approach and landing tasks of a powered lift STOL research aircraft. The test vehicle was a C-8A aircraft modified with a new wing incorporating internal blowing over an augmentor flap. The investigation included: (1) use of various flight path and airspeed control techniques for the basic vehicle; (2) assessment of stability and command augmentation schemes for pitch attitude and airspeed control; (3) determination of the influence of longitudinal and vertical force coupling for the power control; (4) determination of the influence of pitch axis coupling with the thrust vector control; and (5) evaluations of the contribution of stability and command augmentation to recovery from a single engine failure. Results are presented in the form of pilot ratings and commentary substantiated by landing approach time histories.

  17. A fault-tolerant avionics suite for an entry research vehicle

    NASA Astrophysics Data System (ADS)

    Dzwonczyk, Mark; Stone, Howard

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  18. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  19. Direct-To Tool for En Route Controllers

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David; Foster, Michelle

    2002-01-01

    This paper describes a new automation tool for en route air traffic controllers, called the Direct-To Tool. The Tool is designed to reduce the time of flight and fuel consumption for aircraft flying in en route airspace. It provides each controller with the identities of aircraft in his/her sector, which can reduce their time en route by bypassing dog-legged route segments and flying "direct to" a waypoint closer to the destination airport. The Tool uses its build-in conflict probing capability to determine if the improved route is free of conflicts with other aircraft. The Tool's graphical computer interface enables the controller to enter a direct-to clearance by a simple point and click action. Because of its low workload and convenience, this method is strongly favored by controllers The Tool has been running since January with live radar data received at NASA from the Fort Worth Air Route Traffic Control Center. For aircraft operating in the Fort Worth Center, the Tool has the potential to save in excess of 500,000 in-flight minutes per year. A provisional patent application for this Tool has been filed. A field task in planned for the last quarter of this year.

  20. Fact Sheets of CTAS and NASA Decision-Support Tools and Concepts

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2004-01-01

    Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occumng eyond the year 2015. Out of a total of 15 concept elements, 4 have been selected for initial sutidies (see Key Elements in sidebar). DAG-TM research is being performed at Ames, Glenn, and Langley Research Centers.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-31

    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  2. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081946 (18 May 2010) --- ISS flight director Emily Nelson monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  3. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086375 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.

  4. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086399 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.

  5. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081914 (18 May 2010) --- ISS flight director Holly Ridings reviews data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  6. STS-106 Orbit 1 Flight Team with Phil Engelhauf in WFCR

    NASA Image and Video Library

    2000-09-15

    JSC2000-06253 (15 Sept. 2000) --- Flight director Phil Engelauf, front center, and the other fifty-odd flight controllers making up the STS-106 Orbit 1 team, pose for their group portrait in the Flight Control Room of Houston's Mission Control Center.

  7. NASA's Airborne Science DC-8 displays new colors in a check flight over the Dryden Flight Research Center

    NASA Image and Video Library

    2004-02-24

    NASA's large Airborne Science research aircraft, a modified DC-8 airliner, displayed new colors in a check flight Feb. 24, 2004, over its home base, the NASA Dryden Flight Research Center at Edwards AFB, California.

  8. STS-125 Flight Control Team in WFCR - Orbit 2 - Flight Director Richard LaBrode

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120845 (20 May 2009) --- The members of the STS-125 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Rick LaBrode (right) is visible on the front row.

  9. STS-131 Flight Control Team in WFCR - Orbit 1 - Flight Director: Richard Jones

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050680 (12 April 2010) --- The members of the STS-131 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (second left) is on the front row.

  10. Flight Test Results of an Axisymmetric Channeled Center Body Supersonic Inlet at Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    St. John, Clinton W.; Frederick, Michael Alan

    2013-01-01

    Flight-testing of a channeled center-body axisymmetric supersonic inlet design concept was conducted at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center in collaboration with the NASA Glenn Research Center (Cleveland, Ohio) and TechLand Research, Inc. (North Olmsted, Ohio). This testing utilized the Propulsion Flight Test Fixture, flown on the NASA F-15B research test bed airplane (NASA tail number 836) at local experiment Mach numbers up to 1.50. The translating channeled center-body inlet was designed by TechLand Research, Inc. (U.S. Patent No. 6,276,632 B1) to allow for a novel method of off-design flow matching, with original test planning conducted under a NASA Small Business Innovative Research study. Data were collected in flight at various off-design Mach numbers for fixed-geometry representations of both the channeled center-body design and an equivalent area smooth center-body design for direct comparison of total pressure recovery and limited distortion measurements.

