Sample records for flight crew interface

  1. Cockpit data management

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Boucek, G. P.

    1988-01-01

    This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features.

  2. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark manipulates a piece of equipment. She and other crew members are at SPACEHAB, Port Canaveral, Fla., for Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, David M. Brown and Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  3. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  4. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla trains on a glove box experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  5. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew discuss the experiments in the Spacehab module. Seated, in the foreground, is Mission Specialist Laurel Blair Salton Clark; standing behind her are Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  6. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., the STS-107 crew takes part in Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialist Laurel Blair Salton Clark, Commander Rick Douglas Husband, Payload Specialist Ilan Ramon, of Israel, and Payload Commander Michael P. Anderson. A trainer is at far right. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool and Mission Specialists Kalpana Chawla and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  7. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Payload Specialist Ilan Ramon (foreground), of Israel, and Mission Specialist Kalpana Chawla (background) check out experiments inside the Spacehab module. They and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. . Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  8. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  9. Pilot-Configurable Information on a Display Unit

    NASA Technical Reports Server (NTRS)

    Bell, Charles Frederick (Inventor); Ametsitsi, Julian (Inventor); Che, Tan Nhat (Inventor); Shafaat, Syed Tahir (Inventor)

    2017-01-01

    A small thin display unit that can be installed in the flight deck for displaying only flight crew-selected tactical information needed for the task at hand. The flight crew can select the tactical information to be displayed by means of any conventional user interface. Whenever the flight crew selects tactical information for processes the request, including periodically retrieving measured current values or computing current values for the requested tactical parameters and returning those current tactical parameter values to the display unit for display.

  10. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  11. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Commander Michael Anderson trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Anderson and other crew members Commander Rick D. Husband, Pilot William C. McCool, Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. . As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  12. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla looks over equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  13. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Mission Specialist David M. Brown trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Brown and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  14. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  15. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on a glove box experiment inside the training module. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  16. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, trains on equipment in the training module at SPACEHAB, Cape Canaveral. Ramon and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  17. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., Mission Specialist Laurel Blair Salton Clark practices an experiment while Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla observe. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  18. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla checks out items stored in the Spacehab module. Behind her, left, is Payload Specialist Ilan Ramon, of Israel, looking over a piece of equipment. At right is a trainer. The crew is taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Port Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  19. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Commander Rick D. Husband (left) and Pilot William C. McCool train in the SPACHEAB Double Module that will fly on their mission. Husband, McCool and other crew members Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB, Cape Canaveral, Fla., to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  20. Crew interface specifications development functions, phase 3A

    NASA Technical Reports Server (NTRS)

    Carl, J. G.

    1973-01-01

    The findings and data products developed during the crew interface specification study for inflight maintenance and stowage functions are presented. Guidelines are provided for improving the present progress of defining, controlling, and managing the flight crew requirements. The following data products were developed: (1) description of inflight maintenance management process, (2) specifications for inflight maintenance management requirements, and (3) suggested inflight maintenance data processing reports for logistics management.

  1. Flight deck crew coordination indices of workload and situation awareness in terminal operations

    NASA Astrophysics Data System (ADS)

    Ellis, Kyle Kent Edward

    Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.

  2. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  3. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  4. STS-102 crew members check out Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Members of the STS-102 crew check out Discovery's payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery.

  5. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  6. KSC01pp0174

    NASA Image and Video Library

    2001-01-15

    Members of the STS-102 crew check out Discovery’s payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery

  7. KSC01pp0173

    NASA Image and Video Library

    2001-01-15

    Members of the STS-102 crew check out Discovery’s payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery

  8. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  9. KSC-2009-3603

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – TIn Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, STS-128 crew members are lowered into space shuttle Discovery's payload bay to check equipment. At center is Mission Specialist John "Danny" Olivas. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-128 flight will carry science and storage racks to the International Space Station on Discovery. Launch is targeted for Aug. 7. Photo credit: NASA/Jim Grossmann

  10. The Integrated Mode Management Interface

    NASA Technical Reports Server (NTRS)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the functions of the FMCS control and display unit. The purpose of the INMI is to provide flight crews with a shared medium in which they can assess the state of the autoflight system, take control actions on it, reason about its behavior, and communicate with each other about its behavior. The design is intended to increase mode awareness and provide a better interface to autoflight mode management. This report describes the IMMI, the methods that were used in designing and developing it, and the theory underlying the design and development processes.

  11. Crew interface analysis: Selected articles on space human factors research, 1987 - 1991

    NASA Technical Reports Server (NTRS)

    Bagian, Tandi (Compiler)

    1993-01-01

    As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.

  12. The STS-108 crew look over MPLM during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-108 crew look into the hatch of the Multi-Purpose Logistics Module Raffaello. From left are Commander Dominic L. Gorie, Pilot Mark E. Kelly, and Mission Specialists Linda A. Godwin and Daniel M. Tani. The four astronauts are taking part in Crew Equipment Interface Test (CEIT) activities at KSC. The CEIT provides familiarization with the launch vehicle and payload. Mission STS-108 is a Utilization Flight (UF-1), carrying the Expedition Four crew plus Multi-Purpose Logistics Module Raffaello to the International Space Station. The Expedition Four crew comprises Yuri Onufriyenko, commander, Russian Aviation and Space Agency, and astronauts Daniel W. Bursch and Carl E. Walz. Endeavour is scheduled to launch Nov. 29 on mission STS-108.

  13. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Pilot Rick Sturckow and Mission Specialist Jerry Ross, both members of the STS-88 crew, participate with technicians in the Crew Equipment Interface Test for that mission in KSC's Space Station Processing Facility. STS-88, the first International Space Station assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  14. The STS-108 crew look over MPLM during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-108 crew pause during their checkout of the Multi-Purpose Logistics Module Raffaello. From left are Commander Dominic L. Gorie, Mission Specialist Daniel M. Tani, Pilot Mark E. Kelly and Mission Specialist Linda A. Godwin. The four astronauts are taking part in Crew Equipment Interface Test (CEIT) activities at KSC. The CEIT provides familiarization with the launch vehicle and payload. Mission STS-108 is a Utilization Flight (UF-1), carrying the Expedition Four crew plus Multi-Purpose Logistics Module Raffaello to the International Space Station. The Expedition Four crew comprises Yuri Onufriyenko, commander, Russian Aviation and Space Agency, and astronauts Daniel W. Bursch and Carl E. Walz. Endeavour is scheduled to launch Nov. 29 on mission STS-108.

  15. Crew interface specifications preparation for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Parker, F. W.; Carlton, B. E.

    1972-01-01

    The findings and data products developed during the Phase 2 crew interface specification study are presented. Five new NASA general specifications were prepared: operations location coding system for crew interfaces; loose equipment and stowage management requirements; loose equipment and stowage data base information requirements; spacecraft loose equipment stowage drawing requirements; and inflight stowage management data requirements. Additional data was developed defining inflight maintenance processes and related data concepts for inflight troubleshooting, remove/repair/replace and scheduled maintenance activities. The process of maintenance task and equipment definition during spacecraft design and development was also defined and related data concepts were identified for futher development into formal NASA specifications during future follow-on study phases of the contract.

  16. Phase 111A Crew Interface Specifications Development for Inflight Maintenance and Stowage Functions

    NASA Technical Reports Server (NTRS)

    Carl, John G.

    1973-01-01

    This report presents the findings and data products developed during the Phase IIIA Crew Interface Specification Study for Inflight Maintenance and Stowage Functions, performed by General Electric for the NASA, Johnson Space Center with a set of documentation that can be used as definitive guidelines to improve the present process of defining, controlling and managing flight crew interface requirements that are related to inflight maintenance (including assembly and servicing) and stowage functions. During the Phase IIIA contract period, the following data products were developed: 1) Projected NASA Crew Procedures/Flight Data File Development Process. 2) Inflight Maintenance Management Process Description. 3) Preliminary Draft, General Specification, Inflight Maintenance Management Requirements. 4) Inflight Maintenance Operational Process Description. 5) Preliminary Draft, General Specification, Inflight Maintenance Task and Support Requirements Analysis. 6) Suggested IFM Data Processing Reports for Logistics Management The above Inflight Maintenance data products have been developed during the Phase IIIA study after review of Space Shuttle Program Documentation, including the Level II Integrated Logistics Requirements and other DOD and NASA data relative to Payloads Accommodations and Satellite On-Orbit Servicing. These Inflight Maintenance data products were developed to be in consonance with Space Shuttle Program technical and management requirements.

  17. Improved Orbiter Waste Collection System Study, Appendix D

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Basic requirements for a space shuttle orbiter waste collection system are established. They are intended to be an aid in the development and procurement of a representative flight test article. Orbiter interface requirements, performance requirements, flight crew operational requirements, flight environmental requirements, and ground operational and environmental requirements are considered.

  18. Shuttle vehicle and mission simulation requirements report, volume 1

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1972-01-01

    The requirements for the space shuttle vehicle and mission simulation are developed to analyze the systems, mission, operations, and interfaces. The requirements are developed according to the following subject areas: (1) mission envelope, (2) orbit flight dynamics, (3) shuttle vehicle systems, (4) external interfaces, (5) crew procedures, (6) crew station, (7) visual cues, and (8) aural cues. Line drawings and diagrams of the space shuttle are included to explain the various systems and components.

  19. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  20. KSC-01pp1118

    NASA Image and Video Library

    2001-06-11

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  1. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  2. The STS-92 crew is ready to leave KSC after CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy climbs into a T-38 jet aircraft at KSC's Shuttle Landing Facility for a flight back to Houston. He and other crew members were at KSC for Crew Equipment Interface Test (CEIT) activities, looking over their mission payload and related equipment. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).

  3. KSC-07pd3565

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd3566

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  5. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cornelius, Randy; Frank, Jeremy; Garner, Larry; Haddock, Angie; Stetson, Howard; Wang, Lui

    2015-01-01

    The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements.

  6. Flight crew interface aspects of forward-looking airborne windshear detection systems

    NASA Technical Reports Server (NTRS)

    Anderson, Charles D.; Carbaugh, David C.

    1993-01-01

    The goal of this research effort was to conduct analyses and research which could provide guidelines for design of the crew interface of an integrated windshear system. Addressed were HF issues, crew/system requirements, candidate display formats, alerting criteria, and crew procedures. A survey identified five flight management issues as top priority: missed alert acceptability; avoidance distance needed; false alert acceptability; nuisance rate acceptability; and crew procedures. Results of a simulation study indicated that the warning time for a look-ahead alert needs to be between 11 and 36 seconds (target of 23 seconds) before the reactive system triggers in order to be effective. Pilots considered the standard go-around maneuver most appropriate for look-ahead alerts, and the escape maneuvers used did not require lateral turns. Prototype display formats were reviewed or developed for alerting the crew; providing guidance to avoid or escape windshear; and status displays to provide windshear situational awareness. The three alerting levels now in use were considered appropriate, with a fourth (time-critical) level as a possible addition, although many reviewers felt only two levels of alerting were needed. Another survey gathered expert opinion on what crew procedures and alerting criteria should be used for look-ahead, or integrated, windshear systems, with a wide diversity of opinion in these areas.

  7. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41533 (9 Aug. 2007) --- Astronauts Stephanie Wilson (left), STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  8. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon; Glidden, Joel; Lamoreaux, Christopher

    2013-01-01

    The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets.

  9. Line Pilots' Attitudes about and Experience with Flight Deck Automation: Results of an International Survey and Proposed Guidelines

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    1995-01-01

    A survey of line pilots' attitudes about flight deck automation was conducted by the Royal Air Force Institute of Aviation Medicine (RAF IAM, Farnborough, UK) under the sponsorship of the United Kingdom s Civil Aviation Authority and in cooperation with IATA (the International Air Transport Association). Survey freehand comments given by pilots operating 13 types of commercial transports across five manufacturers (Airbus, Boeing, British Aerospace, Lockheed, and McDonnell-Douglas) and 57 air carriers/organizations were analyzed by NASA. These data provide a "lessons learned" knowledge base which may be used for the definition of guidelines for flight deck automation and its associated crew interface within the High Speed Research Program. The aircraft chosen for analysis represented a progression of levels of automation sophistication and complexity, from "Basic" types (e.g., B727, DC9), through "Transition" types (e.g., A300, Concorde), to two levels of glass cockpits (e.g., Glass 1: e.g., A310; Glass 2: e.g., B747-400). This paper reports the results of analyses of comments from pilots flying commercial transport types having the highest level of automation sophistication (B757/B767, B747-400, and A320). Comments were decomposed into five categories relating to: (1) general observations with regard to flight deck automation; comments concerning the (2) design and (3) crew understanding of automation and the crew interface; (4) crew operations with automation; and (5) personal factors affecting crew/automation interaction. The goal of these analyses is to contribute to the definition of guidelines which may be used during design of future aircraft flight decks.

  10. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  11. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41538 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. A computer display is visible in the foreground.

  12. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  13. KSC01pd1113

    NASA Image and Video Library

    2001-06-11

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  14. KSC-01pp1114

    NASA Image and Video Library

    2001-06-11

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  15. An operational approach to long-duration mission behavioral health and performance factors.

    PubMed

    Flynn, Christopher F

    2005-06-01

    NASA's participation in nearly 10 yr of long-duration mission (LDM) training and flight confirms that these missions remain a difficult challenge for astronauts and their medical care providers. The role of the astronaut's crew surgeon is to maximize the astronaut's health throughout all phases of the LDM: preflight, in flight, and postflight. In support of the crew surgeon, the NASA-Johnson Space Center Behavioral Health and Performance Group (JSC-BHPG) has focused on four key factors that can reduce the astronaut's behavioral health and performance. These factors are defined as: sleep and circadian factors; behavioral health factors; psychological adaptation factors; and human-to-system interface (the interface between the astronaut and the mission workplace) factors. Both the crew surgeon and the JSC-BHPG must earn the crewmember's trust preflight to encourage problem identification and problem solving in these four areas. Once on orbit, the crew medical officer becomes a valuable extension of the crew surgeon and BHPG on the ground due to the crew medical officer's constant interaction with crewmembers and preflight training in these four factors. However, the crew surgeon, BHPG, and the crew medical officer need tools that will help predict, prevent, monitor, and respond to developing problems. Objective data become essential when difficult mission termination decisions must be made. The need for behavioral health and performance tool development creates an environment rich for collaboration between operational healthcare providers and researchers. These tools are also a necessary step to safely complete future, more autonomous exploration-class space missions.

  16. An operational approach to long-duration mission behavioral health and performance factors

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher F.

    2005-01-01

    NASA's participation in nearly 10 yr of long-duration mission (LDM) training and flight confirms that these missions remain a difficult challenge for astronauts and their medical care providers. The role of the astronaut's crew surgeon is to maximize the astronaut's health throughout all phases of the LDM: preflight, in flight, and postflight. In support of the crew surgeon, the NASA-Johnson Space Center Behavioral Health and Performance Group (JSC-BHPG) has focused on four key factors that can reduce the astronaut's behavioral health and performance. These factors are defined as: sleep and circadian factors; behavioral health factors; psychological adaptation factors; and human-to-system interface (the interface between the astronaut and the mission workplace) factors. Both the crew surgeon and the JSC-BHPG must earn the crewmember's trust preflight to encourage problem identification and problem solving in these four areas. Once on orbit, the crew medical officer becomes a valuable extension of the crew surgeon and BHPG on the ground due to the crew medical officer's constant interaction with crewmembers and preflight training in these four factors. However, the crew surgeon, BHPG, and the crew medical officer need tools that will help predict, prevent, monitor, and respond to developing problems. Objective data become essential when difficult mission termination decisions must be made. The need for behavioral health and performance tool development creates an environment rich for collaboration between operational healthcare providers and researchers. These tools are also a necessary step to safely complete future, more autonomous exploration-class space missions.

  17. KSC-2009-6141

    NASA Image and Video Library

    2009-11-06

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, STS-130 Commander George Zamka dressed in clean-room attire, known as a "bunny suit," gets the feel of the cockpit of space shuttle Endeavour. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-130 flight will carry the Tranquility pressurized module with a built-in cupola to the International Space Station aboard Endeavour. Launch is targeted for Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  18. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Commander Jeffrey Ashby checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  19. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  20. Considerations for the retrofit of data link

    NASA Technical Reports Server (NTRS)

    Corwin, William H.; Mccauley, Hugo W.

    1990-01-01

    Human factors issues related to the retrofit of data link in commercial transport aircraft are discussed. Topics that must be considered for data link implementation include, the loss of the party line, (i.e., the availability to all aircraft of information transmitted on a common voice frequency), and the scheduling of information to the flight crew. This paper focuses primarily on the human factors issues related to retrofit of Mode S. Retrofits is a difficult task because panel space accessible to flight crew members is limited. As with all cockpit equipment, data link implementation will have to comply with Federal Aviation Regulation 25.1523, which requires the manufacturer to address the conspicuity and ease of use of the data link device, and to assess the impact on crew workload. Operational sequence diagrams are provided to illustrate a methodology that can be used to decompose the flight crew body channel utilization of candidate avionics configurations in order to optimize the pilot-vehicle interface.

  1. STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck

    NASA Image and Video Library

    1991-08-11

    STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.

  2. STS-87 crew participates in Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center. Standing behind Laws are Takao Doi, Ph.D., of the National Space Development Agency of Japan, and Winston Scott, both mission specialists on STS-87. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  3. KSC-05PD-0779

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Crew Equipment Interface Test (CEIT) at NASAs Kennedy Space Center, STS-121 crew members inspect the docking station to become familiar with using the sockets. STS-121 is the second Return to Flight mission to the International Space Station. During CEIT, the crew has an opportunity to get a hands-on look at the orbiter and equipment they will be working with on their mission. Mission STS-121 is scheduled to launch aboard Space Shuttle Atlantis in July.

  4. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Looking over equipment inside the U.S. Lab Destiny as part of a Multi-Equipment Interface Test are STS-98 Pilot Mark Polansky (left) and Commander Kenneth D. Cockrell (center). They are joined by astronaut James Voss (right), who will be among the first crew to inhabit the International Space Station on a flight in late 2000. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  5. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) examines a power data grapple fixture outside the U.S. Lab Destiny. Jones is taking part in a Multi-Equipment Interface Test (MEIT), along with other crew members Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The grapple fixture will be the base of operations for the robotic arm on later flights The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  6. Crew interface specification development study for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Carl, J. G.

    1971-01-01

    The need and potential solutions for an orderly systems engineering approach to the definition, management and documentation requirements for in-flight maintenance, assembly, servicing, and stowage process activities of the flight crews of future spacecraft were investigated. These processes were analyzed and described using a new technique (mass/function flow diagramming), developed during the study, to give visibility to crew functions and supporting requirements, including data products. This technique is usable by NASA for specification baselines and can assist the designer in identifying both upper and lower level requirements associated with these processes. These diagrams provide increased visibility into the relationships between functions and related equipments being utilized and managed and can serve as a common communicating vehicle between the designer, program management, and the operational planner. The information and data product requirements to support the above processes were identified along with optimum formats and contents of these products. The resulting data product concepts are presented to support these in-flight maintenance and stowage processes.

  7. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043673 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  8. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043661 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  9. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043662 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  10. KSC-03pd0010

    NASA Image and Video Library

    2003-01-04

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins looks over the windshield in Atlantis. She and other crew members are at KSC to take part in Crew Equipment Interface Test activities, which include checking out the payload and orbiter. STS-114 is a utilization and logistics flight (ULF-1) that will carry Multi-Purpose Logistics Module Raffaello and the External Stowage Platform (ESP-2), as well as the Expedition 7 crew, to the International Space Station. Launch is targeted for March 1, 2003.

  11. KSC-03pd0013

    NASA Image and Video Library

    2003-01-04

    KENNEDY SPACE CENTER, FLA. -- STS-114 Pilot James Kelly and Commander Eileen Collins look over the windshield in Atlantis. They and other crew members are at KSC to take part in Crew Equipment Interface Test activities, which include checking out the payload and orbiter. STS-114 is a utilization and logistics flight (ULF-1) that will carry Multi-Purpose Logistics Module Raffaello and the External Stowage Platform (ESP-2), as well as the Expedition 7 crew, to the International Space Station. Launch is targeted for March 1, 2003.

  12. KSC-03pd0011

    NASA Image and Video Library

    2003-01-04

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins (foreground) checks out the windshield in Atlantis. She and other crew members are at KSC to take part in Crew Equipment Interface Test activities, which include checking out the payload and orbiter. STS-114 is a utilization and logistics flight (ULF-1) that will carry Multi-Purpose Logistics Module Raffaello and the External Stowage Platform (ESP-2), as well as the Expedition 7 crew, to the International Space Station. Launch is targeted for March 1, 2003.

  13. KSC-07pd3567

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members get a close look inside space shuttle Endeavour's payload bay. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  14. The STS-92 crew is ready to leave KSC after CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pam Melroy poses at the Shuttle Landing Facility before flying back to Houston. She and other crew members completed their Crew Equipment Interface Test activities, looking over their mission payload and related equipment. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).

  15. Crew interface specifications development for inflight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Carl, J. G.

    1974-01-01

    Findings and data products developed during crew specification study for inflight maintenance and stowage functions are reported. From this information base, a family of data concepts to support crew inflight troubleshooting and corrective maintenance activities was developed and specified. Recommendations are made for the improvement of inflight maintenance planning, preparations and operations in future space flight programs through the establishment of an inflight maintenance organization and specific suggestions for techniques to improve the management of the inflight maintenance function.

  16. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Fyodor Yurchikhin looks at Atlantis, the designated orbiter for the mission. Yurchikhin is with the Russian Space Agency. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  17. Acceptability of Flight Deck-Based Interval Management Crew Procedures

    NASA Technical Reports Server (NTRS)

    Murdock, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2013-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Next Generation Air Transportation System (NextGen) Airspace Systems Program's Air Traffic Management Technology Demonstration - 1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using NextGen surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IM-NOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations, when used with a minimum set of Flight deck-based Interval Management (FIM) equipment and a prototype crew interface, were acceptable to and feasible for use by flight crews in a voice communications environment. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft automatic dependent surveillance broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated in LaRC's Air Traffic Operations Laboratory. Data were collected from 10 crews of current, qualified 757/767 pilots asked to fly a high-fidelity, fixed based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into DFW, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Pilot participant feedback indicated that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable level of workload. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures can be successfully executed in a near-term NextGen environment.

  18. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  19. CHeCS (Crew Health Care Systems): International Space Station (ISS) Medical Hardware Catalog. Version 10.0

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  20. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mission Specialist Jerry Ross participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first International Space Station assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  1. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Accompanied by a technician, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at the payload and equipment in the bay of Atlantis during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  2. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at equipment pointed out by a technician in the payload bay of Atlantis. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  3. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers (foreground) points to an engine line on Atlantis, the designated orbiter for the mission, while Commander Jeffrey Ashby (behind) looks on. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  4. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-88 crew members participate in the Crew Equipment Interface Test (CEIT) for that mission in KSC's Space Station Processing Facility. Discussing the mission are, from left to right, Pilot Rick Sturckow, Mission Specialists Jerry Ross and Nancy Currie, and Commander Bob Cabana. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  5. MS Massimino on aft flight deck during EVA 5

    NASA Image and Video Library

    2002-03-09

    STS109-E-5761 (9 March 2002) --- Astronaut Michael J. Massimino, STS-109 mission specialist, looks through an overhead window on the aft flight deck of the Space Shuttle Columbia during the crew’s final interface with the Hubble Space Telescope (HST). The telescope was released at 4:04 a.m. (CST). The image was recorded with a digital still camera.

