Sample records for flight experiment designed

  1. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  2. Functional design to support CDTI/DABS flight experiments

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1982-01-01

    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.

  3. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  4. A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.

    1982-01-01

    A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.

  5. Design and test of a prototype thermal bus evaporator reservoir aboard the KC-135 0-g aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Long, W. Russ

    1987-01-01

    The Thermal Bus Zero-G Reservoir Demonstration Experiment (RDE) has currently undergone two flights on the NASA-JSC KC-135 Reduced Gravity Aircraft. The objective of the experiment, which uses a smaller version of the evaporator reservoirs being designed for the Prototype Thermal Bus for Space Station, is to demonstrate proper 0-g operation of the reservoir in terms of fluid positioning, draining, and filling. The KC-135 was chosen to provide a cost-effective and timely evaluation of 0-g design issues that would be difficult to predict analytically. A total of fifty 0-g parabolas have been flown, each providing approximately 25-30 seconds of 0-g time. While problems have been encountered, the experiment has provided valuable design data on the 0-g operation of the reservoir. This paper documents the design of the experiment; the results of both flights, based on the high-speed movies taken during the flight and the visual observations of the experimenters; and the design modifications made as a result of the first flight and planned as a result of the second flight.

  6. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  7. Thermal Energy Storage Flight Experiment in Microgravity

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  8. ASTP fluid transfer measurement experiment. [using breadboard model

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The ASTP fluid transfer measurement experiment flight system design concept was verified by the demonstration and test of a breadboard model. In addition to the breadboard effort, a conceptual design of the corresponding flight system was generated and a full scale mockup fabricated. A preliminary CEI specification for the flight system was also prepared.

  9. Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Boyda, R. B.

    1995-01-01

    This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.

  10. Results from the First Two Flights of the Static Computer Memory Integrity Testing Experiment

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1999-01-01

    This paper details the scientific objectives, experiment design, data collection method, and post flight analysis following the first two flights of the Static Computer Memory Integrity Testing (SCMIT) experiment. SCMIT is designed to detect soft-event upsets in passive magnetic memory. A soft-event upset is a change in the logic state of active or passive forms of magnetic memory, commonly referred to as a "Bitflip". In its mildest form a soft-event upset can cause software exceptions, unexpected events, start spacecraft safeing (ending data collection) or corrupted fault protection and error recovery capabilities. In it's most severe form loss of mission or spacecraft can occur. Analysis after the first flight (in 1991 during STS-40) identified possible soft-event upsets to 25% of the experiment detectors. Post flight analysis after the second flight (in 1997 on STS-87) failed to find any evidence of soft-event upsets. The SCMIT experiment is currently scheduled for a third flight in December 1999 on STS-101.

  11. STS-70 Space Shuttle Mission Report - September 1995

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

  12. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  13. Sodium-sulfur Cell Technology Flight Experiment (SSCT)

    NASA Technical Reports Server (NTRS)

    Halbach, Carl R.

    1992-01-01

    The sodium-sulfur battery is emerging as a prime high-temperature energy storage technology for space flight applications. A Na-S cell demonstration is planned for a 1995-96 NASA Space Shuttle flight which focuses on the microgravity effects on individual cells. The experiment is not optimized for battery performance as such. Rather, it maximizes the variety of operating conditions which the Na-S cell is capable of in a relatively short 5-day flight. The demonstration is designed to reveal the effects of microgravity by comparison with ground test control cells experiencing identical test conditions but with gravity. Specifically, limitations of transport dynamics and associated cell performance characteristics should be revealed. The Na-S Cell Technology Flight Experiment consists of three separate experiments designed to determine cell operating characteristics, detailed electrode kinetics and reactant distributions.

  14. Analytical and Experimental Verification of a Flight Article for a Mach-8 Boundary-Layer Experiment

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Monaghan, Richard C.

    1996-01-01

    Preparations for a boundary-layer transition experiment to be conducted on a future flight mission of the air-launched Pegasus(TM) rocket are underway. The experiment requires a flight-test article called a glove to be attached to the wing of the Mach-8 first-stage booster. A three-dimensional, nonlinear finite-element analysis has been performed and significant small-scale laboratory testing has been accomplished to ensure the glove design integrity and quality of the experiment. Reliance on both the analysis and experiment activities has been instrumental in the success of the flight-article design. Results obtained from the structural analysis and laboratory testing show that all glove components are well within the allowable thermal stress and deformation requirements to satisfy the experiment objectives.

  15. Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy; Graves, Rex

    2004-01-01

    Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.

  16. Preliminary design of flight hardware for two-phase fluid research

    NASA Technical Reports Server (NTRS)

    Hustvedt, D. C.; Oonk, R. L.

    1982-01-01

    This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.

  17. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  18. Flight Simulation for the Study of Skill Transfer.

    ERIC Educational Resources Information Center

    Lintern, Gavan

    1992-01-01

    Discusses skill transfer as a human performance issue based on experiences with computerized flight simulators. Highlights include the issue of similarity; simulation and the design of training devices; an information theory of transfer; invariants for flight control; and experiments involving the transfer of flight skills. (21 references) (LRW)

  19. Drones for aerodynamic and structural testing /DAST/ - A status report

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.; Eckstrom, C. V.

    1978-01-01

    A program for providing research data on aerodynamic loads and active control systems on wings with supercritical airfoils in the transonic speed range is described. Analytical development, wind tunnel tests, and flight tests are included. A Firebee II target drone vehicle has been modified for use as a flight test facility. The program currently includes flight experiments on two aeroelastic research wings. The primary purpose of the first flight experiment is to demonstrate an active control system for flutter suppression on a transport-type wing. Design and fabrication of the wing are complete and after installing research instrumentation and the flutter suppression system, flight testing is expected to begin in early 1979. The experiment on the second research wing - a fuel-conservative transport type - is to demonstrate multiple active control systems including flutter suppression, maneuver load alleviation, gust load alleviation, and reduce static stability. Of special importance for this second experiment is the development and validation of integrated design methods which include the benefits of active controls in the structural design.

  20. APEX 3D Propeller Test Preliminary Design

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2002-01-01

    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  1. A flight experiment to measure rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.

    1990-01-01

    A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

  2. CATE: A Case Study of an Interdisciplinary Student-Led Microgravity Experiment

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Dove, A.; Lane, S. S.; Tiller, C.; Whitaker, A.; Lai, K.; Hoover, B.; Benjamin, S.

    2015-12-01

    The Collisional Accretion Experiment (CATE) was designed, built, and flown on NASA's C-9 parabolic flight airplane in less than a year by an interdisciplinary team of 6 undergraduate students under the supervision of two faculty. CATE was selected in the initial NASA Undergraduate Student Instrument Project (USIP) solicitation in the Fall of 2013, and the experiment flight campaign was in July 2014. The experiment studied collisions between different particle populations at low velocities (sub-m/s) in a vacuum and microgravity to gain insight into processes in the protoplanetary disk and planetary ring systems. Faculty provided the experiment concept and key experiment design parameters, and the student team developed the detailed hardware design for all components, manufactured and tested hardware, operated the experiment in flight, and analyzed data post-flight. Students also developed and led an active social media campaign and education and public outreach campaign to engage local high school students in the project. The ability to follow an experiment through from conception to flight was a key benefit for undergraduate students whose available time for projects such as this is frequently limited to their junior and senior years. Key factors for success of the program included having an existing laboratory infrastructure and experience in developing flight payloads and an intrinsically simple experiment concept. Students were highly motivated, in part, by their sense of technical and scientific ownership of the project, and this engagement was key to the project's success.

