Interior view of the Flight Deck looking forward, the Commander's ...
Interior view of the Flight Deck looking forward, the Commander's seat and controls are on the left and the pilot's seat and controls are on the right of the view. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-20 to expand the view to include the overhead control panels of the flight deck. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
123. FORWARD PORT VIEW OF THE ISLAND WITH FLIGHT DECK ...
123. FORWARD PORT VIEW OF THE ISLAND WITH FLIGHT DECK GUN MOUNTS, TAKEN FROM FORWARD FLIGHT DECK. APRIL 1945, (NATIONAL ARCHIVES NO. 80-G-469299) - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
Detail view of the flight deck looking aft. The aft ...
Detail view of the flight deck looking aft. The aft viewing windows are uncovered in this view and look out towards the payload bay. The overhead viewing windows have exterior covers in place in this view. The aft flight deck contains displays and controls for executing maneuvers for rendezvous, docking, payload deployment and retrieval, payload monitoring and the remote manipulator arm controls. Payload bay doors are also operated from this location. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Detail view of the interior of the flight deck looking ...
Detail view of the interior of the flight deck looking forward showing the overhead control panels. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-19 to expand the view to include the Commander and Pilot positions during ascent and reentry and landing. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Commander Brand and Pilot Overmyer operate controls on forward flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.
126. AERIAL FORWARD VIEW OF ENCLOSED HURRICANE BOW WITH FLIGHT ...
126. AERIAL FORWARD VIEW OF ENCLOSED HURRICANE BOW WITH FLIGHT DECK GUN MOUNTS REMOVED AND ANGLED FLIGHT DECK. 1 OCTOBER 1956. (NATIONAL ARCHIVES NO. 80-G-1001445) - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
Commander Brand and Pilot Overmyer operate controls on forward flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.
Pilot Fullerton points Hasselblad camera out forward flight deck window W6
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton, wearing communications kit assembly (ASSY) mini headset (HDST), points Hasselblad camera out forward flight deck pilots station window W6. Forward flight deck control panels F4, F8, and R1, flight mirror assy, Volume R5 Kit, and pilots ejection seat (S2) headrest appear in view.
General view of the flight deck of the orbiter Discovery ...
General view of the flight deck of the orbiter Discovery looking forward and overhead at the overhead instrumentation and control panels. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Endeavour, OV-105, forward flight deck controls during Rockwell manufacture
NASA Technical Reports Server (NTRS)
1991-01-01
Endeavour, Orbiter Vehicle (OV) 105, forward flight deck controls are documented during manufacture, assembly, and checkout at North American Rockwell facilities Building 150, Palmdale, California. Overall view looks from aft flight deck forward showing displays and controls with panel F7 CRT screens lit and window shades in place on W2, W3, W4, W5. OV-105 is undergoing final touches prior to rollout and a scheduled flight for STS-49. View was included as part of Rockwell International (RI) Submittal No. 40 (STS 87-0342-40) with alternate number A901207 R-16/NAS9-17800.
View of a stone age adze cutting tool floating freely in the flight deck.
NASA Technical Reports Server (NTRS)
1992-01-01
View of a stone age adze cutting tool floating freely in the forward flight deck and framed by the forward and side windows. On the Earth below, the big island of Hawaii can be seen through the window.
Closeup view of the aft flight deck of the Orbiter ...
Close-up view of the aft flight deck of the Orbiter Discovery looking at the aft center control panels A6, A7, A8, A12, A13, A14, A16 and A17. This View was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Activity on the flight deck during EVA on Flight Day 7
1997-02-17
S82-E-5616 (17 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls the Remote Manipulator System (RMS) on the Space Shuttle Atlantis' aft flight deck. This view was taken with an Electronic Still Camera (ESC).
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking from a low angle up and aft from approximately behind the commander's station. In the view you can see the overhead aft observation windows, the payload operations work area and in this view the payload bay observation windows have protective covers on them. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
OAST-Flyer is deployed by the Remote Manipulator System (RMS) as viewed from the flight deck
1996-01-14
STS072-320-014 (17 Jan. 1996) --- The end effect of the Space Shuttle Endeavour's Remote Manipulator System (RMS) is about to grapple the Office of Aeronautics and Space Technology's (OAST) -- Flyer satellite. The view was recorded with a 35mm camera aimed through one of Endeavour's overheard windows on the aft flight deck.
View of Atlantis Flight Deck Monitors
2009-05-17
S125-E-009190 (17 May 2009) --- A computer monitor showing animation of an extravehicular activity (EVA) is visible in this image photographed by a STS-125 crewmember in a darkened flight deck on the Earth-orbiting Space Shuttle Atlantis.
Condensation on crew compartment aft flight deck window W10
1982-03-30
STS003-24-211 (22-30 March 1982) --- Crew compartment aft flight deck viewing window W10 fogged with condensation. The condensation is a result of the spacecraft's position in relation to the sun. Photo credit: NASA
General view of the aft Flight Deck looking at the ...
General view of the aft Flight Deck looking at the mission specialist seats directly behind and to the side of the commander and pilot's seats. These seats are removed, packed and stowed during on-orbit activities. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Astronaut John H. Casper, commander, pauses during a photography session on the aft flight deck of
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Astronaut John H. Casper, commander, pauses during a photography session on the aft flight deck of the Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).
4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...
4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...
5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Aft flight deck documentation with freefloating headset interface unit (HIU)
1983-09-05
STS008-18-479 (5 Sept 1983) --- Aft flight deck documentation includes on orbit station with control panel A2, aft viewing window W9, and communications kit assembly (ASSY) headset (HDST) interface unit (HIU) and cable free floating in front of it.
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward from behind the commander's seat looking towards the pilot's station. Note the numerous Velcro pads located throughout the crew compartment, used to secure frequently used items when in zero gravity. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the middeck area looking forward and starboard. ...
General view of the mid-deck area looking forward and starboard. On the far left of the images are the avionics equipment bays. During missions the forward avionics bays would be fronted by lockers for mission equipment and the flight crew's personal equipment. Sleep stations would be located along the far wall if the orbiter was in a flight ready configuration. The hose and ladder on the right side of the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
STS-41 crew communicates with ground controllers from OV-103's flight deck
1990-10-10
STS041-02-035 (6-10 Oct 1990) --- A fish-eye lens view shows two of STS-41's three mission specialists on the flight deck of Discovery. Astronaut William M. Shepherd, right, communicates with ground controllers as Astronaut Bruce E. Melnick looks on.
Pilot Fullerton reviews checklist on Aft Flight Deck Onorbit Station
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton, wearing communication kit assembly (assy) mini headset, reviews checklist and looks at remote manipulator system (RMS) closed circuit television (CCTV) views displayed on CCTV monitors at Aft Flight Deck Onorbit Station. Taken from the aft flight deck starboard side, Fullerton is seen in front of Panels A7 and A8 with remote manipulator syste (RMS) translation hand control (THC) and RMS rotation hand control (RHC) in the foreground and surrounded by University of Michigan (U of M) GO BLUE and United States Air Force - A Great Way of Life Decals.
View of HST as it approaches Endeavour, taken from aft flight deck window
1993-12-04
STS061-53-026 (4 Dec 1993) --- One of the Space Shuttle Endeavour's aft flight deck windows frames this view of the Hubble Space Telescope (HST) as it approaches the Endeavour. Backdropped against western Australia, the Remote Manipulator System (RMS) arm awaits the arrival of the telescope. Once berthed in Endeavour's cargo bay, HST underwent five days of servicing provided by four space walking crew members. Shark Bay (upper left) and Perth (lower left) are visible in the frame.
Fish-eye view of STS-112 CDR Ashby on forward flight deck
2002-10-18
STS112-347-001 (18 October 2002) --- A fish-eye lens on a 35mm camera records astronaut Jeffrey S. Ashby, STS-112 mission commander, at the commanders station on the forward flight deck of the Space Shuttle Atlantis. Ashby, attired in his shuttle launch and entry suit, looks over a checklist prior to the entry phase of the flight.
Fish-eye view of PLT Melroy and MS Wolf on forward flight deck
2002-10-18
STS112-337-036 (18 October 2002) --- A fish-eye lens on a 35mm camera records astronauts Jeffrey S. Ashby (left), STS-112 mission commander; Pamela A. Melroy, pilot; and David A. Wolf, mission specialist, on the forward flight deck of the Space Shuttle Atlantis. Attired in their shuttle launch and entry suits, the crew prepares for the entry phase of the flight.
Human Factors of Flight-deck Automation: NASA/Industry Workshop
NASA Technical Reports Server (NTRS)
Boehm-Davis, D. A.; Curry, R. E.; Wiener, E. L.; Harrison, R. L.
1981-01-01
The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented.
View of Commander (CDR) Scott Altman working on the Flight Deck
2009-05-21
S125-E-013081 (21 May 2009) --- Occupying the commander?s station, astronaut Scott Altman, STS-125 commander, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth.
View of STS-125 Crew Members working on the Flight Deck
2009-05-21
S125-E-013050 (21 May 2009) --- Occupying the commander?s station, astronaut Gregory C. Johnson, STS-125 pilot, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth.
View of Pilot Gregory Johnson working on the Flight Deck
2009-05-21
S125-E-013040 (21 May 2009) --- Occupying the commander?s station, astronaut Gregory C. Johnson, STS-125 pilot, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth.
MS Mastracchio operates the RMS on the flight deck of Atlantis during STS-106
2000-09-11
STS106-E-5099 (11 September 2000) --- Astronaut Richard A. Mastracchio, mission specialist, stands near viewing windows, video monitors and the controls for the remote manipulator system (RMS) arm (out of frame at left) on the flight deck of the Earth-orbiting Space Shuttle Atlantis during Flight Day 3 activity. Atlantis was docked with the International Space Station (ISS) when this photo was recorded with an electronic still camera (ESC).
RMS upper boom framed by aft flight deck viewing window W10
NASA Technical Reports Server (NTRS)
1983-01-01
Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.
View of Pilot Gregory Johnson working on the Flight Deck
2009-05-21
S125-E-013042 (21 May 2009) --- Occupying the commander?s station, astronaut Gregory C. Johnson, STS-125 pilot, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth. Astronaut Scott Altman, commander, looks on.
STS-46 ESA MS Nicollier and PLC Hoffman pose on OV-104's aft flight deck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and MS and Payload Commander (PLC) Jeffrey A. Hoffman pose in front of the onorbit station controls on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. The overhead windows W7 and W8 appear above their heads and the aft flight deck viewing windows W9 and W10 behind them. Hoffman and Nicollier have been training together for a dozen years at JSC. Hoffman was an astronaut candidate in 1978 and Nicollier accompanied a group of trainees in 1980. Note the partially devoured chocolate Space Shuttle floating near the two.
View of STS-134 Commander Kelly on the Flight Deck
2011-05-16
S134-E-005608 (16 May 2011) --- Astronaut Mark Kelly, STS-134 commander, gets down to work soon after Endeavour reaches Earth orbit. Kelly is seated at the commander's station on the shuttle's forward flight deck. Five other veteran crew members are joining the commander on a 16-day mission, much of which will be devoted to work on the International Space Station. Photo credit: NASA
STS-30 aft flight deck onboard view of overhead window, Earth limb, cow photo
1989-05-08
STS030-10-008 (4-8 May 1989) --- Since the beginning manned space travel, astronauts have taken with them items of personal sentiment. In case of Mark C. Lee, STS-30 mission specialist, a picture of a cow testifies to his background as one reared on a Wisconsin farm. The scene, through a flight deck aft window, also shows Earth some 160 nautical miles away.
General view of the middeck of the Orbiter Discovery while ...
General view of the mid-deck of the Orbiter Discovery while in the Orbiter Processing Facility at Kennedy Space Center. The view is looking through the air lock and into the payload bay. In the foreground note the ladders and access hatches to the flight deck and the ground support panels used to protect the floors. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2010 CFR
2010-01-01
... freedom of motion system; (4) Use a visual system that provides at least a 45-degree horizontal field of view and a 30-degree vertical field of view simultaneously for each pilot; and (5) Have been evaluated... aircraft, or set of aircraft, in an open flight deck area or in an enclosed cockpit, including the hardware...
Various views of the STS-103 crew on the flight deck
2000-01-26
STS103-334-002 (19-27 December 1999) ---.Astronauts Jean-Francois Clervoy (left).and Curtis L. Brown, Jr. communicate with ground controllers on Discovery's flight deck. Brown is mission commander for NASA's third servicing mission to the Hubble Space Telescope (HST) and.Clervoy is a mission specialist representing the European Space Agency (ESA). Clervoy was the prime operator of the remote manipulator system (RMS), the robotic arm on the Space Shuttle.
2D/3D Synthetic Vision Navigation Display
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
STS-30 aft flight deck onboard view of overhead window, Earth limb, cow photo
NASA Technical Reports Server (NTRS)
1989-01-01
Since the beginning of manned space travel, astronauts have taken onboard with them items of person sentiment. During STS-30 onboard Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist Mark C. Lee brought along a photograph of a cow. The photo testifies to his background as one reared on a Wisconsin farm and is displayed on aft flight deck alongside an overhead window. Outside the window, some 160 nautical miles away, is the cloud-covered Earth surface.
Evaluation of restraint system concepts for the Japanese Experiment Module flight demonstration
NASA Technical Reports Server (NTRS)
Sampaio, Carlos E.; Fleming, Terence F.; Stuart, Mark A.; Backemeyer, Lynn A.
1995-01-01
The current International Space Station configuration includes a Japanese Experiment Module which relies on a large manipulator and a smaller dexterous manipulator to operate outside the pressurized environment of the experiment module. The module's flight demonstration is a payload that will be mounted in the aft flight deck on STS-87 to evaluate a prototype of the dexterous manipulator. Since the payload operations entail two 8-hour scenarios on consecutive days, adequate operator restraint at the workstation will be critical to the perceived success or failure of the payload. Simulations in reduced gravity environment on the KC-135A were the only way to evaluate the restraint systems and workstation configuration. Two astronaut and two non-astronaut operators evaluated the Advanced Lower Body Extremities Restraint Test and a foot loop restraint system by performing representative tasks at the workstation in each of the two restraint systems; at the end of each flight they gave their impressions of each system and the workstation. Results indicated that access to the workstation switch panels was difficult and manipulation of the hand controllers forced operators too low for optimal viewing of the aft flight deck monitors. The workstation panel should be angled for better visibility, and infrequently used switches should be on the aft flight deck panel. Pitch angle and placement of the hand controllers should optimize the operator's eye position with respect to the monitors. The lower body restraint was preferred over the foot loops because it allowed operators to maintain a more relaxed posture during long-duration tasks, its height adjustability allowed better viewing of aft flight deck monitors, and it provided better restraint for reacting forces imparted on the operator at the workstation. The foot loops provide adequate restraint for the flight demonstration tasks identified. Since results will impact the design of the workstation, both restraints should be flown and used during operation of the flight demonstration payload to evaluate the effect of restraint during long-duration tasks.
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
STS-26 Discovery, OV-103, onboard view of the Earth sunrise
1988-10-03
Discovery's, Orbiter Vehicle (OV) 103's, vertical stabilizer and orbital maneuvering system (OMS) pods are backdropped against the contrasted blackness of space illuminated by a colorful Earth / sunrise panorama. View was taken through the aft flight deck viewing windows during STS-26.
Closeup view of the Pilot's Seat on the Flight Deck ...
Close-up view of the Pilot's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the pilot's ingress. Control panels R1 and R2 are prominent in this view. Panel R1 has switches for control and maintenance of on-board cryogenics for the fuel cells among other functions and panel R2 has switches and controls for the Auxiliary Power Units, ET umbilical doors as well as other operational controls. Note the portable fire extinguisher in the lower right corner of the image. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn sits in the flight deck looking at equipment in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn enjoys a tour of the flight deck in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
General view of the middeck looking aft and port. In ...
General view of the mid-deck looking aft and port. In this view you can clearly see the crew access hatch and the airlock hatch. The hose and ladder in the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). A careful observer will notice a void in the wall near the base of the access ladder, this is the Waste Management Compartment with the Waste Management System, i.e. Space Potty, removed. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald explains some of the flight equipment to the senator at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
Ohio Senator John Glenn sits in the orbiter Columbia's flight deck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at left, enjoys a tour of the flight deck in the orbiter Columbia with Astronaut Stephen Oswald at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
Various view with fish-eye lens of STS-103 crew on aft flight deck
2000-01-28
STS103-375-019 (19-27 December 1999) ---.Six members of the STS-103 crew are seen in this "fish-eye" lens scene taken on Discovery's flight deck during the deployment of the Hubble Space Telescope (HST). From left are astronauts Jean-Francois Clervoy, C. Michael Foale, Claude Nicollier, Curtis L. Brown, Jr., John M. Grunsfeld and Scott J. Kelly. Brown and Kelly are commander and pilot, respectively. All the others are mission specialists, with international MS Nicollier and Clervoy representing the European Space Agency (ESA). Astronaut Steven L. Smith, payload commander, took the photo.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Orbiter fire rescue and crew escape training for EVA crew systems support
1993-01-28
Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).
Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight aboard the Space Shuttle Endeavour. The two are on the flight deck of the Johnson Space Center's (JSC) fixed base Shuttle Mission Simulator (SMS). Duffy, mission commander, and Scott, mission specialist, will be joined for the winter flight by three other NASA astronauts and an international mission specialist representing NASDA.
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.
1998-01-01
The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.
STS-65 Pilot Halsell cleans window on the aft flight deck of Columbia, OV-102
NASA Technical Reports Server (NTRS)
1994-01-01
On the aft flight deck of Columbia, Orbiter Vehicle (OV) 102, STS-65 Pilot James D. Halsell, Jr cleans off overhead window W8. Mission Specialist (MS) Carl E. Walz looks on (photo's edge). A plastic toy dinosaur, velcroed in front of W9, also appears to be watching the housekeeping activity. A variety of onboard equipment including procedural checklists, a spotmeter, a handheld microphone, and charts are seen in the view. The two shared over fourteen days in Earth orbit with four other NASA astronauts and a Japanese payload specialist in support of the second International Microgravity Laboratory (IML-2) mission.
14 CFR 125.315 - Admission to flight deck.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless the...
14 CFR 125.315 - Admission to flight deck.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless the...
14 CFR 125.315 - Admission to flight deck.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless the...
STS-34 Onboard 16mm Photography Quick Release
NASA Technical Reports Server (NTRS)
1989-01-01
This video features scenes shot by the crew of onboard activities including Galileo deploy, Shuttle Solar Backscatter Ultraviolet (SSBUV) student experiments, other activities on the flight deck and middeck, and Earth and payload bay views.
[STS-31 Onboard 16mm Photography Quick Release]. [Onboard Activities
NASA Technical Reports Server (NTRS)
1990-01-01
This video features scenes shot by the crew of onboard activities including Hubble Space Telescope deploy, remote manipulator system (RMS) checkout, flight deck and middeck experiments, and Earth and payload bay views.
Close up view of the pair of Rudder Pedals in ...
Close up view of the pair of Rudder Pedals in the Commander's Satiation on the Flight Deck of the Orbiter Discovery. The rudder pedals command orbiter acceleration in yaw by positioning the rudder during atmospheric flight. However, because the flight control software automatically performs turn coordination during banking maneuvers, the rudder pedals are not operationally used during glided flight. It is not until after touchdown that the crew uses them for nose wheel steering during rollout. Depressing the upper portion of the rudder pedals provides braking. Differential braking may also be used for directional control during rollout. This view was take at Johnson Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Pilot Fullerton reviews FDF and TAGS printout on forward flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton, wearing communications kit assembly (ASSY) mini headset (HDST), reviews flight data file (FDF) checklist and text and graphics system (TAGS) printout (ticker tape) while in pilots ejection seat (S2). Pilot Station control panels F4, F7, F8, O3, window shade, and portable oxygen system (POS) assy appear in view.