  11. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  12. Analysis of pilot control strategy

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Hanson, G. D.; Jewell, W. F.; Clement, W. F.

    1983-01-01

    Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics.

  13. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-25

    Lit by sunlight filtered through the smoke of a distant forest fire, the Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  14. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    NASA Technical Reports Server (NTRS)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts as well as performing major probabilistic assessments used to support flight rationale and help establish program requirements. During 2008, the Analysis Group performed more than 70 assessments. Although all these assessments were important, some were instrumental in the decisionmaking processes for the Shuttle and Constellation Programs. Two of the more significant tasks were the Space Transportation System (STS)-122 Low Level Cutoff PRA for the SSP and the Orion Pad Abort One (PA-1) PRA for the CxP. These two activities, along with the numerous other tasks the Analysis Group performed in 2008, are summarized in this report. This report also highlights several ongoing and upcoming efforts to provide crucial statistical and probabilistic assessments, such as the Extravehicular Activity (EVA) PRA for the Hubble Space Telescope service mission and the first fully integrated PRAs for the CxP's Lunar Sortie and ISS missions.

  15. Astronaut Walter Cunningham photographed performing flight tasks

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter Cunningham, Apollo 7 lunar module pilot, writes with space pen as he is photographed performing flight tasks on the ninth day of the Apollo 7 mission. Note the 70mm Hasselblad camera film magazine just above Cunningham's right hand floating in the weightless (zero gravity) environment of the spacecraft.

  16. Proceedings of the NASA Conference on Space Telerobotics, volume 4

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.

  17. The CCSDS Lossless Data Compression Algorithm for Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Day, John H. (Technical Monitor)

    2001-01-01

    In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the National Aeronautics and Space Administration (NASA), several scientists there were in the process of formulating the next generation of Earth viewing science instruments, the Moderate Resolution Imaging Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit enormous data through the communications channel. This was when the author was assigned the task of investigating lossless compression algorithms for space implementation to compress science data in order to reduce the requirement on bandwidth and storage.

  18. Dryden Flight Research Center: Center Overview

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin

    2009-01-01

    This viewgraph presentation describes a general overview of Dryden Flight Research Center. Strategic partnerships, Dryden's mission activity, exploration systems and aeronautics research programs are also described.

  19. Flight directors at JSC MCC Bldg 30 monitor STS-30 prelaunch activities

    NASA Image and Video Library

    1989-05-04

    Only moments away from ignition, Atlantis, Orbiter Vehicle (OV) 104, and its five member crew are the subjects of concern drawing serious countenance in this scene in the Flight Control Room (FCR) of JSC's Mission Control Center (MCC) Bldg 30. Ascent Flight Director Alan L. Briscoe, monitors the Kennedy Space Center pre-launch activity from the flight director (FD) console, along with Ronald D. Dittemore (center) and N. Wayne Hale, Jr.

  20. Task and work performance on Skylab missions 2, 3, and 4: Time and motion study: Experiment M151

    NASA Technical Reports Server (NTRS)

    Kubis, J. F.; Mclaughlin, E. J.; Jackson, J. M.; Rusnak, R.; Mcbride, G. H.; Saxon, S. V.

    1977-01-01

    Human task performance was evaluated under weightlessness conditions during long duration space flight in order to study the characteristics of the adaptation function. Results show that despite pronounced variability in training schedules and in initial reaction to the Skylab environment, in-flight task performance was relatively equivalent among Skylab crews, and behavioral performance continued to improve from beginning to end of all missions.

  1. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors.

  2. The space shuttle Discovery atop NASA's modified 747 is captured over the Mojave Desert while being ferried from NASA Dryden to the Kennedy Space Center

    NASA Image and Video Library

    2005-08-19

    The space shuttle Discovery atop NASA's modified 747 is captured over the Mojave Desert while being ferried from NASA Dryden to the Kennedy Space Center. NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  3. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120480 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  4. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120486 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  5. STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086341 (20 May 2010) --- ISS flight director Holly Ridings monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day seven activities.

  6. STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci

    NASA Image and Video Library

    2009-05-14

    JSC2009-E-120489 (14 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  7. Task complexity modulates pilot electroencephalographic activity during real flights.