  3. Space Shuttle Orbiter thermal protection system design and flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1993-01-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  4. The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

    2001-01-01

    The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

  5. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  6. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  7. Preliminary flight test results from the advanced photovoltaic experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  8. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  9. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  10. Pressure Distribution and Air Data System for the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gibson, Lorelei S.; Siemers, Paul M., III; Kern, Frederick A.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) is designed to provide critical flight data necessary for the design of future Aeroassist Space Transfer Vehicles (ASTV). This flight experiment will provide aerodynamic, aerothermodynamic, and environmental data for verification of experimental and computational flow field techniques. The Pressure Distribution and Air Data System (PD/ADS), one of the measurement systems incorporated into the AFE spacecraft, is designed to provide accurate pressure measurements on the windward surface of the vehicle. These measurements will be used to determine the pressure distribution and air data parameters (angle of attack, angle of sideslip, and free-stream dynamic pressure) encountered by the blunt-bodied vehicle over an altitude range of 76.2 km to 94.5 km. Design and development data are presented and include: measurement requirements, measurement heritage, theoretical studies to define the vehicle environment, flush-mounted orifice configuration, pressure transducer selection and performance evaluation data, and pressure tubing response analysis.

  11. Bion 11 mission: primate experiments

    NASA Technical Reports Server (NTRS)

    Ilyin, E. A.; Korolkov, V. I.; Skidmore, M. G.; Viso, M.; Kozlovskaya, I. B.; Grindeland, R. E.; Lapin, B. A.; Gordeev, Y. V.; Krotov, V. P.; Fanton, J. W.; hide

    2000-01-01

    A summary is provided of the major operations required to conduct the wide range of primate experiments on the Bion 11 mission, which flew for 14 days beginning December 24, 1996. Information is given on preflight preparations, including flight candidate selection and training; attachment and implantation of bioinstrumentation; flight and ground experiment designs; onboard life support and test systems; ground and flight health monitoring; flight monkey selection and transport to the launch site; inflight procedures and data collection; postflight examinations and experiments; and assessment of results.

  12. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  13. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  14. Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David

    1995-01-01

    The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  15. The failure analysis, redesign, and final preparation of the Brilliant Eyes Thermal Storage Unit for flight testing

    NASA Astrophysics Data System (ADS)

    Lamkin, T.; Whitney, Brian

    1995-09-01

    This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.

  16. The influence of space flight on erythrokinetics in man. Space Life Sciences Missions 1 and 2. Experiment E261

    NASA Technical Reports Server (NTRS)

    Alfrey, Clarence P.

    1995-01-01

    The purpose of this contract was to design and conduct experiments that would increase our understanding of the influence of space flight on erythrokinetics and the rapid change that occurs in the red blood cell mass during spaceflight. The experiment designated E261, was flown on Space Life Science missions SLS-1 and SLS-2 (STS 40 and STS 58). Unique features of this experiment included radionuclide tracer studies during flight and frequent in-flight blood samples specifically for the first three or four days of the mission. Plasma volume measurements were made early and late in the missions. Radioactive iron kinetics studies were initiated after one or three days in microgravity since the magnitude of the red blood cell mass decrease dictated that bone marrow production must be decreased very early in the flight. The schedule was designed to study the time course of the changes that occur during spaceflight and to possibly define a mechanism for the rapid reduction in red blood cell mass.

  17. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  18. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  19. Experience with synchronous and asynchronous digital control systems. [for flight

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  20. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  1. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  2. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  3. In-Flight Lower Body Negative Pressure - Skylab Experiment M092

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart details Skylab's In-Flight Lower Body Negative Pressure experiment facility, a medical evaluation designed to monitor changes in astronauts' cardiovascular systems during long-duration space missions. This experiment collected in-flight data for predicting the impairment of physical capacity and the degree of orthostatic intolerance to be expected upon return to Earth. Data to be collected were blood pressure, heart rate, body temperature, vectorcardiogram, lower body negative pressure, leg volume changes, and body mass. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  4. STS-72 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  5. STS-52 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1992-01-01

    The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

  6. STS-52 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1992-12-01

    The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

  7. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  8. Optimization of moisture content for wheat seedling germination in a cellulose acetate medium for a space flight experiment

    NASA Technical Reports Server (NTRS)

    Johnson, C. F.; Dreschel, T. W.; Brown, C. S.; Wheeler, R. M.

    1996-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.

  9. Flight Test Experiment Design for Characterizing Stability and Control of Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2008-01-01

    A maneuver design method that is particularly well-suited for determining the stability and control characteristics of hypersonic vehicles is described in detail. Analytical properties of the maneuver design are explained. The importance of these analytical properties for maximizing information content in flight data is discussed, along with practical implementation issues. Results from flight tests of the X-43A hypersonic research vehicle (also called Hyper-X) are used to demonstrate the excellent modeling results obtained using this maneuver design approach. A detailed design procedure for generating the maneuvers is given to allow application to other flight test programs.

  10. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  11. Development of the Lens Antenna Deployment Demonstration (LADD) shuttle-attached flight experiment

    NASA Technical Reports Server (NTRS)

    Hill, H.; Johnston, D.; Frauenberger, H.

    1986-01-01

    The primary objective of the LADD Program is to develop a technology demonstration test article that can be used for both ground and flight tests to demonstrate the structural and mechanical feasibility and reliability of the single-axis roll-out space based radar (SBR) approach. As designed, the LADD will essentially be a generic strucutural experiment which incorporates all critical technology elements of the operational satellite and is applicable to a number of future antenna systems. However, to fully determine its design integrity for meeting the lens flatness and constant geometry requirements in a zero g environment under extreme thermal conditions, the LADD must be space flight tested. By accurately surveying the structure under varying conditions the membrane tolerance-holding capabilities of the structure will be demonstrated. The flight test will provide data to verify analytical tools used to predict thermal and structural behavior. Most important, the experiment will provide an initial indication of structural damping in a zero g vacuum environment. The recently completed Solar Array Flight Experiment (SAFE) showed orbital damping greater than that experienced during ground testing. From the experience and the information obtained from LADD it is hoped that designs can be confidently extrapolated to operational satellites with apertures in the 20 m by 60 m size range.

  12. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.

  13. Design of Low Complexity Model Reference Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  14. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  15. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; hide

    2011-01-01

    This poster reviews the possibility of using Bisphosphonates to counter the bone loss that is experienced during space flight. The Hypothesis that is tested in this experiment is that the combined effect of anti-resorptive drugs plus in-flight exercise regimen will attenuate space flight induced loss in bone mass and strength and reduce renal stone risk. The experiment design, the status and the results are described.

  16. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    ERIC Educational Resources Information Center

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  17. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  18. Panel summary of recommendations

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.; Coleman, Martin E.; Mitchell, Kenneth L.