  6. Flight crew aiding for recovery from subsystem failures

    NASA Technical Reports Server (NTRS)

    Hudlicka, E.; Corker, K.; Schudy, R.; Baron, Sheldon

    1990-01-01

    Some of the conceptual issues associated with pilot aiding systems are discussed and an implementation of one component of such an aiding system is described. It is essential that the format and content of the information the aiding system presents to the crew be compatible with the crew's mental models of the task. It is proposed that in order to cooperate effectively, both the aiding system and the flight crew should have consistent information processing models, especially at the point of interface. A general information processing strategy, developed by Rasmussen, was selected to serve as the bridge between the human and aiding system's information processes. The development and implementation of a model-based situation assessment and response generation system for commercial transport aircraft are described. The current implementation is a prototype which concentrates on engine and control surface failure situations and consequent flight emergencies. The aiding system, termed Recovery Recommendation System (RECORS), uses a causal model of the relevant subset of the flight domain to simulate the effects of these failures and to generate appropriate responses, given the current aircraft state and the constraints of the current flight phase. Since detailed information about the aircraft state may not always be available, the model represents the domain at varying levels of abstraction and uses the less detailed abstraction levels to make inferences when exact information is not available. The structure of this model is described in detail.

  7. Boeing electronic flight bag

    NASA Astrophysics Data System (ADS)

    Trujillo, Eddie J.; Ellersick, Steven D.

    2006-05-01

    The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.

  8. Manned space flight nuclear system safety. Volume 1: base nuclear system safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.

  9. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  10. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41541 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist, and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  11. Operational behavioral health and performance resources for international space station crews and families

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.; Vander Ark, Stephen T.

    2005-01-01

    The Behavioral Health and Performance Section (BHP) at NASA Johnson Space Center provides direct and indirect psychological services to the International Space Station (ISS) astronauts and their families. Beginning with the NASA-Mir Program, services available to the crews and families have gradually expanded as experience is gained in long-duration flight. Enhancements to the overall BHP program have been shaped by crewmembers' personal preferences, family requests, specific events during the missions, programmatic requirements, and other lessons learned. The BHP program focuses its work on four areas: operational psychology, behavioral medicine, human-to-system interface, and sleep and circadian. Within these areas of focus are psychological and psychiatric screening for astronaut selection as well as many resources that are available to the crewmembers, families, and other groups such as crew surgeon and various levels of management within NASA. Services include: preflight, in flight, and postflight preparation; training and support; resources from a Family Support Office; in-flight monitoring; clinical care for astronauts and their families; and expertise in the workload and work/rest scheduling of crews on the ISS. Each of the four operational areas is summarized, as are future directions for the BHP program.

  12. KSC-05PD-0774

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Crew Equipment Interface Test (CEIT) at NASAs Kennedy Space Center, STS-121 crew members are testing the ergometer that will be used for exercising while in space. Seen in the photo are Mission Specialists Michael E. Fossum (left) and Piers J. Sellers. STS-121 is the second Return to Flight mission to the International Space Station. During CEIT, the crew has an opportunity to get a hands-on look at the orbiter and equipment they will be working with on their mission. Mission STS-121 is scheduled to launch aboard Space Shuttle Atlantis in July.

  13. The STS-97 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialists Joe Tanner (left) and Carlos Noriega (right) practice working parts of the Orbital Docking System (ODS) in Endeavour's payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission.

  14. KSC-07pd2606

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- Astronaut Leopold Eyharts, who represents the European Space Agency, tries on a harness in the Orbiter Processing Facility. Eyharts will be traveling to the International Space Station to join the Expedition 16 crew as a flight engineer. The crew is at Kennedy to take part in a crew equipment interface test, or CEIT, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  15. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-88 crew members and Boeing Manufacturing Engineer Harry Feinberg enjoy a moment inside Node 1 of the International Space Station (ISS) during the mission's Crew Equipment Interface Test (CEIT) in KSC's Space Station Processing Facility. Discussing the mission are, from left to right, Feinberg, Commander Bob Cabana, Mission Specialist Nancy Currie, and Pilot Rick Sturckow. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  16. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Pilot Rick Sturckow, left of center, and Mission Specialist Jerry Ross, right of center, participate in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Here, the crew is inspecting electrical connections that will be used in assembly of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  17. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-88 crew members participate in the Crew Equipment Interface Test (CEIT) in KSC's Space Station Processing Facility. Working on a high voltage box for electrical connections for the International Space Station (ISS) are, left to right, a technician, Pilot Rick Sturckow, Mission Specialist Jerry Ross (with glasses), and Commander Bob Cabana (back to camera). The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  18. Flight Simulator Evaluation of Baseline Crew Performances With Three Data Link Interfaces

    DOT National Transportation Integrated Search

    1995-09-01

    This study was conducted by the National Laboratory for Research of the : Netherlands under cooperative sponsorship by the Federal Aviation Administration : (FAA), and the Ministry of Transport of the Netherlands. The purpose of the : study was the e...

  19. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-98 crew check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, the crew will install the Lab in the International Space Station during a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Making up the five-member crew on STS-98 are Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  20. Human factors in aviation

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L. (Editor); Nagel, David C. (Editor)

    1988-01-01

    The fundamental principles of human-factors (HF) analysis for aviation applications are examined in a collection of reviews by leading experts, with an emphasis on recent developments. The aim is to provide information and guidance to the aviation community outside the HF field itself. Topics addressed include the systems approach to HF, system safety considerations, the human senses in flight, information processing, aviation workloads, group interaction and crew performance, flight training and simulation, human error in aviation operations, and aircrew fatigue and circadian rhythms. Also discussed are pilot control; aviation displays; cockpit automation; HF aspects of software interfaces; the design and integration of cockpit-crew systems; and HF issues for airline pilots, general aviation, helicopters, and ATC.

  1. STS-87 crew participates in Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 astronaut crew members participate in the Crew Equipment Integration Test (CEIT) in Kennedy Space Centers (KSC's) Vertical Processing Facility. From left are Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steven Lindsey; Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan; and Mission Specialist Winston Scott. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the STS-87 mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  2. STS-87 crew participates in Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members Winston Scott, at left, and Takao Doi, Ph.D., of the National Space Development Agency of Japan, both mission specialists on STS-87. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the STS-87 mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks. STS-87 is scheduled for a Nov. 19 liftoff from KSC.

  3. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    While checking out equipment during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, astronaut James Voss (center) and STS-98 crew members Commander Kenneth D. Cockrell (foreground) and Pilot Mark Polansky (right) pause for the camera. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  4. Effects of checklist interface on non-verbal crew communications

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  5. Advanced Resistive Exercise Device (ARED) Flight Software (FSW): A Unique Approach to Exercise in Long Duration Habitats

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark

    2005-01-01

    ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.

  6. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014953 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  7. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014949 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  8. STS-107 Crew Surgeon

    NASA Technical Reports Server (NTRS)

    Johnston, Smith

    2005-01-01

    NASA Crew Surgeons (CS) provides medical support to crewmembers assigned to a space flight. Upon this mission assignment, CS s develop close working and personal relationships with crewmembers, their families and close friends. This discussion covers the role of the NASA CS from start of a mission assignment through its completion. Specific emphasis is placed on events associated with the Columbia accident to include; premission planning, initial family medical support, interface with the astronaut Casualty Assistance Control Officers (CACOs), AFIP relationship and on-going care for the families.

  9. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mission Specialist Jerry Ross participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Here, Ross is inspecting electrical connections that will be used in assembly of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  10. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Commander Bob Cabana participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. Here, Cabana inspects one of the six hatches on Node 1 of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  11. Mission Control Center (MCC) system specification for the shuttle Orbital Flight Test (OFT) timeframe

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.

  12. International Space Station Alpha user payload operations concept

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.

    1994-01-01

    International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.

  13. Crew interface with windshear systems

    NASA Technical Reports Server (NTRS)

    Carbaugh, Dave

    1988-01-01

    A review is given of the areas within Boeing that are working on the NASA contract to conduct windshear studies. A synopsis is given of the work that Boeing Flight Deck Research is doing. A short review of nuisance and alerts is given in light of upcoming forward look technology.

  14. An improved waste collection system for space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry

    1986-01-01

    Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.

  15. Progress in Military Airlift (Les Progres Realises dans le Domaine du Transport Aerien Militaire)

    DTIC Science & Technology

    1991-05-01

    transformation of the flight deck, with both visible and concealed changes. This crew/ airplane interface modification has resulted in an evolution of ...300 ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE AGARD ADVISORY REPOW 300 Technical Evaluation...Advisory Report was prepared at the request of the ’ Flight Mechanics Panel of AGARD. _ North Atlantic Treaty Organization Organisation du Trait de

  16. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During Crew Equipment Interface Test (CEIT), STS-95 crew members watch a monitor displaying the Spartan payload above as it is maneuvered on a stand. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  17. KSC-05PD-0775

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Crew Equipment Interface Test (CEIT) at NASAs Kennedy Space Center, STS-121 crew members are testing the ergometer that will be used for exercising while in space. Seen in the photo are (center left) Commander Steven W. Lindsey and Mission Specialists Stephanie Wilson, Michael E. Fossum and Piers J. Sellers. STS-121 is the second Return to Flight mission to the International Space Station. During CEIT, the crew has an opportunity to get a hands-on look at the orbiter and equipment they will be working with on their mission. Mission STS-121 is scheduled to launch aboard Space Shuttle Atlantis in July.

  18. The STS-97 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), members of the STS-97 crew look over the Orbital Docking System (ODS) in Endeavour's payload bay. At left, standing, is Mission Specialist Joe Tanner. At right is Mission Specialist Carlos Noriega, with his hands on the ODS. The others are workers in the OPF. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission.

  19. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During a break in the Crew Equipment Interface Test, Payload Specialist John H. Glenn Jr., senator from Ohio, greets Bobby Miranda. Miranda was a NASA photographer for Glenn's first flight on Friendship 7, February 1962. CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS- 95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.

    2009-01-01

    Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).

  1. KSC-2010-1134

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, members of space shuttle Discovery's STS-131 crew participate in training activities during the Crew Equipment Interface Test, or CEIT, for their mission. Here, Pilot James P. Dutton Jr. experiences the feel of the cockpit from inside the crew module. The CEIT provides the crew with hands-on training and observation of shuttle and flight hardware. The seven-member crew will deliver the multi-purpose logistics module Leonardo, filled with resupply stowage platforms and racks to be transferred to locations around the International Space Station. Three spacewalks will include work to attach a spare ammonia tank assembly to the station's exterior and return a European experiment from outside the station's Columbus module. Discovery's launch is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Kim Shiflett

  2. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  3. Intelligent Engine Systems Work Element 1.2: Malfunction and Operator Error Reduction

    NASA Technical Reports Server (NTRS)

    Wiseman, Matthew

    2005-01-01

    Jet engines, although highly reliable and safe, do experience malfunctions that cause flight delays, passenger stress, and in some cases, in conjunction with inappropriate crew response, contribute to airplane accidents. On rare occasions, the anomalous engine behavior is not recognized until it is too late for the pilots to do anything to prevent or mitigate the resulting engine malfunction causing in-flight shutdowns (IFSDs), aborted takeoffs (ATOs), or loss of thrust control (LOTC). In some cases, the crew response to a myriad of external stimuli and existing training procedures is the source of the problem mentioned above. The problem is the reduction of jet engine malfunctions (IFSDs, ATOs, and LOTC) and inappropriate crew response (PSM+ICR) through the use of evolving and advanced technologies. The solution is to develop the overall system health maintenance architecture, detection and accommodation technologies, processes, and enhanced crew interfaces that would enable a significant reduction in IFSDs, ATOs, and LOTC. This program defines requirements and proposes a preliminary design concept of an architecture that enables the realization of the solution.

  4. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks over documents as part of a Multi-Equipment Interface Test (MEIT) on the U.S. Lab Destiny. Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  5. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  6. International Space Station Medical Project

    NASA Technical Reports Server (NTRS)

    Starkey, Blythe A.

    2008-01-01

    The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.

  7. NASA/ESA CV-990 Spacelab Simulation (ASSESS 2)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Cost effective techniques for addressing management and operational activities on Spacelab were identified and analyzed during a ten day NASA-ESA cooperative mission with payload and flight responsibilities handled by the organization assigned for early Spacelabs. Topics discussed include: (1) management concepts and interface relationships; (2) experiment selection; (3) hardware development; (4) payload integration and checkout; (5) selection and training of mission specialists and payload specialists; (6) mission control center/payload operations control center interactions with ground and flight problems; (7) real time interaction during flight between principal investigators and the mission specialist/payload specialist flight crew; and (8) retrieval of scientific data and its analysis.

  8. KSC-00pp1426

    NASA Image and Video Library

    2000-09-16

    During the STS-97 Crew Equipment Interface Test (CEIT), Mission Specialist Carlos Noriega (right) gets hands-on experience with parts of the Orbital Docking System in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  9. KSC00pp1426

    NASA Image and Video Library

    2000-09-16

    During the STS-97 Crew Equipment Interface Test (CEIT), Mission Specialist Carlos Noriega (right) gets hands-on experience with parts of the Orbital Docking System in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  10. Payload crew interface design criteria and techniques. Task 1: Inflight operations and training for payloads. [space shuttles

    NASA Technical Reports Server (NTRS)

    Carmean, W. D.; Hitz, F. R.

    1976-01-01

    Guidelines are developed for use in control and display panel design for payload operations performed on the aft flight deck of the orbiter. Preliminary payload procedures are defined. Crew operational concepts are developed. Payloads selected for operational simulations were the shuttle UV optical telescope (SUOT), the deep sky UV survey telescope (DUST), and the shuttle UV stellar spectrograph (SUSS). The advanced technology laboratory payload consisting of 11 experiments was selected for a detailed evaluation because of the availability of operational data and its operational complexity.

  11. KSC-07pd3549

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 Mission Specialist Takao Doi tries out one of the cameras that will be used on the mission. Doi represents the Japanese Aerospace and Exploration Agency. He and other crew members are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  12. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mission Specialist Nancy Currie and Commander Bob Cabana participate in the Crew Equipment Interface Test (CEIT) for STS- 88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Here, Currie and Cabana inspect one of the six hatches on Node 1 of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  13. STS-87 crew participates in Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 astronaut crew members participate in the Crew Equipment Integration Test (CEIT) with the Spartan-201 payload in Kennedy Space Centers (KSC's) Vertical Processing Facility. From left are Pilot Steven Lindsey; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Mission Specialist Kalpana Chawla, Ph.D.; Commander Kevin Kregel; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. The CEIT gives astronauts an opportunity to get a hands- on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS-87 is scheduled for a Nov. 19 liftoff from KSC.

  14. KSC-98pc466

    NASA Image and Video Library

    1998-04-10

    STS-91 crew members participate in the Crew Equipment Interface Test, or CEIT, in KSC's Orbiter Processing Facility Bay 2. Laying down inspecting a foot restraint for an extravehicular activity (EVA) spacewalk is STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D. Looking over his shoulder is Kieth Johnson, an EVA trainer and flight controller from Johnson Space Center. STS-91 Mission Specialist Janet Kavandi, Ph.D., stands next to Johnson. During CEIT, the crew have an opportunity to get a hands-on look at the payloads with which they'll be working on-orbit. The STS-91 crew are scheduled to launch aboard the Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on May 28 at 8:05 EDT

  15. KSC-07pd2611

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- From a lower level in the Orbiter Processing Facility, members of the STS-122 crew check out the landing gear on space shuttle Atlantis, overhead. Dressed in their blue suits are Mission Specialist Leland Melvin, Commander Stephen Frick, European Space Agency astronaut Leopold Eyharts and Pilot Alan Poindexter. Eyharts will be traveling to the International Space Station to join the Expedition 16 crew as a flight engineer. The crew is at Kennedy to take part in a crew equipment interface test, or CEIT, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd2614

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 crew members stand next to the space shuttle Atlantis, which is being processed for launch on STS-122. From left are European Space Agency astronaut Leopold Eyharts and Mission Specialists Leland Melvin and Hans Schlegel, who also represents ESA. Eyharts will be traveling to the International Space Station to join the Expedition 16 crew as a flight engineer. The crew is at Kennedy to take part in a crew equipment interface test, or CEIT, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  17. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  18. Semantic based man-machine interface for real-time communication

    NASA Technical Reports Server (NTRS)

    Ali, M.; Ai, C.-S.

    1988-01-01

    A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.

  19. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Commander Curtis L. Brown Jr. (left) and Payload Specialist John H. Glenn Jr. (right) display a newspaper published at the time of Glenn's first flight in Friendship 7, February 1962. Brown and Glenn were participating in Crew Equipment Interface Test (CEIT) for their mission. The CEIT gives astronauts an opportunity for a hands-on look at the payloads on which they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During a break in the Crew Equipment Interface Test (CEIT), Payload Specialist John H. Glenn Jr.(left), senator from Ohio, greets Bobby Miranda. Miranda was a NASA photographer for Glenn's first flight on Friendship 7, February 1962. In the background is Mission Specialist Scott E. Parazynski. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS- 95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  2. 14 CFR 27.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...

  3. 14 CFR 29.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...

  4. 14 CFR 29.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...

  5. 14 CFR 27.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...

  6. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  7. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  8. Air Traffic Management Technology Demostration Phase 1 (ATD) Interval Management for Near-Term Operations Validation of Acceptability (IM-NOVA) Experiment

    NASA Technical Reports Server (NTRS)

    Kibler, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Airspace Systems Program's Air Traffic Management Technology Demonstration-1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using Next Generation Air Transportation System (NextGen) surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IMNOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations were acceptable to and feasible for use by flight crews in a voice communications environment when used with a minimum set of Flight Deck-based Interval Management (FIM) equipment and a prototype crew interface. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft Automatic Dependent Surveillance-Broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated into LaRC's Air Traffic Operations Laboratory (ATOL). Data were collected from 10 crews of current 757/767 pilots asked to fly a high-fidelity, fixed-based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes (ASTAR) algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into the DFW International Airport, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Analyses of qualitative data revealed that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable workload level. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures could be successfully executed in a nearterm NextGen environment. Analyses of quantitative data revealed that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/-5 sec, and the delivery precision was less than 5 sec. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.

  9. Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.

    2015-01-01

    The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.

  10. Evaluation of cardiopulmonary resuscitation techniques in microgravity

    NASA Technical Reports Server (NTRS)

    Billica, Roger; Gosbee, John; Krupa, Debra T.

    1991-01-01

    Cardiopulmonary resuscitation (CPR) techniques were investigated in microgravity with specific application to planned medical capabilities for Space Station Freedom (SSF). A KC-135 parabolic flight test was performed with the goal of evaluating and quantifying the efficacy of different types of microgravity CPR techniques. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. Three experiments were involved chosen for their clinical background, certification, and practical experience in prior KC-135 parabolic flight. The CPR evaluation was performed using a standard training mannequin (recording resusci-Annie) which was used in practice prior to the actual flight. Aboard the KC-135, the prototype medical restraint system (MRS) for the SSF Health Maintenance Facility (HMF) was used for part of the study. Standard patient and crew restraints were used for interface with the MRS. During the portion of study where CPR was performed without MRS, a set of straps for crew restraint similar to those currently employed for the Space Shuttle program were used. The entire study was recorded via still camera and video.

  11. KSC-08pd2572

    NASA Image and Video Library

    2008-09-05

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. Looking at the Soft Capture Mechanism on the Flight Support Structure are a technician (pointing) and Mission Specialists Mike Massimino and Michael Good. The mechanism will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd2574

    NASA Image and Video Library

    2008-09-05

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. Mission Specialist Michael Good points out part of the Flight Support Structure to Mission Specialist Andrew Feustel, right. The Soft Capture Mechanism is above him. The mechanism will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett

  13. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  14. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  15. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  16. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  17. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  18. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  19. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  20. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  1. Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities

    NASA Technical Reports Server (NTRS)

    James, George H., III

    2007-01-01

    This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.

  2. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside a darkened U.S. Lab module, in the Space Station Processing Facility (SSPF), astronaut James Voss (left) joins STS-98 crew members Commander Kenneth D. Cockrell (foreground), and Pilot Mark Polansky (right) to check out equipment in the Lab. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  3. SSME digital control design characteristics

    NASA Technical Reports Server (NTRS)

    Mitchell, W. T.; Searle, R. F.

    1985-01-01

    To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.

  4. KSC-00pp1425

    NASA Image and Video Library

    2000-09-16

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialists Joe Tanner (left) and Carlos Noriega (right) practice working parts of the Orbital Docking System (ODS) in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  5. KSC00pp1420

    NASA Image and Video Library

    2000-09-16

    In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Pilot Michael Bloomfied (left) and Commander Brent Jett (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  6. KSC-00pp1420

    NASA Image and Video Library

    2000-09-16

    In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Pilot Michael Bloomfied (left) and Commander Brent Jett (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  7. KSC00pp1421

    NASA Image and Video Library

    2000-09-16

    In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  8. KSC00pp1422

    NASA Image and Video Library

    2000-09-16

    During a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour in Orbiter Processing Facility bay 2 as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  9. KSC00pp1425

    NASA Image and Video Library

    2000-09-16

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialists Joe Tanner (left) and Carlos Noriega (right) practice working parts of the Orbital Docking System (ODS) in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  10. KSC-00pp1422

    NASA Image and Video Library

    2000-09-16

    During a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour in Orbiter Processing Facility bay 2 as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  11. KSC-00pp1421

    NASA Image and Video Library

    2000-09-16

    In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  12. KSC-07pd3555

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members inspect the thermal protection system tiles on the underside of space shuttle Endeavour. From left are Mission Specialists Takao Doi, Michael Foreman and Richard Linnehan, Pilot Gregory Johnson (turned away), Commander Dominic Gorie and Mission Specialist Robert Behnken. They are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd3553

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members inspect the wheel well on the underside of space shuttle Endeavour. From left front are astronaut Garrett Reisman, Mission Specialists Takao Doi, Michael Foreman and Richard Linnehan, Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialist Robert Behnken. They are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  14. STS-88 crew members and technicians participate in their CEIT in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Commander Bob Cabana participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. Here, Cabana sits inside the Pressurized Mating Adapter-1 (PMA-1) for a close-up look at some of the connecting ducts and wires. Node 1 of the International Space Station (ISS) is behind him. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.