    PubMed

    Di Stasi, Leandro L; Diaz-Piedra, Carolina; Suárez, Juan; McCamy, Michael B; Martinez-Conde, Susana; Roca-Dorda, Joaquín; Catena, Andrés

    2015-07-01

    Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing) were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG recordings may help to evaluate an operator's cognitive performance in challenging real-life scenarios, and thus could aid in the prevention of catastrophic events. © 2015 Society for Psychophysiological Research.

  8. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  9. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.

    1998-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.

  10. David Brock addresses the "How to Launch Your Business with NASA" forum.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. David Brock, head of Marshall's Small Business Office talks about doing business with Marshall.

  11. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts. MSFC Director Todd May and Decatur Mayor Tab Bowling enjoy a light moment.

  12. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. OSAC Director Johnny Stephenson talks about Marshall's Mission areas to audience

  13. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors. Decatur Mayor Tab Bowling chats with NASA retiree Don Odum

  14. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. City of Hartselle Mayor Randy Garrison welcomes attendees to conference.

  15. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  16. Medical Operations Console Procedure Evaluation: BME Response to Crew Call Down for an Emergency

    NASA Technical Reports Server (NTRS)

    Johnson-Troop; Pettys, Marianne; Hurst, Victor, IV; Smaka, Todd; Paul, Bonnie; Rosenquist, Kevin; Gast, Karin; Gillis, David; McCulley, Phyllis

    2006-01-01

    International Space Station (ISS) Mission Operations are managed by multiple flight control disciplines located at the lead Mission Control Center (MCC) at NASA-Johnson Space Center (JSC). ISS Medical Operations are supported by the complementary roles of Flight Surgeons (Surgeon) and Biomedical Engineer (BME) flight controllers. The Surgeon, a board certified physician, oversees all medical concerns of the crew and the BME provides operational and engineering support for Medical Operations Crew Health Care System. ISS Medical Operations is currently addressing the coordinated response to a crew call down for an emergent medical event, in particular when the BME is the only Medical Operations representative in MCC. In this case, the console procedure BME Response to Crew Call Down for an Emergency will be used. The procedure instructs the BME to contact a Surgeon as soon as possible, coordinate with other flight disciplines to establish a Private Medical Conference (PMC) for the crew and Surgeon, gather information from the crew if time permits, and provide Surgeon with pertinent console resources. It is paramount that this procedure is clearly written and easily navigated to assist the BME to respond consistently and efficiently. A total of five BME flight controllers participated in the study. Each BME participant sat in a simulated MCC environment at a console configured with resources specific to the BME MCC console and was presented with two scripted emergency call downs from an ISS crew member. Each participant used the procedure while interacting with analog MCC disciplines to respond to the crew call down. Audio and video recordings of the simulations were analyzed and each BME participant's actions were compared to the procedure. Structured debriefs were conducted at the conclusion of both simulations. The procedure was evaluated for its ability to elicit consistent responses from each BME participant. Trials were examined for deviations in procedure task completion and/or navigation, in particular the execution of the Surgeon call sequence. Debrief comments were used to analyze unclear procedural steps and to discern any discrepancies between the procedure and generally accepted BME actions. The sequence followed by BME participants differed considerably from the sequence intended by the procedure. Common deviations included the call sequence used to contact Surgeon, the content of BME and crew interaction and the gathering of pertinent console resources. Differing perceptions of task priority and imprecise language seem to have caused multiple deviations from the procedure s intended sequence. The study generated 40 recommendations for the procedure, of which 34 are being implemented. These recommendations address improving the clarity of the instructions, identifying training considerations, expediting Surgeon contact, improving cues for anticipated flight control team communication and identifying missing console tools.