    1990-01-01

    The following Space Station internal contamination topics were addressed: past flight experience (Skylab and Spacelab missions); present flight activities (Spacelabs and Soviet Space Station Mir); future activities (materials science and life science experiments); Space Station capabilities (PPMS, FMS, ECLSS, and U.S. Laboratory overview); manned systems/crew safety; internal contamination detection; contamination control - stowage and handling; and contamination control - waste gas processing. Space Station design assumptions are discussed. Issues and concerns are discussed as they relate to (1) policy and management, (2) subsystem design, (3) experiment design, and (4) internal contamination detection and control. The recommendations generated are summarized.

  19. MUZO flight experience with the programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Lockowandt, Christian; Loth, Kenneth

    1993-01-01

    The Multi-Zone (MUZO) furnace has been developed for growing germanium (Ge) crystals under microgravity in a Get Away Special (GAS) payload. The MUZO furnace was launched with STS-47 Endeavour in September 1992. The payload worked as planned during the flight and a Ge sample was successfully processed. The experiment has given valuable scientific information. The design and functionality of the payload together with flight experience is reported.

  20. Preliminary design polymeric materials experiment. [for space shuttles and Spacelab missions

    NASA Technical Reports Server (NTRS)

    Mattingly, S. G.; Rude, E. T.; Marshner, R. L.

    1975-01-01

    A typical Advanced Technology Laboratory mission flight plan was developed and used as a guideline for the identification of a number of experiment considerations. The experiment logistics beginning with sample preparation and ending with sample analysis are then overlaid on the mission in order to have a complete picture of the design requirements. The results of this preliminary design study fall into two categories. First specific preliminary designs of experiment hardware which is adaptable to a variety of mission requirements. Second, identification of those mission considerations which affect hardware design and will require further definition prior to final design. Finally, a program plan is presented which will provide the necessary experiment hardware in a realistic time period to match the planned shuttle flights. A bibliography of all material reviewed and consulted but not specifically referenced is provided.

  1. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  2. Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment

    NASA Technical Reports Server (NTRS)

    Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark

    1999-01-01

    A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.

  3. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  4. Supporting flight data analysis for Space Shuttle Orbiter Experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The Space Shuttle Orbiter Experiments program in responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The Infrared Imagery of Shuttle (IRIS), Catalytic Surface Effects, and Tile Gap Heating experiments sponsored by Ames Research Center are part of this program. The paper describes the software required to process the flight data which support these experiments. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques have provided information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third Shuttle mission.

  5. Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

  6. HyBoLT Flight Experiment

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jeng (Frank); Berry, Scott A.

    2010-01-01

    HyBoLT was a Hypersonic Boundary Layer Transition flight experiment funded by the Hypersonics Project of the Fundamental Aeronautics Program in NASA's Aeronautics Research Mission Directorate. The HyBoLT test article mounted on the top of the ALV X-1 rocket was launched from Virginia's Wallops Island on August 22, 2008. Unfortunately a problem in the rocket's flight control system caused the vehicle to veer off the designed flight course. Launch officials activated a self-destruct mechanism in the rocket's nose cone after 20 seconds into flight. This report is a closeout document about the HyBoLT flight experiment. Details are provided of the objectives and approach associated with this experimental program as well as the 20 seconds flight data acquired before the vehicle was destroyed.

  7. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  8. Greased Lightning (GL-10) Flight Testing Campaign

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; McSwain, Robert G.; Beaton, Brian F.; Klassman, David W.; Theodore, Colin R.

    2017-01-01

    Greased Lightning (GL-10) is an aircraft configuration that combines the characteristics of a cruise efficient airplane with the ability to perform vertical takeoff and landing (VTOL). This aircraft has been designed, fabricated and flight tested at the small unmanned aerial system (UAS) scale. This technical memorandum will document the procedures and findings of the flight test experiments. The GL-10 design utilized two key technologies to enable this unique aircraft design; namely, distributed electric propulsion (DEP) and inexpensive closed loop controllers. These technologies enabled the flight of this inherently unstable aircraft. Overall it has been determined thru flight test that a design that leverages these new technologies can yield a useful VTOL cruise efficient aircraft.

  9. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  10. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  11. OGO-1 and OGO-3 MIT plasma experiments S4903

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Plasma proton and plasma electron prototype and flight models were designed, fabricated, and tested. Ground support equipment for the models was also prepared. The flight models were launched aboard the first and third Orbiting Geophysical Observatories on 4 Sept. 1964 and 6 June 1966. These experiments have generally functioned in accordance with the design specifications and useful data are still being received.

  12. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  13. A hard X-ray experiment for long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Johnson, W. N.; Kurfess, J. D.; Strickman, M. S.; Saulnier, D. M.

    The Naval Research Lab has developed a balloon-borne hard X-ray experiment which is designed for 60- to 90-day flight durations soon to be available with around the world Sky Anchor or RACOON balloon flights. The experiment's scintillation detector is sensitive to the 15 - 250 keV X-ray energy range. The experiment includes three microcomputer systems which control the data acquisition and provide the orientation and navigation information required for global balloon flights. The data system supports global data communications utilizing the GOES satellite as well as high bit rate communications through L-band li line-of-site transmissions

  14. Third Conference on Fibrous Composites in Flight Vehicle Design, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of fibrous composite materials in the design of aircraft and space vehicle structures and their impact on future vehicle systems are discussed. The topics covered include: flight test work on composite components, design concepts and hardware, specialized applications, operational experience, certification and design criteria. Contributions to the design technology base include data concerning material properties, design procedures, environmental exposure effects, manufacturing procedures, and flight service reliability. By including composites as baseline design materials, significant payoffs are expected in terms of reduced structural weight fractions, longer structural life, reduced fuel consumption, reduced structural complexity, and reduced manufacturing cost.

  15. Optimization of moisture content for wheat seedling germination in a cellulose acetate medium for a space flight experiment

    NASA Technical Reports Server (NTRS)

    Johnson, Corinne F.; Dreschel, Thomas W.; Brown, Christopher S.; Wheeler, Raymond M.

    1994-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the spaceflight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.

  16. U.S. perspective on technology demonstration experiments for adaptive structures

    NASA Technical Reports Server (NTRS)

    Aswani, Mohan; Wada, Ben K.; Garba, John A.

    1991-01-01

    Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).

  17. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    NASA Technical Reports Server (NTRS)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  18. Flight Experience from Space Photovoltaic Concentrator Arrays and its Implication on Terrestrial Concentrator Systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    2003-01-01

    Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.

  19. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  20. Guidance and Control of a Small Unmanned Aerial Vehicle and Autonomous Flight Experiments

    NASA Astrophysics Data System (ADS)

    Fujinaga, Jin; Tokutake, Hiroshi; Sunada, Shigeru

    This paper describes the development of a fixed-wing small-size UAV and the design of its flight controllers. The developed UAV’s wing span is 0.6m, and gross weight is 0.27kg. In order to ensure robust performances of the longitudinal and lateral-directional motions of the UAV, flight controllers are designed for these motions with μ-synthesis. Numerical simulations show that the designed controllers attain good robust stabilities and performances, and have good tracking performance for command. After an order-reduction and discretization, the designed flight controllers were implemented in the UAV. A flight test was performed, and the ability of the UAV to fly autonomously, passing over waypoints, was demonstrated.