  15. The Evolution of On-Board Emergency Training for the International Space Station Crew

    NASA Technical Reports Server (NTRS)

    LaBuff, Skyler

    2015-01-01

    The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives from the handheld Compound Specific Analyzer for Combustion Products (CSA-CP). This CSA-CP emulator makes use of a portion of codebase from the Emergency OBT simulator dealing with atmospheric contamination during fire scenarios, and feeds various data signatures to crew via an iPod Touch with a flight-like CSA-CP display. These innovative simulations, which make use of COTS hardware with custom in-house software, have yielded drastic improvements to emergency training effectiveness and risk reduction for ISS crew and flight control teams during on-orbit and ground training events.

  16. Trajectory and Aeroheating Environment Development and Sensitivity Analysis for Capsule-shaped Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Wurster, Kathryn E.

    2006-01-01

    Recently, NASA's Exploration Systems Research and Technology Project funded several tasks that endeavored to develop and evaluate various thermal protection systems and high temperature material concepts for potential use on the crew exploration vehicle. In support of these tasks, NASA Langley's Vehicle Analysis Branch generated trajectory information and associated aeroheating environments for more than 60 unique entry cases. Using the Apollo Command Module as the baseline entry system because of its relevance to the favored crew exploration vehicle design, trajectories for a range of lunar and Mars return, direct and aerocapture Earth-entry scenarios were developed. For direct entry, a matrix of cases was created that reflects reasonably expected minimum and maximum values of vehicle ballistic coefficient, inertial velocity at entry interface, and inertial flight path angle at entry interface. For aerocapture, trajectories were generated for a range of values of initial velocity and ballistic coefficient that, when combined with proper initial flight path angles, resulted in achieving a low Earth orbit either by employing a full lift vector up or full lift vector down attitude. For each trajectory generated, aeroheating environments were generated which were intended to bound the thermal protection system requirements for likely crew exploration vehicle concepts. The trades examined clearly pointed to a range of missions / concepts that will require ablative systems as well as a range for which reusable systems may be feasible. In addition, the results clearly indicated those entry conditions and modes suitable for manned flight, considering vehicle deceleration levels experienced during entry. This paper presents an overview of the analysis performed, including the assumptions, methods, and general approach used, as well as a summary of the trajectory and aerothermal environment information that was generated.

  17. Mitigating and monitoring flight crew fatigue on a westward ultra-long-range flight.

    PubMed

    Signal, T Leigh; Mulrine, Hannah M; van den Berg, Margo J; Smith, Alexander A T; Gander, Philippa H; Serfontein, Wynand

    2014-12-01

    This study examined the uptake and effectiveness of fatigue mitigation guidance material including sleep recommendations for a trip with a westward ultra-long-range flight and return long-range flight. There were 52 flight crew (4-pilot crews, mean age 55 yr) who completed a sleep/duty diary and wore an actigraph prior to, during, and after the trip. Primary crew flew the takeoff and landing, while relief crew flew the aircraft during the Primary crew's breaks. At key times in flight, crewmembers rated their fatigue (Samn-Perelli fatigue scale) and sleepiness (Karolinska Sleepiness Scale) and completed a 5-min Psychomotor Vigilance Task. Napping was common prior to the outbound flight (54%) and did not affect the quantity or quality of in-flight sleep (mean 4.3 h). Primary crew obtained a similar amount on the inbound flight (mean 4.0 h), but Secondary crew had less sleep (mean 2.9 h). Subjective fatigue and sleepiness increased and performance slowed across flights. Performance was faster on the outbound than inbound flight. On both flights, Primary crew were less fatigued and sleepy than Secondary crew, particularly at top of descent and after landing. Crewmembers slept more frequently and had more sleep in the first 24 h of the layover than the last, and had shifted their main sleep to the local night by the second night. The suggested sleep mitigations were employed by the majority of crewmembers. Fatigue levels were no worse on the outbound ultra-long-range flight than on the return long-range flight.

  18. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.

  19. Space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Hanaway, John F.; Moorehead, Robert W.

    1989-01-01

    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

  20. 14 CFR 25.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 25.1523 Section 25.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1523 Minimum flight crew. The minimum flight crew must be established so that it is...

  1. 14 CFR 29.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 29.1523 Section 29.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 29.1523 Minimum flight crew. The minimum flight crew must be established so that it is...

  2. CHeCS: International Space Station Medical Hardware Catalog

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  3. 14 CFR 27.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 27.1523 Section 27.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.1523 Minimum flight crew. The minimum flight crew must be established so that it is sufficient for...

  4. KSC-08pd2573

    NASA Image and Video Library

    2008-09-05

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. A technician, at left, provides information about the Soft Capture Mechanism on the Flight Support Structure to Mission Specialists Michael Good, Andrew Feustel and Mike Massimino. The mechanism will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett

  5. Manned geosynchronous mission requirements and system analysis study extension. Manned Orbital Transfer Vehicle (MOTV) capabilities handbook and user guide

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The primary change in crew capsule definition is a smaller MOTV crew capsule, switching from a 3-man capsule to a 2-man capsule. A second change permitted crew accommodations for sleeping and privacy to be combined with the flight station. The current baseline DRM, ER1, requires 2 men for 3 to 4 days to repair a multi-disciplined GOE Platform and a modest amount of mission dedicated hardware. A 2-man MOTV crew capsule to be used as a design reference point for the OTV, and its interfaces between the STS and other associated equipment or facilities are described in detail. The functional capabilities of the 2-man capsule, as well as its application to a wide range of generic missions, is also presented. The MOTV turnaround is addressed and significant requirements for both space based and ground based scenarios are summarized.

  6. Workers in SSPF monitor Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility control room check documentation during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  7. Workers in SSPF monitor Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  8. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, which is in the Space Station Processing Facility, astronaut James Voss (left) joins STS-98 Pilot Mark Polansky (center) and Commander Kenneth D. Cockrell (right) in checking wiring against documentation on the floor. Also participating in the MEIT is Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  9. Development of display design and command usage guidelines for Spacelab experiment computer applications

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1979-01-01

    Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.

  10. Unified Desktop for Monitoring & Control Applications - The Open Navigator Framework Applied for Control Centre and EGSE Applications

    NASA Astrophysics Data System (ADS)

    Brauer, U.

    2007-08-01

    The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").

  11. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...

  12. KSC-07pd3496

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-123 crew get ready to inspect part of the payload for the mission, the Special Purpose Dexterous Manipulator, known as Dextre. Seen in front are Pilot Gregory Johnson and Mission Specialist Takao Doi, who represents the Japanese Aerospace and Exploration Agency. Dextre will work with the mobile base and Canadarm2 on the International Space Station to perform critical construction and maintenance tasks. The crew is at Kennedy for crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  13. Human Integration Design Processes (HIDP)

    NASA Technical Reports Server (NTRS)

    Boyer, Jennifer

    2014-01-01

    The purpose of the Human Integration Design Processes (HIDP) document is to provide human-systems integration design processes, including methodologies and best practices that NASA has used to meet human systems and human rating requirements for developing crewed spacecraft. HIDP content is framed around human-centered design methodologies and processes in support of human-system integration requirements and human rating. NASA-STD-3001, Space Flight Human-System Standard, is a two-volume set of National Aeronautics and Space Administration (NASA) Agency-level standards established by the Office of the Chief Health and Medical Officer, directed at minimizing health and performance risks for flight crews in human space flight programs. Volume 1 of NASA-STD-3001, Crew Health, sets standards for fitness for duty, space flight permissible exposure limits, permissible outcome limits, levels of medical care, medical diagnosis, intervention, treatment and care, and countermeasures. Volume 2 of NASASTD- 3001, Human Factors, Habitability, and Environmental Health, focuses on human physical and cognitive capabilities and limitations and defines standards for spacecraft (including orbiters, habitats, and suits), internal environments, facilities, payloads, and related equipment, hardware, and software with which the crew interfaces during space operations. The NASA Procedural Requirements (NPR) 8705.2B, Human-Rating Requirements for Space Systems, specifies the Agency's human-rating processes, procedures, and requirements. The HIDP was written to share NASA's knowledge of processes directed toward achieving human certification of a spacecraft through implementation of human-systems integration requirements. Although the HIDP speaks directly to implementation of NASA-STD-3001 and NPR 8705.2B requirements, the human-centered design, evaluation, and design processes described in this document can be applied to any set of human-systems requirements and are independent of reference missions. The HIDP is a reference document that is intended to be used during the development of crewed space systems and operations to guide human-systems development process activities.

  14. Airborne Precision Spacing: A Trajectory-based Approach to Improve Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan

    2006-01-01

    Airborne Precision Spacing has been developed by the National Aeronautics and Space Administration (NASA) over the past seven years as an attempt to benefit from the capabilities of the flight deck to precisely space their aircraft relative to another aircraft. This development has leveraged decades of work on improving terminal area operations, especially the arrival phase. With APS operations, the air traffic controller instructs the participating aircraft to achieve an assigned inter-arrival spacing interval at the runway threshold, relative to another aircraft. The flight crew then uses airborne automation to manage the aircraft s speed to achieve the goal. The spacing tool is designed to keep the speed within acceptable operational limits, promote system-wide stability, and meet the assigned goal. This reallocation of tasks with the controller issuing strategic goals and the flight crew managing the tactical achievement of those goals has been shown to be feasible through simulation and flight test. A precision of plus or minus 2-3 seconds is generally achievable. Simulations of long strings of arriving traffic show no signs of instabilities or compression waves. Subject pilots have rated the workload to be similar to current-day operations and eye-tracking data substantiate this result. This paper will present a high-level review of research results over the past seven years from a variety of tests and experiments. The results will focus on the precision and accuracy achievable, flow stability and some major sources of uncertainty. The paper also includes a summary of the flight crew s procedures and interface and a brief concept overview.

  15. Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2016-01-01

    Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  16. 14 CFR 135.269 - Flight time limitations and rest requirements: Unscheduled three- and four-pilot crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements: Unscheduled three- and four-pilot crews. 135.269 Section 135.269 Aeronautics and Space FEDERAL... four-pilot crews. (a) No certificate holder may assign any flight crewmember, and no flight crewmember may accept an assignment, for flight time as a member of a three- or four-pilot crew if that...

  17. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO mission provides ideal conditions for this study with crew in the loop, an active control center, and real-time flow of high latency communications and data. NEEMO crew and ground support will work through procedures including activation of the transit vehicle power system, opening the hatch between the transit vehicle and a Mars ascent vehicle, transferring simulated crewmembers between vehicles, overcoming subsystem malfunctions, sending simulated crewmember on extra-vehicular activities, and other housekeeping activities. This study is enhancing the understanding of high latency operations and the advantages and disadvantages of different communication methods. It is also providing results that will help improve the design of simulation interfaces and inform the design of Mars transit vehicles.

  18. KSC-00pp1427

    NASA Image and Video Library

    2000-09-16

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialist Joe Tanner (left) gets instruction from a worker while Mission Specialist Carlos Noriega (right) practices working latches on the Orbital Docking System in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  19. KSC00pp1427

    NASA Image and Video Library

    2000-09-16

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialist Joe Tanner (left) gets instruction from a worker while Mission Specialist Carlos Noriega (right) practices working latches on the Orbital Docking System in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission

  20. KSC-07pd3552

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members inspect the wheel well on the underside of space shuttle Endeavour. Seen kneeling in front are Mission Specialists Richard Linnehan, Robert Behnken and Pilot Gregory Johnson. Behind them are Mission Specialists Takao Doi and Michael Foreman and Commander Dominic Gorie. They are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  1. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    PubMed

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2017-08-01

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.

  2. STS-84 and Mir 23 crewmembers exchange gifts during welcome ceremony after docking

    NASA Image and Video Library

    1997-05-17

    STS084-376-005 (15-24 May 1997) --- Onboard the Core Module of Russia's Mir Space Station, the American Space Shuttle commander exchanges gifts with the Mir-23 crew. Astronaut Charles J. Precourt has just handed two picture albums, documenting several months of interface between the Americans and Russians, to cosmonauts Aleksandr I. Lazutkin (left), flight engineer; and Vasili Tsibliyev, commander.

  3. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...

  4. 78 FR 48542 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Flight Requirements for Crew and Space Flight Participants AGENCY: Federal Aviation Administration (FAA...-0720. Title: Human Space Flight Requirements for Crew and Space Flight Participants. Form Numbers... information collection. Background: The FAA has established requirements for human space flight of crew and...

  5. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...

  6. 78 FR 29425 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Flight Requirements for Crew and Space Flight Participants AGENCY: Federal Aviation Administration (FAA...-0720. Title: Human Space Flight Requirements for Crew and Space Flight Participants. Form Numbers... information collection. Background: The FAA has established requirements for human space flight of crew and...

  7. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  8. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  9. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  10. An Investigation of Interval Management Displays

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Shay, Rick

    2015-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to transition the most mature ATM technologies from the laboratory to the National Airspace System. One selected technology is Interval Management (IM), which uses onboard aircraft automation to compute speeds that help the flight crew achieve and maintain precise spacing behind a preceding aircraft. Since ATD-1 focuses on a near-term environment, the ATD-1 flight demonstration prototype requires radio voice communication to issue an IM clearance. Retrofit IM displays will enable pilots to both enter information into the IM avionics and monitor IM operation. These displays could consist of an interface to enter data from an IM clearance and also an auxiliary display that presents critical information in the primary field-of-view. A human-in-the-loop experiment was conducted to examine usability and acceptability of retrofit IM displays, which flight crews found acceptable. Results also indicate the need for salient alerting when new speeds are generated and the desire to have a primary field of view display available that can display text and graphic trend indicators.

  11. Space Flight Human System Standards (SFHSS). Volume 2; Human Factors, Habitability and Environmental Factors" and Human Integration Design Handbook (HIDH)

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Fitts, David J.

    2009-01-01

    This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.

  12. Monitoring and Managing Cabin Crew Sleep and Fatigue During an Ultra-Long Range Trip.

    PubMed

    van den Berg, Margo J; Signal, T Leigh; Mulrine, Hannah M; Smith, Alexander A T; Gander, Philippa H; Serfontein, Wynand

    2015-08-01

    The aims of this study were to monitor cabin crew fatigue, sleep, and performance on an ultra-long range (ULR) trip and to evaluate the appropriateness of applying data collection methods developed for flight crew to cabin crew operations under a fatigue risk management system (FRMS). Prior to, throughout, and following the ULR trip (outbound flight ULR; mean layover duration=52.6 h; inbound flight long range), 55 cabin crew (29 women; mean age 36.5 yr; 25 men; mean age 36.6 yr; one missing data) completed a sleep/duty diary and wore an actigraph. Across each flight, crewmembers rated their fatigue (Samn-Perelli Crew Status Check) and sleepiness (Karolinska Sleepiness Scale) and completed a 5-min Psychomotor Vigilance Task (PVT) at key times. Of crewmembers approached, 73% (N=134) agreed to participate and 41% (N=55) provided data of suitable quality for analysis. In the 24 h before departure, sleep averaged 7.0 h and 40% took a preflight nap. All crewmembers slept in flight (mean total sleep time=3.6 h outbound, 2.9 h inbound). Sleepiness and fatigue were lower, and performance better, on the longer outbound flight than on the inbound flight. Post-trip, crewmembers slept more on day 1 (mean=7.9 h) compared to baseline days, but there was no difference from day 2 onwards. The present study demonstrates that cabin crew fatigue can be managed effectively on a ULR flight and that FRMS data collection is feasible for cabin crew, but operational differences between cabin crew and flight crew need to be considered.

  13. Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation

    NASA Technical Reports Server (NTRS)

    Coffey, Connor

    2015-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).

  14. Human factors issues for interstellar spacecraft

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  15. The STS-92 crew is ready to leave KSC after CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew strides across the runway at KSC's Shuttle Landing Facility, heading toward the aircraft that will take them back to Houston. They were at KSC for Crew Equipment Interface Test (CEIT) activities, looking over their mission payload and related equipment. From left are Mission Specialists Bill McArthur and Jeff Wisoff, Pilot Pam Melroy, Mission Specialist Michael Lopez-Alegria, Commander Brian Duffy and Mission Specialist Koichi Wakata, who is with the Japanese space agency. Not seen is Mission Specialist Leroy Chiao, who was also at KSC for the CEIT. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).

  16. Does this interface make my sensor look bad? Basic principles for designing usable, useful interfaces for sensor technology operators

    NASA Astrophysics Data System (ADS)

    McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura

    2017-05-01

    Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.

  17. STS-87 Day 12 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this twelfth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue to look at how plant growth and composite materials are affected by microgravity. The astronauts use the globebox facility to process samples for the Particle Engulfment and Pushing by a Solid/Liquid Interface experiment.

  18. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  20. 78 FR 23458 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... aircraft flight manual (AFM); performing operational tests of the oxygen mask oxygen assembly; and... prompted by failure of the flight crew oxygen supply due to a potentially defective flight crew mask oxygen assembly. We are issuing this AD to prevent failure to supply oxygen upon demand to the flight crew in...

  1. Crew factors in flight operations IX : effects of planned cockpit rest on crew performance and alertness in long-haul operations

    DOT National Transportation Integrated Search

    1994-07-01

    This report is the ninth in a series on physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Long-haul flight operations often involve rapid multiple time-zone changes, sl...

  2. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  3. Development of a Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    A concept for a Universal Waste Management System (UWMS) has been developed based on the knowledge gained from over 50 years of space travel. It is being designed for Commercial Orbital Transportation Services (COTS) and Multi ]Purpose Crew Vehicle (MPCV) and is based upon the Extended Duration Orbiter (EDO) commode. The UMWS was modified to enhance crew interface and reduce volume and cost. The UWMS will stow waste in fecal canisters, similar to the EDO, and urine will be stowed in bags for in orbit change out. This allows the pretreated urine to be subsequently processed and recovered as drinking water. The new design combines two fans and a rotary phase separator on a common shaft to allow operation by a single motor. This change enhances packaging by reducing the volume associated with an extra motor, associated controller, harness, and supporting structure. The separator pumps urine to either a dual bag design for COTS vehicles or directly into a water reclamation system. The commode is supported by a concentric frame, enhancing its structural integrity while further reducing the volume from the previous design. The UWMS flight concept development effort is underway and an early output of the development will be a ground based UMWS prototype for manned testing. Referred to as the Gen 3 unit, this prototype will emulate the crew interface included in the UWMS and will offer a great deal of knowledge regarding the usability of the new design, allowing the design team the opportunity to modify the UWMS flight concept based on the manned testing.

  4. The effects of expressivity and flight task on cockpit communication and resource management

    NASA Technical Reports Server (NTRS)

    Jensen, R. S.

    1986-01-01

    The results of an investigation to develop a methodology for evaluating crew communication behavior on the flight deck and a flight simulator experiment to test the effects of crew member expressivity, as measured by the Personal Attributes Questionnarie, and flight task on crew communication and flight performance are discussed. A methodology for coding and assessing flight crew communication behavior as well as a model for predicting that behavior is advanced. Although not enough crews were found to provide valid statistical tests, the results of the study tend to indicate that crews in which the captain has high expressivity perform better than those whose captain is low in expressivity. There appears to be a strong interaction between captains and first officers along the level of command dimension of communication. The PAQ appears to identify those pilots who offer disagreements and inititate new subjects for discussion.

  5. Quantifying Pilot Contribution to Flight Safety During Dual Generator Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Kennedy, Kellie D.; Bailey, Randall E.; Last, Mary Carolyn

    2017-01-01

    Accident statistics cite flight crew error in over 60% of accidents involving transport category aircraft. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. No data currently exists that quantifies the contribution of the flight crew in this role. Neither does data exist for how often the flight crew handles non-normal procedures or system failures on a daily basis in the National Airspace System. A pilot-in-the-loop high fidelity motion simulation study was conducted by the NASA Langley Research Center in partnership with the Federal Aviation Administration (FAA) to evaluate the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Eighteen crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance when one of the flight crew was unavailable were also recorded for comparison against the nominal two-crew operations. This paper details diversion decisions, perceived safety of flight, workload, time to complete pertinent checklists, and approach and landing results while dealing with a complete loss of electrical generators. Loss of electrical power requires pilots to complete the flight without automation support of autopilots, flight directors, or auto throttles. For reduced crew complements, the additional workload and perceived safety of flight was considered unacceptable.

  6. Influence of the helicopter environment on patient care capabilities: Flight crew perceptions

    NASA Technical Reports Server (NTRS)

    Meyers, K. Jeffrey; Rodenberg, Howard; Woodard, Daniel

    1994-01-01

    Flight crew perceptions of the effect of the rotary wing environment on patient care capabilities have not been subject to statistical analysis. We hypothesized that flight crew perceived significant difficulties in performing patient care tasks during air medical transport. A survey instrument was distributed to a convenience sample of flight crew members from twenty flight programs. Respondents were asked to compare the difficulty of performing patient care tasks in rotary wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position, and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type 111 sum of squares, and analysis of variance. Alpha was defined as p is less than or equal to .05. Fifty-five percent of programs (90 individuals) responded. All tasks were rated significantly more difficult in the rotary wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month, or aircraft used. We conclude that the performance of patient care tasks are perceived by air medical flight crew to be significantly more difficult during rotary wing air medical transport than in hospital settings.

  7. Influence of the helicopter environment on patient care capabilities: flight crew perceptions

    NASA Technical Reports Server (NTRS)

    Myers, K. J.; Rodenberg, H.; Woodard, D.

    1995-01-01

    INTRODUCTION: Flight crew perceptions of the effect of the rotary-wing environment on patient-care capabilities have not been subject to statistical analysis. We hypothesized that flight crew members perceived significant difficulties in performing patient-care tasks during air medical transport. METHODS: A survey was distributed to a convenience sample of flight crew members from 20 flight programs. Respondents were asked to compare the difficulty of performing patient-care tasks in rotary-wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type III sum of squares, and analysis of variance. Alpha was defined as p < 0.05. RESULTS: Fifty-five percent of programs (90 individuals) responded. All tasks were significantly rated more difficult in the rotary-wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month or aircraft used. CONCLUSIONS: We conclude that the performance of patient-care tasks are perceived by air medical flight crew to be significantly more difficult during rotary-wing air medical transport than in hospital settings.

  8. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon C.; Glidden, Joel Micah; Lamoreaux, Christopher

    2013-01-01

    The Orion CSM umbilical retention and release mechanism supports and protects all of the cross-module commodities between the spacecrafts crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. The mechanism employs a single separation interface which is retained with pyrotechnically actuated separation bolts and supports roughly two dozen electrical and fluid connectors. When module separation is commanded, either for nominal on-orbit CONOPS or in the event of an abort, the mechanism must release the separation interface and sever all commodity connections within milliseconds of command receipt. There are a number of unique and novel aspects of the design solution developed by the Orion mechanisms team. The design is highly modular and can easily be adapted to other vehiclesmodules and alternate commodity sets. It will be flight tested during Orions Exploration Flight Test 1 (EFT-1) in 2014, and the Orion team anticipates reuse of the design for all future missions. The design packages fluid, electrical, and ordnance disconnects in a single separation interface. It supports abort separations even in cases where aerodynamic loading prevents the deployment of the umbilical arm. Unlike the Apollo CSM umbilical which was a destructive separation device, the Orion design is resettable and flight units can be tested for separation performance prior to flight.Initial development testing of the mechanisms separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. These changes addressed the root cause of the binding failure by providing better control of connector alignment. The new design was tuned and validated analytically via Monte Carlo simulation. The analytical validation was followed by a repeat of the initial test suite plus test cases at thermal extremes and test cases with imposed mechanical failures demonstrating fault tolerance. The mechanism was then exposed to the qualification vibration environment. Finally, separation testing was performed at full speed with live ordnance.All tests of the redesigned mechanism resulted in successful separation of the umbilical interface with adequate force margins and timing. The test data showed good agreement with the predictions of the Monte Carlo simulation. The simulation proved invaluable due to the number of variables affecting the separation and the uncertainty associated with each. The simulation allowed for rapid assessment of numerous trades and contingency scenarios, and can be easily reconfigured for varying commodity sets and connector layouts.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  10. The STS-101 crew takes part in CEIT activities at SPACEHAB.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.