Hawley controls the RMS arm from the flight deck during EVA on Flight Day 6
1997-02-16
S82-E-5568 (16 Feb. 1997) --- Astronaut Steven A. Hawley, at controls for Remote Manipulator System (RMS), during third Extravehicular Activity (EVA). Hawley had been a mission specialist for the NASA mission which deployed the giant HST in 1990. This view was taken with an Electronic Still Camera (ESC).
STS-114 Flight Day 5 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Highlights of Day 5 of the STS-114 Return to Flight mission (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) include video coverage of an extravehiclular activity (EVA) by Noguchi and Robinson. The other crew members of Discovery are seen on the flight deck and mid-deck helping the astronauts to suit-up. The objectives of the EVA are to test repair techniques on sample tiles in the shuttle's payload bay, to repair electrical equipment for a gyroscope on the International Space Station (ISS), and to install a replacement GPS antenna on the ISS. Noguchi and Robinson use a caulk gun and a putty knife to repair the sample tiles. The video contains several Earth views, including one of Baja California.
Cognitive representations of flight-deck information attributes
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.
1994-01-01
A large number of aviation issues are generically being called fligh-deck information management issues, underscoring the need for an organization or classification structure. One objective of this study was to empirically determine how pilots organize flight-deck information attributes and -- based upon that data -- develop a useful taxonomy (in terms of better understanding the problems and directing solutions) for classifying flight-deck information management issues. This study also empirically determined how pilots model the importance of flight-deck information attributes for managing information. The results of this analysis suggest areas in which flight-deck researchers and designers may wish to consider focusing their efforts.
Closeup view of the upper exterior of the forward fuselage ...
Close-up view of the upper exterior of the forward fuselage of the Orbiter Discovery in the Orbiter Processing Facility at NASA's Kennedy Space Center. The view show a detail of the flight deck windows with protective covers installed to protect the window surfaces during processing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2013 CFR
2013-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2012 CFR
2012-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2011 CFR
2011-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2014 CFR
2014-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2010 CFR
2010-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.
2013-01-01
The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required. Surface Traffic Management (STM) System Implications. The data indicate a number of implications regarding specific parameters for ATC/STM algorithm development. Pilots have a tendency to arrive at RTA points early with slow required speeds, on time for moderate speeds, and late with faster required speeds. This implies that ATC/STM algorithms should operate with middle-range speeds, similar to that of non-STBO taxi performance. Route length has a related effect: Long taxi routes increase the earliness with slow speeds and the lateness with faster speeds. This is likely due to the" open-loop" nature of the task in which the speed error compounds over a longer time with longer routes. Results showed that this may be mitigated by imposing a small number oftime constraint points each with their own RTAs effectively tuming a long route into a series of shorter routes - and thus improving RTA performance. STBO ConOps Implications. Most important is the impact that these data have for NextGen STM system ConOps development. The results of these experiments imply that it is not reasonable to expect pilots to taxi under a "Full STBO" ConOps in which pilots are expected to be at a predictable (x,y) airport location for every time (t). An STBO ConOps with a small number of intermediate time constraint points and the departing runway, however, is feasible, but only with flight deck equipage enabling the use of a display similar to the "error-nulling algorithm/display" tested.
2011-07-12
JSC2011-E-067676 (12 July 2011) --- A close-up view of controls and displays on the forward flight deck of OV-095 in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Perrin peers through Endeavour's AFD window to view the Earth's limb during STS-111
2002-06-14
STS111-318-030 (5-19 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist representing CNES, the French Space Agency, looks out an aft flight deck window of the Space Shuttle Endeavour.
Usability of EFBs for Viewing NOTAMs and AIS/MET Data Link Messages
NASA Technical Reports Server (NTRS)
Evans, Emory T.; Young, Steven D.; Daniels, Tammi S.; Myer, Robert R.
2014-01-01
Electronic Flight Bags (EFB) are increasingly integral to flight deck information management. A piloted simulation study was conducted at NASA Langley Research Center, one aspect of which was to evaluate the usability and acceptability of EFBs for viewing and managing Notices to Airmen (NOTAMs) and data linked aeronautical information services (AIS) and meteorological information (MET). The study simulated approaches and landings at Memphis International Airport (KMEM) using various flight scenarios and weather conditions. Ten two-pilot commercial airline crews participated, utilizing the Cockpit Motion Facility's Research Flight Deck (CMF/RFD) simulator. Each crew completed approximately two dozen flights over a two day period. Two EFBs were installed, one for each pilot. Study data were collected in the form of questionnaire/interview responses, audio/video recordings, oculometer recordings, and aircraft/system state data. Preliminary usability results are reported primarily based on pilot interviews and responses to questions focused on ease of learning, ease of use, usefulness, satisfaction, and acceptability. Analysis of the data from the other objective measures (e.g., oculometer) is ongoing and will be reported in a future publication. This paper covers how the EFB functionality was set up for the study; the NOTAM, AIS/MET data link, and weather messages that were presented; questionnaire results; selected pilot observations; and conclusions.
Astronaut Daniel W. Bursch, mission specialist, pauses during a photography session on the aft
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Astronaut Daniel W. Bursch, mission specialist, pauses during a photography session on the aft flight deck of the Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).
Functional categories for future flight deck designs
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1993-01-01
With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.
Fish-eye view of STS-112 crew on middeck
2002-10-18
STS112-337-034 (18 October 2002) --- A fish-eye lens on a 35mm camera records astronaut Pamela A. Melroy, STS-112 pilot, at the pilots station on the forward flight deck of the Space Shuttle Atlantis. Melroy, attired in her shuttle launch and entry suit, looks over a checklist prior to the entry phase of the flight.
Boeing flight deck design philosophy
NASA Technical Reports Server (NTRS)
Stoll, Harty
1990-01-01
Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.
Various view with fish-eye lens of STS-103 crew on aft flight deck
2000-01-28
STS103-375-027 (19 - 27 December 1999).--- Astronaut Jean-Francois Clervoy, mission specialist representing the European Space Agency (ESA), controls Discovery's remote manipulator system (RMS) robot arm during operations.with the Hubble Space Telescope (HST).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal... Secondary Barriers and Alternative Flight Deck Security Procedures. SUMMARY: The FAA is issuing this notice... Alternative Flight Deck Security Procedures. DATES: The meeting will be held September 14-15, 2010. September...
Flight Deck Surface Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.
2017-01-01
Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal... Secondary Barriers and Alternative Flight Deck Security Procedures. SUMMARY: The FAA is issuing this notice... Alternative Flight Deck Security Procedures. DATES: The meeting will be held March 16-17, 2010. March 16th...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal... Secondary Barriers and Alternative Flight Deck Security Procedures. SUMMARY: The FAA is issuing this notice... Alternative Flight Deck Security Procedures. DATES: The meeting will be held July 19-20, from 9:00 a.m. to 5...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal... Secondary Barriers and Alternative Flight Deck Security Procedures. SUMMARY: The FAA is issuing this notice... Alternative Flight Deck Security Procedures. DATES: The meeting will be held May 10-11, 2011, from 9 a.m. to 5...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures. AGENCY: Federal... Secondary Barriers and Alternative Flight Deck Security Procedures. SUMMARY: The FAA is issuing this notice... Alternative Flight Deck Security Procedures. DATES: The meeting will be held June 15-16, 2010. June 15th from...
Commander Brand sleeps on aft flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
Commander Brand, with hands folded in front of his chest, sleeps on aft flight deck. Brand's head is just above aft flight deck floor with his back to onorbit station panels. The back and feet of a second crewmember appear next to Brand.
Cognitive models of pilot categorization and prioritization of flight-deck information
NASA Technical Reports Server (NTRS)
Jonsson, Jon E.; Ricks, Wendell R.
1995-01-01
In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation.
STS-27 Atlantis - OV-104, Commander Gibson on SMS forward flight deck
1988-02-03
STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.
A view of the Columbia's OMS engine pods during a burn
2013-11-18
STS093-347-031 (22-27 July 1999) --- Black space forms the backdrop for this scene of the Orbital Maneuvering System (OMS) engine pods during a thruster burn photographed by one of the astronauts on the aft flight deck of the Space Shuttle Columbia.
Definition of the 2005 flight deck environment
NASA Technical Reports Server (NTRS)
Alter, K. W.; Regal, D. M.
1992-01-01
A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development.
NASA Technical Reports Server (NTRS)
Watson, Amanda
2013-01-01
Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.
Modifying Ship Air-Wake Vortices for Aircraft Operations
NASA Technical Reports Server (NTRS)
Lamar, John E.
2004-01-01
Columnar-vortex generators (CVG) have been proposed as means to increase the safety of takeoffs and landings of aircraft on aircraft or helicopter carriers and other ships at sea. According to the proposal, CVGs would be installed at critical edge locations on ships to modify the vortices in the air wakes of the ships. The desired effects of modifications are to smooth airflows over takeoff and landing deck areas and divert vortices from takeoff and landing flight paths. With respect to aircraft operations, the wake flows of primary interest are those associated with the bow and side edges of aircraft-carrier decks and with superstructures of ships in general (see Figure 1). The bow and deck-edge vortices can adversely affect airplane and helicopter operations on carriers, while the superstructure wakes can primarily affect operations of helicopters. The concept of the CVG is not new; what is new is the proposed addition of CVGs to ship structures to effect favorable modifications of air wakes. Figure 2 depicts a basic CVG, vertical and horizontal CVGs installed on a simple superstructure, and horizontal CVGs installed on the bow and deck edges. The vertical CVGs would be closed at the deck but open at the top. Each horizontal CVG would be open at both ends. The dimensions of the CVGs installed on the aft edges of the superstructure would be chosen so that the portion of the flow modified by the vertical CVGs would interact synergistically with the portion of the flow modified by the horizontal CVG to move the air wake away from the takeoff-and-landing zone behind the superstructure. The deck-edge CVGs would be mounted flush with, and would extend slightly ahead of the bow of, the flight deck. The overall length of each tube would exceed that of the flight deck. Each deck-edge CVG would capture that portion of the airflow that generates a deck-edge vortex and would generate a columnar vortex of opposite sense to that of the unmodified vortex. The vortex generated by the CVG could be dispersed at its base, thereby removing unwanted turbulence in the path of an approaching airplane. The deck-edge CVGs would promote smooth flow over the entire flight deck. In the case of a Nimitz-class aircraft carrier like that of Figure 1, there would be a CVG on each of the outer edges of the two left portions of the flight deck and a single CVG on the right side of the flight deck. The forward-most CVG on the left side would take the generated vortex underneath the angled flight deck. A CVG could also be installed on the bow of the flight deck to smooth the flow of air onto the flight deck. In the case of wind incident on the deck from an azimuth other than straight ahead, the vortex generated by the bow CVG could, perhaps, be used to feed the CVG(s) of the leeward side edge of the flight deck.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Pilot Fullerton reviews FDF and TAGS printout on forward flight deck
1982-03-30
STS003-23-180 (22-30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST), reviews flight data file (FDF) checklist and text and graphics system (TAGS) printout (ticker tape) while in pilots ejection seat (S2). Pilot station control panels F4, F7, F8, O3, window shade, and portable oxygen system (POS) assy appear in view. Photo credit: NASA
77 FR 41041 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... terminal ``A'' of the electrically heated flight deck window 1. This AD requires repetitive inspections for damage of the electrical connections at terminal ``A'' of the left and right flight deck window 1, and corrective actions if necessary. This AD also allows for replacing a flight deck window 1 with a new improved...
The Cognitive Consequences of Patterns of Information Flow
NASA Technical Reports Server (NTRS)
Hutchins, Edwin
1999-01-01
The flight deck of a modern commercial airliner is a complex system consisting of two or more crew and a suite of technological devices. The flight deck of the state-of-the-art Boeing 747-400 is shown. When everything goes right, all modern flight decks are easy to use. When things go sour, however, automated flight decks provide opportunities for new kinds of problems. A recent article in Aviation Week cited industry concern over the problem of verifying the safety of complex systems on automated, digital aircraft, stating that the industry must "guard against the kind of incident in which people and the automation seem to mismanage a minor occurrence or non-routine situation into larger trouble." The design of automated flight deck systems that flight crews find easy to use safely is a challenge in part because this design activity requires a theoretical perspective which can simultaneously cover the interactions of people with each other and with technology. In this paper, some concepts that can be used to understand the flight deck as a system that is composed of two or more pilots and a complex suite of automated devices is introduced.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
STS-37 Commander Nagel in commanders seat on OV-104's flight deck
NASA Technical Reports Server (NTRS)
1991-01-01
STS-37 Commander Steven R. Nagel, wearing launch and entry suit (LES), sits at commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Surrounding Nagel are the seat headrest, control panels, checklists, forward flight deck windows, and three drinking water containers with straws attached to forward panel F2.
Crewmember activity in the flight deck
1997-08-29
STS085-358-005 (7 - 19 August 1997) --- Astronaut Curtis L. Brown, Jr., mission commander, floats on the flight deck of Space Shuttle Discovery. The horizon of Earth is visible through the aft flight deck windows. On Brown's left wrist is a band associated with a Detailed Supplementary Objective (DSO). Two beverage packets are just beyond the commander's left shoulder.
View of Spacelab 2 pallet in the open payload bay
1985-07-29
51F-33-005 (29 July - 6 August 1985) --- Experiments and the instrument pointing system (IPS) for Spacelab 2 are backdropped against the Libya/Tunisia Mediterranean coast and black space in this 70mm view photographed through the aft flight deck windows of the Space Shuttle Challenger. Also partially visible among the cluster of Spacelab 2 hardware are the solar optical universal polarimeter (SOUP) experiment and the coronal helium abundance experiment (CHASE).
Pilot Fullerton reviews checklist on Aft Flight Deck Onorbit Station
1982-03-31
S82-28906 (27 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, mans the right hand aft station of the flight deck on the Earth-orbiting Columbia. The photograph was taken with a 35mm camera by astronaut Jack R. Lousma, crew commander. The "Go Blue" sticker is a University of Michigan memento of Lousma, and the Air Force sign was put up by Fullerton, a USAF colonel. Lousma, a USMC colonel, received his BS degree in aeronautical engineering in 1959 from UM. One of two aft windows for cargo bay viewing and one of two ceiling windows are visible in the photo. Fullerton and Lousma watched the activity of the remote manipulator system (RMS) arm out the lower window and they took a number of photos of Earth from the upper window. Photo credit: NASA
Flight deck automation: Promises and realities
NASA Technical Reports Server (NTRS)
Norman, Susan D. (Editor); Orlady, Harry W. (Editor)
1989-01-01
Issues of flight deck automation are multifaceted and complex. The rapid introduction of advanced computer-based technology onto the flight deck of transport category aircraft has had considerable impact both on aircraft operations and on the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information among members of the aviation community, a NASA/FAA/Industry workshop devoted to flight deck automation, organized by the Aerospace Human Factors Research Division of NASA Ames Research Center. Participants were invited from industry and from government organizations responsible for design, certification, operation, and accident investigation of transport category, automated aircraft. The goal of the workshop was to clarify the implications of automation, both positive and negative. Workshop panels and working groups identified issues regarding the design, training, and procedural aspects of flight deck automation, as well as the crew's ability to interact and perform effectively with the new technology. The proceedings include the invited papers and the panel and working group reports, as well as the summary and conclusions of the conference.
Gidzenko in front of flight deck windows
2001-03-12
STS102-E-5138 (12 March 2001) --- Cosmonaut Yuri P. Gidzenko, now a member of the STS-102 crew, on Discovery's flight deck. Lake Nasser, in Egypt, can be seen through the overhead flight deck window in the background. Gidzenko, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.
New STS-102 crewmembers Krikalev in the flight deck
2001-03-12
STS102-E-5147 (12 March 2001) --- Cosmonaut Sergei K. Krikalev, now a member of the STS-102 crew on Discovery's flight deck. A sun setting can be seen through the flight deck windows in the background. Krikalev, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.
77 FR 41931 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... keyways of the number 2 windows on the flight deck; re-clocking the connector keyways to 12 o'clock, if necessary; and replacing the coil cord assemblies on both number 2 windows on the flight deck. That NPRM was prompted by reports of arcing and smoke at the left number 2 window in the flight deck. This action revises...
STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck
NASA Technical Reports Server (NTRS)
1991-01-01
STS-43 Pilot Michael A. Baker, seated at the forward flight deck pilots station controls, eats a freefloating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker on Atlantis', Orbiter Vehicle (OV) 104's, flight deck are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel O9.
STS-29 Discovery, OV-103, crew on flight deck prepares for reentry
1989-03-18
STS029-24-004 (18 March 1989) --- STS-29 crewmembers, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), review checklists on Discovery, Orbiter Vehicle (OV) 103, flight deck. Commander Michael L. Coats is seated at the forward flight deck commanders station with Mission Specialist (MS) James F. Buchli on aft flight deck strapped in mission specialist seat. OV-103 makes its return after five days in space. Note color in forward windows W1, W2, W3 caused by friction of entry through the Earth's atmosphere. Personal Egress Air Pack (PEAP) is visible on pilots seat back.
Metcalf-Lindenburger on Discovery flight deck
2010-04-06
S131-E-006107 (6 April 2010) --- NASA astronaut Dorothy Metcalf-Lindenburger, STS-131 mission specialist, reads a checklist on the aft flight deck of space shuttle Discovery during flight day two activities.
Archambault on Flight Deck (FD)
2009-03-17
S119-E-006392 (17 March 2009) --- Astronaut Lee Archambault, STS-119 commander, smiles for a photo while monitoring data at the commander's station on the flight deck of Space Shuttle Discovery during flight day three activities.
Close up view of the center console on the flight ...
Close up view of the center console on the flight deck of the Orbiter Discovery showing the console's instrumentation and controls. The commanders station is located to the left in this view and the pilot's station is to the right in the view. The handle and lever located on the right side of the center console and towards its front is one of a pair, the commander has one on the left of his seat in his station, of Speed Brake/Thrust Controllers. These are dual purpose controllers. During ascent the controller can be use to throttle the main engines and during entry the controllers can be used to control aerodynamic drag by opening or closing the orbiter's speed brake. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2010-02-20
S130-E-012478 (20 Feb. 2010) --- Backdropped by Earth?s horizon and the blackness of space, a partial view of space shuttle Endeavour's payload bay, vertical stabilizer, orbital maneuvering system (OMS) pods, Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and docking mechanism are featured in this image photographed by an STS-130 crew member from an aft flight deck window.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... orientation of both sides of the coil cord connector keyways of the number 2 windows on the flight deck, re... number 2 windows on the flight deck. This proposed AD was prompted by reports of arcing and smoke at the number 2 window in the flight deck. We are proposing this AD to prevent arcing, smoke, and fire in the...
STS-57 MS2 Sherlock operates RMS THC on OV-105's aft flight deck
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock operates the remote manipulator system (RMS) translation hand control (THC) while observing extravehicular activity (EVA) outside viewing window W10 on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Positioned at the onorbit station, Sherlock moved EVA astronauts in the payload bay (PLB). Payload Commander (PLC) G. David Low with his feet anchored to a special restraint device on the end of the RMS arm held MS3 Peter J.K. Wisoff during the RMS maneuvers. The activity represented an evaluation of techniques which might be used on planned future missions -- a 1993 servicing visit to the Hubble Space Telescope (HST) and later space station work -- which will require astronauts to frequently lift objects of similar sized bulk. Note: Just below Sherlock's left hand a 'GUMBY' toy watches the actvity.