  1. SLS-2 involvement

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1995-01-01

    The purpose of this study is to support Russian space flight experiments carried out on rats flown aboard Space Shuttle Mission SLS-2. The Russian experiments were designed to determine the effects of space flight on immunological parameters. The Russian experiment included the first in-flight dissection of rodents that allowed the determination of kinetics of when space flight affected immune responses. The support given the Russians by this laboratory was to carry out assays for immunologically important cytokines that could not readily be carried out in their home laboratories. These included essays of interleukin-1, interleukin-6, interferon-gamma and possibly other cytokines.

  2. STS-64 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

  3. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  4. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  5. The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the near Infrared Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.

    2013-08-01

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  6. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Bock, J.; Hristov, V.

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less

  7. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  8. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  9. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  10. HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.

    2010-01-01

    The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.

  11. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart details Skylab's In-Flight Lower Body Negative Pressure experiment facility, a medical evaluation designed to monitor changes in astronauts' cardiovascular systems during long-duration space missions. This experiment collected in-flight data for predicting the impairment of physical capacity and the degree of orthostatic intolerance to be expected upon return to Earth. Data to be collected were blood pressure, heart rate, body temperature, vectorcardiogram, lower body negative pressure, leg volume changes, and body mass. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  12. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows Skylab's In-Flight Lower Body Negative Pressure experiment facility, a medical evaluation designed to monitor changes in astronauts' cardiovascular systems during long-duration space missions. This experiment collected in-flight data for predicting the impairment of physical capacity and the degree of orthostatic intolerance to be expected upon return to Earth. Data to be collected were blood pressure, heart rate, body temperature, vectorcardiogram, lower body negative pressure, leg volume changes, and body mass. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. Attitudes towards personal and shared space during the flight.

    PubMed

    Ahmadpour, N; Kühne, M; Robert, J-M; Vink, P

    2016-07-25

    Aircraft passenger comfort experience was previously defined based on its underlying thematic components representing passengers' perception of the environmental elements and their link to their concerns. This paper aims to 1) identify aircraft passengers' attitudes towards their personal and shared space in the cabin environment during the flight which are linked to their comfort experience and 2) highlight passenger concerns associated with those attitudes. A sample involving 16 participants was conducted, collecting full accounts of their real-time flight experiences onboard commercial aircrafts, using questionnaires. Four types of attitudes were identified in reaction to participants' personal and shared space during the flight. Those were described as adjust, avoid, approach, and shield. Passengers' concerns associated with those attitudes were respectively: control, privacy, connectedness and tolerance. It is concluded that passenger comfort can be improved once the identified concerns and attitudes are addressed in the design of the aircraft seat and interior. Design recommendations are provided accordingly.

  14. Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment

    NASA Technical Reports Server (NTRS)

    Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark

    2000-01-01

    A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.

  15. Design and preparation of a particle dynamics space flight experiment, SHIVA.

    PubMed

    Trolinger, James D; L'Esperance, Drew; Rangel, Roger H; Coimbra, Carlos F M; Witherow, William K

    2004-11-01

    This paper describes the flight experiment, supporting ground science, and the design rationale for a project on spaceflight holography investigation in a virtual apparatus (SHIVA). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravitation effects and steady Stokes drag often dominate the equations of motion of a particle in a fluid and consequently microgravity provides an ideal environment in which to study the other forces, such as the pressure and viscous drag and especially the Basset history force. We have developed diagnostic recording methods using holography to save all of the particle field optical characteristics, essentially allowing the experiment to be transferred from space back to Earth in what we call the "virtual apparatus" for microgravity experiments on Earth. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply new analytic solutions developed by members of the team. In addition to employing microgravity to augment the fundamental study of these forces, the resulting data will allow us to quantify and understand the ISS environment with great accuracy. This paper shows how we used both experiment and theory to identify and resolve critical issues and to produce an optimal experimental design that exploits microgravity for the study. We examined the response of particles of specific gravity from 0.1 to 20, with radii from 0.2 to 2 mm, to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. To observe some of the interesting effects predicted by the new solutions requires the precise location of the position of a particle in three dimensions. To this end we have developed digital holography algorithms that enable particle position location to a small fraction of a pixel in a CCD array. The spaceflight system will record holograms both on film and electronically. The electronic holograms can be downlinked providing real-time data, essentially acting like a remote window into the ISS experimental chamber. Ground experiments have provided input to a flight system design that can meet the requirements for a successful experiment on ISS. Moreover the ground experiments have provided a definitive, quantitative observation of the Basset history force over a wide range of conditions. Results of the ground experiments, the flight experiment design, preliminary flight hardware design, and data analysis procedures are reported.

  16. Ion Mass Spectrometer for Sporadic-E Rocket Experiments

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Earle, G. D.; Pfaff, Robert

    2000-01-01

    NASA grant NAG5-5086 provided funding for the William B. Hanson Center for Space Sciences at the University of Texas at Dallas (UTD) to design, fabricate, calibrate, and ultimately fly two ion mass spectrometer instruments on a pair of sounding rocket payloads. Drs. R.A. Heelis and G.D. Earle from UTD were co-investigators on the project. The principal investigator for both rocket experiments was Dr. Robert Pfaff of the Goddard Space Flight Center. The overall project title was "Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Mid-Latitude Sporadic-E Layers". This report describes the overall objectives of the project, summarizes the instrument design and flight experiment details, and presents representative data obtained during the flights.

  17. Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1993-01-01

    The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.

  18. Transonic Symposium: Theory, Application and Experiment, volume 2

    NASA Technical Reports Server (NTRS)

    Foughner, Jerome T., Jr. (Compiler)

    1989-01-01

    Papers presented at the Transonic Symposium are compiled. The following subject areas are covered: National Transonic Facility status; transonic aerodynamics of slender wing-body configuration; laminar flow flight experiments; laminar flow wind tunnel experiments; computational support of X-29A flight experiment; transition location on a clean-up glove installed on a F-14 aircraft; and design studies for a laminar glove for the X-29 aircraft.

  19. Simulation of Aircraft Sortie Generation Under an Autonomic Logistics System

    DTIC Science & Technology

    2016-12-01

    56 Design of Experiment...Figure 8. Pre -flight Operations ......................................................................................... 40 Figure 9. Sortie...Critical Factors and Their Associated Levels ................................................... 57 xiii Table 18. Design of Experiment

  20. Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.

    PubMed

    Crucian, B; Norman, J; Brentz, J; Pietrzyk, R; Sams, C

    2000-10-01

    Due to the the clinical utility of the flow cytometer, the National Aeronautics and Space Administration (NASA) is interested in the design of a space flight-compatible cytometer for use on long-duration space missions. Because fluid behavior is altered dramatically during space flight, it was deemed necessary to validate the principles of hydrodynamic focusing and laminar flow (cytometer fluidics) in a true microgravity environment. An experiment to validate these properties was conducted by 12 students from Sweetwater High School (Sweetwater, TX) participating in the NASA Reduced Gravity Student Flight Opportunity, Class of 2000. This program allows high school students to gain scientific experience by conducting an experiment on the NASA KC-135 zero gravity laboratory aircraft. The KC-135 creates actual zero-gravity conditions in 30-second intervals by flying a highly inclined parabolic flight path. The experiment was designed by their mentor in the program, the Johnson Space Center's flow cytometrist Brian Crucian, PhD, MT(ASCP). The students performed the experiment, with the mentor, onboard the NASA zero-gravity research aircraft in April 2000.