  11. The STS-101 crew takes part in CEIT activities at SPACEHAB.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At SPACEHAB, in Cape Canaveral, Fla., STS-101 Mission Specialists Susan Helms and Yuri Usachev, with Commander James Halsell, handle an air duct to be installed during their mission to the International Space Station. The air duct is for the Russian module Zarya to improve ventilation. At right are Mission Specialists Jeffrey Williams and Mary Ellen Weber. In the background at left is Pilot Scott Horowitz. Not shown is Mission Specialist James Voss. The crew is taking part in Crew Equipment Interface Test (CEIT) activities to learn about some of the equipment they will be working with on their mission to the Space Station. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.

  12. STS-89 crew and technicians participate in the CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-89 crew members and technicians participate in the Crew Equipment Interface Test (CEIT) in front of the back cap of the SPACEHAB module at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  13. KSC-06pd2353

    NASA Image and Video Library

    2006-10-13

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test (CEIT) in the Orbiter Processing Facility, STS-116 crew members are looking closely at the orbiter boom sensor system in Discovery’s payload bay. Seen in front are Mission Specialists Christer Fugelsang, who represents the European Space Agency, and Robert Curbeam. A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  14. KSC-06pd2355

    NASA Image and Video Library

    2006-10-13

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test (CEIT) in the Orbiter Processing Facility, STS-116 crew members get information about the external air lock they are looking at. At left is Mission Specialist Christer Fugelsang and at right is Mission Specialist Robert Curbeam. Fugelsang represents the European Space Agency. A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  15. KSC-98pc1023

    NASA Image and Video Library

    1998-09-02

    During a break in the Crew Equipment Interface Test (CEIT), the STS-95 crew gathers with United Space Alliance (USA) personnel and their families. From left are Pilot Steven W. Lindsey; Payload Specialist John H. Glenn Jr., a senator from Ohio; Pedro Duque, with the European Space Agency (ESA); Mission Specialist Stephen K. Robinson, Ph.D.; Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Mission Commander Curtis L. Brown Jr. (with arm raised); Mission Specialist Scott E. Parazynski, M.D.; Jim Furr, USA National Space Flight Awareness representative; Jack King, USA Public Affairs; Bob Sieck, KSC director of Shuttle Processing; and Ed Adamek, USA vice president and associate program manager for Ground Operations at KSC

  16. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  17. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  18. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  19. Research project evaluates the effect of national culture on flight crew behaviour.

    PubMed

    Helmreich, R L; Merritt, A C; Sherman, P J

    1996-10-01

    The role of national culture in flight crew interactions and behavior is examined. Researchers surveyed Asian, European, and American flight crews to determine attitudes about crew coordination and cockpit management. Universal attitudes among pilots are identified. Culturally variable attitudes among pilots from 16 countries are compared. The role of culture in response to increasing cockpit automation is reviewed. Culture-based challenges to crew resource management programs and multicultural organizations are discussed.

  20. Aircrew perceived stress: examining crew performance, crew position and captains personality.

    PubMed

    Bowles, S; Ursin, H; Picano, J

    2000-11-01

    This study was conducted at NASA Ames Research Center as a part of a larger research project assessing the impact of captain's personality on crew performance and perceived stress in 24 air transport crews (5). Three different personality types for captains were classified based on a previous cluster analysis (3). Crews were comprised of three crewmembers: captain, first officer, and second officer/flight engineer. A total of 72 pilots completed a 1.5-d full-mission simulation of airline operations including emergency situations in the Ames Manned Vehicle System Research Facility B-727 simulator. Crewmembers were tested for perceived stress on four dimensions of the NASA Task Load Index after each of five flight legs. Crews were divided into three groups based on rankings from combined error and rating scores. High performance crews (who committed the least errors in flight) reported experiencing less stress in simulated flight than either low or medium crews. When comparing crew positions for perceived stress over all the simulated flights no significant differences were found. However, the crews led by the "Right Stuff" (e.g., active, warm, confident, competitive, and preferring excellence and challenges) personality type captains typically reported less stress than crewmembers led by other personality types.

  1. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  2. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  3. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    PubMed

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  4. Numerical Skip-Entry Guidance

    NASA Technical Reports Server (NTRS)

    Tigges, Michael; Crull, Timothy; Rea, Jeremy; Johnson, Wyatt

    2006-01-01

    This paper assesses a preliminary guidance and targeting strategy for accomplishing Skip-Entry (SE) flight during a lunar return-capsule entry flight. One of the primary benefits of flying a SE trajectory is to provide the crew with continuous Continental United States (CONUS) landing site access throughout the lunar month. Without a SE capability, the capsule must land either in water or at one of several distributed land sites in the Southern Hemisphere for a significant portion of a lunar month using a landing and recovery scenario similar to that employed during the Apollo program. With a SE trajectory, the capsule can land either in water at a site in proximity to CONUS or at one of several distributed landing sites within CONUS, thereby simplifying the operational requirements for crew retrieval and vehicle recovery, and possibly enabling a high degree of vehicle reusability. Note that a SE capability does not require that the vehicle land on land. A SE capability enables a longer-range flight than a direct-entry flight, which permits the vehicle to land at a much greater distance from the Entry Interface (EI) point. This does not exclude using this approach to push the landing point to a water location in proximity of CONUS and utilizing water or airborne recovery forces.

  5. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Trujillo, Anna; Pritchett, Amy R.

    2000-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plug-in' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  6. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  7. Activity Tracking for Pilot Error Detection from Flight Data

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Ashford, Rose (Technical Monitor)

    2002-01-01

    This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.

  8. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  9. A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.

  10. Space telescope neutral buoyancy simulations: The first two years

    NASA Technical Reports Server (NTRS)

    Sanders, F. G.

    1982-01-01

    Neutral Buoyancy simulations which were conducted to validate the crew systems interface as it relates to space telescope on-orbit maintenance and contingency operations is discussed. The initial concept validation tests using low fidelity mockups is described. The entire spectrum of proposed space telescope refurbishment and selected contingencies using upgraded mockups which reflect flight hardware are reported. Findings which may be applicable to future efforts of a similar nature are presented.

  11. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    PubMed Central

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  12. KSC-07pd2649

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Mission Specialist Rex Walheim practices working with equipment for the mission. In the background, at right, is European Space Agency astronaut Leopold Eyharts, who will be on the mission and joining the Expedition 16 crew as flight engineer on the International Space Station. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which includes equipment familiarization. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  13. Development of an In-line Urine Monitoring System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Cibuzar, Branelle R.

    2009-01-01

    Exposure to microgravity during space flight causes bone loss when calcium and other metabolic by-products are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is thus essential in determining crew bone loss and the effectiveness of the countermeasures that are taken to minimize this loss. Earlier space shuttle Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to the cross-contamination that took place between users, as well as to fluid system instabilities. Crew urine voids are currently collected manually in a flexible plastic bag that contains a known tracer quantity. A crew member must completely mix the contents of this bag before withdrawing a representative syringe sample for later ground analysis. The existing bag system accuracy is therefore highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures void volume, and allows for syringe sampling. After the ISS UMS has been used by a crew member, it delivers urine to the WHC for normal processing. The UMS plumbing is then flushed with a small volume of water. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, consequently greatly reducing cross-contamination among urine voids (less than 0.5 mL urine) while also providing accurate volume measurements (less than 2 percent error for 100 to 1,000 mL void volumes). ISS UMS performance has been validated through extensive ground tests and reduced-gravity aircraft flights. The locker-sized ISS UMS is currently undergoing a design modification that will permit it to interface with the ISS Node 3 WHC Russian toilet (ACY) hardware. The operating principles, characteristics, and results of this design modification are outlined here.

  14. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to examine pilot mental models of the aircraft subsystems and their use in diagnosis tasks. Future research plans include piloted simulation evaluation of the diagnosis decision aiding concepts and crew interface issues. Information is given in viewgraph form.

  15. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  16. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-98 Commander Kenneth D. Cockrell (left) and Mission Specialist Thomas D. Jones (Ph.D.) check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, Jones will help install the Lab on the International Space Station in a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  17. Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.

    2013-01-01

    Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.

  18. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  19. CEV Seat Attenuation System System Design Tasks

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; McMichael, James H.

    2007-01-01

    The Apollo crew / couch restraint system was designed to support and restrain three crew members during all phases of the mission from launch to landing. The crew couch used supported the crew for launch, landing and in-flight operations, and was foldable and removable for EVA ingress/egress through side hatch access and for in-flight access under the seat and in other areas of the crew compartment. The couch and the seat attenuation system was designed to control the impact loads imposed on the crew during landing and to remain non-functional during all other flight phases.

  20. Flight Crew Health Stabilization Program

    NASA Technical Reports Server (NTRS)

    Johnston, Smith L.

    2010-01-01

    This document establishes the policy and procedures for the HSP and is authorized through the Director, Johnson Space Center (JSC). This document delineates the medical operations requirements for the HSP. The HSP goals are accomplished through an awareness campaign and procedures such as limiting access to flight crewmembers, medical screening, and controlling flight crewmember activities. NASA's Human Space Flight Program uses strategic risk mitigation to achieve mission success while protecting crew health and safety. Infectious diseases can compromise crew health and mission success, especially in the immediate preflight period. The primary purpose of the Flight Crew Health Stabilization Program (HSP) is to mitigate the risk of occurrence of infectious disease among astronaut flight crews in the immediate preflight period. Infectious diseases are contracted through direct person-to-person contact, and through contact with infectious material in the environment. The HSP establishes several controls to minimize crew exposure to infectious agents. The HSP provides a quarantine environment for the crew that minimizes contact with potentially infectious material. The HSP also limits the number of individuals who come in close contact with the crew. The infection-carrying potential of these primary contacts (PCs) is minimized by educating them in ways to avoid infections and avoiding contact with the crew if they are or may be sick. The transmission of some infectious diseases can be greatly curtailed by vaccinations. PCs are strongly encouraged to maintain updated vaccinations.

  1. 76 FR 64960 - Extension of Agency Information Collection Activity Under OMB Review: Flight Crew Self-Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... Information Collection Activity Under OMB Review: Flight Crew Self-Defense Training--Registration and... self-defense training class provided by TSA, the collection process involves requesting, the name.... Information Collection Requirement Title: Flight Crew Self-Defense Training--Registration and Evaluation. Type...

  2. STS-1 operational flight profile. Volume 5: Descent, cycle 3

    NASA Technical Reports Server (NTRS)

    Moore, R.; Baker, A.; Hite, R.; Hochstein, A.; Lyons, J.; Strong, K.

    1980-01-01

    The trajectory data presented are to be used for orbiter systems and subsystems evalation, flight and mission control center software verification, flight techniques and timeline development, crew training, and evaluation of operational mission suitability. The entry profile is very similar to cycle 2, however, elevon and body flap temperature margins have increased and the elevon schedule was changed. The terminal area energy management (TAEM) profile was completely reshaped to conform with new angle of attack constraints and left hand turn around the heading alignment cylinder. Also, the entry/TAEM interface was adjusted to minimize guidance induced angle of attack transients across the interface. The approach and landing phase was reshaped for a 20 deg glideslope and reduced velocity at touchdown. The definition of the runway threshold was standardized for all landing sites. This results in a shift at Edwards Air Force Base in aim points and touchdown relative to the threshold of 1000 feet. The rollout remains essentially unchanged with the exception of the speedbrake, which is now deployed to 50 percent at touchdown.

  3. Space Launch System Trans Lunar Payload Delivery Capability

    NASA Technical Reports Server (NTRS)

    Jackman, A. L.; Smith, D. A.

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion to a lunar vicinity every year after the first 2 flights starting in the early 2020's. So as early as 2021 these Orion flights will deliver ancillary payload, termed "Co-Manifested Payload", with a mass of at least 5.5 metric tons and volume up to 280 cubic meters to a cis-lunar destination. Later SLS flights have a goal of delivering as much as 10 metric tons to a cis-lunar destination. This presentation will describe the ground and flight accommodations, interfaces, and resources planned to be made available to Co-Manifested Payload providers as part of the SLS system. An additional intention is to promote a two-way dialogue between vehicle developers and potential payload users in order to most efficiently evolve required SLS capabilities to meet diverse payload requirements.

  4. EVA training for Exp. 27 crew member Ron Garan, Exp. 28 Mike Fossum and STS-135 Doug Hurley, Rex Walheim and Sandra Magnus

    NASA Image and Video Library

    2011-01-18

    JSC2011-E-003204 (18 Jan. 2011) --- NASA astronauts Rex Walheim, STS-135 mission specialist; and Mike Fossum (foreground), Expedition 28 flight engineer and Expedition 29 commander; use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  5. Development of a biowaste resistojet propulsion system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The equipment, exclusive of thrustors, required to demonstrate the feasibility of a resistojet propulsion system for space station attitude control application using representative simulated crew biowaste propellants and available resistojet thrustors in the ground simulation tests is discussed. The overall objective of the program was to provide a biowaste resistojet prototype propellant management and control system sufficiently similar to the flight article to permit concept feasibility and system demonstration testing of interface compatibility, operational characteristics, and system flexibility.

  6. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  7. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  8. KSC-07pd2209

    NASA Image and Video Library

    2007-08-03

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 3, STS-120 crew members practice handling tools they will use during the mission. Around the table, at center, dressed in blue flight suits are Mission Specialists Scott E. Parazynski, Douglas H. Wheelock, Paolo A. Nespoli and Expedition 16 Flight Engineer Daniel M. Tani. Between Wheelock and Nespoli is Allison Bolinger, an EVA technician with NASA. In the foreground is Dina Contella, a thermal protection system specialist with NASA. Nespoli is a European Space Agency astronaut from Italy. The STS-120 crew is at Kennedy for a crew equipment interface test, or CEIT, which includes harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The STS-120 mission will deliver the Harmony module, christened after a school contest, which will provide attachment points for European and Japanese laboratory modules on the International Space Station. Known in technical circles as Node 2, it is similar to the six-sided Unity module that links the U.S. and Russian sections of the station. Built in Italy for the United States, Harmony will be the first new U.S. pressurized component to be added. The STS-120 mission is targeted to launch on Oct. 20. Photo credit: NASA/George Shelton

  9. Integrated Approach to Flight Crew Training

    NASA Technical Reports Server (NTRS)

    Carroll, J. E.

    1984-01-01

    The computer based approach used by United Airlines for flight training is discussed. The human factors involved in specific aircraft accidents are addressed. Flight crew interaction and communication as they relate to training and flight safety are considered.

  10. Coordination strategies of crew management

    NASA Technical Reports Server (NTRS)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  11. STS-89 crew and technicians participate in the CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-89 crew members participate with trainers in the Crew Equipment Interface Test (CEIT) at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. From left to right are Mission Specialists Michael Anderson and Bonnie Dunbar, Ph.D.; Commander Terry Wilcutt; Boeing SPACEHAB Operations Engineer Jim Behling; Boeing SPACEHAB Crew Trainer Laura Keiser; an unidentified staff member (with mustache); Mission Specialist Salizhan Sharipov of the Russian Space Agency; and Pilot Joe Edwards. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine- day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EST from Launch Pad 39A.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  13. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (left to right) STS-96 Pilot Rick Husband and Mission Specialists Julie Payette and Ellen Ochoa work the straps on the Sequential Shunt Unit (SSU) in front of them. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for its upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  14. What made Apollo a success?

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.

  15. 29 CFR 825.801 - Special rules for airline flight crew employees, hours of service requirement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DIVISION, DEPARTMENT OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Special Rules Applicable... personal commute time or time spent on vacation, medical, or sick leave. (c) An airline flight crew... service requirement. (a) An airline flight crew employee's eligibility for FMLA leave is to be determined...

  16. 29 CFR 825.801 - Special rules for airline flight crew employees, hours of service requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DIVISION, DEPARTMENT OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Special Rules Applicable... personal commute time or time spent on vacation, medical, or sick leave. (c) An airline flight crew... service requirement. (a) An airline flight crew employee's eligibility for FMLA leave is to be determined...

  17. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  18. KSC00pp0279

    NASA Image and Video Library

    2000-02-25

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A

  19. KSC-00pp0279

    NASA Image and Video Library

    2000-02-25

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A

  20. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Mission Specialist Janet Kavandi, Ph.D., STS091 Pilot Dominic Gorie, and STS-91 Commander Charles Precourt, and Boeing SPACEHAB Program Senior Engineer Shawn Hicks.

  1. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. Sitting in front of SPACEHAB is STS-91 Commander Charles Precourt listening to instruction by Chris Jaskolka, Boeing SPACEHAB Program senior engineer, as Lynn Ashby, Boeing SPACEHAB Program principal engineer, looks on.

  2. An on-orbit viewpoint of life sciences research

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Byron K.

    1992-01-01

    As a Payload Specialist and a life science researcher, I want to present several issues that impact life science research in space. During early space station operations, life science and other experiments will be conducted in a time-critical manner and there will be the added duties of both space shuttle and space station systems operation (and the concomittent training overhead). Life sciences research is different from other science research done in space because the crew is involved both as an operator and as a subject. There is a need for pre- and post-flight data collection as well as in flight data collection. It is imperative that the life science researcher incorporate the crew members into their team early enough in the training cycle to fully explain the science and to make the crew aware of the importance and sensitivities of the experiment. During the pre-flight phase, the crew is incredibly busy with a myriad of duties. Therefore, it is difficult to get 'pristine' subjects for the baseline data collection. There are also circadian shifts, travel, and late nights to confound the data. During this time it is imperative that the researcher develop, along with the crew, a realistic estimate of crew-time required for their experiment. In flight issues that affect the researcher are the additional activities of the crew, the stresses inherent in space flight, and the difficulty of getting early in-flight data. During SSF activities, the first day or two will be taken up with rendezvous and docking. Other issues are the small number of subjects on any given flight, the importance of complete and concise procedures, and the vagaries of on-board data collection. Post flight, the crew is tired and experiences a 'relaxation.' This along with circadian shifts and rapid re-adaptation to 1-g make immediate post-flight data collection difficult. Finally, the blending of operational medicine and research can result in either competition for resources (crew time, etc.) or influence on the physiological state of the crew. However, the unique opportunity to conduct research in an environment that cannot be duplicated on Earth outweighs the 'challenges' that exist for space life researchers.

  3. Symptom-based categorization of in-flight passenger medical incidents.

    PubMed

    Mahony, Paul H; Myers, Julia A; Larsen, Peter D; Powell, David M C; Griffiths, Robin F

    2011-12-01

    The majority of in-flight passenger medical events are managed by cabin crew. Our study aimed to evaluate the reliability of cabin crew reports of in-flight medical events and to develop a symptom-based categorization system. All cabin crew in-flight passenger medical incident reports for an airline over a 9-yr period were examined retrospectively. Validation of incident descriptions were undertaken on a sample of 162 cabin crew reports where medically trained persons' reports were available for comparison using a three Round Delphi technique and testing concordance using Cohen's Kappa. A hierarchical symptom-based categorization system was designed and validated. The rate was 159 incidents per 106 passengers carried, or 70.4/113.3 incidents per 106 revenue passenger kilometres/miles, respectively. Concordance between cabin crew and medical reports was 96%, with a high validity rating (mean 4.6 on a 1-5 scale) and high Cohen's Kappa (0.94). The most common in-flight medical events were transient loss of consciousness (41%), nausea/vomiting/diarrhea (19.5%), and breathing difficulty (16%). Cabin crew records provide reliable data regarding in-flight passenger medical incidents, complementary to diagnosis-based systems, and allow the use of currently underutilized data. The categorization system provides a means for tracking passenger medical incidents internationally and an evidence base for cabin crew first aid training.

  4. Satellite servicing mission preliminary cost estimation model

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The cost model presented is a preliminary methodology for determining a rough order-of-magnitude cost for implementing a satellite servicing mission. Mission implementation, in this context, encompassess all activities associated with mission design and planning, including both flight and ground crew training and systems integration (payload processing) of servicing hardward with the Shuttle. A basic assumption made in developing this cost model is that a generic set of servicing hardware was developed and flight tested, is inventoried, and is maintained by NASA. This implies that all hardware physical and functional interfaces are well known and therefore recurring CITE testing is not required. The development of the cost model algorithms and examples of their use are discussed.

  5. Cause-specific mortality in professional flight crew and air traffic control officers: findings from two UK population-based cohorts of over 20,000 subjects.

    PubMed

    De Stavola, Bianca L; Pizzi, Costanza; Clemens, Felicity; Evans, Sally Ann; Evans, Anthony D; dos Santos Silva, Isabel

    2012-04-01

    Flight crew are exposed to several potential occupational hazards. This study compares mortality rates in UK flight crew to those in air traffic control officers (ATCOs) and the general population. A total of 19,489 flight crew and ATCOs were identified from the UK Civil Aviation Authority medical records and followed to the end of 2006. Consented access to medical records and questionnaire data provided information on demographic, behavioral, clinical, and occupational variables. Standardized mortality ratios (SMR) were estimated for these two occupational groups using the UK general population. Adjusted mortality hazard ratios (HR) for flight crew versus ATCOs were estimated via Cox regression models. A total of 577 deaths occurred during follow-up. Relative to the general population, both flight crew (SMR 0.32; 95% CI 0.30, 0.35) and ATCOs (0.39; 0.32, 0.47) had lower all-cause mortality, mainly due to marked reductions in mortality from neoplasms and cardiovascular diseases, although flight crew had higher mortality from aircraft accidents (SMR 42.8; 27.9, 65.6). There were no differences in all-cause mortality (HR 0.99; 95% CI 0.79, 1.25), or in mortality from any major cause, between the two occupational groups after adjustment for health-related variables, again except for those from aircraft accidents. The latter ratios, however, declined with increasing number of hours. The low all-cause mortality observed in both occupational groups relative to the general population is consistent with a strong "healthy worker effect" and their low prevalence of smoking and other risk factors. Mortality among flight crew did not appear to be influenced by occupational exposures, except for a rise in mortality from aircraft accidents.

  6. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  9. The role of flight planning in aircrew decision performance

    NASA Technical Reports Server (NTRS)

    Pepitone, Dave; King, Teresa; Murphy, Miles

    1989-01-01

    The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.