Currie at RMS controls on the aft flight deck
1998-12-05
S88-E-5010 (12-05-98) --- Operating at a control panel on Endeavour's aft flight deck, astronaut Nancy J. Currie works with the robot arm prior to mating the 12.8-ton Unity connecting module to Endeavour's docking system. The mating took place on late afternoon of Dec. 5. A nearby monitor provides a view of the remote manipulator system's (RMS) movements in the cargo bay. The feat marked an important step in assembling the new International Space Station. Manipulating the shuttle's 50-foot-long robot arm, Currie placed Unity just inches above the extended outer ring on Endeavour's docking mechanism, enabling Robert D. Cabana, mission commander to fire downward maneuvering jets, locking the shuttle's docking system to one of two Pressurized Mating Adapters (PMA) attached to Unity. The mating occurred at 5:45 p.m. Central time, as Endeavour sailed over eastern China.
PLT Polansky on aft flight deck
2001-02-10
STS98-E-5084 (10 February 2001) --- Astronaut Mark L. Polansky, STS-98 pilot, takes notes on the aft flight deck of the Space Shuttle Atlantis. The scene was recorded with a digital still camera during Flight Day 4 activities.
Pilot Fullerton in ejection escape suit (EES) on aft flight deck
1982-03-30
STS003-31-290 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST) and ejection escape suit (EES), holds flexible hose attached to his EES vent hose fitting and second hose for commander's EES while behind pilots ejection seat (S2) seat back on the aft flight deck. Forward flight deck control panels are visible in the background. Photo credit: NASA
STS-28 Columbia, OV-102, Pilot Richards at forward flight deck pilots station
NASA Technical Reports Server (NTRS)
1989-01-01
Pilot Richard N. Richards, sitting at forward flight deck pilots station controls, looks back to aft flight deck during STS-28, a Department of Defense (DOD) dedicated mission. Control panels F7 and F8 and portable laptop computer propped on panel F4 appear in front of Richards. Behind him are the pilots seat seat back and head rest. A stuffed toy animal is positioned on C1 panel.
STS-27 crew poses for inflight portrait on forward flight deck with football
NASA Technical Reports Server (NTRS)
1988-01-01
With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.
NASA Technical Reports Server (NTRS)
Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.
1995-01-01
Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.
2011-01-01
The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments
Field evaluation of flight deck procedures for flying CTAS descents
DOT National Transportation Integrated Search
1997-01-01
Flight deck descent procedures were developed for a field evaluation of the CTAS Descent Advisor conducted in the fall of 1995. During this study, CTAS descent clearances were issued to 185 commercial flights at Denver International Airport. Data col...
Towards a characterization of information automation systems on the flight deck
NASA Astrophysics Data System (ADS)
Dudley, Rachel Feddersen
This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
New Generation General Purpose Computer (GPC) compact IBM unit
NASA Technical Reports Server (NTRS)
1991-01-01
New Generation General Purpose Computer (GPC) compact IBM unit replaces a two-unit earlier generation computer. The new IBM unit is documented in table top views alone (S91-26867, S91-26868), with the onboard equipment it supports including the flight deck CRT screen and keypad (S91-26866), and next to the two earlier versions it replaces (S91-26869).
View of the ISS stack as seen during the fly-around by the STS-96 crew
2017-04-20
S96-E-5218 (3 June 1999) --- Partially silhouetted over clouds and a wide expanse of ocean waters, the unmanned International Space Station (ISS) moves away from the Space Shuttle Discovery. An electronic still camera (ESC) was aimed through aft flight deck windows to capture the image at 23:01:00 GMT, June 3, 1999.
Flight-deck automation: Promises and problems
NASA Technical Reports Server (NTRS)
Wiener, E. L.; Curry, R. E.
1980-01-01
The state of the art in human factors in flight-deck automation is presented. A number of critical problem areas are identified and broad design guidelines are offered. Automation-related aircraft accidents and incidents are discussed as examples of human factors problems in automated flight.
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.
Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan
2014-11-01
Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
NASA Technical Reports Server (NTRS)
Daiker, Ron; Schnell, Thomas
2010-01-01
A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.
On the typography of flight-deck documentation
NASA Technical Reports Server (NTRS)
Degani, Asaf
1992-01-01
Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.
Cognitive representations of flight-deck information attributes
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.
1993-01-01
The experiment described in this paper had two ojectives. The first objective was to empirically identify how pilots organize flight-deck information attributes. Such an organization should provide a useful nomenclature for classifying Information Management (IM) issues and problems. The second objective of this study was to empirically assess pilots' estimate of the relative importance of each attribute on managing information. Results from addressing this latter objective were intended to suggest areas on which flight-deck researchers and designers will want to focus their attention.
STS-44 Atlantis, OV-104, crewmembers participate in JSC FB-SMS training
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory and Pilot Terence T. Henricks are stationed at their appointed positions on the forward flight deck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) in JSC's Mission Simulation and Training Facility Bldg 5. Gregory (left) in the commanders seat and Henricks (right) in the pilots seat look back toward aft flight deck and the photographer. Seat backs appear in the foreground and forward flight deck control panels in the background.
STS-30 Commander Walker on forward flight deck
NASA Technical Reports Server (NTRS)
1989-01-01
On Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck between commanders and pilots seats, STS-30 Commander David M. Walker smiles while having his picture taken. Walker, wearing a mission polo shirt and light blue flight coverall pants, holds onto the commanders seat back. Forward flight control panels are visible above Walker's head and behind him.
NASA Astrophysics Data System (ADS)
De Cino, Thomas J., II
In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems. While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks is often delivered with traditional methods (e.g. textbooks, PowerPoint presentations, user manuals, and limited computer-based training modules). These training methods have been reported as less than desirable in learning to use the glass flight deck interface. Difficulties in achieving a complete understanding of functional and operational characteristics of the GFD systems, acquiring a full understanding of the interrelationships of the varied subsystems, and handling the wealth of flight information provided have been reported. Documented pilot concerns of poor user experience and satisfaction, and problems with the learning the complex and sophisticated interface of the GFD are additional issues with current pilot training approaches. A case study was executed to explore ways to improve training using GFD systems at a Midwestern aviation university. The researcher investigated if variations in instructional systems design and training methods for learning glass flight deck technology would affect the perceptions and attitudes of pilots of the learnability (an attribute of usability) of the glass flight deck interface. Specifically, this study investigated the effectiveness of scenario-based training (SBT) methods to potentially improve pilot knowledge and understanding of a GFD system, and overall pilot user experience and satisfaction. Participants overwhelmingly reported positive learning experiences from scenario-based GFD systems flight training, noting that learning and knowledge construction were improved over other training received in the past. In contrast, participants rated the usability and learnability of the GFD training systems low, reporting various problems with the systems' interface, and the learnability (first-time use) of the complex GFD system. However, issues with usability of the GFD training systems did not reduce or change participant attitudes towards learning and mastering GFD systems; to the contrary, all participants requested additional coursework opportunities to train on GFD systems with the scenario-based flight training format.
Designing Flight Deck Procedures
NASA Technical Reports Server (NTRS)
Degani, Asaf; Wiener, Earl
2005-01-01
Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.
Towards Autonomous Airport Surface Operations: NextGen Flight Deck Implications
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky Lee; Bakowski, Deborah Lee
2017-01-01
Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.
1998-10-30
STS095-E-5065 (30 Oct. 1998) --- Astronaut Stephen K. Robinson, STS-95 mission specialist, looks toward Earth in this electronic still camera's (ESC) image of Flight Day two activity aboard the Space Shuttle Discovery. The scene was recorded on the aft flight deck at 12:02:11 GMT, Oct. 30.
Pilot Ashby waves from the pilot's seat in the flight deck
1999-07-24
S93-E-5029 (23 July 1999) --- Astronaut Jeffrey S. Ashby waves to the camera from the pilot's station on the starboard side of Columbia's forward flight deck. The photo was recorded with an electronic still camera (ESC) on Flight Day 1 of the STS-93 mission.
2004-06-22
Leah Robson and Bridgette Puljiz of Tehachapi in the flight deck of NASA's modified Boeing 747 space shuttle carrier aircraft during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.
Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 ONBOARD VIEW --- Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the flight deck of the Space Shuttle Columbia. Allen was joined by four other astronauts and an international payload specialist for more than 16 days of research aboard Columbia. The photograph was taken with a 70mm handheld camera.
ODS alignment ring at soft-dock with ISS
2001-08-12
STS105-E-5067 (12 August 2001) --- One of the STS-105 crew members on the aft flight deck of the Space Shuttle Discovery used a digital still camera to record this close-up view of the docking process between the shuttle and the International Space Station (ISS). The shuttles Canadarm or Remote Manipulator System (RMS) arm is in its stowed position at right.
View of deck of pony truss approach span. Deck system ...
View of deck of pony truss approach span. Deck system has failed at northwest corner. Looking south. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA
Human Factors for Flight Deck Certification Personnel
DOT National Transportation Integrated Search
1993-07-01
This document is a compilation of proceedings and lecture material on human : performance capabilities that was presented to FAA flight deck certification : personnel. A five-day series of lectures was developed to provide certification : specialists...
View of the payload bay during STS-7
NASA Technical Reports Server (NTRS)
1983-01-01
This 'astronaut's eye view' of the payload bay was taken through the aft flight deck window. It shows the Shuttle pallet satellite (SPAS-01), the experiment pallet for the NASA Office of Space and Terrestrial Applications (OSTA-2), the closed 'cradle' protecting the Telesat F Anik C2 satellite, the Canadian-built remote manipulator system (RMS) arm and a number of canisters for getaway special (GAS) experiments. MBB stands for Messerschmidt-Boelkow-Blohm, a West German firm which built the SPAS. The vertical stabilizer appears to be touching the Earth's horizon.
View of the Columbia's open payload bay and the Canadian RMS
1981-11-13
STS002-12-833 (13 Nov. 1981) --- Clouds over Earth and black sky form the background for this unique photograph from the space shuttle Columbia in Earth orbit. The photograph was shot through the aft flight deck windows viewing the cargo bay. Part of the scientific payload of the Office of Space and Terrestrial Applications (OSTA-1) is visible in the open cargo bay. The astronauts inside Columbia's cabin were remotely operating the Canadian-built remote manipulator system (RMS). Note television cameras on its elbow and wrist pieces. Photo credit: NASA
STS-36 Commander Creighton listens to music on OV-104's forward flight deck
1990-03-03
STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.
STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck
NASA Technical Reports Server (NTRS)
1988-01-01
Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.
STS-36 Commander Creighton listens to music on OV-104's forward flight deck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.
4. View of bridge deck from northeast approach (bridge deck ...
4. View of bridge deck from northeast approach (bridge deck from southwest approach is virtually identical - Big Cottonwood River Bridge No. 246, Spanning Big Cottonwood River at Cottonwood Street (City Road No. 165), New Ulm, Brown County, MN
DOT National Transportation Integrated Search
2016-12-21
This report documents the work undertaken in support of Volpe Task Order No. T0026, Flight Deck Task Management. The objectives of this work effort were to: : 1) Develop a specific and standard definition of task management (TM) : 2) Conduct a ...
Commander Truly on aft flight deck holding communication kit assembly (ASSY)
NASA Technical Reports Server (NTRS)
1983-01-01
On aft flight deck, Commander Truly holds communication kit assembly (ASSY) headset (HDST) interface unit (HIU) and mini-HDST in front of the onorbit station. HASSELBLAD camera is positioned on overhead window W8.
Resource management on the flight deck. [conferences
NASA Technical Reports Server (NTRS)
Cooper, G. E. (Editor); White, M. D. (Editor); Lauber, J. K. (Editor)
1980-01-01
Several approaches to the training and selection of aircrew are presented including both industry and nonindustry perspectives. Human factor aspects of the problem are also examined with specific emphasis on the psychology of the flight deck situation.
1998-01-21
Ohio Senator John Glenn, at left, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald explains some of the flight equipment to the senator at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Casper points camera out of aft flight deck window
1996-05-26
S77-E-5109 (26 May 1996) --- Astronaut John H. Casper, commander, pauses during a photography session on the aft flight deck of the Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).
STS-46 aft flight deck payload station 'Marsha's workstation' aboard OV-104
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 payload station nicknamed 'Marsha's (Ivins) workstation' on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104, is cluttered with food, cameras, camera gear, cassettes, flight text material, and other paraphernalia. This area is just behind the commanders station. Fellow crewmembers nicknamed the station and good-naturedly kidded Ivins about the mess.
STS-104 PLT Hobaugh and DV Cam units on Atlantis flight deck
2001-07-15
STS104-326-005 (12-24 July 2001) --- Astronaut Charles O. Hobaugh, STS-104 pilot, prepares to do some work at the recently-fashioned computer network station on the flight deck of the Space Shuttle Atlantis.
Walheim on Aft Flight Deck during Deorbit Preparations
2011-07-21
S135-E-012383 (21 July 2011) --- Astronaut Rex Walheim, STS-135 mission specialist, makes preparations on space shuttle Atlantis' aft flight deck for the mission's re-entry phase and the final landing of a NASA space shuttle. Photo credit: NASA
NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II
DOT National Transportation Integrated Search
2015-07-01
Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...
STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1988-01-01
On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.
Certification for civil flight decks and the human-computer interface
NASA Technical Reports Server (NTRS)
Mcclumpha, Andrew J.; Rudisill, Marianne
1994-01-01
This paper will address the issue of human factor aspects of civil flight deck certification, with emphasis on the pilot's interface with automation. In particular, three questions will be asked that relate to this certification process: (1) are the methods, data, and guidelines available from human factors to adequately address the problems of certifying as safe and error tolerant the complex automated systems of modern civil transport aircraft; (2) do aircraft manufacturers effectively apply human factors information during the aircraft flight deck design process; and (3) do regulatory authorities effectively apply human factors information during the aircraft certification process?
Categorization and prioritization of flight deck information
NASA Technical Reports Server (NTRS)
Jonsson, Jon E.; Ricks, Wendell R.
1993-01-01
The paper describes an experiment whose objectives were to: (1) make initial inferences about categories into which pilots place information; and (2) empirically determine how pilots mentally represent flight deck information, and how their cognitive processes of categorization and prioritization act upon those representations.
STS-33 MS Carter operates translation hand control (THC) on aft flight deck
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Mission Specialist (MS) Manley L. Carter, Jr operates translation hand control (THC) at the aft flight deck onorbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.
Flight deck magnetic fields in commercial aircraft.
Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C
2000-11-01
Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.
The design and implementation of CRT displays in the TCV real-time simulation
NASA Technical Reports Server (NTRS)
Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.
1975-01-01
The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.
A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft
NASA Technical Reports Server (NTRS)
Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.
1995-01-01
Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.
MS Ivins at the Atlantis aft flight deck controls
2001-02-10
STS98-E-5078 (10 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, monitors communications from ground controllers from her post at the aft flight deck controls on the Space Shuttle Atlantis. The scene was recorded with a digital still camera.
Human factors considerations in the design and evaluation of flight deck displays and controls
DOT National Transportation Integrated Search
2013-11-01
The objective of this effort is to have a single source document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on human factor...
Brown on aft flight deck with microphone
1998-10-31
STS095-E-5177 (31 Oct. 1998) --- On Discovery's aft flight deck, astronaut Curtis L. Brown Jr., STS-95 commander, checks over notes with ground controllers in Houston. The photo was taken with an electronic still camera (ESC) at 00:41:51 GMT, Oct. 31.
DOT National Transportation Integrated Search
2017-05-01
Fundamental differences exist between transmissions of Air Traffic Control clearances over voice and those transmitted via Controller Pilot Data Link Communications (CPDLC). This paper provides flight deck human factors issues that apply to processin...
Flight-deck automation - Promises and problems
NASA Technical Reports Server (NTRS)
Wiener, E. L.; Curry, R. E.
1980-01-01
The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.
The Cognitive Consequences of Patterns of Information Flow
NASA Technical Reports Server (NTRS)
Hutchins, Edwin
1999-01-01
The flight deck of a moderm commercial airliner is a complex system consisting of two or more crew and a suite of technological devices. When everything goes right, all modem flight decks are easy to use. When things go sour, however, automated flight decks provide opportunities for new kinds of problems. A recent article in Aviation Week cited industry concern over the problem of verifying the safety of complex systems on automated, digital aircraft, stating that the industry must "guard against the kind of incident in which people and the automation seem to mismanage a minor occurrence or non-routine situation into larger trouble." The design of automated flight deck systems that flight crews find easy to use safely is a challenge in part because this design activity requires a theoretical perspective which can simultaneously cover the interactions of people with each other and with technology. In this paper, I will introduce some concepts that can be used to understand the flight deck as a system that is composed of two or more pilots and a complex suite of automated devices. As I will try to show, without a theory, we can repeat what seems to work, but we may not know why it worked or how to make it work in novel circumstances. Theory allows us to rise above the particulars of specific situations and makes the application of the roots of success in one setting applicable to other settings.
Oblique view of the Orbiter Discovery from an elevated platform ...
Oblique view of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the Forward Reaction Control System (RCS) Module from the forward section and the Orbiter Maneuvering System (OMS)/RCS pods from the aft section have been removed. Ground support equipment called Strongbacks are attached to the payload bay doors and the Flight Deck windows have been covered by ground support equipment. Also note the scale figure standing by the Orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.
2009-01-01
NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.
NASA Technical Reports Server (NTRS)
Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.
2013-01-01
The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.
NASA Technical Reports Server (NTRS)
Johnson, Walter; Battiste, Vernol
2016-01-01
The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.
Ohio Senator John Glenn tours the orbiter Columbia's middeck
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at right, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald listens to his questions regarding some of the flight equipment at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
STS 51-L crewmembers during training session in flight deck simulation
NASA Technical Reports Server (NTRS)
1985-01-01
S85-46207 (December 1985) --- Shuttle Mission Simulator (SMS) scene of astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck. The photo was taken by Bill Bowers.
STS-104 CDR Lindsey on forward flight deck prior to re-entry
2001-07-25
STS104-345-021 (25 July 2001) --- Attired in his shuttle launch and entry suit, astronaut Steven W. Lindsey, STS-104 commander, looks over a procedures checklist at the commanders station on the forward flight deck of the space shuttle Atlantis.
Brown at RMS controls on the aft flight deck
1998-11-24
STS095-366-031 (29 Oct-7 Nov 1998) --- Astronaut Curtis L. Brown, Jr., mission commander, operates controls on the aft flight deck of the Space Shuttle Discovery. Brown was joined by four other NASA astronauts and two payload specialists for the nine-day mission.
STS-26 Pilot Covey, wearing sleep mask, rests on aft flight deck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Pilot Richard O. Covey, wearing sleep mask (blindfold) and a headset, props his feet under the pilots seat and rests his head and back on the aft flight deck onorbit station panels while he sleeps. At Covey's right are the mission station control panels.
DOT National Transportation Integrated Search
2016-12-01
The objective of this effort is to have a single source reference document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on hu...
Krikalev in front of flight deck windows
2001-03-12
STS102-E-5139 (12 March 2001) --- Cosmonaut Sergei K. Krikalev, now a member of the STS-102 crew, prepares to use a camera on Discovery's flight deck. Krikalev, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.
STS-33 MS Carter operates translation hand control (THC) on aft flight deck
1989-11-27
STS033-93-011 (27 Nov 1989) --- Astronaut Manley L. Carter, Jr., STS-33 mission specialist, operates translation hand control (THC) at the aft flight deck on orbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.