  17. International Space Station Aeromedical Support in Star City, Russia

    NASA Technical Reports Server (NTRS)

    Cole, Richard; Chamberlin, Blake; Dowell, Gene; Castleberry, Tarah; Savage, Scott

    2010-01-01

    The Space Medicine Division at Johnson Space Center works with the International Space Station s international partners (IP) to accomplish assigned health care tasks. Each IP may assign a flight surgeon to support their assigned crewmembers during all phases of training, in-flight operations, and postflight activities. Because of the extensive amount of astronaut training conducted in Star City; NASA, in collaboration with its IPs, has elected to keep a flight surgeon assigned to NASA s Star City office to provide support to the U.S., Canadian, Japanese, and European astronauts during hazardous training activities and provide support for any contingency landings of Soyuz spacecraft in Kazakhstan. The physician also provides support as necessary to the Mission Control Center in Moscow for non-Russian crew-related activities. In addition, the physician in Star City provides ambulatory medical care to the non-Russian-assigned personnel in Star City and visiting dependents. Additional work involves all medical supplies, administration, and inventory. The Star City physician assists in medical evacuation and/or in obtaining support from western clinics in Moscow when required care exceeds local resources. Overall, the Russians are responsible for operations and the medical care of the entire crew when training in Star City and during launch/landing operations. However, they allow international partner flight surgeons to care for their crewmembers as agreed to in the ISS Medical Operations Requirements Document. Medical support focuses on pressurized, monitored, and other hazardous training activities. One of the most important jobs is to act as a medical advocate for the astronauts and to reduce the threat that these hazardous activities pose. Although the Russians have a robust medical system, evacuation may be needed to facilitate ongoing medical care. There are several international medical evacuation companies that provide this care.

  18. ISS15A Flight Control Team in FCR-1 Orbit 1 - Flight Director Kwatsi Alibaruho

    NASA Image and Video Library

    2009-03-20

    JSC2009-E-060959 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director Kwatsi Alibaruho (right) is visible on the front row.

  19. STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Ron Spencer

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052008 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ron Spencer (right) holds the STS-131 mission logo.

  20. ISS ULF2 Flight Control Team in FCR-1 - Orbit 3 - Flight Director David Korth

    NASA Image and Video Library

    2009-03-20

    JSC2009-E-061164 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director David Korth (right) is visible on the front row.

  1. STS-131/19A Flight Control Team in FCR-1 - Orbit 3- Flight Director Ed Van Cise

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-052556 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ed Van Cise holds the STS-131 mission logo.

  2. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119378 (12 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.

  3. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081916 (18 May 2010) --- ISS flight directors Holly Ridings (seated) and Emily Nelson monitor data at their console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.

  4. STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci

    NASA Image and Video Library

    2009-05-13

    JSC2009-E-119633 (13 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.

  5. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119391 (12 May 2009) --- Astronaut Alan Poindexter, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.

  6. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  7. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  8. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  9. STS-125 Entry flight controllers on console with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-24

    JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.

  10. NASA's Airborne Science DC-8, displaying new colors in a check flight Feb. 24, 2004, over the Dryden Flight Research Center

    NASA Image and Video Library

    2004-02-24

    NASA's large Airborne Science research aircraft, a modified DC-8 airliner, displayed new colors in a check flight Feb. 24, 2004, over its home base, the NASA Dryden Flight Research Center at Edwards AFB, California.

  11. Six Decades of Flight Research: Dryden Flight Research Center, 1946 - 2006 [DVD

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Parcel, Steve

    2007-01-01

    This DVD contains an introduction by Center Director Kevin Peterson, two videos on the history of NASA Dryden Flight Research Center and a bibliography of NASA Dryden Flight Research Center publications from 1946 through 2006. The NASA Dryden 60th Anniversary Summary Documentary video is narrated by Michael Dorn and give a brief history of Dryden. The Six Decades of Flight Research at NASA Dryden lasts approximately 75 minutes and is broken up in six decades: 1. The Early X-Plane Era; 2. The X-15 Era; 3. The Lifting Body Era; 4. The Space Shuttle Era; 5. The High Alpha and Thrust Vectoring Era; and 6. The technology Demonstration Era. The bibliography provides citations for NASA Technical Reports and Conference Papers, Tech Briefs, Contractor Reports, UCLA Flight Systems Research Center publications and Dryden videos. Finally, a link is provided to the NASA Dryden Gallery that features video clips and photos of the many unique aircraft flown at NASA Dryden and its predecessor organizations.

  12. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080460 (14 May 2010) --- Brent Jett, director, flight crew operations; and flight director Norm Knight (foreground) watch a monitor in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during the launch of space shuttle Atlantis a few hundred miles away in Florida. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  13. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  14. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  15. Space Construction Experiment Definition Study (SCEDS), part 1. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A basic Space Shuttle flight experiment which will provide needed data on the construction of large space systems from the Orbiter was defined. The predicted dynamic behavior of a representative large structure, on-orbit construction operations, and Orbiter control during and after construction were studied. Evolutionary or supplemental flight experiments for the development or augmentation of a basic flight experiment were identified and defined. The study was divided into six major tasks with appropriate sub-tasks noted.