  10. Boeing Unveils New Suit for Commercial Crew Astronauts

    NASA Image and Video Library

    2017-01-23

    Boeing unveiled its spacesuit design Wednesday as the company continues to move toward flight tests and crew rotation missions of its Starliner spacecraft and launch systems that will fly astronauts to the International Space Station. Astronauts heading into orbit for the station aboard the Starliner will wear Boeing’s new spacesuits. The suits are custom-designed to fit each astronaut, lighter and more comfortable than earlier versions and meet NASA requirements for safety and functionality. NASA's commercial crew astronauts Eric Boe and Suni Williams tried on the suits at Boeing’s Commercial Crew and Cargo Facility at NASA’s Kennedy Space Center. Boe, Williams, Bob Behnken, and Doug Hurley were selected by NASA in July 2015 to train for commercial crew test flights aboard the Starliner and SpaceX’s Crew Dragon spacecraft. The flight assignments have not been set, so all four of the astronauts are rehearsingheavily for flights aboard both vehicles.

  11. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  12. Aviation accidents and the theory of the situation

    NASA Technical Reports Server (NTRS)

    Bolman, L.

    1980-01-01

    Social-psychological factors effecting the performance of flight crews are examined. In particular, a crew member's perceptual-psychological constructs of the flight situation (theories of the situation) are discussed. The skills and willingness of a flight crew to be alert to possible errors in the theory become critical to their effectiveness and their ability to ensure a safe flight. Several major factors that determine the likelihood that a faulty theory will be detected and revised are identified.

  13. International Space Station Medical Projects - Full Services to Mars

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    The International Space Station Medical Projects (ISSMP) Element provides planning, integration, and implementation services for HRP research studies for both spaceflight and flight analog research. Through the implementation of these two efforts, ISSMP offers an innovative way of guiding research decisions to meet the unique challenges of understanding the human risks to space exploration. Flight services provided by ISSMP include leading informed consent briefings, developing and validating in-flight crew procedures, providing ISS crew and ground-controller training, real-time experiment monitoring, on-orbit experiment and hardware operations and facilitating data transfer to investigators. For analog studies at the NASA Human Exploration Research Analog (HERA), the ISSMP team provides subject recruitment and screening, science requirements integration, data collection schedules, data sharing agreements, mission scenarios and facilities to support investigators. The ISSMP also serves as the HRP interface to external analog providers including the :envihab bed rest facility (Cologne, Germany), NEK isolation chamber (Moscow, Russia) and the Antarctica research stations. Investigators working in either spaceflight or analog environments requires a coordinated effort between NASA and the investigators. The interdisciplinary nature of both flight and analog research requires investigators to be aware of concurrent research studies and take into account potential confounding factors that may impact their research objectives. Investigators must define clear research requirements, participate in Investigator Working Group meetings, obtain human use approvals, and provide study-specific training, sample and data collection and procedures all while adhering to schedule deadlines. These science requirements define the technical, functional and performance operations to meet the research objectives. The ISSMP maintains an expert team of professionals with the knowledge and experience to guide investigators science through all aspects of mission planning, crew operations, and research integration. During this session, the ISSMP team will discuss best-practices approaches for successfully preparing and conducting studies in both the flight and analog environments. Critical tips and tricks will be shown to greatly improve your chances of successfully completing your research aboard the International Space Station and in Spaceflight Analogs.

  14. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  15. Shuttle flight data and in-flight anomaly list. STS-1 through STS-50, and STS-52 through STS-56. Revision T

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report contains mission data for space shuttle flights and consists of three sections. The first section is a listing of shuttle flight data for flights STS-1 through STS-55 gathered during the mission evaluation process. The second section is a listing of all orbiter in-flight anomalies arranged in order by affected Work Unit Codes of the failed items from shuttle flights STS-1 through STS-50 and STS-52 through STS-56. The third section consists of data derived from the as-flown orbiter attitude timelines and crew activity plans for each mission. The data are presented in chart form and show the progression of the mission from launch to entry interface with the varying orbiter attitudes (roll, pitch, and yaw) and the time duration in each attitude. The chart also shows the orbiter's velocity vector, i.e., which of the orbiter's body axes is pointing forward along the orbital path. The Beta angle, the angle between the sun vector and the orbital plane, is also shown for each 12-hour period of the mission.

  16. Fatigue in trans-Atlantic airline operations: diaries and actigraphy for two- vs. three-pilot crews.

    PubMed

    Eriksen, Claire A; Akerstedt, Torbjörn; Nilsson, Jens P

    2006-06-01

    The aim was to compare intercontinental flights with two-pilot and three-pilot crews with respect to fatigue/sleepiness and sleep, as there is considerable economic pressure on the airlines to use two-pilot crews. Twenty pilots participated. Data were collected before, during, and after outbound and homebound flights using a sleep/wake diary (sleepiness ratings every 2-3 h) and wrist actigraphy. The duration of flights was approximately 8 h, and six time zones were crossed. The same pilots participated in both conditions. Napping during the outbound flight was 26 min for the two-pilot crew, and 48 min for the three-pilot crew. Napping during the homebound flight was 54 min and 1 h 6 min, respectively, and the difference was directly related to the time allotted for sleep. Subjective sleepiness was significantly higher for the two-pilot condition in both directions, peaking a few hours into the flight. Performance at top of descent for the two-pilot condition was rated as lower than the three-pilot condition. In the overall evaluation questionnaire there was a significant negative attitude toward two-crew operations. Sleep, sleepiness, subjective performance, boredom, mood, and layover sleep were assessed as having deteriorated in the two-pilot condition. The homebound flight was associated with considerably higher levels of sleepiness than the outbound flight. The study indicates that the reduction of crew size by one pilot is associated with moderately increased levels of sleepiness. It is also suggested that time allotted to sleep in the two-pilot condition might be somewhat extended to improve alertness.

  17. Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James

    2017-01-01

    Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.

  18. Autonomous support for microorganism research in space

    NASA Astrophysics Data System (ADS)

    Fleet, M. L.; Smith, J. D.; Klaus, D. M.; Luttges, M. W.

    1993-02-01

    A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. The payload is designed to be compatible with the COMercial Experiment Transporter (COMET), an orbiter middeck locker interface and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional data acquisition includes optical density measurement, microscopy, video, and film photography. On-board data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, research opportunities are explored to illustrate hardware versatility and function. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  19. Formulation of consumables management models: Consumables analysis/crew simulator interface requirements

    NASA Technical Reports Server (NTRS)

    Zamora, M. A.

    1977-01-01

    Consumables analysis/crew training simulator interface requirements were defined. Two aspects were investigated: consumables analysis support techniques to crew training simulator for advanced spacecraft programs, and the applicability of the above techniques to the crew training simulator for the space shuttle program in particular.

  20. Ascent Heating Thermal Analysis on the Spacecraft Adaptor (SA) Fairings and the Interface with the Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Yuko, James; Motil, Brian

    2009-01-01

    When the crew exploration vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aero heating case. Heating rates from Thermal Environment (TE) 3 aero heating analysis computed by engineers at Marshall Space Flight Center (MSFC) are used in the thermal analysis. Both MSC Patran 2007r1b/Pthermal and C&R Thermal Desktop 5.1/Sinda models are built to validate each other. The numerical results are also compared with those reported by Lockheed Martin (LM) and show a reasonably good agreement.

  1. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the performance characteristics of wireless data links in the spacecraft environment will be discussed. Network performance and operation will be modeled and preliminary test results presented. A crew support application will be demonstrated in conjunction with the network metrics experiment.

  2. STS-111 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  3. STS-111 Flight Day 8 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  4. STS-8 crew during post flight telephone conversation with President Reagan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS-8 crew, all seated on a platform in a studio, respond to a comment made by President Ronald Reagan during a post flight telephone conversation. Richard Truly, center, is crew commander. Pilot for the flight was Daniel C. Brandenstein, second left. The mission specialists were Guion S. Bluford, left: Dr. William S. Thornton, second right, and Dale A. Gardner, right.

  5. Evaluation of Flight Attendant Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Rosekind, Mark (Technical Monitor)

    1997-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or lessen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research indicates that flight attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports. Chute and Wiener describe five factors which may produce communication barriers between cockpit and cabin crews: the historical background of aviation, the physical separation of the two crews, psychosocial issues, regulatory factors, and organizational factors. By examining these areas of division we can identify possible bridges and address the implications of deficient cockpit/cabin communication on flight safety. Flight attendant operational knowledge may provide some mitigation of these barriers. The present study explored both flight attendant technical knowledge and flight attendant and pilot expectations of flight attendant technical knowledge. To assess the technical knowledge of cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily completed a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendant operational knowledge and pilots' and flight attendants' expected and desired levels of technical knowledge. Implications for training will be discussed.

  6. Fusion of Synthetic and Enhanced Vision for All-Weather Commercial Aviation Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence, III

    2007-01-01

    NASA is developing revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck during low visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were not adversely impacted by the display concepts although the addition of Enhanced Vision did not, unto itself, provide an improvement in runway incursion detection.

  7. KSC-07pd2212

    NASA Image and Video Library

    2007-08-03

    KENNEDY SPACE CENTER, FLA. - In Discovery's payload bay in Orbiter Processing Facility bay 3, STS-120 crew members are getting hands-on experience with a winch that is used to manually close the payload bay doors in the event that becomes necessary. At right is Expedition 16 Flight Engineer Daniel M. Tani. The STS-120 crew is at Kennedy for a crew equipment interface test, or CEIT, which includes harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The STS-120 mission will deliver the Harmony module, christened after a school contest, which will provide attachment points for European and Japanese laboratory modules on the International Space Station. Known in technical circles as Node 2, it is similar to the six-sided Unity module that links the U.S. and Russian sections of the station. Built in Italy for the United States, Harmony will be the first new U.S. pressurized component to be added. The STS-120 mission is targeted to launch on Oct. 20. Photo credit: NASA/George Shelton

  8. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  9. Health and perception of cabin air quality among Swedish commercial airline crew.

    PubMed

    Lindgren, T; Norbäck, D

    2005-01-01

    Health symptoms and perception of cabin air quality (CAQ) among commercial cabin crew were studied as a function of personal risk factors, occupation, and work on intercontinental flights with exposure to environmental tobacco smoke (ETS). A standardized questionnaire (MM 040 NA) was mailed in February to March 1997 to all Stockholm airline crew on duty in a Scandinavian airline (n=1857), and to office workers from the same airline (n=218). During this time, smoking was allowed only on intercontinental flights. The participation rate was 81% (n=1513) by the airline crew, and 77% (n=168) by the office group. Statistical analysis was performed by multiple logistic regression analysis, controlling for age, gender, atopy, current smoking habits, and occupation. The most common symptoms among airline crew were: fatigue (21%), nasal symptoms (15%), eye irritation (11%), dry or flushed facial skin (12%), and dry/itchy skin on hands (12%). The most common complaint about CAQ was dry air (53%). Airline crew had more nasal, throat, and hand skin symptoms, than office workers did. Airline crew with a history of atopy had more nasal, throat, and dermal face and hand symptoms than other crew members did. Older airline crew members had more complaints of difficulty concentrating, but fewer complaints of dermal symptoms on the face and hands than younger crew members did. Female crew members reported more headaches than male crew members reported. Smoking was not associated with frequency of symptoms. Pilots had fewer complaints of most symptoms than other crew had. Airline crew that had been on an intercontinental flight in the week before the survey had more complaints of fatigue, heavy-headedness, and difficulty concentrating. Complaints of stuffy air and dry air were more common among airline crew than among office workers from the same airline. Female crew had more complaints of stuffy and dry air than male crew had. Older cabin crew had fewer complaints of dry air than younger crew had, and cabin crew with atopy had more complaints of dry air than other crew had. Current smokers had fewer complaints of stuffy air than non-smokers had. Airline crew that had been on a flight on which smoking was allowed in the week before the survey, had more complaints of stuffy air, dry air and passive smoking, than crew that had not been on such a flight in the preceding week had. Complaints on cabin air quality and health symptoms were common among commercial airline crew, and related to age, gender, atopy and type of work onboard. The hygienic measurements showed that the relative air humidity is very low on intercontinental flights, and particle levels are high on flights with passive smoking. This illustrates the need to improve the cabin air quality in commercial airlines. Such improvements could include better control of cabin temperature, air humidification, efficient air filtration with high efficiency particulate air filter (HEPA) filtration on all types of aircraft and sufficient air exchange rate in order to fulfil current ventilation standards.

  10. Rehabilitation After International Space Station Flights

    NASA Technical Reports Server (NTRS)

    Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.

    2003-01-01

    Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.

  11. STS-132 ascent flight control team photo with Flight Director Richard Jones and the STS-132 crew

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090665 (8 June 2010) --- The members of the STS-132 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (right) and NASA astronaut Ken Ham, STS-132 commander, hold the STS-132 mission logo. Additional crew members pictured are NASA astronauts Tony Antonelli, pilot; along with Garrett Reisman, Piers Sellers, Michael Good and Steve Bowen, all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration

  12. Post flight press conference for the STS-7 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two of the three mission specialists for STS-7 field questions from the press during the post-flight press conference in JSC's main auditorium on July 1, 1983. Left to right are John M. Fabian and Dr. Norman E. Thagard (35419); Portrait view of Fabian during the STS-7 post-flight press conference (35420); Portrait view of mission specialist Dr. Sally K. Ride during the STS-7 post-flight press conference (35421); Portrait view of STS-7 pilot Frederick H. Hauck during the post-flight press conference (35422); Portrait view of STS-7 crew commander Robert L. Crippen during the post-flight press conference (35423); Three STS-7 crew members listen to questions from news reporters. They are, left to right, Crippen, Hauck, and Ride (35424); The first five person shuttle crew and first woman crew member greet the news media. Members are, left to right, Crippen, Hauck, Ride, Fabian and Thagard (35425).

  13. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  14. Readiness for First Crewed Flight

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.

  15. Group 2: Real time LOFT operations

    NASA Technical Reports Server (NTRS)

    Cavanagh, D.

    1981-01-01

    All LOFT scenarios should be constructed so as to provide the highest degree of realism that is economically, technically, and operationally feasible. The more realistic the situation, the faster the crew will adjust their thinking and provide reactions which would be typical of a line-flight orientation. The goal is to produce crew performance which would be typical of a crew on an actual line flight, given the same set of circumstances that were developed during the scenario. The briefing which is provided to the crew before entering the simulator for LOFT, the trip papers, the communications throughout the flight, the role played by the instructor, and so on, are important factors, crucial to the establishment and maintenance of a high degree of realism. Crews should have all manuals and other required equipment for a normal line-flight.

  16. A predictive model of flight crew performance in automated air traffic control and flight management operations

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. This paper describes Air-MIDAS, a model of pilot performance in interaction with varied levels of automation in flight management operations. The model was used to predict the performance of a two person flight crew responding to c...

  17. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  18. Gemini 4 prime crew with Official medical nurse for Astronaut crew members

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 4 prime crew, Astronauts Edward H. White II, (left), and James A. McDivitt (right) are shown with Lt. Dolores (Dee) O'Hare, US Air Force, Center Medical Office, Flight Medicine Branch, Manned Spaceflight Center (MSC). Lieutenant O'Hare has served during several space flights as Official medical nurse for the astronaut crew members on the missions.

  19. Flight Crew Factors for CTAS/FMS Integration in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Crane, Barry W.; Prevot, Thomas; Palmer, Everett A.; Shafto, M. (Technical Monitor)

    2000-01-01

    Center TRACON Automation System (CTAS)/Flight Management System (FMS) integration on the flightdeck implies flight crews flying coupled in highly automated FMS modes [i.e. Vertical Navigation (VNAV) and Lateral Navigation (LNAV)] from top of descent to the final approach phase of flight. Pilots may also have to make FMS route edits and respond to datalink clearances in the Terminal Radar Approach Control (TRACON) airspace. This full mission simulator study addresses how the introduction of these FMS descent procedures affect crew activities, workload, and performance. It also assesses crew acceptance of these procedures. Results indicate that the number of crew activities and workload ratings are significantly reduced below current day levels when FMS procedures can be flown uninterrupted, but that activity numbers increase significantly above current day levels and workload ratings return to current day levels when FMS procedures are interrupted by common ATC interventions and CTAS routing advisories. Crew performance showed some problems with speed control during FMS procedures. Crew acceptance of the FMS procedures and route modification requirements was generally high; a minority of crews expressed concerns about use of VNAV in the TRACON airspace. Suggestions for future study are discussed.

  20. Exposure Assessment at 30 000 Feet: Challenges and Future Directions

    PubMed Central

    Grajewski, Barbara; Pinkerton, Lynne E.

    2015-01-01

    Few studies of cancer mortality and incidence among flight crew have included a detailed assessment of both occupational exposures and lifestyle factors that may influence the risk of cancer. In this issue, Kojo et al. (Risk factors for skin cancer among Finnish airline cabin crew. Ann. Occup. Hyg 2013; 57: 695–704) evaluated the relative contributions of ultraviolet and cosmic radiation to the incidence of skin cancer in Finnish flight attendants. This is a useful contribution, yet the reason flight crew members have an increased risk of skin cancer compared with the general population remains unclear. Good policy decisions for flight crew will depend on continued and emerging effective collaborations to increase study power and improve exposure assessment in future flight crew health studies. Improving the assessment of occupational exposures and non-occupational factors will cost additional time and effort, which are well spent if the role of exposures can be clarified in larger studies. PMID:23818455

  1. Cancer incidence in professional flight crew and air traffic control officers: disentangling the effect of occupational versus lifestyle exposures.

    PubMed

    dos Santos Silva, Isabel; De Stavola, Bianca; Pizzi, Costanza; Evans, Anthony D; Evans, Sally A

    2013-01-15

    Flight crew are occupationally exposed to several potentially carcinogenic hazards; however, previous investigations have been hampered by lack of information on lifestyle exposures. The authors identified, through the United Kingdom Civil Aviation Authority medical records, a cohort of 16,329 flight crew and 3,165 air traffic control officers (ATCOs) and assembled data on their occupational and lifestyle exposures. Standardised incidence ratios (SIRs) were estimated to compare cancer incidence in each occupation to that of the general population; internal analyses were conducted by fitting Cox regression models. All-cancer incidence was 20-29% lower in each occupation than in the general population, mainly due to a lower incidence of smoking-related cancers [SIR (95% CI) = 0.33 (0.27-0.38) and 0.42 (0.28-0.60) for flight crew and ATCOs, respectively], consistent with their much lower prevalence of smoking. Skin melanoma rates were increased in both flight crew (SIR = 1.87; 95% CI = 1.45-2.38) and ATCOs (2.66; 1.55-4.25), with rates among the former increasing with increasing number of flight hours (p-trend = 0.02). However, internal analyses revealed no differences in skin melanoma rates between flight crew and ATCOs (hazard ratio: 0.78, 95% CI = 0.37-1.66) and identified skin that burns easily when exposed to sunlight (p = 0.001) and sunbathing to get a tan (p = 0.07) as the strongest risk predictors of skin melanoma in both occupations. The similar site-specific cancer risks between the two occupational groups argue against risks among flight crew being driven by occupation-specific exposures. The skin melanoma excess reflects sun-related behaviour rather than cosmic radiation exposure. Copyright © 2012 UICC.

  2. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  3. Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.

  4. The role of communications, socio-psychological, and personality factors in the maintenance of crew coordination

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.

    1981-01-01

    The influence of group dynamics on the capability of aircraft crew members to make full use of the resources available on the flight deck in order to maintain flight safety is discussed. Instances of crewmembers withholding altimeter or heading information from the captain are cited as examples of domineering attitudes from command pilots and overconscientiousness on the parts of copilots, who may refuse to relay information forcefully enough or to take control of the aircraft in the case of pilot incapacitation. NASA studies of crew performance in controlled, simulator settings, concentrating on communication, decision making, crew interaction, and integration showed that efficient communication reduced errors. Acknowledgements served to encourage correct communication. The best crew performance is suggested to occur with personnel who are capable of both goal and group orientation. Finally, one bad effect of computer controlled flight is cited to be the tendency of the flight crew to think that someone else is taking care of difficulties in threatening situations.

  5. Launch and Landing of Russian Soyuz - Medical Support for US and Partner Astronauts

    NASA Technical Reports Server (NTRS)

    Menon, Anil

    2017-01-01

    Launching, landing, flight route, expeditions, Soyuz, near Kazakhstan USOS Crew Surgeon -Quarantine and direct care to crew before launch, then present in close proximity to launch for abort. IP Crew Surgeon -same Deputy Crew Surgeon -Back up for crew surgeon, care for immediate family, stationed at airport for helicopter abort response Russian based US doctor -Coordinate with SOS staff USOS Crew Surgeon -Nominal helicopter response and initial medical care and support during return on gulfstreamIPcenter dotP Crew Surgeon -same Deputy Crew Surgeon -Ballistic helicopter support Russian based US doctor -Coordinate with SOS staff Direct return doctor -Direct medical care on return flight

  6. Commercial Crew Astronauts Visit Kennedy on This Week @NASA – August 12, 2016

    NASA Image and Video Library

    2016-08-12

    Two of the NASA astronauts training for the first flight tests for the agency’s Commercial Crew Program visited with employees during an Aug. 11 event at Kennedy Space Center. Astronauts Eric Boe and Suni Williams, alongside Commercial Crew Program Manager Kathy Lueders, responded to questions during a panel discussion, moderated by Kennedy Director Robert Cabana. NASA has contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from the group that includes Boe, Williams, Bob Behnken and Doug Hurley The first flight tests are targeted for next year. Also, Air Quality Flight over California Wildfire, CYGNSS Media Day, Putting NASA Earth Science to Work, and more!

  7. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  8. Crew Launch Vehicle (CLV) Avionics and Software Integration Overview

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny

    2006-01-01

    On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation and Test Panel. Membership on the groups and panels includes the MSFC representatives from the requisite engineering disciplines, the First Stage, the Upper Stage, the Upper Stage Engine projects, and key personnel from other NASA centers. The four panels will take the results of trade studies and analyses and develop documentation in support of Design Analysis Cycle Reviews and ultimately the System Requirements Review.

  9. Role of automation in the ACRV operations

    NASA Technical Reports Server (NTRS)

    Sepahban, S. F.

    1992-01-01

    The Assured Crew Return Vehicle (ACRV) will provide the Space Station Freedom with contingency means of return to earth (1) of one disabled crew member during medical emergencies, (2) of all crew members in case of accidents or failures of SSF systems, and (3) in case of interruption of the Space Shuttle flights. A wide range of vehicle configurations and system approaches are currently under study. The Program requirements focus on minimizing life cycle costs by ensuring simple operations, built-in reliability and maintainability. The ACRV philosophy of embedded operations is based on maximum use of existing facilities, resources and processes, while minimizing the interfaces and impacts to the Space Shuttle and Freedom programs. A preliminary integrated operations concept based on this philosophy and covering the ground, flight, mission support, and landing and recovery operations has been produced. To implement the ACRV operations concept, the underlying approach has been to rely on vehicle autonomy and automation, to the extent possible. Candidate functions and processes which may benefit from current or near-term automation and robotics technologies are identified. These include, but are not limited to, built-in automated ground tests and checkouts; use of the Freedom and the Orbiter remote manipulator systems, for ACRV berthing; automated passive monitoring and performance trend analysis, and periodic active checkouts during dormant periods. The major ACRV operations concept issues as they relate to the use of automation are discussed.