  1. STS-74 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

  2. Swingbed Amine Carbon Dioxide Removal Flight Experiment - Feasibility Study and Concept Development for Cost-Effective Exploration Technology Maturation on The International Space Station

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy

    2011-01-01

    The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.

  3. Time-of-Flight Measurement of the Speed of Sound in Water

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2016-01-01

    A simple setup is designed to investigate a "time-of-flight" measurement of the speed of sound in water. This experiment only requires low cost components and is also very simple to understand by students. It could be easily used as a demonstration experiment.

  4. Consort 1 sounding rocket flight

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  5. STS-75 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  6. STS-78 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  7. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. 3; Leading Edge Design, Fabrication, and Installation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design, fabrication, and installation of the suction panel and the required support structure, ducting, valving, and high-lift system (Krueger flaps) for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane.

  8. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  9. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  10. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  11. The design of flight hardware: Organizational and technical ideas from the MITRE/WPI Shuttle Program

    NASA Technical Reports Server (NTRS)

    Looft, F. J.

    1986-01-01

    The Mitre Corporation of Bedford Mass. and the Worcester Polytechnic Institute are developing several experiments for a future Shuttle flight. Several design practices for the development of the electrical equipment for the flight hardware have been standardized. Some of the ideas are presented, not as hard and fast rules but rather in the interest of stimulating discussions for sharing such ideas.

  12. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  13. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  14. Time-of-Flight Measurement of the Speed of Sound in a Metal Bar

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2016-01-01

    A simple setup was designed for a "time-of-flight" measurement of the sound speed in a metal bar. The experiment requires low cost components and is very simple to understand by students. A good use of it is as a demonstration experiment.

  15. The 1985 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Morrow, G. (Editor)

    1986-01-01

    The subjects covered include: advanced energy storage, lithium cell technology, nickel-cadmium design evaluation and component testing, simulated orbital cycling and flight experience, and nickel-hydrogen technology.

  16. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  17. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic dynamics such as slosh and bending modes, as well as atmospheric disturbances, are being produced by the airframe via modification of bending filters and the use of secondary control surfaces, including leading and trailing edge flaps, symmetric ailerons, and symmetric rudders. The platform also has the ability to inject signals in flight to simulate structural mode resonances or other challenging dynamics. This platform also offers more test maneuvers and longer maneuver times than a single rocket or missile test, which provides ample opportunity to fully and repeatedly exercise all aspects of the algorithm. Prior to testing on an F/A-18, AAC was the only component of the SLS autopilot design that had not been flight tested. The testing described in this paper raises the Technology Readiness Level (TRL) early in the SLS Program and is able to demonstrate its capabilities and robustness in a flight environment.

  18. Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  19. BLT Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flight of STS-119. Additional instrumentation was also installed in order to obtain more spatially resolved measurements. This paper will provide an overview of the BLT FE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high level overview of the in-situ flight data will be presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data.

  20. Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, Dale C.

    1993-01-01

    The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.

  1. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  2. STS-60 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

  3. STS-67 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

  4. Traveling-wave tube reliability estimates, life tests, and space flight experience

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Speck, C. E.

    1977-01-01

    Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.

  5. ADEPT SR-1 Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.

    2017-01-01

    The ADEPT architecture represents a completely new approach for entry vehicle design using a high-performance carbon fabric to serve as the primary drag surface of the mechanically deployed decelerator and to protect the payload from hypersonic aerothermal heating during entry. The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7-m deployed diameter ADEPT sounding rocket flight experiment. The SR-1 sounding rocket flight experiment is a critical milestone in the technology maturation plan for ADEPT and will generate performance data on in-space deployment and aerodynamic stability.

  6. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.

  7. SPAR electrophoretic separation experiments, part 2

    NASA Technical Reports Server (NTRS)

    Cosmi, F. M.

    1978-01-01

    The opportunity to use a sounding rocket for separation experiments is a logical continuation of earlier electrophoresis demonstrations and experiments. A free-flow electrophoresis system, developed under the Advanced Applications Flight Experiment (AAFE) Program, was designed so that it would fit into a rocket payload. The SPAR program provides a unique opportunity to complete the intial stages of microgravity testing prior to any Shuttle applications. The objective of the work described in this report was to ensure proper operating parameters for the defined experimental samples to be used in the SPAR Electrophoretic Separation Experiment. Ground based experiments were undertaken not only to define flight parameters but also to serve as a point of comparison for flight results. Possible flight experiment problem areas were also studied such as sample interaction due to sedimentation, concentration effects and storage effects. Late in the program anomalies of field strengths and buffer conductivities were also investigated.

  8. Flight Test Results of an Axisymmetric Channeled Center Body Supersonic Inlet at Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    St. John, Clinton W.; Frederick, Michael Alan

    2013-01-01

    Flight-testing of a channeled center-body axisymmetric supersonic inlet design concept was conducted at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center in collaboration with the NASA Glenn Research Center (Cleveland, Ohio) and TechLand Research, Inc. (North Olmsted, Ohio). This testing utilized the Propulsion Flight Test Fixture, flown on the NASA F-15B research test bed airplane (NASA tail number 836) at local experiment Mach numbers up to 1.50. The translating channeled center-body inlet was designed by TechLand Research, Inc. (U.S. Patent No. 6,276,632 B1) to allow for a novel method of off-design flow matching, with original test planning conducted under a NASA Small Business Innovative Research study. Data were collected in flight at various off-design Mach numbers for fixed-geometry representations of both the channeled center-body design and an equivalent area smooth center-body design for direct comparison of total pressure recovery and limited distortion measurements.

  9. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  10. The Vehicle Control Systems Branch at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1990-01-01

    This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.

  11. Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.

  12. TROPIX: A solar electric propulsion flight experiment

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.

    1993-01-01

    The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.

  13. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  14. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  15. LWS/SET Technology Experiment Carrier

    NASA Technical Reports Server (NTRS)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be accumulated by the Project and manifested for specific flight opportunities as they become available. The SET Carrier is designed to present a standard set of interfaces to SET technology experiments and to be modular and flexible enough to interface to a variety of possible host spacecraft. The Carrier will have core components and mission unique components. Once the core carrier elements have been developed, only the mission unique components need to be defined and developed for any particular mission. This approach will minimize the mission specific cost and development schedule for a given flight opportunity. The standard set of interfaces provided by SET to experiments allows them to be developed independent of the particulars of a host spacecraft. The Carrier will provide the power, communication, and the necessary monitoring features to operate experiments. The Carrier will also provide all of the mechanical assemblies and harnesses required to adapt experiments to a particular host. Experiments may be hosted locally with the Carrier or remotely on the host spacecraft. The Carrier design will allow a single Carrier to support a variable number of experiments and will include features that support the ability to incrementally add experiments without disturbing the core architecture.

  16. Support activities to maintain SUMS flight readiness, volume 2. Attachment A: Flight 61-C report

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation system (STS). The experiment mission operation begins about 1 hour to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume is the flight data report for flight 61-C.

  17. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    NASA Technical Reports Server (NTRS)

    Wachholz, James J.; Murphy, David M.

    1996-01-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.

  18. Potato respirometer experiment SO61

    NASA Technical Reports Server (NTRS)

    Taudvin, P. C.; Szpakowski, T. A.