Brown at aft flight deck control during SPARTAN capture
1998-11-03
STS095-E-5134 (3 Nov. 1998) --- Astronaut Curtis L. Brown, STS-95 commander, on Discovery's aft flight deck during operations to retrieve the free-flying Spartan 201-05 satellite. The photograph was taken with an electronic still camera (ESC) at 3:17:38 GMT, Nov. 3.
Commander Truly on aft flight deck holding communication kit assembly (ASSY)
1983-09-05
STS008-04-106 (30 Aug-5 Sept 1983) --- On aft flight deck, Richard M. Truly, STS-8 commander, holds communication kit assembly (ASSY) headset (HDST) interface unit (HIU) and mini-HDST in front of the on orbit station. Hasselblad camera is positioned on overhead window W8.
Krikalev on the aft flight deck with laptop computers
1998-12-10
S88-E-5107 (12-11-98) --- Sergei Krikalev, mission specialist representing the Russian Space Agency (RSA), surrounded by monitors and computers on the flight deck, holds a large camera lens. The photo was taken with an electronic still camera (ESC) at 09:33:22 GMT, Dec. 11.
Horowitz at the aft flight deck during rendezvous ops
2001-08-12
STS105-E-5061 (12 August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, looks over a checklist on the aft flight deck of the Space Shuttle Discovery during rendezvous operations with the International Space Station (ISS). The image was recorded with a digital still camera.
Crewmember in the aft flight deck.
1992-11-01
STS052-24-014 (22 Oct-1 Nov 1992) --- Canadian payload specialist Steven G. MacLean tries out gymnastics in the weightlessness of space on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. MacLean, along with five NASA astronauts, spent ten days aboard Columbia for the STS-52 mission.
NASA Technical Reports Server (NTRS)
Schutte, Paul; Goodrich, Kenneth; Williams, Ralph
2016-01-01
This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.
Commander Collins seated in the flight deck commander's station
1999-07-24
S93-E-5033 (23 July 1999) --- Astronaut Eileen M. Collins, mission commander, looks over a procedures checklist at the commander's station on the forward flight deck of the Space Shuttle Columbia on Flight Day 1. The most important event of this day was the deployment of the Chandra X-Ray Observatory, the world's most powerful X-Ray telescope. The photo was recorded with an electronic still camera (ESC).
Commander Collins seated in the flight deck commander's station
1999-07-24
S93-E-5031 (23 July 1999) --- Astronaut Eileen M. Collins, mission commander, looks over a procedures checklist at the commander's station on the forward flight deck of the Space Shuttle Columbia on Flight Day 1. The most important event of this day was the deployment of the Chandra X-Ray Observatory, the world's most powerful X-Ray telescope. The photo was recorded with an electronic still camera (ESC).
2006-10-25
S120-E-006761 (25 Oct. 2007) --- Astronaut Daniel Tani, STS-120 mission specialist, appears to like what he sees through the viewfinder of his camera aimed through windows on the flight deck of the Space Shuttle Discovery. Shortly afterward, Discovery was docked with the International Space Station, which will be Tani's home and work place for the next several months as he switches roles to serve as Expedition 16 flight engineer.
Payload commander Voss on aft flight deck
2012-09-18
STS083-305-010 (4-8 April 1997) --- Astronaut Janice E. Voss, mission specialist, works with communications systems on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. Voss, along with five other NASA astronauts and two payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission, were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.
2004-06-22
Leah Robson and Bridgette Puljiz of Tehachapi (seated) and Zachary Johnson of Palmdale (back to camera) look over the maze of dials and switches in the flight deck of NASA's modified Boeing 747 space shuttle carrier aircraft during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.
NASA Astrophysics Data System (ADS)
Trujillo, Eddie J.; Ellersick, Steven D.
2006-05-01
The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.
Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Duffy will be joined by four other NASA astronauts and an international mission specialist aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.
Crewmembers in the aft flight deck.
1992-12-09
STS053-01-034 (2-9 Dec 1992) --- From the Space Shuttle Discovery's aft flight deck, astronaut Guion S. Bluford, mission specialist, uses a handheld 70mm Hasselblad to photograph a point on Earth. Bluford was joined by four other NASA astronauts for the eight-day mission in Earth-orbit, dedicated to the Department of Defense (DOD).
STS-54 Pilot McMonagle talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-012 (15 Jan 1993) --- McMonagle talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:54:14:13 GMT, Jan. 15, 1993.
STS-54 MS1 Runco talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-014 (15 Jan 1993) --- Runco talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:48:45:11 GMT, Jan. 15, 1993.
STS-54 Commander Casper talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-015 (15 Jan 1993) --- Casper talks to a radio station from the flight deck of Endeavour while, in the background, Runco, left, and Harbaugh await their turns to communicate with other stations. The scene was recorded at 13:45:54:05 GMT, Jan. 15, 1993.
STS-54 MS2 Harbaugh talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-013 (15 Jan 1993) --- Harbaugh talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:57:20:20 GMT, Jan. 15, 1993.
STS-27 Atlantis, OV-104, crewmembers on shuttle mission simulator flight deck
1988-02-03
S88-27505 (3 Feb. 1988) --- Astronauts William M. Shepherd (standing) and Jerry L. Ross, both STS-27 mission specialists, get in some training time on the flight deck of the Shuttle Mission Simulator in the Jake Garn Mission Simulation and Training Facility at NASA's Johnson Space Center. Photo credit: NASA
MS Grunsfeld at commander's station on forward flight deck
2002-03-08
STS109-E-5720 (8 March 2002) --- Astronaut John M. Grunsfeld, STS-109 payload commander, wearing a portion of the extravehicular mobility unit (EMU) space suit, occupies the commanders station on the forward flight deck of the Space Shuttle Columbia. The image was recorded with a digital still camera.
New STS-102 crewmembers Krikalev and Gidzenko in the flight deck
2001-03-12
STS102-E-5142 (12 March 2001) --- Cosmonaut Sergei K. Krikalev, now a member of the STS-102 crew, prepares to use a camera on Discovery's flight deck. Krikalev, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.
Glen and Brown on aft flight deck
1998-10-31
STS095-E-5180 (31 Oct. 1998) --- Astronaut Curtis L. Brown Jr. (left), STS-95 commander, stands by on Discovery's aft flight deck as U.S. Sen. John H. Glenn Jr., payload specialist, talks with ground controllers in Houston. The photo was taken with an electronic still camera (ESC) at 00:48:48 GMT, Oct. 31.
RME 1317 - MiSDE VRCS test, flight deck activity with Collins
1997-05-19
STS084-310-012 (15-24 May 1997) --- Astronaut Eileen M. Collins, STS-84 pilot, occupies the commander's station on the Space Shuttle Atlantis' flight deck during rendezvous operations with Russia's Mir Space Station. She is looking over notes regarding a Risk Mitigation Experiment (RME) called the Mir Structural Dynamics Experiment (MSDE).
77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... for the engine and auxiliary power unit bleed air supplied to the passenger cabin and flight deck of a... INFORMATION CONTACT: For questions concerning this action, contact Jim Knight, Research Planning Division, AVP... of removing oil-based contaminants from the bleed air supplied to the passenger cabin and flight deck...
MS Reilly with laser range finder on aft flight deck
2001-07-14
STS104-E-5026 (14 July 2001) --- Positioned near a window on the aft flight deck of the Space Shuttle Atlantis, astronaut James F. Reilly, STS-104 mission specialist, uses a laser ranging device to hone in on the International Space Station (ISS) during pre-docking operations about 237 miles above Earth.
Commander Bloomfield works at the commander's workstation on the flight deck during STS-110
2002-04-09
STS110-E-5067 (9 April 2002) --- Astronaut Michael J. Bloomfield, STS-110 mission commander, occupying the commanders station, checks data on the cockpit displays on the forward flight deck of the Space Shuttle Atlantis. The image was taken with a digital still camera.
The use of graphs in the ergonomic evaluation of tall pilots' sitting posture.
de Ree, J J
1989-10-01
A survey has shown that the average height of KLM pilots has increased by 18 mm (0.7 in) per decade in the last 20 years. Around 6% are taller than 1905 mm (75.0 in), the upper limit of pilot height for flight deck design. With the use of graphs of the flight deck, we established that the main problem of tall pilots is insufficient legroom. Of all KLM/NLM aircraft types, the Boeing 747-200/300 and the Douglas DC-9 are most uncomfortable for pilots taller than 1960 mm (77.2 in). In the Airbus A310, pilots of 2000 mm (78.7 in) have insufficient legroom. The other aircraft types do not present difficulties for pilots up to 2030 mm (79.9 in). Ergonomic adaptations on the flight decks of the Boeing 747-200/300 and the Airbus A310 are necessary to alleviate the problems of tall pilots. Future aircraft types should be designed to accommodate tall pilots. If ergonomic adaptation of the flight deck is impossible, anthropometric limits for pilot selection have to be employed.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1986-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset and seated in the commanders seat on forward flight deck, looks over his shoulder toward the aft flight deck. A flight data file (FDF) notebook rests on his lap. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
Cockrell and Rominger go through de-orbit preparations in the flight deck
1996-12-06
STS080-360-002 (19 Nov.-7 Dec. 1996) --- From the commander's station on the port side of the space shuttle Columbia's forward flight deck, astronaut Kenneth D. Cockrell prepares for a minor firing of Reaction Control System (RCS) engines during operations with the Wake Shield Facility (WSF). The activity was recorded with a 35mm camera on flight day seven. The commander is attired in a liquid-cooled biological garment.
Crewmember working on the mid deck Zeolite Crystal Growth experiment.
NASA Technical Reports Server (NTRS)
1992-01-01
View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.
Cockpit Resource Management (CRM) for part 91 and 135 operations
NASA Technical Reports Server (NTRS)
Krey, Neil C.; Rodgers, Don
1987-01-01
Every flight is characterized by constant change. It is the way each individual crew responds to that change that determines how effectively they will be able to manage their flight deck. The concepts of Flight Deck Management (FDM) is presented. The principles dealt with are applicable to every flight, and the occurrence of change in the conduct of every flight is given. Nothing remains as it is initially perceived. It is then shown how SimuFlite accomplishes training in these concepts. Finally the challenges which are faced as an industry to make FDM more effective are discussed.
15. View to northeast. View along centerline from below deck; ...
15. View to northeast. View along centerline from below deck; detail of bent and floor beams. (65mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
30. View of main deck at bow (looking aft from ...
30. View of main deck at bow (looking aft from samson post, upper deck removed), showing anchor windlass (left foreground), head (right foregound), and forward deckhouse; weather canopy overhead not an original or permanent feature - Schooner WAWONA, 1018 Valley Street, Seattle, King County, WA
STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
75 FR 2787 - Airworthiness Directives; Turbomeca Turmo IV A and IV C Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... inspection before the first flight of the day, an oil leak was found on an engine deck. A circumferential... inspection before the first flight of the day, an oil leak was found on an engine deck. A circumferential... Airworthiness Directives; Turbomeca Turmo IV A and IV C Turboshaft Engines AGENCY: Federal Aviation...
STS 51-G crew photo on the flight deck
1985-06-22
51G-21-011 (17-24 June 1985) --- Group portrait on flight deck of all seven STS-51G crew members. Left to right (front) are John O. Creighton, Shannon W. Lucid, Daniel C. Brandenstein; and (back row) are Sultan Salman Abdelazize Al-Saud, Steven R. Nagel, John M. Fabian and Patrick Baudry. Photo credit: NASA
STS-26 Pilot Covey, wearing sleep mask, rests on aft flight deck
1988-10-03
STS026-09-021 (3 Oct 1988) --- Astronaut Richard O. Covey, STS-26 pilot, wearing sleep mask (blindfold) and a headset, props his feet under the pilots seat and rests his head and back on the aft flight deck on orbit station panels while he sleeps. At Covey's right are the mission station control panels.
STS-32 photographic equipment (cameras,lenses,film magazines) on flight deck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-32 photographic equipment is displayed on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. On the payload station are a dual camera mount with two handheld HASSELBLAD cameras, camera lenses, and film magazines. This array of equipment will be used to record onboard activities and observations of the Earth's surface.
MS Walheim poses with a Hasselblad camera on the flight deck of Atlantis during STS-110
2002-04-08
STS110-E-5017 (8 April 2002) --- Astronaut Rex J. Walheim, STS-110 mission specialist, holds a camera on the aft flight deck of the Space Shuttle Atlantis. A blue and white Earth is visible through the overhead windows of the orbiter. The image was taken with a digital still camera.
STS-99 MS Thiele and MS Kavandi work on OV-105's flight deck
2000-04-03
STS099-327-003 (11-22 February 2000) --- Astronauts Gerhard P.J. Thiele and Janet L. Kavandi of the Red Team check Shuttle Radar Topography Mission (SRTM) data takes on the flight deck of the Space Shuttle Endeavour. Both are mission specialists, with Thiele representing the European Space Agency (ESA).
Human engineering analysis for the high speed civil transport flight deck
NASA Technical Reports Server (NTRS)
Regal, David M.; Alter, Keith W.
1993-01-01
The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Williams, B. A.
1977-01-01
Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.
STS-46 aft flight deck payload station "Marsha's workstation" aboard OV-104
2012-11-19
STS046-01-024 (31 July-8 Aug 1992) --- This area on the Space Shuttle Atlantis' flight deck forward port side was referred to as "Marsha's (Ivins) work station" by fellow crew members who good-naturedly kidded the mission specialist and who usually added various descriptive modifiers such as "messy" or "cluttered". Food, cameras, camera gear, cassettes, cable, flight text material and other paraphernalia can be seen in the area, just behind the commander's station.
Commander Young reviews clipboard notes and procedures on forward flight deck
1981-04-14
STS001-07-540 (12-14 April 1981) --- Astronaut John W. Young, commander, is seated at his left side station in the flight deck of the space shuttle Columbia. He holds a loose-leaf book in which he recorded data during the flight. Soon after the launch phase of STS-1, astronauts Young and Robert L. Crippen, pilot, changed from their high altitude pressure garments into the light blue constant wear garment. Photo credit: NASA
STS 61-B crew portrait in-flight on the aft flight deck
1985-11-26
61B-21-008 (26 Nov-1 Dec 1985) --- A fish-eye lens allows for the seven-member STS 61-B crew to be photographed on the flight deck of the earth-orbiting Atlantis. Left to right, back row, are astronauts Jerry L. Ross, Brewster Shaw Jr., Mary L. Cleave, and Bryan D. O'Connor; and payload specialist Rodolfo Neri. Front row, left to right, payload specialist Charles D. Walker and astronaut Sherwood C. Spring.
View of ANDE release from orbiter Discovery payload bay
2006-12-21
S116-E-07828 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an STS-72 training session. Wakata is a mission specialist, representing Japan's National Space Development Agency (NASDA) and Barry is a United States astronaut assigned as mission specialist for the same mission. The two are on the aft flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC).
STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)
1991-06-14
STS040-610-010 (5-14 June 1991) --- The blue and white Earth forms the backdrop for this scene of the Spacelab Life Sciences (SLS-1) module in the cargo bay of the Earth-orbiting Columbia. The view was photographed through Columbia's aft flight deck windows with a handheld Rolleiflex camera. Seven crewmembers spent nine days in space aboard Columbia. Part of the tunnel/airlock system that linked them to the SLS-1 module is seen in center foreground.
Vertical Stabilizer and OMS pods from the aft FD window during STS-123 mission
2008-03-11
S123-E-005073 (11 Mar. 2008) --- This view out the aft windows on Endeavour's flight deck was one of a series of images recorded by the STS-123 crewmembers during their first full day in space. The end of the Canadian-built remote manipulator system's robot arm (right edge) along with the shuttle's vertical stabilizer and its two orbital maneuvering system (OMS) pods are visible. A heavily cloud-covered area of Earth fills the top half of the frame.
LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval
1990-01-20
This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.
STS-37 Gamma Ray Observatory (GRO) grappled by RMS
1991-04-07
Backdropped against the Earth's surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners). The view was taken by STS-37 crew through an aft flight deck overhead window.
6. VIEW EAST OF CEMENT PIER AND TRAFFIC DECK SUPPORT ...
6. VIEW EAST OF CEMENT PIER AND TRAFFIC DECK SUPPORT SYSTEM; NOTE FLOOR BEAMS AND STRINGERS VIEWED FROM UNDERNEATH THE BRIDGE - Water Street Bridge, County Route 119/26, over Guyandotte River, Logan, Logan County, WV
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Commander Crippen at Forward Flight Deck Commanders Station
1983-06-24
STS007-31-1614 & S83-35775 (24 June 1983) --- Astronaut Robert L. Crippen is seen at the commander’s station of the Space Shuttle Challenger as it passes through the Earth’s atmosphere on re-entry. The friction results in a pinkish glow visible through the forward windows on the flight deck. The scene was exposed with a 35mm camera.
Social psychology on the flight deck
NASA Technical Reports Server (NTRS)
Helmreich, R. L.
1980-01-01
Social psychological and personality factors that can influence resource management on the flight deck are discussed. It is argued that personality and situational factors intersect to determine crew responses and that assessment of performance under full crew and mission conditions can provide the most valuable information about relevant factors. The possibility of training procedures to improve performance on these dimensions is discussed.
Astronaut William Readdy on flight deck wearing sun glasses
1993-09-15
STS051-16-012 (12-22 Sept 1993) --- On Discovery's forward flight deck, astronaut William F. Readdy, pilot, wears shades to block out bright sunshine. Much of the sunshine that normally would be coming through forward windows is blocked by an array of portable computers. Readdy was joined by four other NASA astronauts for almost ten full days in space.
MS Massimino on aft flight deck during EVA 5
2002-03-09
STS109-E-5761 (9 March 2002) --- Astronaut Michael J. Massimino, STS-109 mission specialist, looks through an overhead window on the aft flight deck of the Space Shuttle Columbia during the crews final interface with the Hubble Space Telescope (HST). The telescope was released at 4:04 a.m. (CST). The image was recorded with a digital still camera.
Astronaut Marsha Ivins with thermal imaging project on flight deck
1994-03-05
STS062-04-005 (4-18 March 1994) --- Astronaut Marsha S. Ivins has her hands full with a thermal imaging project on the flight deck of the Space Shuttle Columbia as astronaut Pierre J. Thuot stands by to help. The two mission specialists were joined by three other veteran NASA astronauts for almost 14 full days in Earth-orbit.
Astronaut Kevin Chilton displays map of Scandinavia on flight deck
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them.
Deck view, west approach; former Western Pacific (now Union Pacific) ...
Deck view, west approach; former Western Pacific (now Union Pacific) Railroad at left; wind turbine generators atop hill in background; view to northeast; 90mm lens - Carroll Overhead Bridge, Altamont Pass Road, Livermore, Alameda County, CA
NASA Technical Reports Server (NTRS)
Hansman, Robert John, Jr.
1999-01-01
MIT has investigated Situational Awareness issues relating to the implementation of Datalink in the Air Traffic Control environment for a number of years under this grant activity. This work has investigated: 1) The Effect of "Party Line" Information. 2) The Effect of Datalink-Enabled Automated Flight Management Systems (FMS) on Flight Crew Situational Awareness. 3) The Effect of Cockpit Display of Traffic Information (CDTI) on Situational Awareness During Close Parallel Approaches. 4) Analysis of Flight Path Management Functions in Current and Future ATM Environments. 5) Human Performance Models in Advanced ATC Automation: Flight Crew and Air Traffic Controllers. 6) CDTI of Datalink-Based Intent Information in Advanced ATC Environments. 7) Shared Situational Awareness between the Flight Deck and ATC in Datalink-Enabled Environments. 8) Analysis of Pilot and Controller Shared SA Requirements & Issues. 9) Development of Robust Scenario Generation and Distributed Simulation Techniques for Flight Deck ATC Simulation. 10) Methods of Testing Situation Awareness Using Testable Response Techniques. The work is detailed in specific technical reports that are listed in the following bibliography, and are attached as an appendix to the master final technical report.