  10. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind placards for flight. PA-1 flight data is shown, as well as a comparison of PA-1 flight data to nonlinear simulation Monte Carlo data.

  11. Overview of LIDS Docking Seals Development

    NASA Technical Reports Server (NTRS)

    Dunlap, Pat; Steinetz, Bruce; Daniels, Chris

    2008-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. GRC is evaluating the performance of candidate seal designs under simulated operating conditions at both sub-scale and full-scale levels. GRC is ultimately responsible for delivering flight hardware seals to NASA Johnson Space Center around 2013 for integration into LIDS flight units.

  12. Orion Entry Display Feeder and Interactions with the Entry Monitor System

    NASA Technical Reports Server (NTRS)

    Baird, Darren; Bernatovich, Mike; Gillespie, Ellen; Kadwa, Binaifer; Matthews, Dave; Penny, Wes; Zak, Tim; Grant, Mike; Bihari, Brian

    2010-01-01

    The Orion spacecraft is designed to return astronauts to a landing within 10 km of the intended landing target from low Earth orbit, lunar direct-entry, and lunar skip-entry trajectories. Al pile the landing is nominally controlled autonomously, the crew can fly precision entries manually in the event of an anomaly. The onboard entry displays will be used by the crew to monitor and manually fly the entry, descent, and landing, while the Entry Monitor System (EMS) will be used to monitor the health and status of the onboard guidance and the trajectory. The entry displays are driven by the entry display feeder, part of the Entry Monitor System (EMS). The entry re-targeting module, also part of the EMS, provides all the data required to generate the capability footprint of the vehicle at any point in the trajectory, which is shown on the Primary Flight Display (PFD). It also provides caution and warning data and recommends the safest possible re-designated landing site when the nominal landing site is no longer within the capability of the vehicle. The PFD and the EMS allow the crew to manually fly an entry trajectory profile from entry interface until parachute deploy having the flexibility to manually steer the vehicle to a selected landing site that best satisfies the priorities of the crew. The entry display feeder provides data from the ENIS and other components of the GNC flight software to the displays at the proper rate and in the proper units. It also performs calculations that are specific to the entry displays and which are not made in any other component of the flight software. In some instances, it performs calculations identical to those performed by the onboard primary guidance algorithm to protect against a guidance system failure. These functions and the interactions between the entry display feeder and the other components of the EMS are described.

  13. Surrounded by work platforms, the full-scale Orion AFT crew module (center) is undergoing preparations for the first flight test of Orion's launch abort system.

    NASA Image and Video Library

    2008-05-20

    Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system.

  14. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  15. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT), members of the STS-103 crew check out a portable foot restraint on the Flight Support System that will be used on the mission, repairing the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  16. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (from left) STS-96 Mission Specialist Julie Payette, Pilot Rick Husband and Mission Specialist Ellen Ochoa learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  17. Return to Flight: Crew Activities Resource Reel 1 of 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The crew of the STS-114 Discovery Mission is seen in various aspects of training for space flight. The crew activities include: 1) STS-114 Return to Flight Crew Photo Session; 2) Tile Repair Training on Precision Air Bearing Floor; 3) SAFER Tile Inspection Training in Virtual Reality Laboratory; 4) Guidance and Navigation Simulator Tile Survey Training; 5) Crew Inspects Orbital Boom and Sensor System (OBSS); 6) Bailout Training-Crew Compartment; 7) Emergency Egress Training-Crew Compartment Trainer (CCT); 8) Water Survival Training-Neutral Buoyancy Lab (NBL); 9) Ascent Training-Shuttle Motion Simulator; 10) External Tank Photo Training-Full Fuselage Trainer; 11) Rendezvous and Docking Training-Shuttle Engineering Simulator (SES) Dome; 12) Shuttle Robot Arm Training-SES Dome; 13) EVA Training Virtual Reality Lab; 14) EVA Training Neutral Buoyancy Lab; 15) EVA-2 Training-NBL; 16) EVA Tool Training-Partial Gravity Simulator; 17) Cure in Place Ablator Applicator (CIPAA) Training Glove Vacuum Chamber; 16) Crew Visit to Merritt Island Launch Area (MILA); 17) Crew Inspection-Space Shuttle Discovery; and 18) Crew Inspection-External Tank and Orbital Boom and Sensor System (OBSS). The crew are then seen answering questions from the media at the Space Shuttle Landing Facility.

  18. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  19. Studies on the flight medical aspects of the German Lufthansa non-stop route from Frankfurt to Rio de Janeiro, part 1

    NASA Technical Reports Server (NTRS)

    Wegmann, H. M.; Klein, K. E.; Goeters, K. M.; Samel, A.

    1982-01-01

    The problem of crew size for regularly scheduled flights between Frankfurt and Rio de Janeiro is discussed. Factors affecting crew performance are examined, comparisons are drawn to regulations of other countries and crew questionnaires and tests are presented.

  20. Crew factors in flight operations VI : psychophysiological responses to helicopter operations

    DOT National Transportation Integrated Search

    1994-07-01

    This report is the sixth in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Thirty-two helicopter pilots were studied before, during, and after 4- to ...

  1. Fatigue in Flight Inspection Field Office (FIFO) flight crews.

    DOT National Transportation Integrated Search

    1981-04-01

    Studies related to FIFO aircrew stress and fatigue were carried out at seven FIFO's in the Continental U.S. Forty-one men served as subjects and all crew positions were presented. Each crewmember was studied during flight activities and during office...

  2. Effects of visual, seat, and platform motion during flight simulator air transport pilot training and evaluation

    DOT National Transportation Integrated Search

    2009-04-27

    Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...

  3. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, four STS-103 crew members check the Flight Support System avionics to be used for repair and upgrade of the Hubble Space Telescope. The crew are at KSC to take part in a Crew Equipment Interface Test. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  4. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the additional head down time to respond to Data Comm messages undesirable during these events. However, most crews also stated that Data Comm messages without an accompanying audio chime and no expectation of an immediate response could be acceptable even during these events.

  5. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  6. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  7. Digital Systems Validation Handbook. Volume 2. Chapter 19. Pilot - Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    checklists, and other status messages. Voice interactive systems are defi-ed as "the interface between a cooperative human and a machine, which involv -he...Pilot-Vehicle Interface 19-85 5.6.1 Crew Interaction and the Cockpit 19-85 5.6.2 Crew Resource Management and Safety 19-87 5.6.3 Pilot and Crew Training...systems was a "stand-alone" component performing its intended function. Systems and their cockpit interfaces were added as technological advances were

  8. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., STS-91 Commander Charles Precourt, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Russian Interpreter Olga Belozerova, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  9. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, STS-91 Pilot Dominic Gorie, Boeing SPACEHAB Program Principal Engineer Lynn Ashby, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  10. STS-57 Pilot Duffy uses TDS soldering tool in SPACEHAB-01 aboard OV-105

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Pilot Brian J. Duffy, at a SPACEHAB-01 (Commercial Middeck Augmentation Module (CMAM)) work bench, handles a soldering tool onboard the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Duffy is conducting a soldering experiment (SE) which is part of the Tools and Diagnostic Systems (TDS) project. He is soldering on a printed circuit board, positioned in a specially designed holder, containing 45 connection points and will later de-solder 35 points on a similar board. TDS' sponsor is the Flight Crew Support Division, Space and Life Sciences Directorate, JSC. It represents a group of equipment selected from tools and diagnostic hardware to be supported by the Space Station program. TDS was designed to demonstrate the maintenance of experiment hardware on-orbit and to evaluate the adequacy of its design and the crew interface.

  11. Quantifying Pilot Contribution to Flight Safety during Drive Shaft Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Tim; Last, Mary Carolyn; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base simulation experiment specifically addressed this void by collecting data to quantify the human (pilot) contribution to safety-of-flight and the methods they use in today's National Airspace System. A human-in-the-loop test was conducted using the FAA's Oklahoma City Flight Simulation Branch Level D-certified B-737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Eighteen U.S. airline crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution to safety of flight, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance during single pilot and reduced crew operations were measured for comparison against the normal two-crew complement during normal and non-normal situations. This paper details the crew's actions, including decision-making, and responses while dealing with a drive shaft failure - one of 6 non-normal events that were simulated in this experiment.

  12. Cockpit napping

    NASA Technical Reports Server (NTRS)

    Graeber, R. Curtis; Rosekind, Mark R.; Connell, Linda J.; Dinges, David F.

    1990-01-01

    The results of a NASA-sponsored study examining the effectiveness of a brief, preplanned cockpit rest period to improve pilot alertness and performance in nonaugmented long-haul flight operations are discussed. Four regularly scheduled trans-Pacific flight legs were studied. The shortest flight legs were about 7 h and the longest about 9.5 h, with duty periods averaging about 11 h and layovers about 25 h. Three-person B747 crews were divided randomly into two volunteer pilot groups. These crews were nonaugmented, and therefore no relief pilots were available. The rest group, consisting of four crews, was allowed a 40 min opportunity to rest during the overwater cruise portion of the flight. On a preplanned, rotating basis, individual crew members were allowed to nap. It is concluded that a preplanned cockpit nap is associated with significantly better behavioral performance and higher levels of physiological alertness and that this can be accomplished without disrupting normal flight operations or compromising safety.

  13. 14 CFR 23.251 - Vibration and buffeting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... interfere with the satisfactory control of the airplane or cause excessive fatigue to the flight crew. Stall... flight condition, including configuration changes during cruise, severe enough to interfere with the satisfactory control of the airplane or cause excessive fatigue to the flight crew. Stall warning buffeting...

  14. Habitability and Behavioral Issues of Space Flight.

    ERIC Educational Resources Information Center

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  15. Crew factors in flight operations II : psychophysiological responses to short-haul air transport operations

    DOT National Transportation Integrated Search

    1994-11-01

    This report is the second in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. This overview presents a comprehensive review and interpretation of the m...

  16. Crew Module Overview

    NASA Technical Reports Server (NTRS)

    Redifer, Matthew E.

    2011-01-01

    The presentation presents an overview of the Crew Module development for the Pad Abort 1 flight test. The presentation describes the integration activity from the initial delivery of the primary structure through the installation of vehicle subsystems, then to flight test. A brief overview of flight test results is given.

  17. The effects of Crew Resource Management (CRM) training on flight attendants' safety attitudes.

    PubMed

    Ford, Jane; Henderson, Robert; O'Hare, David

    2014-02-01

    A number of well-known incidents and accidents had led the aviation industry to introduce Crew Resource Management (CRM) training designed specifically for flight attendants, and joint (pilot and flight attendant) CRM training as a way to improve teamwork and communication. The development of these new CRM training programs during the 1990s highlighted the growing need for programs to be evaluated using research tools that had been validated for the flight attendant population. The FSAQ (Flight Safety Attitudes Questionnaire-Flight Attendants) was designed specifically to obtain safety attitude data from flight attendants working for an Asia-Pacific airline. Flight attendants volunteered to participate in a study before receiving CRM training (N=563) and again (N=526) after CRM training. Almost half (13) of the items from the 36-item FSAQ showed highly significant changes following CRM training. Years of experience, crew position, seniority, leadership roles, flight attendant crew size, and length of route flown were all predictive of safety attitudes. CRM training for flight attendants is a valuable tool for increasing positive teamwork behaviors between the flight attendant and pilot sub-groups. Joint training sessions, where flight attendants and pilots work together to find solutions to in-flight emergency scenarios, provide a particularly useful strategy in breaking down communication barriers between the two sub-groups. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  18. STS-113 Mission Specialists during TCDT in SSPF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. --STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (center) look over equipment involved in their mission during Crew Equipment Interface Test activities in the Space Station Processing Facility. Part of the payload on mission STS-113 is the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

  19. KSC-06pd2359

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Pilot William Oefelein checks the cockpit window of Discovery as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  20. KSC-06pd2358

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Commander Mark Polansky checks the cockpit window of Discovery as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  1. KSC-06pd2357

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Commander Mark Polansky checks the cockpit window as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  2. KSC-06pd2360

    NASA Image and Video Library

    2006-10-14

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-116 Pilot William Oefelein checks the cockpit window of Discovery as part of a Crew Equipment Interface Test (CEIT). A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  3. A human operator simulator model of the NASA Terminal Configured Vehicle (TCV)

    NASA Technical Reports Server (NTRS)

    Glenn, F. A., III; Doane, S. M.

    1981-01-01

    A generic operator model called HOS was used to simulate the behavior and performance of a pilot flying a transport airplane during instrument approach and landing operations in order to demonstrate the applicability of the model to problems associated with interfacing a crew with a flight system. The model which was installed and operated on NASA Langley's central computing system is described. Preliminary results of its application to an investigation of an innovative display system under development in Langley's terminal configured vehicle program are considered.

  4. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  5. 14 CFR 460.3 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.3 Applicability. (a... have flight crew on board a vehicle or proposes to employ a remote operator of a vehicle with a human... vehicle or who employs a remote operator of a vehicle with a human on board. (3) A crew member...

  6. Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.

  7. A testbed for the evaluation of computer aids for enroute flight path planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.

    1990-01-01

    A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.

  8. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  9. Intercultural crew issues in long-duration spaceflight

    NASA Technical Reports Server (NTRS)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions.

  10. Orbiter fire rescue and crew escape training for EVA crew systems support

    NASA Image and Video Library

    1993-01-28

    Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).

  11. Crew roles and interactions in scientific space exploration

    NASA Astrophysics Data System (ADS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  12. STS-71 crew addresses news media

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Following their arrival at KSC's Shuttle Landing Facility, the STS-71 flight crew takes a moment to address news media gathered to greet them. The journey from Johnson Space Center in Houston brings the flight crew one step closer to an historic spaceflight, the first docking of the U.S. Space Shuttle with the Russian Space Station Mir. The countdown clock already has begun ticking toward liftoff of the Shuttle Atlantis on that flight, currently scheduled for June 23 at 5:08 p.m. EDT.

  13. PTM Along Track Algorithm to Maintain Spacing During Same Direction Pair-Wise Trajectory Management Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.

    2015-01-01

    Pair-wise Trajectory Management (PTM) is a cockpit based delegated responsibility separation standard. When an air traffic service provider gives a PTM clearance to an aircraft and the flight crew accepts the clearance, the flight crew will maintain spacing and separation from a designated aircraft. A PTM along track algorithm will receive state information from the designated aircraft and from the own ship to produce speed guidance for the flight crew to maintain spacing and separation

  14. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  15. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance...

  16. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance...

  17. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  18. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  19. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  20. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  1. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  2. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  3. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  4. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  5. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  6. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  7. 77 FR 40832 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ability of the flight crew to read primary displays for airplane attitude, altitude, or airspeed, and... displays for airplane attitude, altitude, or airspeed, and consequently reduce the ability of the flight...) malfunctions, which could affect the ability of the flight crew to read primary displays for airplane attitude...

  8. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  9. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  10. Crew factors in flight operations. Part 4: Sleep and wakefulness in international aircrews

    NASA Technical Reports Server (NTRS)

    Graeber, R. C.

    1986-01-01

    Physiological recordings of sleep and wakefulness in operating international (B-747) flight crews were obtained. Crews spent their first layover (48 h) of a trip in a sleep laboratory where standardized EEG, electro-oculograph (EOC), and electromyograph (EMG) sleep recordings were carried out whenever volunteers chose to sleep. During periods of wakefulness they underwent multiple sleep latency tests every 2 h in order to assess daytime drowsiness. The same standardized recordings were carried out at a home-based laboratory before departure. Approximately four crews each participated in flights over 7 to 9 time zones on five routes. All participants were encouraged to use whatever sleep-wake strategies they thought would provide them with the most satisfactory crew rest. Overall, layover sleep quality was not seriously disturbed, but eastward flights produced greater sleep disruption. The contributors of individual factors and the usefulness of various sleep strategies are discussed in the individual laboratory reports and in an operational summary.

  11. Flight data file: STS-4 crew activity plan

    NASA Technical Reports Server (NTRS)

    Pippert, E. B., Jr.

    1982-01-01

    The STS-4 Crew Activity Plan contains the on-orbit timeline, which is a flight data file article. Various time scales such as Mission Elapsed Time (MET), Greenwich Mean Time (GMT), and time until deorbit ignition as well as crew activities, day/night, orbit position, ground tracking, communication coverage, attitude, and maneuvers are presented in chart form.

  12. Design and Demonstration of Bolt Retractor Separation System for X-38 Deorbit Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Ahmed, Raf; Johnston, A. S.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2003-01-01

    A separation system was designed for the X-38 experimental crew return vehicle program to allow the Deorbit Propulsion Stage (DPS) to separate from the X-38 lifting body during reentry operations. The configuration chosen was a spring-loaded plunger, known as the Bolt Retractor Subsystem (BRS), that retracts each of the six DPS-to-lifting body attachment bolts across the interface plane after being triggered by a separation nut mechanism. The system was designed to function on the ground in an atmospheric environment as well as in space. The BRS provides the same functionality as that of a completely pyrotechnic shear separation system that would normally be considered ideal for this application, but at a much lower cost. This system also could potentially be applied to future space station crew return vehicles. The design goal of 40 ms retraction time was successfully met in a series of demonstrations performed at the NASA Marshall Space Flight Center s Pyrotechnic Shock Facility (PSF) and Flight Robotics Laboratory (FRL). It must be emphasized that a full-scale test series was not performed on the BRS due to program schedule and cost constraints.

  13. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  14. Pairwise Trajectory Management (PTM): Concept Overview

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.; Graff, Thomas J.; Chartrand, Ryan C.; Carreno, Victor; Kibler, Jennifer L.

    2017-01-01

    Pairwise Trajectory Management (PTM) is an Interval Management (IM) concept that utilizes airborne and ground-based capabilities to enable the implementation of airborne pairwise spacing capabilities in oceanic regions. The goal of PTM is to use airborne surveillance and tools to manage an "at or greater than" inter-aircraft spacing. Due to the precision of Automatic Dependent Surveillance-Broadcast (ADS-B) information and the use of airborne spacing guidance, the PTM minimum spacing distance will be less than distances a controller can support with current automation systems that support oceanic operations. Ground tools assist the controller in evaluating the traffic picture and determining appropriate PTM clearances to be issued. Avionics systems provide guidance information that allows the flight crew to conform to the PTM clearance issued by the controller. The combination of a reduced minimum distance and airborne spacing management will increase the capacity and efficiency of aircraft operations at a given altitude or volume of airspace. This paper provides an overview of the proposed application, description of a few key scenarios, high level discussion of expected air and ground equipment and procedure changes, overview of a potential flight crew human-machine interface that would support PTM operations and some initial PTM benefits results.

  15. KSC-07pd2194

    NASA Image and Video Library

    2007-08-03

    KENNEDY SPACE CENTER, FLA. - The STS-120 crew is at Kennedy for a crew equipment interface test, or CEIT. Receiving instruction from Allison Bolinger, an EVA technician with NASA, under space shuttle Discovery in Orbiter Processing Facility bay 3 are, from left in blue flight suits, Mission Specialist Douglas H. Wheelock; Commander Pamela A. Melroy; Expedition 16 Flight Engineer Daniel M. Tani; Pilot George D. Zamka; and Mission Specialists Stephanie D. Wilson, Scott E. Parazynski and Paolo A. Nespoli, a European Space Agency astronaut from Italy. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The STS-120 mission will deliver the Harmony module, christened after a school contest, which will provide attachment points for European and Japanese laboratory modules on the International Space Station. Known in technical circles as Node 2, it is similar to the six-sided Unity module that links the U.S. and Russian sections of the station. Built in Italy for the United States, Harmony will be the first new U.S. pressurized component to be added. The STS-120 mission is targeted to launch on Oct. 20. Photo credit: NASA/George Shelton

  16. Shuttle and ISS Food Systems Management

    NASA Technical Reports Server (NTRS)

    Kloeris, Vickie

    2000-01-01

    Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated insufficient caloric intake for many crewmembers. Additional thermostabilized and irradiated foods have been developed for ISS to improve the ease of preparation and overall acceptability. Dehydrated foods offer limited advantage, since water must be delivered to ISS. An effort is underway to introduce other International Partner's food into the ISS food system. At first this will be one or two selected foods with the potential for more as the program matures. An increase in the variety of available foods would improve the overall acceptability. Additional galley capability will be required when the crew size increases on ISS. Anticipated improvements include freezers, refrigerators and microwave ovens. All of the ISS food development efforts are devoted to improving the food acceptability and subsequent consumption and mission success

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-01-01

    This is the STS-102 mission crew insignia. The central image on the crew patch depicts the International Space Station (ISS) in the build configuration that it had at the time of the arrival and docking of Discovery during the STS-102 mission, the first crew exchange flight to the Space Station. The station is shown along the direction of the flight as was seen by the shuttle crew during their final approach and docking, the so-called V-bar approach. The names of the shuttle crew members are depicted in gold around the top of the patch, and surnames of the Expedition crew members being exchanged are shown in the lower barner. The three ribbons swirling up to and around the station signify the rotation of these ISS crew members. The number 2 is for the Expedition 2 crew who flew up to the station, and the number 1 is for the Expedition 1 crew who then returned down to Earth. In conjunction with the face of the Lab module of the Station, these Expedition numbers create the shuttle mission number 102. Shown mated below the ISS is the Italian-built Multipurpose Logistics Module, Leonardo, that flew for the first time on this flight. The flags of the countries that were the major contributors to this effort, the United States, Russia, and Italy are also shown in the lower part of the patch. The build-sequence number of this flight in the overall station assembly sequence, 5A.1, is captured by the constellations in the background.

  18. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  19. Spacelab 3 mission

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.

    1990-01-01

    Spacelab-3 (SL-3) was the first microgravity mission of extended duration involving crew interaction with animal experiments. This interaction involved sharing the Spacelab environmental system, changing animal food, and changing animal waste trays by the crew. Extensive microbial testing was conducted on the animal specimens and crew and on their ground and flight facilities during all phases of the mission to determine the potential for cross contamination. Macroparticulate sampling was attempted but was unsuccessful due to the unforseen particulate contamination occurring during the flight. Particulate debris of varying size (250 micron to several inches) and composition was recovered post flight from the Spacelab floor, end cones, overhead areas, avionics fan filter, cabin fan filters, tunnel adaptor, and from the crew module. These data are discussed along with solutions, which were implemented, for particulate and microbial containment for future flight facilities.

  20. Experiment M-6: Bone Demineralization

    NASA Technical Reports Server (NTRS)

    Mack, Pauline B.; Vose, George; Vogt, Fred B.; LaChance, Paul A.