  16. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  17. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  18. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  19. Cockpit data management

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Boucek, G. P.

    1988-01-01

    This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features.

  20. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 1

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.

  1. Clean Room at Goddard Space Flight Center

    NASA Image and Video Library

    2010-03-10

    This panorama shows the inside of Goddard's High Bay Clean Room, as seen from the observation deck. Credit: NASA/Goddard Space Flight Center/Chris Gunn Go into a NASA Clean Room Daily with the Webb Telescope via NASA's 'Webb-cam' here: www.jwst.nasa.gov/webcam.html For more information on JWST go to: www.jwst.nasa.gov/ For more information on Goddard Space Flight Center go to: www.nasa.gov/centers/goddard/home/index.html

  2. Human Factors in Training

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Byme, Vicky; Arsintescu, Lucia

    2008-01-01

    Future space missions will be significantly longer than current Shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. Training efforts in FY07 strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center operations. Beginning in January 2008, the training research effort will include team training prototypes and tools. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; 3) Risk associated with reduced safety and efficiency due to poor human factors design.

  3. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C

    2015-09-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks. (c) 2015 APA, all rights reserved).

  4. Conical Probe Calibration and Wind Tunnel Data Analysis of the Channeled Centerbody Inlet Experiment

    NASA Technical Reports Server (NTRS)

    Truong, Samson Siu

    2011-01-01

    For a multi-hole test probe undergoing wind tunnel tests, the resulting data needs to be analyzed for any significant trends. These trends include relating the pressure distributions, the geometric orientation, and the local velocity vector to one another. However, experimental runs always involve some sort of error. As a result, a calibration procedure is required to compensate for this error. For this case, it is the misalignment bias angles resulting from the distortion associated with the angularity of the test probe or the local velocity vector. Through a series of calibration steps presented here, the angular biases are determined and removed from the data sets. By removing the misalignment, smoother pressure distributions contribute to more accurate experimental results, which in turn could be then compared to theoretical and actual in-flight results to derive any similarities. Error analyses will also be performed to verify the accuracy of the calibration error reduction. The resulting calibrated data will be implemented into an in-flight RTF script that will output critical flight parameters during future CCIE experimental test runs. All of these tasks are associated with and in contribution to NASA Dryden Flight Research Center s F-15B Research Testbed s Small Business Innovation Research of the Channeled Centerbody Inlet Experiment.

  5. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  6. The effects of workload on respiratory variables in simulated flight: a preliminary study.

    PubMed

    Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew

    2010-04-01

    In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. The effects of moon illumination, moon angle, cloud cover, and sky glow on night vision goggle flight performance

    NASA Astrophysics Data System (ADS)

    Loro, Stephen Lee

    This study was designed to examine moon illumination, moon angle, cloud cover, sky glow, and Night Vision Goggle (NVG) flight performance to determine possible effects. The research was a causal-comparative design. The sample consisted of 194 Fort Rucker Initial Entry Rotary Wing NVG flight students being observed by 69 NVG Instructor Pilots. The students participated in NVG flight training from September 1992 through January 1993. Data were collected using a questionnaire. Observations were analyzed using a Kruskal-Wallis one-way analysis of variance and a Wilcox matched pairs signed-ranks test for difference. Correlations were analyzed using Pearson's r. The analyses results indicated that performance at high moon illumination levels is superior to zero moon illumination, and in most task maneuvers, superior to >0%--50% moon illumination. No differences were found in performance at moon illumination levels above 50%. Moon angle had no effect on night vision goggle flight performance. Cloud cover and sky glow have selective effects on different maneuvers. For most task maneuvers, cloud cover does not affect performance. Overcast cloud cover had a significant effect on seven of the 14 task maneuvers. Sky glow did not affect eight out of 14 task maneuvers at any level of sky glow.

  8. Linda Finch speaks to children during World Flight in New Orleans, La.

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Linda Finch, who re-created the flight of Amelia Earhardt's flight around the world 60 years ago, landed at New Orleans Lakefront Airport to speak to groups of inner-city school children during World Flight 1997. Stennis Space Center's Educator Resource Center played a role in the event by providing SSC-developed Geomap software to aid students in tracking Finch's flight.