General view of he forward wall of the mid deck ...
General view of he forward wall of the mid deck of the Orbiter Discovery. In this view a majority of wall panels have been removed to reveal the avionics bays in the interstitial space between the mid deck forward wall and the forward bulkhead of the pressurized crew compartment. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
View, underside of deck, from northwest and below, showing structural ...
View, underside of deck, from northwest and below, showing structural configuration, including pin connections of vertical truss members to lower chord, transverse floor beams, stringers, lateral bracing, concrete deck, and squared cut stone masonry center pier, including upstream concrete encased nose - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA
STS-36 Mission Specialist Hilmers with AEROLINHOF camera on aft flight deck
1990-03-03
STS-36 Mission Specialist (MS) David C. Hilmers points the large-format AEROLINHOF camera out overhead window W7 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Hilmers records Earth imagery using the camera. Hilmers and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.
STS-39 MS Veach monitors AFP-675 panel on OV-103's aft flight deck
1991-05-06
STS039-09-036 (28 April-6 May 1991) --- Astronaut Charles L. (Lacy) Veach monitors experiment data on the aft flight deck of the Earth-orbiting Discovery. The photograph was taken with a 35mm camera. Veach and six other NASA astronauts spent over eight days in space busily collecting data for this mission, dedicated to the Department of Defense.
STS-79 crew on flight deck after launch
1996-10-29
STS079-348-004 (16 Sept. 1996) --- Soon after the space shuttle Atlantis completed its rocket mode ascent to Earth-orbit, astronaut Terrence W. Wilcutt, pilot, begins to ready the Orbiter for ten days of orbiting Earth by activating switches on the flight deck's right overhead panel. Though the launch was a nocturnal one, the crew experienced its first sunrise just after Atlantis achieved its orbital posture.
STS-43 crewmembers perform various tasks on OV-104's aft flight deck
1991-08-11
STS043-37-012 (2-11 Aug 1991) --- Three STS-43 astronauts are busy at work onboard the earth-orbiting space shuttle Atlantis. Astronaut Shannon W. Lucid is pictured performing one of several tests on Computer hardware with space station applications in mind. Sharing the aft flight deck with Lucid are Michael A. Baker (left), pilot and John E. Blaha, mission commander.
MS Hadfield aims a laser range finder through a window on the aft flight deck of Endeavour
2001-04-21
S100-E-5141 (21 April 2001) --- Astronaut Chris A. Hadfield of the Canadian Space Agency (CSA) uses a laser ranging device to keep up with the precise location of the International Space Station (ISS) from his post on the aft flight deck of the Space Shuttle Endeavour. The image was recorded with a digital still camera.
STS-116 crew at orbiter aft flight deck window during EVA 2
2007-12-14
ISS014-E-09804 (14 Dec. 2006) --- From the aft flight deck on Space Shuttle Discovery, astronauts William A. (Bill) Oefelein (left), STS-116 pilot; Nicholas J. M. Patrick, mission specialist; and Mark L. Polansky, commander, look through an overhead window toward their spacewalking crewmembers, who captured the image during the mission's second of three planned sessions of extravehicular activity (EVA).
STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck
1991-08-11
STS043-02-020 (2-11 Aug. 1991) --- Astronaut Michael A. Baker, STS-43 pilot, seated at the forward flight deck pilot station controls of the Space Shuttle Atlantis, eats a free-floating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel.
Press Pelease Image - STS-1 - Earth View
1981-04-12
S81-30396 (12-14 April 1981) --- A vertical view of Eleuthera Island in the Bahamas and part of the great Bahama Bank, as photographed with a 70mm handheld camera from the space shuttle Columbia in Earth orbit. The light blue of the Bahama Bank contrasts sharply with the darker blue of the deep ocean waters. Astronauts John W. Young, commander, and Robert L. Crippen, pilot, took a series of Earth photos from inside the flight deck of the Columbia, which has windows on its top side, convenient for shooting photographs as the spacecraft flew ?upside down? above Earth. The mission frame ID number is STS001-12-322. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Rudisill, Marianne
1995-01-01
A survey of line pilots' attitudes about flight deck automation was conducted by the Royal Air Force Institute of Aviation Medicine (RAF IAM, Farnborough, UK) under the sponsorship of the United Kingdom s Civil Aviation Authority and in cooperation with IATA (the International Air Transport Association). Survey freehand comments given by pilots operating 13 types of commercial transports across five manufacturers (Airbus, Boeing, British Aerospace, Lockheed, and McDonnell-Douglas) and 57 air carriers/organizations were analyzed by NASA. These data provide a "lessons learned" knowledge base which may be used for the definition of guidelines for flight deck automation and its associated crew interface within the High Speed Research Program. The aircraft chosen for analysis represented a progression of levels of automation sophistication and complexity, from "Basic" types (e.g., B727, DC9), through "Transition" types (e.g., A300, Concorde), to two levels of glass cockpits (e.g., Glass 1: e.g., A310; Glass 2: e.g., B747-400). This paper reports the results of analyses of comments from pilots flying commercial transport types having the highest level of automation sophistication (B757/B767, B747-400, and A320). Comments were decomposed into five categories relating to: (1) general observations with regard to flight deck automation; comments concerning the (2) design and (3) crew understanding of automation and the crew interface; (4) crew operations with automation; and (5) personal factors affecting crew/automation interaction. The goal of these analyses is to contribute to the definition of guidelines which may be used during design of future aircraft flight decks.
STS-27 crew poses for inflight portrait on forward flight deck with football
1988-12-06
STS027-11-012 (2-6 Dec. 1988) --- The crew members for the STS-27 space flight pose on the flight deck of the Earth-orbiting space shuttle Atlantis with a football free-floating in the foreground. Left to right are astronauts Robert L. Gibson, commander; Richard M. (Mike) Mullane, Jerry L. Ross and William M. Shepherd, mission specialists; and Guy S. Gardner, pilot. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami. Photo credit: NASA
View of deck truss span over creek and adjacent trestle, ...
View of deck truss span over creek and adjacent trestle, looking due south. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA
3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ...
3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ARCH CONSTRUCTION AND ARCH RIBS - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA
STS-56 Pilot Oswald uses SAREX on forward flight deck of Discovery, OV-103
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Pilot Stephen S. Oswald, wearing headset, uses the Shuttle Amateur Radio Experiment II (SAREX-II) while sitting at the pilots station on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Oswald smiles from behind the microphone as he talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of Oswald. The antenna located in forward flight deck window W6 is visible in the background. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the JSC Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn ab
NASA Astrophysics Data System (ADS)
White, R. W.; Parks, D. L.
1985-07-01
A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana is seen on the Space Shuttle Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck with the Shuttle Amateur Radio Experiment II (SAREX-II) (configuration C). Cabana is equipped with the SAREX-II headset and holds a cable leading to the 2-h window antenna mounted in forward flight deck window W1 (partially blocked by the seat headrest). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the shuttle.
NASA Technical Reports Server (NTRS)
White, R. W.; Parks, D. L.
1985-01-01
A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept.
"Night" scene of the STS-5 Columbia in orbit over the earth
1982-11-17
S82-39796 (11-16 Nov. 1982) --- A ?night? scene of the STS-5 space shuttle Columbia in orbit over Earth?s glowing horizon was captured by an astronaut crew member aiming a 70mm handheld camera through the aft windows of the flight deck. The aft section of the cargo bay contains two closed protective shields for satellites which were deployed on the flight. The nearest ?cradle? or shield houses the Satellite Business System?s (SBS-3) spacecraft and is visible in this frame while the Telesta Canada ANIK C-3 shield is out of view. The vertical stabilizer, illuminated by the sun, is flanked by two orbital maneuvering system (OMS) pods. Photo credit: NASA
View of the "handshake" of the SLP between the SSRMS and RMS during STS-100
2001-04-28
S100-E-5898 (28 April 2001) --- A STS-100 crew member with a digital still camera recorded this image of an historical event through an overhead window on the aft flight deck of the Space Shuttle Endeavour. A Canadian “handshake in space” occurred at 4:02 p.m (CDT), April 28, 2001, as the Canadian-built space station robotic arm – operated by Expedition Two flight engineer Susan J. Helms –transferred its launch cradle over to Endeavour’s robotic arm, with Canadian Space Agency astronaut Chris A. Hadfield at the controls. The exchange of the pallet from station arm to shuttle arm marked the first ever robotic-to-robotic transfer in space.
Reflected view of the TDRS in the STS-6 Challengers payload bay
1983-04-04
STS006-38-844 (4 April 1983) --- The stowed tracking and data relay satellite (TDRS) and its inertial upper stage (IUS) are seen in duplicate in this 70mm frame taken by the STS-6 crew aboard the Earth-orbiting space shuttle Challenger on its first day in space. A reflection in the aft window of the flight deck resulted in the mirage effect of the “second” TDRS. The three canisters in the aft foreground contain experiments of participants in NASA’s STS getaway special (GAS) program. Onboard the second reusable shuttle for this five-day flight were astronauts Paul J. Weitz, Karol J. Bobko, Dr. F. Story Musgrave and Donald H. Peterson. Photo credit: NASA
STS-81 pilot Jett on aft flight deck during approach to Mir
1997-02-26
STS081-368-011 (12-22 Jan. 1997) --- Astronaut Brent W. Jett, Jr., STS-81 pilot, appears restful and unfazed as Russia's Mir Space Station appears in the window over his shoulder on the Space Shuttle Atlantis' aft flight deck. Following docking of Mir and Atlantis, Jett and his crew mates went on to spend several days sharing experiments and supply-transfer with the Mir-22 crewmembers.
STS-28 Columbia, OV-102, MS Brown uses ARRIFLEX camera on aft flight deck
1989-08-13
STS028-17-033 (August 1989) --- Astronaut Mark N. Brown, STS-28 mission specialist, pauses from a session of motion-picture photography conducted through one of the aft windows on the flight deck of the Earth-orbiting Space Shuttle Columbia. He is using an Arriflex camera. The horizon of the blue and white appearing Earth and its airglow are visible in the background.
STS-65 Japanese Payload Specialist Mukai on OV-102's aft flight deck
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Japanese Payload Specialist Chiaki Mukai freefloats on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck in front of overhead windows W7 and W8 while holding a cassette case with bean sprouts in her left hand. Mukai, a physician, represented Japan's National Space Development Agency (NASDA) on the two week mission in support of the International Microgravity Laboratory 2 (IML-2).
19. DECK VIEW LOOKING FORWARD WITH MAST, RIGGING AND BOWSPRIT ...
19. DECK VIEW LOOKING FORWARD WITH MAST, RIGGING AND BOWSPRIT DETAILS - HATCH COVER REMOVED TO SHOW CENTERBOARD TRUNK - KATHRYN-Two-sail Bateau "Skipjack", Dogwood Harbor, Chesapeake Bay, Tilghman, Talbot County, MD
16. Detail view of deck beam end. Jet Lowe, photographer, ...
16. Detail view of deck beam end. Jet Lowe, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ
8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CASTINPLACE ...
8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CAST-IN-PLACE CONCRETE WALLS AND STEEL STRUCTURE FOR NEW SOUTH-FACING FLAME DEFLECTOR; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Earth Observation taken during the 41G mission
2009-06-25
41G-120-056 (October 1984) --- Parts of Israel, Lebanon, Palestine, Syria and Jordan and part of the Mediterranean Sea are seen in this nearly-vertical, large format camera's view from the Earth-orbiting Space Shuttle Challenger. The Sea of Galilee is at center frame and the Dead Sea at bottom center. The frame's center coordinates are 32.5 degrees north latitude and 35.5 degrees east longitude. A Linhof camera, using 4" x 5" film, was used to expose the frame through one of the windows on Challenger's aft flight deck.
STS-39 Earth observation of U.S.S.R.'s Kamchatka Peninsula and Pacific Ocean
1991-05-06
STS039-81-00OU (28 April-6 May 1991) --- Flying at an inclination of 57 degrees to Earth's Equator, the Space Shuttle Discovery was able to record photography of a number of seldom observed areas on the planet, such as the USSR. This view was taken in the far north Pacific Ocean and shows part of the Kamchatka Peninsula. One of Discovery's seven crewmembers aimed a 70mm handheld camera through aft flight deck overhead windows to record the image.
27. VIEW LOOKING AFT ON STARBOARD SIDE OF MAIN DECK ...
27. VIEW LOOKING AFT ON STARBOARD SIDE OF MAIN DECK WITH TENDER ANNIE RUTH ALONGSIDE. COVER OF FORWARD COMPANIONWAY HAS BEEN PLACED ON MAIN DECK; SUN AWNING A TYPICAL FEATURE IN TROPICAL CLIMATES. CREW MEMBERS UNKNOWN Original 4-3/4'x6-3/4' photograph taken c. 1930? - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
2008-06-01
S124-E-005419 (1 June 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide, STS-124 mission specialist, smiles for a photo while in the hatch which connects the flight deck and middeck of Space Shuttle Discovery.
6. DECK #4 TOPSIDE FROM NORTHEAST CORNER END PIECE FOR ...
6. DECK #4 TOPSIDE FROM NORTHEAST CORNER END PIECE FOR ROBOTIC ARM FOR ANCHORING ASTRONAUT FOR MECHANICAL WORK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
An elevated view of the bridge deck looking east toward ...
An elevated view of the bridge deck looking east toward Battelle Laboratories and the Ohio State University. Picture taken from State Route 315. - King Avenue Bridge, Spanning Olentangy River, Columbus, Franklin County, OH
Trestle #1, deck from below. View to southwest Promontory ...
Trestle #1, deck from below. View to southwest - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Trestle #1, deck from above. View to southwest Promontory ...
Trestle #1, deck from above. View to southwest - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND ...
12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND NORTH SIDE GUARD WALL - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ
5. DETAIL VIEW OF SIDE STEEL RAIL, DECK, AND SHELF ...
5. DETAIL VIEW OF SIDE STEEL RAIL, DECK, AND SHELF FROM SOUTHWEST CORNER - Price River Bridge, Spanning Price River, 760 North Street in Carbonville, 1 mile northwest of Price, Carbonville, Carbon County, UT
6. VIEW OF UNDERSIDE OF BRIDGE DECK, SHOWING LOWER CHORDS, ...
6. VIEW OF UNDERSIDE OF BRIDGE DECK, SHOWING LOWER CHORDS, FLOOR BEAMS, STRINGERS, BOTTOM LATERAL BRACINGS, AND NORTHERN STONE ABUTMENT. - Brown Street Bridge, Brown Street, spanning Oil Creek, Titusville, Crawford County, PA
STS-46 Commander Shriver eats candy (M&Ms) on OV-104's aft flight deck
1992-08-08
STS046-35-013 (31 July-8 Aug. 1992) --- Astronaut Loren J. Shriver, STS-46 commander, pursues several floating chocolate candies on the flight deck of the Space Shuttle Atlantis as it makes one of its 127 total orbits for the eight-day mission. Shriver, wearing a headset for communications with ground controllers, joined four other NASA astronauts and two European scientists for the mission.
STS-41 Commander Richards uses DTO 1206 portable computer onboard OV-103
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Commander Richard N. Richards, at pilots station, uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Richards tests the roller ball cursor control device. Surrounding Richards are checklists, forward flight deck windows, his lightweight communications kit assembly headset, a beverage container (orange-mango drink), and the pilots seat back and headrest.
Pilot Fullerton sleeps on aft flight deck
1982-03-30
STS003-22-113 (24 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communication kit assembly mini-headset (HDST), sleeps on aft flight deck resting his back against the floor and his feet against commander's ejection seat (S1) back. On-orbit station control panel A8 and payload station panel L15 appear above Fullerton. Special clips for holding notebooks open and beverage containers are velcroed on various panels. Photo credit: NASA
STS-36 Mission Specialist Mullane uses 70mm HASSELBLAD camera on flight deck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-36 Mission Specialist Richard M. Mullane points 70mm HASSELBLAD camera out overhead window W8 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Mullane is recording Earth imagery with the camera. Mullane and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission. Note: Mullane is wearing a orange 'Tigers' t-shirt.
STS-99 Kregel & Thiele show mapping SRTM techniques on OV-105's flight deck
2000-02-13
S99-E-5258 (13 February 2000) --- Astronauts Kevin R. Kregel (left), mission commander, and Gerhard P.J. Thiele demonstrate mapping techniques for the Space Radar Topography Mission (SRTM) using a payload-equipped Shuttle and a globe on Endeavour's flight deck. The two are joined by astronaut Janet L. Kavandi, mission specialist, on the SRTM's Red Team. Thiele is a mission specialist representing the European Space Agency (ESA).
STS-46 Commander Shriver eats candy (M and Ms) on OV-104's aft flight deck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Commander Loren J. Shriver, wearing a communications kit assembly headset and with his mouth open, pursues several floating chocolate-covered peanut candies (M and Ms) on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Shriver is positioned in front of overhead window W7. Outside the window the cloud-covered surface of the Earth and the Earth's limb are visible.
Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks
NASA Technical Reports Server (NTRS)
Cover, Mathew; Schnell, Thomas
2010-01-01
Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.
DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, ...
DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, SHOWING CONNECTION BETWEEN VERTICAL AND UPPER CHORD MEMBER - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH
15. Detail view of connection between vertical posts and deck ...
15. Detail view of connection between vertical posts and deck beam. Jack Boucher, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ
13. Telephoto view looking east showing center pier and deck ...
13. Telephoto view looking east showing center pier and deck superstructure. Jet Lowe, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ
12. View of bridge underside showing deck beams, stringers and ...
12. View of bridge underside showing deck beams, stringers and center pier. Jet Lowe, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ
47. VIEW OF PIER DECK, LOOKING SOUTHWEST FROM GATE, SHOWING ...
47. VIEW OF PIER DECK, LOOKING SOUTHWEST FROM GATE, SHOWING CAPTAIN'S GALLEY (LEFT) AND NEPTUNE'S LOCKER (RIGHT) IN CENTER - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
Dog Bridge, view of the deck of the bridge and ...
Dog Bridge, view of the deck of the bridge and rails looking from Linden Lane - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD
12. View underside of bridge, showing concrete tee beam deck ...
12. View underside of bridge, showing concrete tee beam deck spans supported by concrete piles, looking southwest - Colonel Alexander Scammell Memorial Bridge, Spanning Bellamy River at U.S. Route 4, Dover, Strafford County, NH
STS-36 Commander Creighton and Pilot Casper on flight deck during JSC training
NASA Technical Reports Server (NTRS)
1989-01-01
In their forward flight deck stations, STS-36 Commander John O. Creighton and Pilot John H. Casper discuss procedures prior to participating in JSC Fixed Based (FB) Shuttle Mission Simulator (SMS) exercises in the Shuttle Simulation and Training Facility Bldg 5. Creighton (left) sits in front of the commanders station controls and Casper (right) in front of the pilots station controls. Checklists are posted in various positions on the forward control panels as the crewmembers prepare for the FB-SMS simulation and their Department of Defense (DOD) flight aboard Atlantis, Orbiter Vehicle (OV) 104.