    1971-01-01

    The design and manufacture of a respirometer for measuring the oxygen consumption rate of a respiring potato sprout in a Skylab experiment is reported. The device monitors low gravity effects on the biorhythmicity of organisms during space flight. Several experimental runs using bench mounted flight hardware units were inconclusive due to room temperature induced artifacts.

  19. Investigation of microgravity effects on solidification phenomena of selected materials

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Hansen, Patricia A.

    1992-01-01

    A Get Away Special (GAS) experiment payload to investigate microgravity effects on solidification phenomena of selected experimental samples has been designed for flight. It is intended that the first flight of the assembly will (1) study the p-n junction characteristics for advancing semiconductor device applications, (2) study the effects of gravity-driven convection on the growth of HgCd crystals, (3) compare the textures of the sample which crystallizes in microgravity with those found in chondrite meteorites, and (4) modify glass optical characteristics through divalent oxygen exchange. The space flight experiment consists of many small furnaces. While the experiment payload is in the low gravity environment of orbital flight, the payload controller will sequentially activate the furnaces to heat samples to their melt state and then allow cooling to resolidification in a controlled fashion. The materials processed in the microgravity environment of space will be compared to the same materials processed on earth in a one-gravity environment. This paper discusses the design of all subassemblies (furnance, electronics, and power systems) in the experiment. A complete description of the experimental materials is also presented.

  20. Guidelines for mission integration, a summary report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Guidelines are presented for instrument/experiment developers concerning hardware design, flight verification, and operations and mission implementation requirements. Interface requirements between the STS and instruments/experiments are defined. Interface constraints and design guidelines are presented along with integrated payload requirements for Spacelab Missions 1, 2, and 3. Interim data are suggested for use during hardware development until more detailed information is developed when a complete mission and an integrated payload system are defined. Safety requirements, flight verification requirements, and operations procedures are defined.

  1. Baroclinic instability with variable static stability - A design study for a spherical atmospheric model experiment. [for Spacelab flight

    NASA Technical Reports Server (NTRS)

    Giere, A. C.; Fowlis, W. W.

    1980-01-01

    The effect of a radially-variable, dielectric body force, analogous to gravity on baroclinic instability for the design of a spherical, synoptic-scale, atmospheric model experiment in a Spacelab flight is investigated. Exact solutions are examined for quasi-geostrophic baroclinic instability in which the rotational Froude number is a linear function of the height. Flow in a rotating rectilinear channel with a vertically variable body force without horizontal shear of the basic state is also discussed.

  2. Development and Flight Results of a PC104/QNX-Based On-Board Computer and Software for the YES2 Tether Experiment

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, I.; Mirmont, M.; Kruijff, M.

    2008-08-01

    This paper highlights the flight preparation and mission performance of a PC104-based On-Board Computer for ESA's second Young Engineer's Satellite (YES2), with additional attention to the flight software design and experience of QNX as multi-process real-time operating system. This combination of Commercial-Of-The-Shelf (COTS) technologies is an accessible option for small satellites with high computational demands.

  3. Development and validation of the crew-station system-integration research facility

    NASA Technical Reports Server (NTRS)

    Nedell, B.; Hardy, G.; Lichtenstein, T.; Leong, G.; Thompson, D.

    1986-01-01

    The various issues associated with the use of integrated flight management systems in aircraft were discussed. To address these issues a fixed base integrated flight research (IFR) simulation of a helicopter was developed to support experiments that contribute to the understanding of design criteria for rotorcraft cockpits incorporating advanced integrated flight management systems. A validation experiment was conducted that demonstrates the main features of the facility and the capability to conduct crew/system integration research.

  4. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  5. View of new centrifuge at Flight Acceleration Facility

    NASA Technical Reports Server (NTRS)

    1966-01-01

    View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.

  6. Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1982-01-01

    A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.

  7. Isothermal dendritic growth: A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.

    1988-01-01

    The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.

  8. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  9. Science objectives and performance of a radiometer and window design for atmospheric entry experiments

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.; Davy, William C.; Whiting, Ellis E.

    1994-01-01

    This paper describes the techniques developed for measuring stagnation-point radiation in NASA's cancelled Aeroassist Flight Experiment (AFE). It specifies the need for such a measurement; the types and requirements for the needed instruments; the Radiative Heating Experiment (RHE) developed for the AFE; the requirements, design parameters, and performance of the window developed for the RHE; the procedures and summary of the technique; and results of the arc-jet wind tunnel experiment conducted to demonstrate the overall concept. Subjects emphasized are the commercial implications of the knowledge to be gained by this experiment in connection with the Aeroassisted Space Transfer Vehicle (ASTV), the nonequilibrium nature of the radiation, concerns over the contribution of vacuum-ultraviolet radiation to the overall radiation, and the limit on the flight environment of the vehicle imposed by the limitations on the window material. Results show that a technique exists with which the stagnation-point radiation can be measured in flight in an environment of interest to commercial ASTV applications.

  10. Design of a High Thermal Gradient Bridgman Furnace

    NASA Technical Reports Server (NTRS)

    LeCroy, J. E.; Popok, D. P.

    1994-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.

  11. Cytogenic studies of blood (experiment M111)

    NASA Technical Reports Server (NTRS)

    Lockhart, L. H.

    1974-01-01

    The Skylab M111 experiment was a continuation of the preflight and postflight chromosomal analyses of the flight crews that have been performed since the Gemini 3 mission. The experiment was designed to determine whether some space flight parameter produces cytogenetic effects in human cells and to provide biological radiation dosimetric capability in the event of significant radiation exposure to a flight crew. On each of the Skylab flights, blood lymphocytes for analysis of chromosomes for structural defects were obtained from each of the prime crewmembers and from a ground-based control group before and after flight. Two types of defects were recorded. The minor defects included the following aberrations: chromatid fragments, chromosome fragments, and deletions. Structural rearrangements such as dicentrics, exchanges, ring chromosomes, and translocations were photographed, and the cells were karyotyped to delineate, when possible, the chromosome or chromosomes involved in the rearrangement. Result seems to indicate that the flight itself was not a major contributing factor.

  12. Inflatable Antenna Experiment (IAE)

    NASA Image and Video Library

    1996-05-20

    S77-E-5022 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  13. Inflatable Antenna Experiment (IAE)

    NASA Image and Video Library

    1996-05-20

    S77-E-5027 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  14. Inflatable Antenna Experiment (IAE)

    NASA Image and Video Library

    1996-05-20

    S77-E-5033 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  15. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  16. The Role of Structural Models in the Solar Sail Flight Validation Process

    NASA Technical Reports Server (NTRS)

    Johnston, John D.

    2004-01-01

    NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.

  17. Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.; Berger, Karen T.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLTFE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flights of STS-119 and STS-128. Additional instrumentation was also installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLTFE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that predictions for boundary layer transition onset time closely match the flight data, while predicted temperatures were significantly higher than observed flight temperatures.

  18. Ares I-X: First Flight of a New Era

    NASA Technical Reports Server (NTRS)

    Davis, Stephen R.; Askins, Bruce R.

    2010-01-01

    Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.