    1966-01-01

    Densitometric evaluations of serial radiographs of "normal" subjects have often shown rather frequent changes in bone mass within relatively short periods of time. For this reason it was decided to make two pre-flight and two post flight radiographs of the Gemini V backup crew. In comparing the changes observed preflight and post flight as the conventional os calcis scanning site between the two crews, it was found that no changes greater than 4 percent were evident in either member of the backup crew. In comparing the changes observed preflight and postflight as the conventional o calcis scanning site between the two crews, it was found that no changes greater than 4 percent were evident in either member of the backup crew. This is in contract to the 15.1 and 8.9 percent losses observed in the prime crew. It has long been known that the skeletal system experiences a general loss of mineral under immobilization or extended bed rest. However, in both Gemini IV and Gemini V studies, bone mass losses were greater in both the os calcis and phalanx than were shown by the TWU bed-rest subjects during the same period of time. Although the bone mass losses in the 8-day Gemini V flight were generally greater than in the 4-day Gemini IV flight, the information to date is still insufficient to conclude that the losses tend to progress linearly with time, or whether a form of physiological adaptation may occur in longer space flights.

  1. Apollo experience report: Simulation of manned space flight for crew training

    NASA Technical Reports Server (NTRS)

    Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.

    1973-01-01

    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.

  2. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  3. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret

    2007-01-01

    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  4. Animation graphic interface for the space shuttle onboard computer

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  13. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  14. KSC-00pp0188

    NASA Image and Video Library

    2000-02-03

    Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000

  15. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia, maneuver a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). The Strehla has been the focus for two Shuttle crews, STS-96 who are at KSC for a Crew Equipment Interface Test, and STS-101, for payload familiarization. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  16. KSC-00pp0180

    NASA Image and Video Library

    2000-02-03

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000

  17. KSC-07pd2211

    NASA Image and Video Library

    2007-08-03

    KENNEDY SPACE CENTER, FLA. - In Discovery's payload bay in Orbiter Processing Facility bay 3, STS-120 crew members are getting hands-on experience with a winch that is used to manually close the payload bay doors in the event that becomes necessary. At center is Pilot George D. Zamka and at right is Expedition 16 Flight Engineer Daniel M. Tani. The STS-120 crew is at Kennedy for a crew equipment interface test, or CEIT, which includes harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The STS-120 mission will deliver the Harmony module, christened after a school contest, which will provide attachment points for European and Japanese laboratory modules on the International Space Station. Known in technical circles as Node 2, it is similar to the six-sided Unity module that links the U.S. and Russian sections of the station. Built in Italy for the United States, Harmony will be the first new U.S. pressurized component to be added. The STS-120 mission is targeted to launch on Oct. 20. Photo credit: NASA/George Shelton

  18. Disrupting Aviation: An Exploratory Study of the Opportunities and Risks of Tablet Computers in Commercial Flight Operations

    ERIC Educational Resources Information Center

    Boyne, Matthew

    2013-01-01

    Commercial flight operational safety has dramatically improved in the last 30 years because of enhanced crew coordination, communication, leadership and team development. Technology insertion into cockpit operations, however, has been shown to create crew distractions, resulting in flight safety risks, limited use given policy limitations and…

  19. 76 FR 27656 - Intent To Request Renewal From OMB of One Current Public Collection of Information: Flight Crew...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... From OMB of One Current Public Collection of Information: Flight Crew Self-Defense Training... eligibility to participate in voluntary advanced self-defense training provided by TSA. Eligible training...), TSA is required to develop and provide a voluntary advanced self-defense training program for flight...

  20. Analysis of communication in the standard versus automated aircraft

    NASA Technical Reports Server (NTRS)

    Veinott, Elizabeth S.; Irwin, Cheryl M.

    1993-01-01

    Past research has shown crew communication patterns to be associated with overall crew performance, recent flight experience together, low-and high-error crew performance and personality variables. However, differences in communication patterns as a function of aircraft type and level of aircraft automation have not been fully addressed. Crew communications from ten MD-88 and twelve DC-9 crews were obtained during a full-mission simulation. In addition to large differences in overall amount of communication during the normal and abnormal phases of flight (DC-9 crews generating less speech than MD-88 crews), differences in specific speech categories were also found. Log-linear analyses also generated speaker-response patterns related to each aircraft type, although in future analyses these patterns will need to account for variations due to crew performance.

  1. STS-103 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Hubble Space Telescope (HST) team is preparing for NASA's third scheduled service call to Hubble. This mission, STS-103, will launch from Kennedy Space Center aboard the Space Shuttle Discovery. The seven flight crew members are Commander Curtis L. Brown, Pilot Scott J. Kelly, European Space Agency (ESA) astronaut Jean-Francois Clervoy who will join space walkers Steven L. Smith, C. Michael Foale, John M. Grunsfeld, and ESA astronaut Claude Nicollier. The objectives of the HST Third Servicing Mission (SM3A) are to replace the telescope's six gyroscopes, a Fine-Guidance Sensor, an S-Band Single Access Transmitter, a spare solid-state recorder and a high-voltage/temperature kit for protecting the batteries from overheating. In addition, the crew plans to install an advanced computer that is 20 times faster and has six times the memory of the current Hubble Space Telescope computer. To prepare for these extravehicular activities (EVAs), the SM3A astronauts participated in Crew Familiarization sessions with the actual SM3A flight hardware. During these sessions the crew spent long hours rehearsing their space walks in the Guidance Navigation Simulator and NBL (Neutral Buoyancy Laboratory). Using space gloves, flight Space Support Equipment (SSE), and Crew Aids and Tools (CATs), the astronauts trained with and verified flight orbital replacement unit (ORU) hardware. The crew worked with a number of trainers and simulators, such as the High Fidelity Mechanical Simulator, Guidance Navigation Simulator, System Engineering Simulator, the Aft Shroud Door Trainer, the Forward Shell/Light Shield Simulator, and the Support Systems Module Bay Doors Simulator. They also trained and verified the flight Orbital Replacement Unit Carrier (ORUC) and its ancillary hardware. Discovery's planned 10-day flight is scheduled to end with a night landing at Kennedy.

  2. Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010

    NASA Technical Reports Server (NTRS)

    Dory, Jonathan

    2010-01-01

    The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.

  3. The Application of Electron Microscopy Techniques to the Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Greg

    2005-01-01

    The Space Shuttle Columbia was returning from a 16-day research mission, STS- 107, with nominal system performance prior to the beginning of the entry interface into earth's upper atmosphere. Approximately one minute and twenty four seconds into the peak heating region of the entry interface, an off-nominal temperature rise was observed in the left main landing gear brake line. Nearly seven minutes later, all contact was lost with Columbia. Debris was observed periodically exiting the Shuttle's flight path throughout the reentry profile over California, Nevada, and New Mexico, until its final breakup over Texas. During the subsequent investigation, electron microscopy techniques were crucial in revealing the location of the fatal damage that resulted in the loss of Columbia and her crew.

  4. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test in the Payload Hazardous Servicing Facility, members of the STS-103 crew check out the Flight Support System (FSS)from above and below. The FSS is part of the primary payload on the mission to repair the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  5. STS-52 Columbia, Orbiter Vehicle (OV) 102, crew insignia

    NASA Image and Video Library

    1999-05-24

    STS052-S-001 (July 1992) --- The insignia, designed by the STS-52 crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements to be taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which is part of the United States Microgravity Payload (USMP-1). The LAGEOS II is a joint Italian\\United States satellite project intended to further our understanding of global plate tectonics. The USMP-1 is a microgravity facility which has French and United States experiments designed to test the theory of cooperative phase transitions and to study the solid\\liquid interface of a metallic alloy in the low gravity environment. The Remote Manipulator System (RMS) and maple leaf are emblematic of the Canadian payload specialist who will conduct a series of Canadian flight experiments (CANEX-2), including the Space Vision System test. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. Photo credit: NASA

  6. A survey of selected aviators' perceptions regarding Army crew endurance guidelines.

    PubMed

    Caldwell, J A; Caldwell, J L; Hartnett, T C

    1995-01-01

    A 59-item questionnaire was administered to Army helicopter pilots from a variety of Army units to assess crew endurance issues. Analysis of 653 completed questionnaires indicated that respondents felt that the maintenance of aviator proficiency was more important than the fulfillment of only currency requirements in improving flight endurance. Approximately three-quarters of the respondents said that physical training was important to them personally, and 63% said that improved physical fitness reduces flight-related fatigue. With regard to the current crew endurance guide, only 1% of the respondents thought that the guide was exceptional and 65% said that they thought it should be rewritten. Adjustments were suggested for some of the recommended flight time limitations, to include liberalizing the factor associated with night-vision device flight. A majority of respondents indicated that data from either in-flight endurance evaluations or questionnaires administered to personnel in the field should be used to develop a new guide. Most respondents did not feel comfortable delegating responsibility for total crew endurance planning to unit commanders.

  7. STS-70 Flight: Day 5

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The fifth day of the STS-70 Space Shuttle Discovery mission is contained on this video. The crew continues working on experiments, such as the Space Tissue Loss Analysis and the Bioreactor Development System. CNN reporter, John Holliman, interviewed the flight crew and the crew also answered questions posed by Internet users while on NASA's Shuttle Web. There are brief views of Earth's surface included.

  8. 78 FR 46358 - Extension of Agency Information Collection Activity Under OMB Review: Security Programs for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    .... Specifically, TSA requires foreign air carriers to submit the following information: (1) A master crew list of all flight and cabin crew members flying to and from the United States; (2) the flight crew list on a..., 49 CFR part 1546. TSA uses the information collected to determine compliance with 49 CFR part 1546...

  9. KSC-99pp1098

    NASA Image and Video Library

    1999-09-02

    During a Crew Equipment Interface Test (CEIT), members of the STS-103 crew check out a portable foot restraint on the Flight Support System that will be used on the mission, repairing the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  10. Strategies for the study of flightcrew behavior

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1991-01-01

    The performance of any flightcrew at any given time is determined by multiple factors ranging from characteristics of individual crewmembers to the regulations governing flight operations. Attention is given to microcoding of communications, survey data on crewmember attitudes as indicators of culture and crew resource management (CRM) training effects, and systematic observation of crew behavior. Consideration is given to advanced CRM training of evaluators, analyses of crew behavior by aircraft type and characteristics, and survey data on crew reactions to line oriented flight training.

  11. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  12. STS-26 crewmembers pose for onboard portrait on middeck with 51L mementos

    NASA Image and Video Library

    1988-10-03

    STS026-08-007 (29 Sept-3 Oct 1988) --- An in-space crew portrait on the middeck of Discovery. Left to right are Astronauts David C. Hilmers, George D. Nelson, Frederick H. (Rick) Hauck, John M. (Mike) Lounge and Richard O. Covey (front). The crew portrait for STS 51-L, its flight insignia and the STS 26 flight insignia are at top edge of the frame. This photo was shown by the STS 26 astronaut crew during its Oct. 11, l988 post-flight press conference.

  13. KSC-98pc339

    NASA Image and Video Library

    1998-02-26

    STS-90 Mission Specialist Kathryn (Kay) Hire enjoys the crawl between Columbia and the white room that allows access to the orbiter. The crew of STS-90 recently participated in the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's Orbiter Processing Facility Bay 3. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Investigations during the STS-90 Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. STS-90, which will be Hire's first Shuttle flight, is scheduled for launch on April 16 at 2:19 p.m. EDT

  14. Display interface concepts for automated fault diagnosis

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.

    1989-01-01

    An effort which investigated concepts for displaying dynamic system status and fault history (propagation) information to the flight crew is described. This investigation was performed by developing several candidate display formats and then conducting comprehension tests to determine those characteristics that made one format preferable to another for presenting this type of information. Twelve subjects participated. Flash tests, or limited time exposure tests, were used to determine the subjects' comprehension of the information presented in the display formats. It was concluded from the results of the comprehension tests that pictographs were more comprehensible than both block diagrams and text for presenting dynamic system status and fault history information, and that pictographs were preferred over both block diagrams and text. It was also concluded that the addition of this type of information in the cockpit would help the crew remain aware of the status of their aircraft.

  15. International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.

  16. SLS Payload Transportation Beyond LEO

    NASA Technical Reports Server (NTRS)

    Creech, S. D.; Baker, J. D.; Jackman, A. L.; Vane, G.

    2017-01-01

    NASA has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards the first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion capsule to the lunar vicinity every year after the first 2 flights starting in the early 2020's. As early as 2021, in addition to delivering an Orion capsule to a cislunar destination, SLS will also deliver ancillary payload, termed "Co-manifested Payload (CPL)", with a mass of at least 5.5 mT and volume up to 280 m3 simultaneously to that same destination. Later SLS flights have a goal of delivering as much as 10 mT of CPL to cislunar destinations. In addition to cislunar destinations, SLS flights may deliver non-crewed, science-driven missions with Primary Payload (PPL) to more distant destinations. SLS PPL missions will utilize a unique payload fairing offering payload volume (ranging from 320 m3 to 540 m3) that greatly exceeds the largest existing Expendable Launch Vehicle (ELV) fairing available. The Characteristic Energy (C3) offered by the SLS system will generate opportunities to deliver up to 40 mT to cislunar space, and deliver double PPL mass or de-crease flight time by half for some outer planet destinations when compared to existing capabilities. For example, SLS flights may deliver the Europa Clipper to a Jovian destination in under 3 years by the mid 2020's, compared to the 7+ years cruise time required for current launch capabilities. This presentation will describe ground and flight accommodations, interfaces, resources, and performance planned to be made available to potential CPL and PPL science users of SLS. In addition, this presentation should promote a dialogue between vehicle developers, potential payload users, and funding sources in order to most efficiently evolve required SLS capabilities to meet diverse payload needs as they are identified over the next 35 years and beyond.

  17. Columbia Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.

  18. KSC-2013-3391

    NASA Image and Video Library

    2013-08-22

    EDWARDS AFB, Calif. - ED13-0300-002 – An Erickson Air-Crane helicopter lifts Sierra Nevada Corporation's Dream Chaser flight vehicle during a captive-carry flight test. The test was a rehearsal for free flights at Edwards later this year. The spacecraft is under development in partnership with NASA's Commercial Crew Program. Although the spacecraft is designed for crew members, the vehicle will not have anyone onboard during the free flights. Photo credit: NASA/Carla Thomas

  19. KSC-2013-3390

    NASA Image and Video Library

    2013-08-22

    EDWARDS AFB, Calif. - ED13-0300-001 – An Erickson Air-Crane helicopter lifts Sierra Nevada Corporation's Dream Chaser flight vehicle during a captive-carry flight test. The test was a rehearsal for free flights at Edwards later this year. The spacecraft is under development in partnership with NASA's Commercial Crew Program. Although the spacecraft is designed for crew members, the vehicle will not have anyone onboard during the free flights. Photo credit: NASA/Carla Thomas

  20. KSC-2013-3392

    NASA Image and Video Library

    2013-08-22

    EDWARDS AFB, Calif. - ED13-0300-003 – An Erickson Air-Crane helicopter lifts Sierra Nevada Corporation's Dream Chaser flight vehicle during a captive-carry flight test. The test was a rehearsal for free flights at Edwards later this year. The spacecraft is under development in partnership with NASA's Commercial Crew Program. Although the spacecraft is designed for crew members, the vehicle will not have anyone onboard during the free flights. Photo credit: NASA/Carla Thomas

  1. Surrounded by work platforms, the full-scale Orion AFT crew module (center) is undergoing preparations for the first flight test of Orion's launch abort system.

    NASA Image and Video Library

    2008-05-20

    Surrounded by work platforms, NASA's first full-scale Orion abort flight test (AFT) crew module (center) is undergoing preparations at the NASA Dryden Flight Research Center in California for the first flight test of Orion's launch abort system. To the left is a space shuttle orbiter purge vehicle sharing the hangar.

  2. Crew factors in flight operations 9: Effects of planned cockpit rest on crew performance and alertness in long-haul operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.

    1994-01-01

    This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.

  3. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display. Measures of flight crew reactions included performance-based measures such as deviation decision accuracy, and judgment-based measures such as perceived decision confidence, workload, situation awareness, and display trust. Results demonstrated that pilots adopted a conservative reaction strategy, often choosing to deviate from weather rather than ride through it. When onboard and NEXRAD displays did not agree, flight crews reacted in a complex manner, trusting the onboard system more but using the NEXRAD system to augment their situation awareness. Distance to weather reduced situation awareness and heightened workload levels. Overall, flight crews tended to adopt a participative leadership style marked by open communication. These results suggest that future weather displays should exploit the existing benefits of NEXRAD presentation for situation awareness while retaining the display structure and logic inherent in the onboard system.

  4. The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care

    NASA Technical Reports Server (NTRS)

    Butler, Doug

    2009-01-01

    This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.

  5. Influence of Combined Whole-Body Vibration Plus G-Loading on Visual Performance

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Beutter, Brent Robert; Kaiser, Mary K.; McCann, Robert S.; Stone, Leland S.; Anderson, Mark R.; Renema, Fritz; Paloski, William H.

    2009-01-01

    Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final 20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER) or response times (RT). Significant degradations in both ER and RT, however, were observed at 0.5 and 0.7 g for 10-pt, and at 0.7 g for 14-pt font displays. These objective performance measures were mirrored by participants' subjective ratings. Interestingly, we found that the impact of vibration on ER increased with distance from the center of the display, but only for vertical displacements. Furthermore, no significant ER or RT aftereffects were detected immediately following vibration, regardless of amplitude. Lastly, given that our reading task required no specialized spaceflight expertise, our finding that effects were not statistically distinct between our two groups is not surprising. The results from this empirical study provide initial guidance for evaluating the display readability trade-space between text-font size and vibration amplitude. However, the outcome of this work should be considered preliminary in nature for a number of reasons: 1. The single 12 Hz x-axis vibration employed was based on earlier load-cycle models of the induced TO environment at the end of Ares-I first stage flight. Recent analyses of TO mitigation designs suggest that significant concurrent off-axis vibration may also occur. 2. The shirtsleeve environment in which we tested fails to capture the full kinematic and dynamic complexity of the physical interface between crewmember and the still-to-bematured helmet-suit-seat designs, and the impact these will have for vibration transmission and consequent performance. 3. By examining performance in this reading and number processing task, we are only assessing readability, a first and necessary step that in itself does not directly address the performance of more sophisticated operational tasks such as vehicle-health monitoring or manual control of the vehicle.

  6. STS-113 Mission Highlights Resource Tape Flight Days 7-11. Tape: 3 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, part 3 of 4, shows the activities of the crew of Space Shuttle Envdeavour and the Expedition 5 and 6 crews of the International Space Station (ISS) during flight days 7 through 11 of STS-113. Endeavour's crew consists of Commander Jim Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. Footage of flight day 7 includes a change of command ceremony on board the ISS, and Endeavour dumping supply water through a nozzle. On flight day 8 the Space Station Mobile Transporter jams while traveling on the P1 truss of the ISS, and Herrington attempts to free it as part of a lengthy extravehicular activity (EVA) with Lopez-Alegria. Flight day 9 is the last full day the three crews spend together. Expedition 5 NASA ISS Science Officer Peggy Whitsun troubleshoots the Microgravity Glovebox on board the ISS with her successor Don Pettit. The undocking of Endeavour and the ISS is the main activity of flight day 10. Endeavour also deploys a pair of experimental tethered microsatellites for the Department of Defense. The footage from flight day 11 shows the Expedition 5 crew exercising, laying in recumbant seats to help them adjust to the gravity on Earth, and sleeping. The video includes numerous views of the earth, some with the ISS and Endeavour in the foreground. There are close-ups of Italy, Spain and Portugal, Tierra del Fuego, and Baja California, and a night view of Chicago and the Great Lakes.

  7. Status of the National Space Transportation System

    NASA Technical Reports Server (NTRS)

    Abrahamson, J. A.

    1984-01-01

    The National Space Transportation System is a national resources serving the government, Department of Defense and commercial needs of the USA and others. Four orbital flight tests were completed July 4, 1982, and the first Operational Flight (STS-5) which placed two commercial communications into orbit was conducted November 11, 1982. February 1983 marked the first flight of the newest orbiter, Challenger. Planned firsts in 1983 include: use of higher performance main engines and solid rocket boosters, around-the-clock crew operations, a night landing, extra-vehicular activity, a dedicated DOD mission, and the first flight of a woman crew member. By the end of 1983, five commercial payloads and two tracking and data relay satellites should be deployed and thirty-seven crew members should have made flights aboard the space shuttle.

  8. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. At far left is Boeing SPACEHAB Program Senior Engineer Ellen Styles, and around the table are, left to right, STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., Boeing SPACEHAB Program Senior Engineer Chris Jazkolka, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  9. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Commander Charles Precourt, Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Boeing SPACEHAB Program Specialist in Engineering Ed Saenger, STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency, Boeing SPACEHAB Program Manager in Engineering Brad Reid, and Russian Interpreter Olga Belozerova.

  10. A prototype Crew Medical Restraint System (CMRS) for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Johnston, S. L.; Eichstadt, F. T.; Billica, R. D.

    1992-01-01

    The Crew Medical Restrain System (CMRS) is a prototype system designed and developed for use as a universally deployable medical restraint/workstation on Space Station Freedom (SSF), the Shuttle Transportation System (STS), and the Assured Crew Rescue Vehicle (ACRV) for support of an ill or injured crewmember requiring stabilization and transportation to Earth. The CMRS will support all medical capabilities of the Health Maintenance Facility (HMF) by providing a restraint/interface system for all equipment (advance life support packs, defibrillator, ventilator, portable oxygen supply, IV pump, transport monitor, transport aspirator, and intervenous fluids delivery system) and personnel (patient and crew medical officers). It must be functional within the STS, ACRV, and all SSF habitable volumes. The CMRS will allow for medical capabilities within CPR, ACLS and ATLS standards of care. This must all be accomplished for a worst case transport time scenario of 24 hours from SSF to a definitive medical care facility on Earth. A presentation of the above design prototype with its subsequent one year SSF/HMF and STS/ACRV high fidelity mock-up ground based simulation testing will be given. Also, parabolic flight and underwater Weightless Test Facility evaluations will be demonstrated for various medical contingencies. The final design configuration to date will be discussed with future space program impact considerations.

  11. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    NASA Technical Reports Server (NTRS)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  12. Integration of Evidence Base into a Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Saile, Lyn; Lopez, Vilma; Bickham, Grandin; Kerstman, Eric; FreiredeCarvalho, Mary; Byrne, Vicky; Butler, Douglas; Myers, Jerry; Walton, Marlei

    2011-01-01

    INTRODUCTION: A probabilistic decision support model such as the Integrated Medical Model (IMM) utilizes an immense amount of input data that necessitates a systematic, integrated approach for data collection, and management. As a result of this approach, IMM is able to forecasts medical events, resource utilization and crew health during space flight. METHODS: Inflight data is the most desirable input for the Integrated Medical Model. Non-attributable inflight data is collected from the Lifetime Surveillance for Astronaut Health study as well as the engineers, flight surgeons, and astronauts themselves. When inflight data is unavailable cohort studies, other models and Bayesian analyses are used, in addition to subject matters experts input on occasion. To determine the quality of evidence of a medical condition, the data source is categorized and assigned a level of evidence from 1-5; the highest level is one. The collected data reside and are managed in a relational SQL database with a web-based interface for data entry and review. The database is also capable of interfacing with outside applications which expands capabilities within the database itself. Via the public interface, customers can access a formatted Clinical Findings Form (CLiFF) that outlines the model input and evidence base for each medical condition. Changes to the database are tracked using a documented Configuration Management process. DISSCUSSION: This strategic approach provides a comprehensive data management plan for IMM. The IMM Database s structure and architecture has proven to support additional usages. As seen by the resources utilization across medical conditions analysis. In addition, the IMM Database s web-based interface provides a user-friendly format for customers to browse and download the clinical information for medical conditions. It is this type of functionality that will provide Exploratory Medicine Capabilities the evidence base for their medical condition list. CONCLUSION: The IMM Database in junction with the IMM is helping NASA aerospace program improve the health care and reduce risk for the astronauts crew. Both the database and model will continue to expand to meet customer needs through its multi-disciplinary evidence based approach to managing data. Future expansion could serve as a platform for a Space Medicine Wiki of medical conditions.