Astronaut Susan Helms on aft flight deck with RMS controls
1994-09-12
STS064-05-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support several tasks performed by the crew during the almost 11-day mission. Those tasks included the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool For Astronomy 201 (SPARTAN 201), a six-hour spacewalk and the Shuttle Plume Impingement Flight Experiment (SPIFEX). Photo credit: NASA or National Aeronautics and Space Administration
STS-42 Payload Specialist Merbold with drink on OV-103's aft flight deck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-42 Payload Specialist Ulf D. Merbold, wearing a lightweight headset (HDST), experiments with a grapefruit drink and straw on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Merbold watches the liquid ball of grapefruit drink he created float in the weightlessness of space. The Los Angeles Dodger cap Merbold is wearing is part of a tribute to Manley L. (Sonny) Carter, originally assigned as a mission specialist on this flight. During the eight-day flight, the crewmembers each wore the cap on a designated day. Carter, a versatile athlete and avid Dodger fan, died in the crash of a commuter airline in 1991.
13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS ...
13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS PROJECTING SHADOWS FROM AUTO TRAFFIC ONTO WESTERN PIER. - Northampton Street Bridge, Spanning Delaware River at Northampton Street (U.S. Route 22 Alternate), Easton, Northampton County, PA
A View From Below the Rover Deck
2012-08-17
The Curiosity engineering team created this cylindrical projection view from images taken by NASA Curiosity rover rear hazard avoidance cameras underneath the rover deck on Sol 0. Pictured here are the pigeon-toed wheels in their stowed position from
Trestle #1, detail of southwest abutment and deck. View to ...
Trestle #1, detail of southwest abutment and deck. View to south - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Decks of Trestle #1 (foreground) and Trestle #2. View to ...
Decks of Trestle #1 (foreground) and Trestle #2. View to southwest - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
16. DETAIL VIEW OF BRIDGE DECK DURING DEMOLITION, SHOWING EXTRADOSAL ...
16. DETAIL VIEW OF BRIDGE DECK DURING DEMOLITION, SHOWING EXTRADOSAL REINFORCING BARS OF PATENTED THACHER TYPE, AND PLAIN TRANSVERSE BARS CONNECTING EXTRADOSAL AND INTRADOSAL REINFORCEMENTS - Sanderson Avenue Bridge, Sanderson Avenue spanning Lackawanna River, Scranton, Lackawanna County, PA
STS 51-L crewmembers during training session in flight deck simulation
NASA Technical Reports Server (NTRS)
1985-01-01
Shuttle mission simulator (SMS) scene of Astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck (46207); Left to right, Backup payload specialist Barbara R. Morgan, Teacher in Space Payload specialist Christa McAuliffe, Hughes Payload specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck portion of the Shuttle Mission Simulator at JSC (46208).
STS-36 crewmembers train in JSC's FB shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1989-01-01
STS-36 Mission Specialist (MS) David C. Hilmers, seated on the aft flight deck, discusses procedures with Commander John O. Creighton (left) and Pilot John H. Casper during a simulation in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). Casper reviews a checklist at the pilots station on the forward flight deck. The crewmembers are rehearsing crew cabin activities for their upcoming Department of Defense (DOD) mission aboard Atlantis, Orbiter Vehicle (OV) 104.
STS-109 MS Linnehan on aft flight deck with laser rangefinder
2002-03-03
STS109-346-011 (3 March 2002) --- Astronaut Richard M. Linnehan, STS-109 mission specialist, uses a laser ranging device designed to measure the range between two spacecraft. Linnehan positioned himself on the cabin's aft flight deck as the Space Shuttle Columbia approached the Hubble Space Telescope. A short time later, the STS-109 crew captured and latched down the giant telescope in the vehicle's cargo bay for several days of work on the Hubble.
MS Linnehan watches EVA 2 from aft flight deck
2002-03-05
STS109-E-5621 (5 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, monitors the STS-109 mission's second space walk from the aft flight deck of the Space Shuttle Columbia. Astronauts James H. Newman and Michael J. Massimino were working on the Hubble Space Telescope (HST), temporarily captured in the shuttle's cargo bay. Linnehan had participated in the mission's first space walk on the previous day. This image was recorded with a digital still camera.
2013-11-19
STS088-335-031 (4-15 Dec. 1998) --- Astronaut Nancy J. Currie, mission specialist, makes a notation in a log book on Endeavour's flight deck as astronaut Jerry L. Ross, mission specialist, eyes a control display near the commander's station. The two were joined by a Russian cosmonaut and three NASA astronauts for eleven days in Earth orbit, spending the majority of their time and efforts in support of important initial links to the International Space Station (ISS).
Astronaut Apt takes photos of the Earth from the aft flight deck
1996-10-28
STS079-341-036 (16-26 Sept. 1996) --- Following the space shuttle Atlantis' separation from the Russian Mir Space Station, astronaut Jerome (Jay) Apt, mission specialist, eyeballs a photographic target on Earth prior to capturing it on film with a handheld 70mm camera from the aft flight deck. Scientists at the Johnson Space Center (JSC), who helped to plan the various target sites, will later analyze the film in their Houston laboratories.
STS-69 crewmembers on Endeavour's flight deck
1995-09-25
STS069-363-010 (7-18 September 1995) --- Astronaut Kenneth D. Cockrell, pilot, looks over a logbook on Space Shuttle Endeavours flight deck during rendezvous operations involving one of two temporarily free-flying craft. Astronaut James H. Newman (background), mission specialist, eyeballs the target. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.
STS-69 crew on flight deck during Wake Shield retrieval
1995-09-22
STS069-355-023 (7-18 September 1995) --- Astronauts David M. Walker (right), mission commander, and Michael L. Gernhardt, mission specialist, busy themselves on Space Shuttle Endeavours flight deck during rendezvous operations involving one of two temporarily free-flying craft. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.
Sarter, Nadine
2008-06-01
The goal of this article is to illustrate the problem-driven, cumulative, and highly interdisciplinary nature of human factors research by providing a brief overview of the work on mode errors on modern flight decks over the past two decades. Mode errors on modem flight decks were first reported in the late 1980s. Poor feedback, inadequate mental models of the automation, and the high degree of coupling and complexity of flight deck systems were identified as main contributors to these breakdowns in human-automation interaction. Various improvements of design, training, and procedures were proposed to address these issues. The author describes when and why the problem of mode errors surfaced, summarizes complementary research activities that helped identify and understand the contributing factors to mode errors, and describes some countermeasures that have been developed in recent years. This brief review illustrates how one particular human factors problem in the aviation domain enabled various disciplines and methodological approaches to contribute to a better understanding of, as well as provide better support for, effective human-automation coordination. Converging operations and interdisciplinary collaboration over an extended period of time are hallmarks of successful human factors research. The reported body of research can serve as a model for future research and as a teaching tool for students in this field of work.
Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.
2008-01-01
This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.
Integration of energy management concepts into the flight deck
NASA Technical Reports Server (NTRS)
Morello, S. A.
1981-01-01
The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.
Designing to Control Flight Crew Errors
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Willshire, Kelli F.
1997-01-01
It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.
48. VIEW OF PIER DECK, TAKEN FROM HALFWAY BETWEEN APPPROACH ...
48. VIEW OF PIER DECK, TAKEN FROM HALFWAY BETWEEN APPPROACH AND 1ST TEE, LOOKING SOUTHWEST, SHOWING CAPTAIN'S GALLEY (LEFT) AND NEPTUNE'S LOCKER (RIGHT) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
33. View aft of main deck, port side, taken from ...
33. View aft of main deck, port side, taken from just aft of forecastle bulkhead showing foremast, fore shrouds, pig house, midship house and boat skids. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA
Ideal Biological Characteristics for Long-Duration Manned Space Travel
NASA Astrophysics Data System (ADS)
Cardion, A. L.
As we consider the technical challenges we will overcome to launch our first interstellar mission, it is natural that we envision our own view from the deck of that starship. However, the cold reality of the vast distances of interstellar space, in keeping with the history of space flight, clearly indicates that our first forays into such missions will likely be unmanned probes. Indeed, it is the limitations of our own biology and psychology, primarily in their fragility and brevity, that anchor us to the terrestrial environment upon which we depend. But by considering the diversity of biological adaptation documented on Earth, in combination with the promise of an advanced bioengineering program, we can begin to imagine how evolution or design could adapt the intrepid travellers to long-duration stresses inherent to interstellar flight.
STS-109 MS Currie on aft flight deck
2002-03-04
STS109-E-5291 (1-12 March 2002) --- Astronaut Nancy J. Currie, STS-109 mission specialist, works with Payload and General Support Computers (PGSC) on the mid deck of the Space Shuttle Columbia. The image was taken with digital still camera.
Synthetic Vision Displays for Planetary and Lunar Lander Vehicles
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Shelton, Kevin J.; Kramer, Lynda J.; Bailey, Randall E.; Norman, Robert M.
2008-01-01
Aviation research has demonstrated that Synthetic Vision (SV) technology can substantially enhance situation awareness, reduce pilot workload, improve aviation safety, and promote flight path control precision. SV, and related flight deck technologies are currently being extended for application in planetary exploration vehicles. SV, in particular, holds significant potential for many planetary missions since the SV presentation provides a computer-generated view for the flight crew of the terrain and other significant environmental characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts, not available from other vision technologies. In addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. The paper accompanies a conference demonstration that introduced a prototype NASA Synthetic Vision system for lunar lander spacecraft. The paper will describe technical challenges and potential solutions to SV applications for the lunar landing mission, including the requirements for high-resolution lunar terrain maps, accurate positioning and orientation, and lunar cockpit display concepts to support projected mission challenges.
144. Camp Creek Bridge. View of the road deck showing ...
144. Camp Creek Bridge. View of the road deck showing the stone-faced guard rails and the grass shoulders continuing across the bridge. Looking east-southeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Conceptual Design of a Tiltrotor Transport Flight Deck
NASA Technical Reports Server (NTRS)
Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.
28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT ...
28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT PIER, DRIVE SYSTEM FOR SWING-SPAN INCLUDES: (from left to right) ELECTRIC LINE FROM SHORE (bottom left), TRACK AND RAIL ON CONCRETE PIER, ELECTRIC MOTOR, GASOLINE MOTOR, SHAFTS TO WEDGE DRIVE CRANKS, WEDGE DRIVE DRIVE SHAFT, WEDGE DRIVE GEAR BOX, AND (on right) GEARING FOR MANUAL WEDGE DRIVE ACCESSED THROUGH BRIDGE DECK - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA
1983-11-28
STS009-05-0153 (28 Nov. - 8 Dec. 1983) --- Though STS-9 was the space shuttle Columbia's sixth spaceflight, it was the first opportunity for an onboard galley, some of the results of which are shown in this 35mm scene on the flight deck. The metal tray makes for easy preparation and serving of in-space meals for crew members. This crewman is seated at the pilot's station on the flight deck. The actual galley is located in the middeck. Photo credit: NASA
Lindsey and Boe on forward flight deck
2011-02-26
S133-E-006081 (25 Feb. 2011) --- On space shuttle Discovery’s forward flight deck, astronauts Steve Lindsey (right), STS-133 commander, and Eric Boe, pilot, switch seats for a brief procedure as the crew heads toward a weekend docking with the International Space Station. Earlier the crew conducted thorough inspections of the shuttle’s thermal tile system using the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and special cameras. Photo credit: NASA or National Aeronautics and Space Administration
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a plethora of switches fills the control panel on the flight deck of space shuttle Atlantis. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
Designing Flightdeck Procedures
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Mauro, Robert; Degani, Asaf; Loukopoulou, Loukia
2016-01-01
The primary goal of this document is to provide guidance on how to design, implement, and evaluate flight deck procedures. It provides a process for developing procedures that meet clear and specific requirements. This document provides a brief overview of: 1) the requirements for procedures, 2) a process for the design of procedures, and 3) a process for the design of checklists. The brief overview is followed by amplified procedures that follow the above steps and provide details for the proper design, implementation and evaluation of good flight deck procedures and checklists.
STS-109 MS Linnehan with laser range finder on aft flight deck
2002-03-02
STS109-E-5003 (3 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, uses a laser ranging device designed to measure the range between two spacecraft. Linnehan positioned himself on the cabin's aft flight deck as the Space Shuttle Columbia approached the Hubble Space Telescope. A short time later, the STS-109 crew captured and latched down the giant telescope in the vehicle's cargo bay for several days of work on the Hubble. The image was recorded with a digital still camera.
STS-109 MS Linnehan with laser range finder on aft flight deck
2002-03-02
STS109-E-5002 (3 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, uses a laser ranging device designed to measure the range between two spacecraft. Linnehan positioned himself on the cabin's aft flight deck as the Space Shuttle Columbia approached the Hubble Space Telescope. A short time later, the STS-109 crew captured and latched down the giant telescope in the vehicle's cargo bay for several days of work on the Hubble. The image was recorded with a digital still camera.
STS-29 Pilot Blaha displays photograph of crewmembers' wives on flight deck
NASA Technical Reports Server (NTRS)
1989-01-01
Sitting in forward flight deck pilots seat and wearing t-shirt and shorts, STS-29 Pilot John E. Blaha displays group portrait of crewmembers' wives. The signed photograph was found by crewmembers upon thier ingressing Discovery, Orbiter Vehicle (OV) 103, on launch day. Surrounding Blaha are pilots station controls, forward windows W4, W5, W6, checklists, tethered pencils, and pilots seat back with orange parachute harness. Communications kit assembly freefloats below his left forearm.
STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks (right), positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Gregory in the commanders seat, Musgrave sitting on center console, and Henricks in the pilots seat look back toward the aft flight deck and the photographer. Seat backs appear in the foreground and forward control panels in the background.
STS-36 Pilot Casper reaches for laptop computer on OV-104's flight deck
1990-03-03
STS036-03-027 (3 March 1990) --- STS-36 Pilot John H. Casper reaches for the shuttle portable onboard computer (SPOC), a laptop computer, while at the pilots station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Casper, seated in the pilot’s seat, lifts the SPOC from the forward window ledge. Appearing around him are forward crew compartment windows, the head up display (HUD), the flight mirror assembly, and a checklist attached to control panel O3. Casper and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for a Department of Defense (DOD) devoted mission.
Flight manager and check-airman training
NASA Technical Reports Server (NTRS)
Carroll, J. E.
1980-01-01
An analysis of industry incidents, accidents, and related human factors research is given. The need to develop more effective resource management training for the flight deck crewmembers is discussed with specific emphasis on flight manager and check-airman training.
Earth Observations taken by the STS-135 Crew
2011-07-09
S135-E-006377 (9 July 2011) --- An almost vertical view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the southernmost part of Italy, referred to as the "boot." The eastern-most part of Sicily made it into the frame at left. The dark triangle in upper left corner is part of the window frame on the shuttle's flight deck. When the photo was taken, the STS-135 astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA
2015-04-29
The natural color image below, acquired on April 25 by the Advanced Land Imager on NASA’s Earth Observing-1 satellite, shows Calbuco’s plume rising above the cloud deck over Chile. Read more here: earthobservatory.nasa.gov/IOTD/view.php?id=85791&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Astronaut Curtis L. Brown, Jr., pilot, is seen on the starboard side of the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Astronaut Curtis L. Brown, Jr., pilot, is seen on the starboard side of the Space Shuttle Endeavour's aft flight deck just prior to the deployment of the Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS). Brown's image was captured with an Electronic Still Camera (ESC). Minutes later the camera was being used to document the deployment of PAMS-STU. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:26:36.
Deployment of the TDRS by STS-6 Challenger
1983-04-04
STS006-38-894 (4 April 1983) --- The tracking and data relay satellite (TDRS) leaves the 18-meter (60-ft) long cargo bay of the Earth-orbiting space shuttle Challenger about ten hours following launch of NASA’s second reusable space vehicle. The inertial upper stage (IUS) which gives power necessary to place the TDRS in its desired orbit is clearly seen in this view, photographed with a 70mm camera aimed through the aft flight deck windows of the Challenger. The cylindrical canisters in the left foreground contain scientific experiments from subscribers to NASA’s getaway special (GAS) program. Photo credit: NASA
Commander Kenneth D. Bowersox looks out the aft flight deck window
1997-02-12
S82-E-5007 (12 Feb. 1997) --- Astronaut Kenneth D. Bowersox, who served as pilot for the 1993 servicing mission to the Hubble Space Telescope (HST) appears to be pondering scheduled duties when the Space Shuttle Discovery makes a rendezvous in space with HST later in the week. Bowersox is mission commander and will remain in the Space Shuttle Discovery's cabin while four crew mates at various times perform Extravehicular Activities (EVA) to accomplish a series of servicing tasks on the giant telescope. This view was taken with an Electronic Still Camera (ESC).
OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment
1991-04-07
Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.
5. Downstream elevation, view to southeast. Dark stains on side ...
5. Downstream elevation, view to southeast. Dark stains on side of main girder are from deck drain scuppers, marking deck level within the girders. Compare this view and CA-126-7 to CA-126-19 for indication of severity of siltation of Salt River channel has silted. - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA
A Flight Deck Perspective of Self-Separation
NASA Technical Reports Server (NTRS)
Lozito, Sandra; Rosekind, Mark (Technical Monitor)
1997-01-01
I will be participating on a Free Flight Human Factors Panel at the Ninth International Symposium on Aviation Psychology in Columbus, Ohio. My representation is related to the work that our group has conducted on flight deck issues associate with free flight. Our group completed a full-mission simulation study investigating procedural issues associated with airborne self-separation. Ten crews flew eight scenarios each in the B747-400 simulator at Ames. Each scenario had a representation of different conflict geometries with intruder aircraft. New alerting logic was created and integrated into the simulator to enable self-separation. In addition, new display features were created to help provide for enhanced information to the flight crew about relevant aircraft, The participants were asked to coordinate maneuvers for self-separation with the intruder aircraft. Data analyses for the many of the crew procedures have been completed.
View of the Columbia's remote manipulator system
1982-03-30
STS003-09-444 (22-30 March 1982) --- The darkness of space provides the backdrop for this scene of the plasma diagnostics package (PDR) experiment in the grasp of the end effector or ?hand? of the remote manipulator system (RMS) arm, and other components of the Office of Space Sciences (OSS-1) package in the aft section of the Columbia?s cargo hold. The PDP is a compact, comprehensive assembly of electromagnetic and particle sensors that will be used to study the interaction of the orbiter with its surrounding environment; to test the capabilities of the shuttle?s remote manipulator system; and to carry out experiments in conjunction with the fast pulse electron generator of the vehicle charging and potential experiment, another experiment on the OSS-1 payload pallet. This photograph was exposed with a 70mm handheld camera by the astronaut crew of STS-3, with a handheld camera aimed through the flight deck?s aft window. Photo credit: NASA
Flight deck benefits of integrated data link communication
NASA Technical Reports Server (NTRS)
Waller, Marvin C.
1992-01-01
A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.
STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck
1991-08-11
STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
.... 3. With the airplane in level attitude and in each attitude resulting from the collapse of one or... during all flight phases. 14. ``No smoking'' and ``return to seat'' signs must be installed and visible...
11. VIEW LOOKING FORWARD ON PORT SIDE OF MAIN DECK ...
11. VIEW LOOKING FORWARD ON PORT SIDE OF MAIN DECK FROM POINT NEAR AFT COMPANIONWAY. DECKHOUSES, FROM RIGHT TO LEFT (STERN TO BOW), ARE ENGINE ROOM SKYLIGHT AND GALLEY SKYLIGHT/COMPANIONWAY - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
17. VIEW OF INTERIOR, EAST SIDE, DECK LEVEL OF MST. ...
17. VIEW OF INTERIOR, EAST SIDE, DECK LEVEL OF MST. NOTE CANVAS CURTAIN (RIGHT) USED TO COVER SOUTH SIDE OF MST BELOW LOWEST ENVIRONMENTAL DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
View of pony truss approach span, showing metal caissons and ...