  19. STS-63 Space Shuttle report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-63 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during this sixty-seventh flight of the Space Shuttle Program, the forty-second since the return to flight, and twentieth flight of the Orbiter vehicle Discovery (OV-103). In addition to the OV-103 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-68; three SSME's that were designated 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-070. The RSRM's that were an integral part of the SRB's were designated 360Q042A for the left SRB and 360L042B for the right SRB. The STS-63 mission was planned as an 8-day duration mission with two contingency days available for weather avoidance or Orbiter contingency operations. The primary objectives of the STS-63 mission were to perform the Mir rendezvous operations, accomplish the Spacehab-3 experiments, and deploy and retrieve the Shuttle Pointed Autonomous Research Tool for Astronomy-204 (SPARTAN-204) payload. The secondary objectives were to perform the Cryogenic Systems Experiment (CSE)/Shuttle Glo-2 Experiment (GLO-2) Payload (CGP)/Orbital Debris Radar Calibration Spheres (ODERACS-2) (CGP/ODERACS-2) payload objectives, the Solid Surface Combustion Experiment (SSCE), and the Air Force Maui Optical Site Calibration Tests (AMOS). The objectives of the Mir rendezvous/flyby were to verify flight techniques, communication and navigation-aid sensor interfaces, and engineering analyses associated with Shuttle/Mir proximity operations in preparation for the STS-71 docking mission.

  20. Design and Flight Testing of an Inflatable Sunshield for the NGST

    NASA Technical Reports Server (NTRS)

    Adams, Michael L.; Culver, Harry L.; Kaufman, David M.; Pacini, Linda K.; Sturm, James; Lienard, Sebastien

    2000-01-01

    The Next Generation Space Telescope (NGST) mission is scheduled to launch in 2007 and be stationed at L2 for a mission life of ten years. The large aperture mirror and optical detectors aboard NGST require shielding from the constant solar energy seen at this orbit. The government reference NGST design, called the Yardstick, baselined a sunshield using an inflation deployment system. During the formulation phase, NGST is spending approximately 25% of the overall budget to foster the development of new technology. The goal is to develop and demonstrate enabling or enhancing technology and provide innovative solutions for the design of the NGST observatory. Inflatable technology falls in the category of enhancing technology due to its advantages in weight, stowed volume and cost. The Inflatable Sunshield in Space (ISIS) flight experiment will provide a realistic space flight demonstration of an inflatable sunshield. The supporting technology development program will provide an information base for the design, manufacture, assembly and testing of large thin membranes and inflatable structural elements for space structures. The ISIS experiment will demonstrate the feasibility of using inflatable technology to passively cool optical systems for NGST and provide correlation between analytical predictions and on orbit results. The experiment will be performed on a Hitchhiker/Space Shuttle mission in late 2001. The ISIS mission is an effort to address several major technical challenges of the NGST inflatable sunshield, namely controlled inflation deployment, plenarity and separation of large stretched membranes, space rigidization of inflatable booms, and dynamic modeling and simulation. This paper will describe the design of the flight experiment and the testing to be performed on-orbit.

  1. Apollo experience report: The cryogenic storage system

    NASA Technical Reports Server (NTRS)

    Chandler, W. A.; Rice, R. R.; Allgeier, R. K., Jr.

    1973-01-01

    A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions.

  2. Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Coho, William K.; Weiland, Karen J.; VanZandt, David M.

    1998-01-01

    A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

  3. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  4. Results of the Stable Microgravity Vibration Isolation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean

    1996-01-01

    This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.

  5. Transition Analysis for the HIFiRE-5 Vehicle

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Chang, Chau-Lyan; Li, Fei; Berger, Karen T.; Candler, Graham V.; Kimmel, Roger

    2009-01-01

    The Hypersonic International Flight Research and Experimentation (HIFiRE) 5 flight experiment by Air Force Research Laboratories and Australian Defense Science and Technology Organization is designed to provide in-flight boundary-layer transition data for a canonical 3D configuration at hypersonic Mach numbers. This paper outlines the progress, to date, on boundary layer stability analysis for the HIFiRE-5 flight configuration, as well as for selected test conditions from the wind tunnel experiments supporting the flight test. At flow conditions corresponding to the end of the test window, rather large values of linear amplification factor are predicted for both second mode (N>40) and crossflow (N>20) instabilities, strongly supporting the feasibility of first in-flight measurements of natural transition on a fully three-dimensional hypersonic configuration. Additional results highlight the rich mixture of instability mechanisms relevant to a large segment of the flight trajectory, as well as the effects of angle of attack and yaw angle on the predicted transition fronts for ground facility experiments at Mach 6.

  6. Sonic Boom Research at NASA Dryden: Objectives and Flight Results from the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) Project

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The principal objective of the Supersonics Project is to develop and validate multidisciplinary physics-based predictive design, analysis and optimization capabilities for supersonic vehicles. For aircraft, the focus will be on eliminating the efficiency, environmental and performance barriers to practical supersonic flight. Previous flight projects found that a shaped sonic boom could propagate all the way to the ground (F-5 SSBD experiment) and validated design tools for forebody shape modifications (F-5 SSBD and Quiet Spike experiments). The current project, Lift and Nozzle Change Effects on Tail Shock (LaNCETS) seeks to obtain flight data to develop and validate design tools for low-boom tail shock modifications. Attempts will be made to alter the shock structure of NASA's NF-15B TN/837 by changing the lift distribution by biasing the canard positions, changing the plume shape by under- and over-expanding the nozzles, and changing the plume shape using thrust vectoring. Additional efforts will measure resulting shocks with a probing aircraft (F-15B TN/836) and use the results to validate and update predictive tools. Preliminary flight results are presented and are available to provide truth data for developing and validating the CFD tools required to design low-boom supersonic aircraft.

  7. STS-65 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

  8. Operational considerations for laminar flow aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Wagner, Richard D.

    1986-01-01

    Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.

  9. The Role of Flight Experiments in the Development of Cryogenic Fluid Management Technologies

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2006-01-01

    This paper reviews the history of cryogenic fluid management technology development and infusion into both the Saturn and Centaur vehicles. Ground testing and analysis proved inadequate to demonstrate full scale performance. As a consequence flight demonstration with a full scale vehicle was required by both the Saturn and Centaur programs to build confidence that problems were addressed. However; the flight vehicles were highly limited on flight instrumentation and the flight demonstration locked-in the design without challenging the function of design elements. Projects reviewed include: the Aerobee Sounding Rocket Cryogenic Fluid Management (CFM) tests which served as a valuable stepping stone to flight demonstration and built confidence in the ability to handle hydrogen in low gravity; the Saturn IVB Fluid Management Qualification flight test; the Atlas Centaur demonstration flights to develop two burn capability; and finally the Titan Centaur two post mission flight tests.

  10. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL; a miniaturized two-phase fluid circulator for thermally linking cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  11. STS-47 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1992-01-01

    The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

  12. STS-47 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1992-10-01

    The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

  13. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  14. Sealed Silver-oxide Cadmium Batteries for Space Flight, 1960 - 1977

    NASA Technical Reports Server (NTRS)

    Hennigan, Thomas J.

    1978-01-01

    A technical summary of design, development, and test activities with Silver-Oxide Cadmium Batteries at the Goddard Space Flight Center since 1960 is given. The flight experience of over 15 missions has demonstrated the sealed Silver-Oxide Cadmium Battery to be a viable energy storage device for missions requiring ultra-clean magnetic environment.