  9. STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight

    NASA Image and Video Library

    2009-05-21

    JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.

  10. Eye-scan behavior in a flight simulation task as a function of level of training

    NASA Technical Reports Server (NTRS)

    Comstock, J. R., Jr.; Coates, G. D.; Kirby, R. H.

    1985-01-01

    The present study explored eye-scan behavior as a function of level of subject training. Oculometric (eye-scan) measures were recorded from each of ten subjects during training trials on a CRT-based flight simulation task. The task developed for the study incorporated subtasks representative of specific activities performed by pilots, but which could be performed at asymptotic levels within relatively short periods of training. Changes in eye-scan behavior were examined as initially untrained subjects developed skill in the task. Eye-scan predictors of performance on the task were found. Examination of eye-scan in proximity to selected task events revealed differences in the distribution of looks at the instruments as a function of level of training.

  11. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  12. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080409 (14 May 2010) --- Brent Jett (left), director, flight crew operations; and flight director Norm Knight are pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  13. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  14. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  15. STS-132/ULF4 Flight Controllers on Console

    NASA Image and Video Library

    2010-05-18

    JSC2010-E-081909 (18 May 2010) --- Flight director Mike Sarafin (left) and NASA astronaut Chris Cassidy, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day five activities.

  16. Rocket ozone sounding network data

    NASA Technical Reports Server (NTRS)

    Wright, D. U.; Krueger, A. J.; Foster, G. M.

    1979-01-01

    During the period March 1977 through May 1977, three regular monthly ozone profiles were measured at Wallops Flight Center and three regular monthly ozone profiles were measured at the Churchill Research Range. One additional flight was conducted at Wallops Flight Center in support of Nimbus 4 SBUV. Data results and flight profiles for the period covered are presented.

  17. STS-132/ULF4 Flight Controllers on Console - Orbit 2

    NASA Image and Video Library

    2010-05-17

    JSC2010-E-084271 (17 May 2010) --- Flight director Chris Edelen (right) and NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.

  18. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.

  19. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-19

    JSC2010-E-086277 (19 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Holly Ridings holds the STS-132 mission logo.

  20. STS-132 Flight Control Team in WFCR - Orbit 2

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086451 (20 May 2010) --- The members of the STS-132 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Chris Edelen (second left) is visible on the front row.

  1. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086504 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Scott Stover holds the Expedition 23 mission logo.

  2. Benefits Analysis of Multi-Center Dynamic Weather Routes

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  3. Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.

  4. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  5. Stability and Controls Analysis and Flight Test Results of a 24-Foot Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; Cox, Timothy H.; McWherter, Shaun C.

    2008-01-01

    The Quiet Spike(TradeMark) F-15B flight research program investigated supersonic shock reduction using a 24-ft telescoping nose boom on an F-15B airplane. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls, the primary concerns were to assess the potential destabilizing effect of the oversized nose boom on the stability, controllability, and handling qualities of the airplane and to ensure adequate stability margins across the entire research flight envelope. This paper reports on the stability and control analytical methods, flight envelope clearance approach, and flight test results of the F-15B telescoping nose boom configuration. Also discussed are brief pilot commentary on typical piloting tasks and refueling tasks.

  6. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  7. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; hide

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  8. A comparison of the Shuttle remote manipulator system and the Space Station Freedom mobile servicing center

    NASA Technical Reports Server (NTRS)

    Taylor, Edith C.; Ross, Michael

    1989-01-01

    The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.

  9. F-111E IPCS in flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This NASA Dryden Flight Research Center photograph taken in 1975 shows the General Dynamic IPCS/F-111E Aardvark with a camouflage paint pattern. This prototype F-111E was used during the flight testing of the Integrated Propulsion Control System (IPCS). The wings of the IPCS/F-111E are swept back to near 60 degrees for supersonic flight. During the same period as F-111 TACT program, an F-111E Aardvark (#67-0115) was flown at the NASA Flight Research Center to investigate an electronic versus a conventional hydro-mechanical controlled engine. The program called integrated propulsion control system (IPCS) was a joint effort by NASA's Lewis Research Center and Flight Research Center, the Air Force's Flight Propulsion Laboratory and the Boeing, Honeywell and Pratt & Whitney companies. The left engine of the F-111E was selected for modification to an all electronic system. A Pratt & Whitney TF30-P-9 engine was modified and extensively laboratory, and ground-tested before installation into the F-111E. There were 14 IPCS flights made from 1975 through 1976. The flight demonstration program proved an engine could be controlled electronically, leading to a more efficient Digital Electronic Engine Control System flown in the F-15.