View of pony truss approach span, showing metal caissons and deck system, including metal floor beams and timber stringers. The same decking system was used on movable span. Looking north from civilian land. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA
An Investigation of Flight Deck Data Link in the Terminal Area
NASA Technical Reports Server (NTRS)
Martin, Lynne; Lozito, Sandra; Kaneshige, John; Dulchinos, Vicki; Sharma, Shivanjli
2013-01-01
The Next Generation Air Transportation System (NextGen) and Europe's Single European Sky ATM Research (SESAR) concepts require an increased use of trajectory-based operations, including extensive strategic air traffic control clearances. The clearances are lengthy and complex, which necessitate data link communications to allow for message permanence and integration into the autoflight systems (i.e., autoload capability). This paper examines the use of flight deck data link communications for strategic and tactical clearance usage in the terminal area. A human-in-the-loop simulation was conducted using a high-fidelity flight deck simulator, with ten commercial flight crews as participants. Data were collected from six flight scenarios in the San Francisco terminal airspace. The variables of interest were ATC message modality (voice v. data link), temporal quality of the message (tactical v. strategic) and message length. Dependent variables were message response times, communication clarifications, communication-related errors, and pilot workload. Response time results were longer in data link compared to voice, a finding that has been consistently revealed in a number of other simulations [1]. In addition, strategic clearances and longer messages resulted in a greater number of clarifications and errors, suggesting an increase in uncertainty of message interpretation for the flight crews when compared to tactical clearances. The implications for strategic and compound clearance usage in NextGen and SESAR are discussed
PBF Cooling Tower. Hot deck of Cooling Tower with fan ...
PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research
NASA Technical Reports Server (NTRS)
Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)
1995-01-01
A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.
7. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK ...
7. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK FROM POINT NEAR ENGINE ROOM SKYLIGHT. ENGINE ROOM SKYLIGHT IS AT EXTREME LEFT, FOLLOWED BY PILOTS' CABIN SKYLIGHT, AFT COMPANIONWAY AND STEERING GEAR BOX - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD ...
22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD TOP OF CONCRETE 'A' FRAME STRUCTURE SHOWING DRIVE CABLES, DRIVE GEAR, BOTTOM OF CAMERA TOWER AND 'CROWS NEST' CONTROL ROOM. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
7. View showing placement of timber deck placement on chord ...
7. View showing placement of timber deck placement on chord and built up construction of top chord and continuous construction through top panel points, eye bar construction on bottom chord - Bridge No. 2.4, Spanning Boiling Fork Creek at Railroad Milepost JC-2.4, Decherd, Franklin County, TN
Closeup view of the exterior of the starboard side of ...
Close-up view of the exterior of the starboard side of the forward fuselage of the Orbiter Discovery looking at the forward facing observation windows of the flight deck. Note the High-temperature Reusable Surface Insulation (HRSI) surrounding the window openings, the Low-temperature Reusable Surface Insulation (LRSI) immediately beyond the HRSI tiles and the Advanced Flexible Reusable Surface Insulation blankets just beyond the LRSI tiles. The holes in the tiles are injection points for the application of waterproofing material. The windows are composed of redundant pressure window panes of thermal glass. This image was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Left seat command or leadership flight, leadership training and research at North Central Airlines
NASA Technical Reports Server (NTRS)
Foster, G. C.; Garvey, M. C.
1980-01-01
The need for flight leadership training for flight deck crewmembers is addressed. A management grid is also described which provides a quantitative management language against which any number of management behaviors can be measured.
34. PRIMARY FLIGHT CONTROL STATION AFT LOOKING FORWARD ON ...
34. PRIMARY FLIGHT CONTROL STATION - AFT LOOKING FORWARD ON PORT SIDE SHOWING FLIGHT DECK LIGHTING BOARD, ARRESTING GEAR CONTROL CONSOLE AND FRESNEL LENS OPTICAL LANDING SYSTEM. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
Horowitz checks flight notes at the commander's station
2001-08-10
STS105-E-5002 (10 August 2001) --- Astronaut Scott J. Horowitz, STS-105 commander, checks flight notes at the commander's station on the flight deck of the Earth-orbiting Space Shuttle Discovery. The image was recorded with a digital still camera.
Horowitz checks flight notes at the commander's station
2001-08-10
STS105-E-5001 (10 August 2001) --- Astronaut Scott J. Horowitz, STS-105 commander, checks flight notes at the commander's station on the flight deck of the Earth-orbiting Space Shuttle Discovery. The image was recorded with a digital still camera.
Extending Validated Human Performance Models to Explore NextGen Concepts
NASA Technical Reports Server (NTRS)
Gore, Brian Francis; Hooey, Becky Lee; Mahlstedt, Eric; Foyle, David C.
2012-01-01
To meet the expected increases in air traffic demands, NASA and FAA are researching and developing Next Generation Air Transportation System (NextGen) concepts. NextGen will require substantial increases in the data available to pilots on the flight deck (e.g., weather,wake, traffic trajectory predictions, etc.) to support more precise and closely coordinated operations (e.g., self-separation, RNAV/RNP, and closely spaced parallel operations, CSPOs). These NextGen procedures and operations, along with the pilot's roles and responsibilities, must be designed with consideration of the pilot's capabilities and limitations. Failure to do so will leave the pilots, and thus the entire aviation system, vulnerable to error. A validated Man-machine Integration and design Analysis System (MIDAS) v5 model was extended to evaluate anticipated changes to flight deck and controller roles and responsibilities in NextGen approach and Land operations. Compared to conditions when the controllers are responsible for separation on decent to land phase of flight, the output from these model predictions suggest that the flight deck response time to detect the lead aircraft blunder will decrease, pilot scans to the navigation display will increase, and workload will increase.
STS 41-G crew photo taken on the flight deck of the Challenger during flight
1984-10-13
41G-19-006 (5-13 Oct. 1984) --- The seven-member 41-G crew assembles for a group shot on the flight deck of the Earth-orbiting space shuttle Challenger. Robert L. Crippen, commander, is in center of the back row. Others pictured are (front row, l.-r.) Jon A. McBride, pilot; Sally K. Ride, Kathryn D. Sullivan and David C. Leestma, all mission specialists; and Paul D. Scully-Power (left) and Marc Garneau, both payload specialists, on the back row. Garneau represents the National Research Council of Canada and Scully-Power is a civilian oceanographer with the U.S. Navy. Photo credit: NASA
14 CFR 25.819 - Lower deck service compartments (including galleys).
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight loads when occupied. (g) For each powered lift system installed between a lower deck service... following requirements: (1) Each lift control switch outside the lift, except emergency stop buttons, must be designed to prevent the activation of the life if the lift door, or the hatch required by...
14 CFR 25.819 - Lower deck service compartments (including galleys).
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight loads when occupied. (g) For each powered lift system installed between a lower deck service... following requirements: (1) Each lift control switch outside the lift, except emergency stop buttons, must be designed to prevent the activation of the life if the lift door, or the hatch required by...
STS-46 'blue' shift crewmembers look up from work on OV-104's flight deck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 'blue' shift crewmembers look up from checklist procedures to have their picture taken on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Seated at the commanders station (left) is Pilot Andrew M. Allen with Italian Payload Specialist Franco Malerba positioned in front of the center console and European Space Agency (ESA) Mission Specialist seated at the pilots station (right). MS Marsha S. Ivins is in the interdeck access hatch at the right bottom corner of the photo.
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, the controller used during docking to the airlock of space shuttle Atlantis stands among the switches filling the control panel on the flight deck. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
STS-48 Pilot Reightler on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Pilot Kenneth S. Reightler, Jr, positioned under overhead window W8, poses for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
Information management for commercial aviation - A research perspective
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.; Abbott, Kathy H.; Jonsson, Jon E.; Boucek, George; Rogers, William H.
1991-01-01
The problem of flight deck information management (IM), defined as processing, controlling, and directing information, for commercial flight decks, and a research effort underway to address this problem, are discussed. The premises provided are utilized to lay the groundwork required for such research by providing a framework to describe IM problems and an avenue to follow when investigating solution concepts. The research issues presented serve to identify specific questions necessary to achieve a better understanding of the IM problem, and to provide assessments of the relative merit of various solution concepts.
DOT National Transportation Integrated Search
2009-04-27
Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...
[STS-48 Mission Highlights Resource Tape. Part 1 of 2
NASA Technical Reports Server (NTRS)
1991-01-01
In this first part of a two part video mission-highlights set, the flight of the STS-48 Space Shuttle Orbiter Discovery is reviewed. The flight crew consisted of: J. O. Creighton (Commander); Ken Reightler (Pilot); Charles 'Sam' Gemar (Mission Specialist); James 'Jim' Buchli (MS); and Mark Brown (MS). Step-by-step pre-launch and sunset launch sequences are shown with accompanying shots inside the Mission Control Center. The primary goal of this mission was the deployment of Upper Atmosphere Research Satellite (UARS). Other (secondary) payloads included: the MidDeck Zero Gravity Experiment (MODE); the Sam/Cream device; the Shuttle Activation Monitor/Cosmic Ray Effects and Activation Monitor Experiment; and the Physiology and Anatomical Rodent Experiment (PARE). Crew activities were shown, along with Earth views (Aurora Borealis (B/W), light from the Kuwait oil fires, lightning over Italy and other areas, polar regions and ice caps, and the United States at night (B/W)). This was the thirteenth flight of the Space Shuttle Discovery. A night landing is shown.
STS-114 Flight Day 3 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Video coverage of Day 3 includes highlights of STS-114 during the approach and docking of Discovery with the International Space Station (ISS). The Return to Flight continues with space shuttle crew members (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) seen in onboard activities on the fore and aft portions of the flight deck during the orbiter's approach. Camarda sends a greeting to his family, and Collins maneuvers Discovery as the ISS appears steadily closer in sequential still video from the centerline camera of the Orbiter Docking System. The approach includes video of Discovery from the ISS during the orbiter's Rendezvous Pitch Maneuver, giving the ISS a clear view of the thermal protection systems underneath the orbiter. Discovery docks with the Destiny Laboratory of the ISS, and the shuttle crew greets the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS onboard the station. Finally, the Space Station Remote Manipulator System hands the Orbiter Boom Sensor System to its counterpart, the Shuttle Remote Manipulator System.
6. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK ...
6. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK FROM POINT NEAR GALLEY STOVE CHIMNEY. DECKHOUSES ARE (FORE TO AFT) GALLEY COMPANIONWAY, ENGINE ROOM SKYLIGHT, PILOTS' CABIN SKYLIGHT, AFT COMPANIONWAY TO PILOTS' CABIN AND STEERING GEAR BOX - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
10. VIEW LOOKING FORWARD ON STARBOARD SIDE OF MAIN DECK ...
10. VIEW LOOKING FORWARD ON STARBOARD SIDE OF MAIN DECK FROM POINT NEAR ENGINE CONTROL PANEL. DECKHOUSES, FROM LEFT TO RIGHT (STERN TO BOW), ARE AFT COMPANIONWAY, PILOTS' CABIN SKYLIGHT, ENGINE ROOM SKYLIGHT, AND GALLEY SKYLIGHT/COMPANIONWAY - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
PBF Cooling Tower. View of stairway to fan deck. Vents ...
PBF Cooling Tower. View of stairway to fan deck. Vents are made of redwood. Camera facing southwest toward north side of Cooling Tower. Siding is corrugated asbestos concrete. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3463 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
View of pony truss approach span, showing metal caissons and ...
View of pony truss approach span, showing metal caissons and deck system, including metal floor beams and timber stringers. The same decking system was used on movable span. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA
Cockpit avionics integration and automation
NASA Technical Reports Server (NTRS)
Pischke, Keith M.
1990-01-01
Information on cockpit avionics integration and automation is given in viewgraph form, with a number of photographs. The benefits of cockpit integration are listed. The MD-11 flight guidance/flight deck system is illustrated.
2008-02-18
S122-E-010925 (18 Feb. 2008) --- Astronaut Steve Frick, STS-122 commander, smiles for a photo while monitoring data at the commander's station on the flight deck of Space Shuttle Atlantis during flight day 12 activities.
Patrick in Interdeck Access Hatch
2010-02-09
S130-E-006314 (9 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, is pictured in the hatch which connects the flight deck and middeck of space shuttle Endeavour during flight day two activities.
Behnken in Interdeck Access Hatch
2010-02-08
S130-E-005229 (8 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, is pictured in the hatch which connects the flight deck and middeck of space shuttle Endeavour during flight day one activities.
2014-08-06
LOS ANGELES, Calif. – Visitors tour the well deck of the USS Anchorage and view the Orion boilerplate test vehicle secured in its recovery cradle during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. Near the front of the well deck, at left, is a mockup of NASA’s Space Launch System and Orion spacecraft. NASA, Lockheed Martin and the U.S. Navy completed Underway Recovery Test 2 on the Orion test vehicle in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 on Exploration Flight Test-1, or EFT-1, atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
Preliminary design of two Space Shuttle fluid physics experiments
NASA Technical Reports Server (NTRS)
Gat, N.; Kropp, J. L.
1984-01-01
The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.
NASA Technical Reports Server (NTRS)
Sarter, Nadine B.; Woods, David D.
1994-01-01
Technological developments have made it possible to automate more and more functions on the commercial aviation flight deck and in other dynamic high-consequence domains. This increase in the degrees of freedom in design has shifted questions away from narrow technological feasibility. Many concerned groups, from designers and operators to regulators and researchers, have begun to ask questions about how we should use the possibilities afforded by technology skillfully to support and expand human performance. In this article, we report on an experimental study that addressed these questions by examining pilot interaction with the current generation of flight deck automation. Previous results on pilot-automation interaction derived from pilot surveys, incident reports, and training observations have produced a corpus of features and contexts in which human-machine coordination is likely to break down (e.g., automation surprises). We used these data to design a simulated flight scenario that contained a variety of probes designed to reveal pilots' mental model of one major component of flight deck automation: the Flight Management System (FMS). The events within the scenario were also designed to probe pilots' ability to apply their knowledge and understanding in specific flight contexts and to examine their ability to track the status and behavior of the automated system (mode awareness). Although pilots were able to 'make the system work' in standard situations, the results reveal a variety of latent problems in pilot-FMS interaction that can affect pilot performance in nonnormal time critical situations.
Flight deck crew coordination indices of workload and situation awareness in terminal operations
NASA Astrophysics Data System (ADS)
Ellis, Kyle Kent Edward
Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.
Conflict Resolution Automation and Pilot Situation Awareness
NASA Technical Reports Server (NTRS)
Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.
2010-01-01
This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.
Mir space station as seen from shuttle Atlantis
1995-11-17
STS074-718-056 (12-20 Nov 1995) --- As photographed from the overhead Windows on the aft flight deck of the docked Space Shuttle Atlantis, a number of components of the cluster comprising the Russia?s Mir Space Station are backdropped over the northeastern United States. The crew enjoyed a southward looking view of the United States east coast from New Hampshire to South Carolina. Cape Cod and Boston, Massachusetts are seen on the north or the side away from Earth?s limb. New York City and Long Island are in the center of the photo. The mouths of both the Delaware and Chesapeake Bays are visible southward.
View of STS-109 MS Grunsfeld during EVA 1
2002-03-04
STS109-E-5448 (4 March 2002) --- Astronaut John M. Grunsfeld, payload commander, peers into the crew cabin of the Space Shuttle Columbia during the first STS-109 extravehicular activity (EVA-1) on March 4, 2002. Grunsfeld's helmet visor displays a mirrored image of the Earth's hemisphere. Astronauts Grunsfeld and Richard M. Linnehan replaced the starboard solar array on the Hubble Space Telescope (HST) on the first of five scheduled STS-109 space walks. The lower portion of the giant telescope can be seen over Grunsfeld's left shoulder. The image was recorded with a digital still camera by a crewmate on shuttle's aft flight deck.
View of the FGB/Zarya and Node 1/Unity modules in the payload bay
1998-12-07
STS088-719-071 (6 Dec. 1998) --- Just a few feet away from a 70mm camera onboard the Space Shuttle Endeavour, the Russian-built control module and the U.S.-built Unity connecting module are mated in the shuttle's cargo bay. Using Endeavour's 50-ft. long Canadian-built Remote Manipulator System (RMS) robot arm, astronaut Nancy J. Currie working from the aft flight deck, plucked Zarya out of orbit at 5:47 p.m. (CST), December 6. The craft had been orbiting Earth for a little over 16 days prior to grapple and subsequent docking to Unity.
View of the FGB prior to rendezvous and grapple
1998-12-06
S88-E-5044 (12-06-98) --- With Endeavour's astronauts waiting to mate the Russian-built Zarya control module with the U.S.-built Unity connecting module, an electronic still camera (ESC) was used to record this image of the approaching Zarya. Using the shuttle's 50-ft.-long Canadian-built robot arm, astronaut Nancy J. Currie, working from Endeavour's aft flight deck, plucked Zarya out of orbit at 5:47 p.m. (CST), Dec. 6. The craft had been orbiting Earth for a little over 16 days prior to the grapple and subsequent docking to Unity. This image was recorded at 22:53:55 GMT, Dec. 6.
View of the FGB prior to rendezvous and grapple
1998-12-06
S88-E-5045 (12-06-98) --- With Endeavour's astronauts waiting to mate the Russian-built Zarya control module with the U.S.-built Unity connecting module, an electronic still camera (ESC) was used to record this image of the approaching Zarya. Using the shuttle's 50-ft.-long Canadian-built robot arm, astronaut Nancy J. Currie, working from Endeavour's aft flight deck, plucked Zarya out of orbit at 5:47 p.m. (CST), Dec. 6. The craft had been orbiting Earth for a little over 16 days prior to the grapple and subsequent docking to Unity. This image was recorded at 23:02:06 GMT, Dec. 6.
STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)
1991-06-14
STS040-612-005 (5-14 June 1991) --- This view showing the Spacelab Life Sciences (SLS-1) module in Columbia's cargo bay was taken through windows on the aft flight deck. Under some lighting conditions the multi-layered Shuttle windows have internal reflections that provide a kaleidoscopic effect. In this image the sunrays as seen on the clouds also appear to be present in space. Note how the white sunlight toward the Sun at the Earth's limb becomes separated into the colors of the visible spectrum towards that part of the limb further into darkness due to atmosphere acting as a natural prism.
Documentation of debris impact damage to flight deck window
1995-07-26
STS070-309-026 (13-22 JULY 1995) --- A close-up view of the space shuttle Discovery?s window number 6, on the forward starboard side, nearest the pilot?s station. A small impact in the window, about 1/16 inch in size, is clearly seen in the corner. Crew members told a August 11, 1995, gathering of Johnson Space Center (JSC) employees that a small piece of debris apparently struck the window during Discovery?s wing velocity vector mode. It was noticed when the astronauts awoke from their sleep period. Though watched closely during the remainder of the mission, the impact never caused a major concern.
Checkout activity on the Remote Manipulator System (RMS) arm
1997-02-12
S82-E-5016 (12 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls Discovery's Remote Manipulation System (RMS), from the aft flight deck. Hawley and his crew mates are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. Hawley served as a mission specialist on NASA's 1990 mission which was responsible for placing HST in Earth-orbit. This view was taken with an Electronic Still Camera (ESC).
Brown, Rominger and Curbeam conduct flight control systems checkout
1997-08-29
STS085-330-034 (7 - 19 August 1997) --- From the left, astronauts Curtis L. Brown, Jr., mission commander; Robert L. Curbeam, Jr., mission specialist; and Kent V. Rominger, pilot, are pictured on the Space Shuttle Discovery's flight deck during a checkout of flight control systems.