  13. Medical Training Issues and Skill Mix for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Janney, R. P.; Armstrong, C. W.; Stepaniak, P. C.; Billica, Roger (Technical Monitor)

    2000-01-01

    The approach for treating in-flight medical events during exploration-class missions must reflect the need for an autonomous crew, and cannot be compared to current space flight therapeutic protocols. An exploration mission exposes the crew to periods of galactic cosmic radiation, isolation, confinement, and microgravity deconditioning far exceeding the low-Earth orbital missions performed to date. In addition, exploration crews will not be able to return to Earth at the onset of a medical event and will need to control the situation in-flight. Medical consultations with Earth-based physicians will be delayed as much as 40 minutes, dictating the need for a highly-trained medical team on board. This presentation will address the mix of crew medical skills and the training required for crew health care providers for missions beyond low-Earth orbit. Both low- and high-risk options for medical skill mix and preflight training will be compared.

  14. APPROACH & LANDING TEST (ALT) - SHUTTLE PATCH

    NASA Image and Video Library

    1976-11-01

    S76-30340 (1976) --- This circular, red, white and blue emblem has been chosen as the official insignia for the Space Shuttle Approach and Landing Test (ALT) flights. A picture of the Orbiter 101 "Enterprise" is superimposed over a red triangle, which in turn is superimposed over a large inner circle of dark blue. The surnames of the members of the two ALT crews are in white in the field of blue. The four crew men are astronauts Fred W. Haise Jr., commander of the first crew; Joe H. Engle, commander of the second crew; and Richard H. Truly, pilot of the second crew. ALT is a series of flights with a modified Boeing 747 Shuttle Carrier Aircraft (SCA) as a ferry aircraft and airborne launch platform for the 67,300 kilogram (75-ton) "Enterprise". The Shuttle Orbiter atmospheric testing is in preparation for the first Earth-orbital flights scheduled in 1979.

  15. Condensation on crew compartment aft flight deck window W10

    NASA Image and Video Library

    1982-03-30

    STS003-24-211 (22-30 March 1982) --- Crew compartment aft flight deck viewing window W10 fogged with condensation. The condensation is a result of the spacecraft's position in relation to the sun. Photo credit: NASA

  16. Multipurpose Crew Restraints for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Ortiz, M. R.; Hua, L.; Sinnott, P.; Webb, L.

    2004-01-01

    With permanent human presence onboard the International Space Station (ISS), a crew will be living and working in microgravity, interfacing with their physical environment. Without optimum restraints and mobility aids (R&MA' s), the crewmembers may be handicapped for perfonning some of the on-orbit tasks. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity area and may cause prolonged periods of unnatural postures. Thus, determining the right set of human factors requirements and providing an ergonomically designed environment are crucial to astronauts' well-being and productivity. The purpose of this project is to develop requirements and guidelines, and conceptual designs, for an ergonomically designed multi-purpose crew restraint. In order to achieve this goal, the project would involve development of functional and human factors requirements, design concept prototype development, analytical and computer modeling evaluations of concepts, two sets of micro gravity evaluations and preparation of an implementation plan. It is anticipated that developing functional and design requirements for a multi-purpose restraint would facilitate development of ergonomically designed restraints to accommodate the off-nominal but repetitive tasks, and minimize the performance degradation due to lack of optimum setup for onboard task performance. In addition, development of an ergonomically designed restraint concept prototype would allow verification and validation of the requirements defined. To date, we have identified "unique" tasks and areas of need, determine characteristics of "ideal" restraints, and solicit ideas for restraint and mobility aid concepts. Focus group meetings with representatives from training, safety, crew, human factors, engineering, payload developers, and analog environment representatives were key to assist in the development of a restraint concept based on previous flight experiences, the needs of future tasks, and crewmembers' preferences. Also, a catalog with existing IVA/EVA restraint and mobility aids has been developed. Other efforts included the ISS crew debrief data on restraints, compilation of data from MIR, Skylab and ISS on restraints, and investigating possibility of an in-flight evaluation of current restraint systems. Preliminary restraint concepts were developed and presented to long duration crewmembers and focus groups for feedback. Currently, a selection criterion is being refined for prioritizing the candidate concepts. Next steps include analytical and computer modeling evaluations of the selected candidate concepts, prototype development, and microgravity evaluations.

  17. Apollo experience report. Crew-support activities for experiments performed during manned space flight

    NASA Technical Reports Server (NTRS)

    Mckee, J. W.

    1974-01-01

    Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.

  18. KSC-06pd2350

    NASA Image and Video Library

    2006-10-13

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test (CEIT) in the Orbiter Processing Facility, STS-116 Mission Specialist Sunita Williams points to an area of the orbiter boom sensor system in Discovery’s payload bay. A CEIT allows astronauts to become familiar with equipment and hardware they will use on the mission. STS-116 will be mission No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Kim Shiflett

  19. Shuttle sortie simulation using a Lear jet aircraft: Mission no. 1 (assess program)

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Nell, C. B., Jr.; Mason, R. H.

    1972-01-01

    The shuttle sortie simulation mission of the Airborne Science/Shuttle Experiments System Simulation Program which was conducted using the CV-990 aircraft is reported. The seven flight, five day mission obtained data on experiment preparation, type of experiment components, operation and maintenance, data acquisition, crew functions, timelines and interfaces, use of support equipment and spare parts, power consumption, work cycles, influence of constraints, and schedule impacts. This report describes the experiment, the facilities, the operation, and the results analyzed from the standpoint of their possible use in aiding the planning for experiments in the Shuttle Sortie Laboratory.

  20. STS-87 Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this eleventh day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue to look at how plant growth and composite materials are affected by microgravity. The astronauts will use the Middeck Globebox Facility to process samples for the Particle Engulfment and Pushing by a Solid/Liquid Interface experiment. PEP is studying the formation of composite materials, attempting to accurately map the roles of gravity-induced convection and sedimentation in the process by removing the gravity from the equation.

  1. Commander Kevin Chilton is greeted as he moves past the APAS interface

    NASA Image and Video Library

    1996-03-23

    S76-E-5146 (24 March 1996) --- Continuing an in-space tradition, astronaut Kevin P. Chilton (right), STS-76 mission commander, shakes hands with cosmonaut Yury Onufrienko, Mir-21 commander, in the tunnel connecting the Space Shuttle Atlantis and Russia's Mir Space Station. A short time earlier two crews successfully pulled off the third hard-docking of their respective spacecraft. In the background is cosmonaut Yury V. Usachev, Mir-21 flight engineer. The image was recorded with a 35mm Electronic Still Camera (ESC) and downlinked at a later time to ground controllers in Houston, Texas.

  2. EOS production on the Space Station. [Electrophoresis Operations/Space

    NASA Technical Reports Server (NTRS)

    Runge, F. C.; Gleason, M.

    1986-01-01

    The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.

  3. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  4. STS-105 Expedition 2 Return

    NASA Image and Video Library

    2001-08-23

    JSC2001-E-25809 (23 August 2001) --- The STS-105 and Expedition Two crews meet their families and friends during the crew return ceremonies at Ellington Field. Among the crowd are Johnson Space Center's (JSC) Acting Director Roy Estess (back left), astronaut Marsha S. Ivins (third from the left), cosmonaut Yury V. Usachev (fourth from the left), Expedition Two mission commander, Susan J. Helms (fifth from the left), Expedition Two flight engineer, James S. Voss (third from the right), Expedition Two flight engineer, and cosmonaut Vasili V. Tsibliyev. The STS-105 crew delivered the Expedition Three crew and supplies to the International Space Station (ISS) and brought the Expedition Two crew back to Earth.

  5. Group interaction and flight crew performance

    NASA Technical Reports Server (NTRS)

    Foushee, H. Clayton; Helmreich, Robert L.

    1988-01-01

    The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.

  6. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  7. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  8. Designing to Control Flight Crew Errors

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Willshire, Kelli F.

    1997-01-01

    It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.

  9. Orion Capsule Handling Qualities for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Tigges, Michael A.; Bihari, Brian D.; Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Law, Howard G.; Johnson, Wyatt; Bailey, Randall E.; Jackson, Bruce

    2011-01-01

    Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects.

  10. Expedition 19 Crew Training

    NASA Image and Video Library

    2009-03-20

    Spaceflight Participant Charles Simonyi, left, Expedition 19 Commander Gennady I. Padalka, center, and Flight Engineer Michael R. Barratt along with the backup crew and flight doctors walk the grounds of the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)

  11. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Image and Video Library

    1988-10-02

    STS26-S-103 (2 October 1988) --- A wide-angle view of flight controllers in the Johnson Space Center's mission control center as they listen to a presentation by the five members of the STS-26 crew on the fourth day of Discovery's orbital mission. Flight Director James M. (Milt) Heflin (standing at center), astronaut G. David Low (standing at right), a spacecraft communicator, and other controllers view a television image of the crew on a screen in the front of the flight control room as each member relates some inner feelings while paying tribute to the Challenger crew.

  12. Space Station flight telerobotic servicer functional requirements development

    NASA Technical Reports Server (NTRS)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  13. jsc2012e099557

    NASA Image and Video Library

    2012-07-04

    Outside their Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 32 prime crew member Flight Engineer Sunita Williams of NASA (left) and backup Flight Engineer Tom Marshburn of NASA (right) raise the Stars and Stripes on the 4th of July, 2012 in a traditional flag-raising ceremony that was part of the pre-launch activities leading up to the launch of the next crew to the International Space Station. Williams, Soyuz Commander Yuri Malenchenko and Flight Engineer Aki Hoshide of the Japan Aerospace Exploration Agency will launch to the station July 15 from the Baikonur Cosmodrome in their Soyuz TMA-05M spacecraft. NASA/Victor Zelentsov

  14. The Soyuz Taxi crew adhere their logo to a wall in Node 1 during Expedition Three

    NASA Image and Video Library

    2001-10-23

    ISS003-E-7056 (23-31 October 2001) --- The Soyuz Taxi crewmembers, Commander Victor Afanasyev (left), French Flight Engineer Claudie Haignere and Flight Engineer Konstantin Kozeev, add their crew patch to the growing collection, in the Unity node, of insignias representing crews who have worked on the International Space Station (ISS). Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.

  15. Advanced Caution and Warning System

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Robinson, Peter I.; Liolios, Sotirios; Lee, Charles; Ossenfort, John P.

    2013-01-01

    The current focus of ACAWS is on the needs of the flight controllers. The onboard crew in low-Earth orbit has some of those same needs. Moreover, for future deep-space missions, the crew will need to accomplish many tasks autonomously due to communication time delays. Although we are focusing on flight controller needs, ACAWS technologies can be reused for on-board application, perhaps with a different level of detail and different display formats or interaction methods. We expect that providing similar tools to the flight controllers and the crew could enable more effective and efficient collaboration as well as heightened situational awareness.

  16. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  17. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  18. Optimizing Flight Control Software With an Application Platform

    NASA Technical Reports Server (NTRS)

    Smith, Irene Skupniewicz; Shi, Nija; Webster, Christopher

    2012-01-01

    Flight controllers in NASA s mission control centers work day and night to ensure that missions succeed and crews are safe. The IT goals of NASA mission control centers are similar to those of most businesses: to evolve IT infrastructure from basic to dynamic. This paper describes Mission Control Technologies (MCT), an application platform that is powering mission control today and is designed to meet the needs of future NASA control centers. MCT is an extensible platform that provides GUI components and a runtime environment. The platform enables NASA s IT goals through its use of lightweight interfaces and configurable components, which promote standardization and incorporate useful solution patterns. The MCT architecture positions mission control centers to reach the goal of dynamic IT, leading to lower cost of ownership, and treating software as a strategic investment.

  19. Cockpit automation - In need of a philosophy

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.

    1985-01-01

    Concern has been expressed over the rapid development and deployment of automatic devices in transport aircraft, due mainly to the human interface and particularly the role of automation in inducing human error. The paper discusses the need for coherent philosophies of automation, and proposes several approaches: (1) flight management by exception, which states that as long as a crew stays within the bounds of regulations, air traffic control and flight safety, it may fly as it sees fit; (2) exceptions by forecasting, where the use of forecasting models would predict boundary penetration, rather than waiting for it to happen; (3) goal-sharing, where a computer is informed of overall goals, and subsequently has the capability of checking inputs and aircraft position for consistency with the overall goal or intentions; and (4) artificial intelligence and expert systems, where intelligent machines could mimic human reason.

  20. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  1. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronaut Bob Behnken, work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  2. Communication variations and aircrew performance

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Folk, Valerie G.; Irwin, Cheryl M.

    1991-01-01

    The relationship between communication variations and aircrew performance (high-error vs low-error performances) was investigated by analyzing the coded verbal transcripts derived from the videotape records of 18 two-person air transport crews who participated in a high-fidelity, full-mission flight simulation. The flight scenario included a task which involved abnormal operations and required the coordinated efforts of all crew members. It was found that the best-performing crews were characterized by nearly identical patterns of communication, whereas the midrange and poorer performing crews showed a great deal of heterogeneity in their speech patterns. Although some specific speech sequences can be interpreted as being more or less facilitative to the crew-coordination process, predictability appears to be the key ingredient for enhancing crew performance. Crews communicating in highly standard (hence predictable) ways were better able to coordinate their task, whereas crews characterized by multiple, nonstandard communication profiles were less effective in their performance.

  3. A Flight Deck Perspective of Self-Separation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Rosekind, Mark (Technical Monitor)

    1997-01-01

    I will be participating on a Free Flight Human Factors Panel at the Ninth International Symposium on Aviation Psychology in Columbus, Ohio. My representation is related to the work that our group has conducted on flight deck issues associate with free flight. Our group completed a full-mission simulation study investigating procedural issues associated with airborne self-separation. Ten crews flew eight scenarios each in the B747-400 simulator at Ames. Each scenario had a representation of different conflict geometries with intruder aircraft. New alerting logic was created and integrated into the simulator to enable self-separation. In addition, new display features were created to help provide for enhanced information to the flight crew about relevant aircraft, The participants were asked to coordinate maneuvers for self-separation with the intruder aircraft. Data analyses for the many of the crew procedures have been completed.

  4. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.

    2011-01-01

    NASA is developing a Fine Water Mist Portable Fire Extinguisher for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. Fine Water Mist extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. From a flight hardware design perspective, the fine water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface has been under development for several years. It has gone through several design iterations, and has been part of more than 400 fire challenge and spray characterizations. The crew and vehicle interface aspects of the design will use the heritage of the CO2 based Portable Fire Extinguisher, to minimize the disruption to the crew and integration impacts to the ISS. The microgravity use environment of the system poses a set of unique design requirements specifically for the tank. The nozzle requirements drive a tank pressure that is 2-5 times higher than any commercially available water mist systems. Microgravity requires deliberate separation of gas and water, facilitated by a bladder, a diaphragm, a piston, or separate tanks. This paper will describe the design details of the tank and the nozzle, and discuss the trade studies that informed the decisions to select the tank and nozzle configuration.

  5. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.

  6. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.

  7. HH-65A Dolphin digital integrated avionics

    NASA Technical Reports Server (NTRS)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  8. 14 CFR 25.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 25.1523 Section 25.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  9. 14 CFR 29.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 29.1523 Section 29.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  10. 14 CFR 29.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 29.1523 Section 29.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  11. 14 CFR 25.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 25.1523 Section 25.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... sufficient for safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility...

  12. 14 CFR 27.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 27.1523 Section 27.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility and ease...

  13. 14 CFR 27.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 27.1523 Section 27.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... safe operation, considering— (a) The workload on individual crewmembers; (b) The accessibility and ease...

  14. Evaluating the effectiveness of cockpit resource management training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1989-01-01

    The concept of providing flight crews with intensive training in crew coordination and interpersonal skills (cockpit resource management training - CRM) is outlined with emphasis on full mission simulator training (line-oriented flight training - LOFT). Findings from several airlines that have instituted CRM and LOFT are summarized. Four types of criteria used for evaluating CRM programs: observer ratings of crew behavior, measures of attitudes regarding cockpit management, self-reports by participants on the value of the training, and case studies of CRM-related incidents and accidents are covered. Attention is focused on ratings of the performance of crews during line flights and during simulator sessions conducted as a part of LOFT. A boomerang effect - the emergence of a subgroup that has changed the attitudes in the opposite direction from that desired is emphasized.

  15. Changes in ocular and nasal signs and symptoms among air crew in relation to air humidification on intercontinental flights.

    PubMed

    Norbäck, Dan; Lindgren, Torsten; Wieslander, Gunilla

    2006-04-01

    This study evaluates the influence of air humidification in aircraft on symptoms, tear-film stability, nasal patency, and peak expiratory flow. Commercial air crew (N=71) were given a medical examination during eight flights from Stockholm to Chicago and eight flights in the opposite direction. Examinations were done onboard one Boeing 767 aircraft equipped with an evaporation humidifier in the forward part of the cabin. The investigators followed the air crew, staying one night in Chicago and returning with the same crew. Four of the flights had the air humidification device active in-flight to Chicago and deactivated when returning to Stockholm. The other four flights had the inverse humidification sequence. The humidification sequence was randomized and double blind. Hygienic measurements were performed. The humidification increased the relative air humidity by 10% in the 1st row in business class, by 3% in the last row (39th row) in tourist class, and by 3% in the cockpit. Air humidification increased tear-film stability and nasal patency and decreased ocular, nasal, and dermal symptoms and headache. The mean concentration of viable bacteria [77-108 colony-forming units (cfu)/m(3)], viable molds (74-84 cfu/m(3)), and particulate matter (1-8 microg/m(3)) was low, both during the humidified and non-humidified flights. Relative air humidity is low (10-12%) during intercontinental flights and can be increased by the use of a ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. Air humidification could increase passenger and crew comfort by increasing tear-film stability and nasal patency and reducing various symptoms.

  16. STS-102 Crew Patch

    NASA Image and Video Library

    2001-04-24

    STS102-S-001 (January 2001) --- The central image on the STS-102 crew patch depicts the International Space Station (ISS) in the build configuration that it will have at the time of the arrival and docking of Discovery during the STS-102 mission, the first crew exchange flight to the space station. The station is shown along the direction of the flight as will be seen by the shuttle crew during their final approach and docking, the so-called V-bar approach. The names of the shuttle crew members are depicted in gold around the top of the patch, and surnames of the Expedition crew members being exchanged are shown in the lower banner. The three ribbons swirling up to and around the station signify the rotation of these ISS crew members. The number two is for the Expedition Two crew who fly up to the station, and the number one is for the Expedition One crew who then return down to Earth. In conjunction with the face of the Lab module of the station, these Expedition numbers create the shuttle mission number 102. Shown mated below the ISS is the Italian-built Multi-Purpose Logistics Module, Leonardo, that will fly for the first time on this flight, and which will be attached to the station by the shuttle crew during the docked phase of the mission. The flags of the countries that are the major contributors to this effort, the United States, Russia, and Italy are also shown in the lower part of the patch. The build-sequence number of this flight in the overall station assembly sequence, 5A.1, is captured by the constellations in the background. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  17. Space Shuttle avionics upgrade - Issues and opportunities

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.

  18. An Assessment of Reduced Crew and Single Pilot Operations in Commercial Transport Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Kennedy, Kellie D.; Stephens, Chad L.; Etherington, Timothy J.

    2017-01-01

    Future reduced crew operations or even single pilot operations for commercial airline and on-demand mobility applications are an active area of research. These changes would reduce the human element and thus, threaten the precept that "a well-trained and well-qualified pilot is the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system." NASA recently completed a pilot-in-the-loop high fidelity motion simulation study in partnership with the Federal Aviation Administration (FAA) attempting to quantify the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Crew complement was used as the experiment independent variable in a between-subjects design. These data show significant increases in workload for single pilot operations, compared to two-crew, with subjective assessments of safety and performance being significantly degraded as well. Nonetheless, in all cases, the pilots were able to overcome the failure mode effects in all crew configurations. These data reflect current-day flight deck equipage and help identify the technologies that may improve two-crew operations and/or possibly enable future reduced crew and/or single pilot operations.

  19. Operational radiological support for the US manned space program

    NASA Technical Reports Server (NTRS)

    Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.

    1993-01-01

    Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.

  20. Free Flight and Self-Separation from the Flight Deck Perspective

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; McGann, Alison; Mackintosh, Margaret-Anne; Cashion, Patricia; Shafto, Michael G. (Technical Monitor)

    1997-01-01

    The concept of "free flight", while still being developed, is intended to emphasize more, flexibility for operators in the National Airspace System (NAS) by providing more separation responsibility to pilots, New technologies, procedures, and concepts have been suggested by the aviation community to enable this task; however, much work needs to be accomplished to help define and evaluate the concept feasibility. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in the enroute environment. A simulation demonstration was conducted in the Boeing 747-400 simulator at NASA Ames Research Center. Commercial pilots (from a U.S. domestic carrier) current on the B747-400 aircraft were the participants. Ten flight crews (10 captains, 10 first officers) flew in the Denver enroute airspace environment. A new alerting logic designed to allow for airborne self-separation was created for this demonstration. This logic assumes automatic dependent surveillance broadcast (ADS-B) capability and represented aircraft up to 120 nautical miles on the display. The new flight deck display features were designed and incorporated on the existing navigational display in the simulator to allow for increased traffic and maneuvering information to the flight crew. New tools were also provided to allow the crews to assess conflicts and potential maneuvers before implementing them. Each of the flight crews flew eight different scenarios in the Denver enroute airspace. The scenarios included eight to ten other aircraft, and each scenario was created with the intent of having one of the other aircraft become an operational conflict for our simulator aircraft. Different types of conflict geometries were represented across the eight scenarios. Also, some scenarios allowed for more time to detect a potential clearance, while others allowed for less time for'detection. Additionally, the crews were asked to a ply the Visual Flight Rules (VFR) right of way rules when determining who should maneuver in a conflict situation; therefore, the scenarios were designed to test different applications of those recommendations, Data analyses include an evaluation of crew procedures and communication. The application of the VFR right-of-way rules are being explored. Timing variables are being examined to determine potential efficiency differences between scenarios and conflict types. Proximity of aircraft will be assessed as one indication of the operational safety. The intent of these evaluations is to help provide definitions and guidelines of negotiation procedures in a self-separation environment assuming automated data link technology (ADS-B). Also, definitions of likely flight crew maneuvers and application to current VFR right-of-way rules may be obtained, along with guidelines for negotiation procedures between flight crews.

Top