  10. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  11. Display Sharing: An Alternative Paradigm

    NASA Technical Reports Server (NTRS)

    Brown, Michael A.

    2010-01-01

    The current Johnson Space Center (JSC) Mission Control Center (MCC) Video Transport System (VTS) provides flight controllers and management the ability to meld raw video from various sources with telemetry to improve situational awareness. However, maintaining a separate infrastructure for video delivery and integration of video content with data adds significant complexity and cost to the system. When considering alternative architectures for a VTS, the current system's ability to share specific computer displays in their entirety to other locations, such as large projector systems, flight control rooms, and back supporting rooms throughout the facilities and centers must be incorporated into any new architecture. Internet Protocol (IP)-based systems also support video delivery and integration. IP-based systems generally have an advantage in terms of cost and maintainability. Although IP-based systems are versatile, the task of sharing a computer display from one workstation to another can be time consuming for an end-user and inconvenient to administer at a system level. The objective of this paper is to present a prototype display sharing enterprise solution. Display sharing is a system which delivers image sharing across the LAN while simultaneously managing bandwidth, supporting encryption, enabling recovery and resynchronization following a loss of signal, and, minimizing latency. Additional critical elements will include image scaling support, multi -sharing, ease of initial integration and configuration, integration with desktop window managers, collaboration tools, host and recipient controls. This goal of this paper is to summarize the various elements of an IP-based display sharing system that can be used in today's control center environment.

  12. Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.

    PubMed

    Dalecki, Marc; Bock, Otmar; Guardiera, Simon

    2010-05-01

    We have previously shown that subjects produce exaggerated manual forces in +3 Gz. When subjects execute discrete flight path changes in a flight simulator, their performance is less stable in +3 Gz than in +1 Gz. Here we explore whether Gz-related deficits are found with continuous flight path changes. Novice subjects and fighter pilots sat in a high-fidelity flight simulator equipped with the reproduction of the Eurofighter 2000 cockpit, including the realistic flight stick, and pursued continuous altitude changes of a target airplane in +1 Gz and +3 Gz. Subjects also produced verbal responses in a Stroop task. Pursuit and Stroop tasks were administered alone and concurrently. Flight instability increased in +3 Gz compared to +1 Gz in novices (+46%), but not in pilots (+3%), and even there only during the first minute. Flight performance improved after the first minute in both subject groups. Stroop reaction time was higher in novices (+5.27%) than in pilots (+3.77%) at +3 Gz. Dual-task costs did not differ between groups or Gz levels. Deficits of force production in high Gz are largely compensated for when subjects apply forces to produce a continuously changing flight path. This compensation seems not to require additional cognitive resources and may be achieved by using visual feedback. Force production deficits in high Gz seem to have no appreciable effects on flight performance and cognitive load of experienced pilots using a force-plus-displacement stick in +3 Gz. It remains to be shown whether this conclusion extends to purely isometric sticks and to higher Gz levels.

  13. Applied Meteorology Unit Quarterly Report, Second Quarter FY-13

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa

    2013-01-01

    The AMU team worked on six tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida, and began work on developing a dual-Doppler analysis with local Doppler radars, (2) Ms. Shafer continued work for Vandenberg Air Force Base on an automated tool to relate pressure gradients to peak winds, (3) Dr. Huddleston continued work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area, (4) Dr. Bauman continued work on a severe weather forecast tool focused on east-central Florida, (5) Mr. Decker began developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles, and (6) Dr. Watson began work to assimilate observational data into the high-resolution model configurations, she created for Wallops Flight Facility and the Eastern Range.

  14. Video Guidance Sensor for Surface Mobility Operations

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce

    2008-01-01

    Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.

  15. With a laser beam centered on its panel of photovoltaic cells, a model plane makes the first flight of an aircraft powered by a laser beam inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    With a laser beam centered on its panel of photovoltaic cells, a lightweight model plane makes the first flight of an aircraft powered by a laser beam inside a building at NASA Marshall Space Flight Center.