21. View of endlift slide on pedestal and threaded shaft ...
21. View of end-lift slide on pedestal and threaded shaft with level gears. Curved deck joint at underside of roadway deck is seen, as well as submarine electrical cables resting on the masonry pier. (Nov. 30, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY
Closeup view of the mid deck aft wall of the ...
Close-up view of the mid deck aft wall of the Orbiter Discovery showing a mission specific configuration of stowage lockers within the modular system designed for maximum flexibility. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, ...
14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, LOOKING WEST. DETAIL OF SUPPORTING TIMBERS. THE LOCATION OF THIS ORE BIN IN RELATION TO THE MILL CAN BE SEEN IN MANY OF THE MILL OVERVIEWS. (CA-290-4 THROUGH CA-290-8). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
30. VIEW LOOKING FORWARD ON STARBOARD SIDE OF MAIN DECK ...
30. VIEW LOOKING FORWARD ON STARBOARD SIDE OF MAIN DECK FROM ALONGSIDE ENGINE CONTROL PANEL. CONFIGURATION OF SKYLIGHTS AND COMPANIONWAY DIFFERENT FROM WHAT WAS FOUND BY HAER IN 1986. Original 4-3/4'x6-3/4' photograph taken c. 1930? - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)
1994-01-01
Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical validation process. The model and its supporting data provide a generalizable tool that is being expanded to include air/ground compatibility and ATC crew interactions in air traffic management.
Flight deck activity during flyaround of Mir Space Station
1996-04-19
STS076-316-008 (23 March 1996) --- On the aft flight deck of the Space Shuttle Atlantis, astronaut Linda M. Godwin uses a hand-held laser instrument to check the range of Russia's Mir Space Station during docking operations. The two spacecraft were in the process of making their third docking in Earth-orbit. With the subsequent delivery of astronaut Shannon W. Lucid to the Mir, the Mir-21 crew grew from two to three, as the mission specialist quickly becomes a cosmonaut guest researcher. Lucid will spend approximately 140 days on Mir before returning to Earth.
STS-35 MS Hoffman operates ASTRO-1 MPC on OV-102's aft flight deck
1990-12-10
STS035-12-015 (2-11 Dec 1990) --- Astronaut Jeffrey A. Hoffman, STS 35 mission specialist, uses a manual pointing controller (MPC) for the Astro-1 mission's Instrument Pointing System (IPS). By using the MPC, Hoffman and other crewmembers on Columbia's aft flight deck, were able to command the IPS, located in the cargo bay, to record astronomical data. Hoffman is serving the "Blue" shift which complemented the currently sleeping "Red" shift of crewmembers as the mission collected scientific data on a 24-hour basis. The scene was photographed with a 35mm camera.
Astronaut Kevin Chilton displays map of Scandinavia on flight deck
1994-04-14
STS059-16-032 (9-20 April 1994) --- Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them. Chilton was joined in space by five other NASA astronauts for a week and a half of support to the Space Radar Laboratory (SRL-1) mission and other tasks.
14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
Flight Deck Interval Management Flight Test Final Report
NASA Technical Reports Server (NTRS)
Tulder, Paul V.
2017-01-01
This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.
14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...
DOT National Transportation Integrated Search
2003-09-01
Electronic Flight Bags (EFBs) are coming into the flight deck, bringing along with them a wide range of human factors considerations. In order to understand and assess the full impact of an EFB, designers and evaluators require an understanding of ho...
DOT National Transportation Integrated Search
2003-09-01
Electronic Flight Bags (EFBs) are coming into the flight deck, bringing along with them a wide range of human factors considerations. In order to understand and assess the full impact of an EFB, designers and evaluators require an understanding of ho...
Evaluation of Cabin Crew Technical Knowledge
NASA Technical Reports Server (NTRS)
Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin
1998-01-01
Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.
20. WEB / DECK / LATERAL BRACING DETAIL OF THROUGH ...
20. WEB / DECK / LATERAL BRACING DETAIL OF THROUGH TRUSSES. VIEW TO WEST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE
Behnken in Interdeck Access Hatch
2010-02-08
S130-E-005218 (8 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, smiles for the camera while in the hatch which connects the flight deck and middeck of space shuttle Endeavour during flight day one activities.
Payette uses computer in the aft FD on Space Shuttle Endeavour
2009-07-28
S127-E-011052 (28 July 2009) --- Canadian Space Agency astronaut Julie Payette, STS-127 mission specialist, uses a computer on the flight deck of Space Shuttle Endeavour during flight day 14 activities.
Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Long, Kurtis R.
2005-01-01
Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.
Betsiboka River Valley, Madagascar
1983-06-24
STS007-03-058 (18-24 June 1983) --- The Island of Madagascar in the Indian Ocean off the coast of Africa. The colorful area is the mouth of the Betsiboka River near the city of Majunga. The photograph was taken with a 70mm handheld camera aimed through the aft flight deck?s overhead windows on the Earth-orbiting Space Shuttle Challenger.
19. On salon deck level, view looking forward at tops ...
19. On salon deck level, view looking forward at tops of steam chimneys (rising from boilers) showing safety valves, safety valve vent pipe, and smoke bonnet underneath smokestack. Steam chimneys are integral parts of the boilers and in effect are smokestacks surrounded by a pressurized steam space continuous with the boiler steam spaces. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT
43. A view from the north, looking south across the ...
43. A view from the north, looking south across the lock floor. Two layers of floor decking are visible at left, where part of the floor decking, damaged by telephone company intervention, has been removed. - Wabash & Erie Canal, Lock No. 2, 8 miles east of Fort Wayne, adjacent to U.S. Route 24, New Haven, Allen County, IN
22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF ...
22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF THROUGH TRUSSES. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.
2012-01-01
Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
1994-07-23
STS065-44-014 (8-23 July 1994) --- Astronaut Robert D. Cabana, mission commander, is seen on the Space Shuttle Columbia's flight deck with the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
STS-134 MS Chamitoff reads a Procedures Checklist
2011-05-30
S134-E-010904 (30 May 2011) --- NASA astronaut Greg Chamitoff, STS-134 mission specialist, reads a procedures checklist while working on the aft flight deck of space shuttle Endeavour during flight day 15 activities. Photo credit: NASA
Single-pilot workload management in entry-level jets.
DOT National Transportation Integrated Search
2013-09-01
Researchers from the NASA Ames Flight Cognition Lab and the FAAs Flight Deck Human Factors Research Laboratory at the Civil Aerospace Medical Institute (CAMI) examined task and workload management by single pilots in Very Light Jets (VLJs), also c...
Melvin and Love on FD during STS-122
2008-02-08
S122-E-006213 (8 Feb. 2008) --- Astronauts Leland Melvin (left) and Stanley Love, both STS-122 mission specialists, take a moment for a photo on the aft flight deck of Space Shuttle Atlantis during flight day two activities.
14 CFR 223.2 - Exemption from section 401 of the Act.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the extent necessary to carry, for purposes of in-flight observation, technical representatives of companies that have been engaged in the manufacture, development, or testing of aircraft or aircraft... persons to the aircraft flight deck. ...
14 CFR 223.2 - Exemption from section 401 of the Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the extent necessary to carry, for purposes of in-flight observation, technical representatives of companies that have been engaged in the manufacture, development, or testing of aircraft or aircraft... persons to the aircraft flight deck. ...
14 CFR 223.2 - Exemption from section 401 of the Act.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the extent necessary to carry, for purposes of in-flight observation, technical representatives of companies that have been engaged in the manufacture, development, or testing of aircraft or aircraft... persons to the aircraft flight deck. ...
14 CFR 223.2 - Exemption from section 401 of the Act.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the extent necessary to carry, for purposes of in-flight observation, technical representatives of companies that have been engaged in the manufacture, development, or testing of aircraft or aircraft... persons to the aircraft flight deck. ...
14 CFR 223.2 - Exemption from section 401 of the Act.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the extent necessary to carry, for purposes of in-flight observation, technical representatives of companies that have been engaged in the manufacture, development, or testing of aircraft or aircraft... persons to the aircraft flight deck. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... February 28, 2012, 77 FR 12069. The collection requires interested volunteers to fill out an application to... collection. OMB Control Number: 1652-0011. Forms(s): N/A. Affected Public: Volunteer pilots, flight engineers..., train, deputize, and supervise qualified volunteer pilots, flight engineers, and navigators to defend...
NASA Technical Reports Server (NTRS)
Evans, Emory; Young, Steven D.; Daniels, Taumi; Santiago-Espada, Yamira; Etherington, Tim
2016-01-01
A flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) predict aircraft energy state and/or autoflight configuration, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. Four new technology concepts were evaluated vis-à-vis current state-of-the-art flight deck systems and indicators. This human-in-the-loop study was conducted using commercial airline crews. Scenarios spanned a range of complex conditions and several emulated causal factors and complexity in recent accidents involving loss of state awareness by pilots (e.g. energy state, automation state, and/or system state). Data were collected via questionnaires administered after each flight, audio/video recordings, physiological data, head and eye tracking data, pilot control inputs, and researcher observations. This paper strictly focuses on findings derived from the questionnaire responses. It includes analysis of pilot subjective measures of complexity, decision making, workload, situation awareness, usability, and acceptability.
Comprehensive analysis of transport aircraft flight performance
NASA Astrophysics Data System (ADS)
Filippone, Antonio
2008-04-01
This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance, atmospheric effects, economic Mach number and noise trajectories at F.A.R. landing points.
Advanced flight deck/crew station simulator functional requirements
NASA Technical Reports Server (NTRS)
Wall, R. L.; Tate, J. L.; Moss, M. J.
1980-01-01
This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.
Voice measures of workload in the advanced flight deck
NASA Technical Reports Server (NTRS)
Schneider, Sid J.; Alpert, Murray; Odonnell, Richard
1989-01-01
Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.
STS-48 MS Brown on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) Mark N. Brown looks away from the portable laptop computer screen to pose for an Electronic Still Camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Brown was working at the payload station before the interruption. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
STS-48 Commander Creighton on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Commander John O. Creighton, positioned under overhead window W8, interrupts an out-the-window observation to display a pleasant countenance for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
MS Currie at RMS controls on aft flight deck
2002-03-07
STS109-E-5685 (7 March 2002) --- Astronaut Nancy J. Currie, mission specialist, works the controls for Columbia's Remote Manipulator System (RMS) on the crew cabin's aft flight deck. On a week with one lengthy space walk per day, Currie has had her hands full with RMS duties to support the space walks of four crewmates. Astronauts James H. Newman and Michael J. Massimino had just begin EVA-4, during which the duo required the services of Currie to control the robotic arm to maneuver them around the various workstations on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.
Evaluation of bridge deck delamination investigation methods
DOT National Transportation Integrated Search
1998-07-01
An objective view of the relative advantages and limitations of the nondestructive, testing and evaluation methods that currently used in the inspection of bridge decks is presented and discussed. The three main nondestructive testing technologies th...
7. Bridge deck, showing dam (left) and Sullivan Lake District ...
7. Bridge deck, showing dam (left) and Sullivan Lake District Ranger Station buildings (left rear). View to north. - Outlet Creek Bridge, Sullivan Lake Ranger Administrative Site, Metaline Falls, Pend Oreille County, WA
Flight training efforts would benefit from more flexible aviation regulatory structures.
Bent, J
1996-10-01
Training and regulatory issues related to modern flight deck systems are reviewed. Philosophical differences in regulatory bodies in the United States and Europe are highlighted. Methods of changing regulations in Europe and the United States are discussed.
Wilson on the AFD during STS-121
2006-07-05
S121-E-05438 (5 July 2006) --- Astronaut Stephanie D. Wilson, STS-121 mission specialist, on Discovery's flight deck during flight day two activities, on the eve of one of the mission's busiest days -- docking day with the International Space Station.
Commander Readdy after rendezvous with Mir
1996-09-19
STS79-E-5058 (19 September 1996) --- During operations to catch up with Russia's Mir Space Station, astronaut William F. Readdy, mission commander, commands the Space Shuttle Atlantis from the left hand station on the forward flight deck, during Flight Day 4.
PLT Polansky at commanders station on Atlantis
2001-02-09
STS98-E-5024 (9 February 2001) --- Astronaut Mark L. Polansky, pilot, temporarily mans the commander's station on the flight deck of the Space Shuttle Atlantis during STS-98 Flight Day 2 maneuvers. The photograph was recorded with a digital still camera.
Single-pilot workload management in entry-level jets : appendices.
DOT National Transportation Integrated Search
2013-09-01
Researchers from the NASA Ames Flight Cognition Lab and the FAAs Flight Deck Human Factors Research Laboratory at the Civil Aerospace Medical Institute (CAMI) examined task and workload management by single pilots in Very Light Jets (VLJs), also c...
DOT National Transportation Integrated Search
1994-04-01
This document describes the first of three studies relating to human factors : aspects in the flight desk display of Automatic Terminal Information Servies : (ATIS). This research is being conducted by the Federal Aviation Administration : (FAA) Tech...
2017-12-08
The immense glass windshield on the C130 affords a panoramic view of the world. This plane typically flies with a pilot, copilot and flight engineer on the flight deck, as well as an air crewman in the main cabin. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
View of the FGB prior to rendezvous and grapple
1998-12-06
S88-E-5047 (12-06-98) --- With Endeavour's astronauts waiting to mate the Russian-built Zarya control module with the U.S.-built Unity connecting module, an electronic still camera (ESC) was used to record this image of the approaching Zarya. A portion of Unity is in the foreground. Using the shuttle's 50-ft.-long Canadian-built robot arm, astronaut Nancy J. Currie, working from Endeavour's aft flight deck, plucked Zarya out of orbit at 5:47 p.m. (CST), Dec. 6. The craft had been orbiting Earth for a little over 16 days prior to the grapple and subsequent docking to Unity. This image was recorded at 23:11:05 GMT, Dec. 6.
Tour by Saudi prince Salman Abdelazize Al-Saud prior to mission
NASA Technical Reports Server (NTRS)
1985-01-01
Tour by Saudi prince Salman Abdelazize Al-Saud, payload specialists for STS 51-G mission, prior to mission. Al-Saud and Abdulmohsen Hamad Al-Bassam, the backup payload specialist, man the controls on the flight deck of the crew compartment trainer in the Shuttle mockup and integration laboratory (29788); the Saudi payload specialists share the hatch of the crew compartment trainer (29789); Portrait view of Abdulmohsen Hamad Al-Bassam during a visit to the Shuttle mockup and integraion laboratory (29790); Don Sirroco, left, explains the middeck facilities in the Shuttle mockup and integration laboratory (29791); Portrait view of Sultan Salman Abdelazize Al-Saud in the Shuttle Mockup and Integration laboratory (29792); The Saudi payload specialists witness a space food demonstration in the life sciences laboratory at JSC. Al-Saud (left) and Al-Bassam (second left) listen as Rita M. Rapp, food specialist, discusses three preparations of re-hydratable food for space travelers. Lynn S. Coll
Designing for Virtual Windows in a Deep Space Habitat
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Howard, Robert L.; Moore, Nathan; Amoroso, Michael
2013-01-01
This paper discusses configurations and test analogs toward the design of a virtual window capability in a Deep Space Habitat. Long-duration space missions will require crews to remain in the confines of a spacecraft for extended periods of time, with possible harmful effects if a crewmember cannot cope with the small habitable volume. Virtual windows expand perceived volume using a minimal amount of image projection equipment and computing resources, and allow a limited immersion in remote environments. Uses for the virtual window include: live or augmented reality views of the external environment; flight deck, piloting, observation, or other participation in remote missions through live transmission of cameras mounted to remote vehicles; pre-recorded background views of nature areas, seasonal occurrences, or cultural events; and pre-recorded events such as birthdays, anniversaries, and other meaningful events prepared by ground support and families of the crewmembers.
12. CAPSTANS OF FRONT DECK. MIDDLE DOOR IS OPEN. ALL ...
12. CAPSTANS OF FRONT DECK. MIDDLE DOOR IS OPEN. ALL DOORS COULD OPEN, TO GIVE OPERATOR AN UNIMPEDED VIEW. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA
21. 80 foot pony truss view is from the ...
21. 80 foot pony truss - view is from the deck, looking down to the junction of the two pony trusses, showing the top of the lower chord pin connection on top of the replacement pier. Also shown is some deck surface and an electrical conduit. This is typical of the junction of all the pony trusses. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA
27. VIEW NORTHWEST FROM DECKING ON SOUTHEAST CORNER OF PIVOT ...
27. VIEW NORTHWEST FROM DECKING ON SOUTHEAST CORNER OF PIVOT PIER, DRIVE SYSTEM FOR SWING-SPAN INCLUDES: (from left to right) WEDGE DRIVE GEAR BOX, SHAFTS TO WEDGE DRIVE DRIVE, WEDGE DRIVE CRANK SHAFTS, ELECTRIC MOTOR, INTERNATIONAL HARVESTER GASOLINE ENGINE, CONTROL RODS FOR STARTING AND CHOKING ENGINE, PIVOT (bottom center), AND TRACK ON CONCRETE PIER - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA
Compartment A4 hold at midplatform level, view from starboard to ...
Compartment A-4 hold at mid-platform level, view from starboard to port shows protective deck framing and underside of armor plate. Open wood ceiling aids in circulating air. Note ventilation duct for fresh air at center of photograph. Open hatch penetrates protective deck and leads to bread room, compartment A-102. (012) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
Review of the evolution of display technologies for next-generation aircraft
NASA Astrophysics Data System (ADS)
Tchon, Joseph L.; Barnidge, Tracy J.
2015-05-01
Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.
Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit
NASA Technical Reports Server (NTRS)
Rudisill, Marianne
2000-01-01
The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.;
2007-01-01
This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.
Mast Camera View of Curiosity Deck
2011-05-31
NASA Mars rover Curiosity took the images combined into this mosaic of the rover upper deck. The images were taken in March 2011. At the time, Curiosity was inside a space simulation chamber at NASA Jet Propulsion Laboratory, Pasadena, Calif.
A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland
2003-01-01
Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.
External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.
2014-01-01
NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.
Bandwidth Enabled Flight Operations: Examining the Possibilities
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)
2002-01-01
The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.
NASA Technical Reports Server (NTRS)
Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.
2010-01-01
Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.
Detail view of the starboard mid deck wall of the ...
Detail view of the starboard mid deck wall of the Orbiter Discovery showing Operational Sleeping Bags attached horizontally to the wall for the crew sleep period. If it is required as part of a mission's manifest a four-tiered rigid sleep station can be installed. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Sauerwein, Timothy
1989-01-01
The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.
STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.
DETAIL OF VERTICAL AT PANEL OVER PIER C, SHOWING DECK, ...
DETAIL OF VERTICAL AT PANEL OVER PIER C, SHOWING DECK, GUARDRAIL, VERTICAL AND UPPER CHORD, VIEW TO NORTHEAST. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stations and voice communications of other crewmembers on the flight deck when directed to those stations... pilot stations. The microphone specified in this paragraph must be so located and, if necessary, the... are intelligible when recorded under flight cockpit noise conditions and played back. The level of...
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stations and voice communications of other crewmembers on the flight deck when directed to those stations... as practicable when recorded under flight cockpit noise conditions and played back. Repeated aural or... pilot station. (2) For the second channel from each boom, mask, or hand-held microphone, headset, or...
Olivas uses communication equipment on the FD during Joint Operations
2007-06-13
S117-E-07194 (13 June 2007) --- Astronaut John "Danny" Olivas, STS-117 mission specialist, uses a communication system while looking over procedures checklists on the flight deck of Space Shuttle Atlantis during flight day six activities while docked with the International Space Station.