  16. Integrated propulsion technology demonstrator. Program plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA and Rockwell have embarked on a cooperative agreement to define, develop, fabricate, and operate an integrated propulsion technology demonstrator (IPTD) for the purpose of validating design, process, and technology improvements of launch vehicle propulsion systems. This program, a result of NRA8-11, Task Area 1 A, is jointly funded by both NASA and Rockwell and is sponsored by the Reusable Launch Vehicle office at NASA Marshall Space flight Center. This program plan provides to the joint NASA/Rockwell integrated propulsion technology demonstrator (IPTD) team a description of the activities within tasks / sub tasks and associated schedules required to successfully achieve program objectives. This document also defines the cost elements and manpower allocations for each sub task for purpose of program control. This plan is updated periodically by developing greater depth of direction for outyear tasks as the program matures. Updating is accomplished by adding revisions to existing pages or attaching page revisions to this plan. In either case, revisions will be identified by appropriate highlighting of the change, or specifying a revision page through the use of footnotes on the bottom right of each change page. Authorization for the change is provided by the principal investigators to maintain control of this program plan document and IPTD program activities.

  17. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  18. FTOOLS: A FITS Data Processing and Analysis Software Package

    NASA Astrophysics Data System (ADS)

    Blackburn, J. Kent; Greene, Emily A.; Pence, William

    1993-05-01

    FTOOLS, a highly modular collection of utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Research Archive Center) at NASA's Goddard Space Flight Center. Each utility performs a single simple task such as presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual utilities can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. The collection of utilities provides both generic processing and analysis utilities and utilities common to high energy astrophysics data sets. The FTOOLS software package is designed to be both compatible with IRAF and completely stand alone in a UNIX or VMS environment. The user interface is controlled by standard IRAF parameter files. The package is self documenting through the IRAF help facility and a stand alone help task. Software is written in ANSI C and FORTRAN to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.

  19. Cost and Schedule Analytical Techniques Development

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Final Report summarizes the activities performed by Science Applications International Corporation (SAIC) under contract NAS 8-40431 "Cost and Schedule Analytical Techniques Development Contract" (CSATD) during Option Year 3 (December 1, 1997 through November 30, 1998). This Final Report is in compliance with Paragraph 5 of Section F of the contract. This CSATD contract provides technical products and deliverables in the form of parametric models, databases, methodologies, studies, and analyses to the NASA Marshall Space Flight Center's (MSFC) Engineering Cost Office (PP03) and the Program Plans and Requirements Office (PP02) and other user organizations. Detailed Monthly Reports were submitted to MSFC in accordance with the contract's Statement of Work, Section IV "Reporting and Documentation". These reports spelled out each month's specific work performed, deliverables submitted, major meetings conducted, and other pertinent information. Therefore, this Final Report will summarize these activities at a higher level. During this contract Option Year, SAIC expended 25,745 hours in the performance of tasks called out in the Statement of Work. This represents approximately 14 full-time EPs. Included are the Huntsville-based team, plus SAIC specialists in San Diego, Ames Research Center, Tampa, and Colorado Springs performing specific tasks for which they are uniquely qualified.

  20. Cost and Schedule Analytical Techniques Development: Option 2 Year

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Final Report summarizes the activities performed by Science Applications International Corporation (SAIC) for the Option 2 Year from December 1, 1996 through November 30, 1997. The Final Report is in compliance with Paragraph 5 of Section F of the contract. This CSATD contract provides products and deliverable in the form of models, data bases, methodologies, studies and analyses for the NASA Marshall Space Flight Center's (MSFC) Engineering Cost Office (PPO3) the Program Plans and Requirements Officer (PP02), and other user organizations. Detailed Monthly Progress reports were submitted to MSFC in accordance with the contract's Statement of Work, Section TV "Reporting and Documentation". These reports spelled out each month's specific work accomplishments, deliverables submitted, major meetings held, and other pertinent information. This Final Report will summarize these activities at higher level. During this contract Option Year, SAIC expended 29,830 man-hours in tile performance of tasks called out in the Statement of Work and reported oil in this yearly Final Report. This represents approximately 16 full-time EPs. Included are the basis Huntsville-based team, plus SAIC specialists in San Diego, Ames Research Center, Chicago, and Colorado Springs performing specific tasks for which they are uniquely qualified.

Top