  15. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  16. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    PubMed

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  17. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  18. STS-77 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-77 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 11. The Government Fumished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table II. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET). The six-person crew for STS-77 consisted of John H. Casper, Col., U. S. Air Force, Commander; Curtis L. Brown, Jr., Lt. Col., U. S. Air Force, Pilot; Andrew S. W. Thomas, Civilian, Ph.D., Mission Specialist 1; Daniel W. Bursch, CDR., U. S. Navy, Mission Specialist 2; Mario Runco, Jr., Civilian, Mission Specialist 3; and Marc Gameau, Civilian, PhD, Mission Specialist 4.

  19. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This photograph was taken during encapsulation of the High Energy Astronomy Observatory (HEAO)-3. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the objectives of the HEAO-3 were to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit. The Marshall Space Flight Center had the project management responsibilities for the HEAO missions.

  20. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-3 being prepared for encapsulation. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the objectives of the HEAO-3 were to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit. The Marshall Space Flight Center had the project management responsibilities for the HEAO missions.

  1. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-3 being assembled at TRW, Inc. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the objectives of the HEAO-3 were to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit. The Marshall Space Flight Center had the project management responsibilities for the HEAO missions.

  2. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  3. The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented.

  4. Feasibility Study of the Superconducting Gravity Gradiometer (SGG) Flight Test on the European Retrievable Carrier (EURECA)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.

  5. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-044 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Grand Canyon. After the IAE completed its inflation process in free-flight, this view was photographed with a large format still camera. The activity came on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  6. Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flights of STS-119, STS-128 and STS-131. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that predictions for boundary layer transition onset time closely match the flight data, while predicted temperatures were significantly higher than observed flight temperatures.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-35, launched December 2, 1990, was the ASTRO-1 Observatory. Designed for round the clock observation of the celestial sphere in ultraviolet and X-ray astronomy, ASTRO-1 featured a collection of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo- Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-ray Telescope (BBXRT). Ultraviolet telescopes mounted on Spacelab elements in cargo bay were to be operated in shifts by flight crew. Loss of both data display units (used for pointing telescopes and operating experiments) during mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center to aim ultraviolet telescopes with fine-tuning by flight crew. BBXRT, also mounted in cargo bay, was directed from outset by ground-based operators at Goddard Space Flight Center. This is the logo or emblem that was designed to represent the ASTRO-1 payload.

  8. Apollo experience report: Guidance and control systems. Lunar module stabilization and control system

    NASA Technical Reports Server (NTRS)

    Shelton, D. H.

    1975-01-01

    A brief functional description of the Apollo lunar module stabilization and control subsystem is presented. Subsystem requirements definition, design, development, test results, and flight experiences are discussed. Detailed discussions are presented of problems encountered and the resulting corrective actions taken during the course of assembly-level testing, integrated vehicle checkout and test, and mission operations. Although the main experiences described are problem oriented, the subsystem has performed satisfactorily in flight.

  9. Development of Experiment Kits for Processing Biological Samples In-Flight on SLS-2

    NASA Technical Reports Server (NTRS)

    Jaquez, R.; Savage, P. D.; Hinds, W. E.; Evans, J.; Dubrovin, L.

    1994-01-01

    The design of the hematology experiment kits for SLS-2 has resulted in a modular, flexible configuration which maximizes crew efficiency and minimizes error and confusion when dealing with over 1200 different components over the course of the mission. The kit layouts proved to be very easy to use and their packaging design provided for positive, secure containment of the many small components. The secondary Zero(Tm) box enclosure also provided an effective means for transport of the kits within the Spacelab and for grouping individual kits by flight day usage. The kits are readily adaptable to use on future flights by simply replacing the inner components as required and changing the labelling scheme to match new mission requirements.

  10. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  11. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  12. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  13. Support activities to maintain SUMS flight readiness, volume 3. Attachment B: Flight STS-35 report, section A

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents flight data for flight STS-35 in graphical format.

  14. A cost assessment of reliability requirements for shuttle-recoverable experiments

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1975-01-01

    The relaunching of unsuccessful experiments or satellites will become a real option with the advent of the space shuttle. An examination was made of the cost effectiveness of relaxing reliability requirements for experiment hardware by allowing more than one flight of an experiment in the event of its failure. Any desired overall reliability or probability of mission success can be acquired by launching an experiment with less reliability two or more times if necessary. Although this procedure leads to uncertainty in total cost projections, because the number of flights is not known in advance, a considerable cost reduction can sometimes be achieved. In cases where reflight costs are low relative to the experiment's cost, three flights with overall reliability 0.9 can be made for less than half the cost of one flight with a reliability of 0.9. An example typical of shuttle payload cost projections is cited where three low reliability flights would cost less than $50 million and a single high reliability flight would cost over $100 million. The ratio of reflight cost to experiment cost is varied and its effect on the range in total cost is observed. An optimum design reliability selection criterion to minimize expected cost is proposed, and a simple graphical method of determining this reliability is demonstrated.

  15. Preliminary Findings from the SHERE ISS Experiment

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.

    2009-01-01

    The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.

  16. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachholz, J.J.; Murphy, D.M.

    1996-05-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and designmore » development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.« less

  17. Investigation of wheat coleoptile response to phototropic stimulations

    NASA Technical Reports Server (NTRS)

    Heathcote, David G.; Brown, Allen H.; Chapman, David K.

    1993-01-01

    This report provides a summary of the preparations for, and the conduct and post-flight data analysis of, the Spacelab flight investigation FOTRAN, which flew on the IML-1 mission (STS-42) in January, 1992. The investigation was designed to provide data on the responses of wheat seedlings to various blue-light stimuli given while the plants were exposed to orbital microgravity conditions. Before the flight, a number of hypotheses were established which were to be tested by the data from the flight and parallel ground studies. A description of the experiment protocol developed for the mission is provided, and an account of the activities supported during preparations for and support of the flight experiment is given. Details of the methods used to reduce and analyze the data from the flight are outlined.

  18. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  19. Control of Flexible Structures (COFS) Flight Experiment Background and Description

    NASA Technical Reports Server (NTRS)

    Hanks, B. R.

    1985-01-01

    A fundamental problem in designing and delivering large space structures to orbit is to provide sufficient structural stiffness and static configuration precision to meet performance requirements. These requirements are directly related to control requirements and the degree of control system sophistication available to supplement the as-built structure. Background and rationale are presented for a research study in structures, structural dynamics, and controls using a relatively large, flexible beam as a focus. This experiment would address fundamental problems applicable to large, flexible space structures in general and would involve a combination of ground tests, flight behavior prediction, and instrumented orbital tests. Intended to be multidisciplinary but basic within each discipline, the experiment should provide improved understanding and confidence in making design trades between structural conservatism and control system sophistication for meeting static shape and dynamic response/stability requirements. Quantitative results should be obtained for use in improving the validity of ground tests for verifying flight performance analyses.

  20. PHYSX Glove Test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental 'glove' undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  1. NASA's hypersonic flight research program

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah; Pyle, Jon

    1993-01-01

    The NASA hypersonic flight research program is reviewed focusing on program history, philosophy, and rationale. Flight research in the high Mach numbers, high dynamic pressure flight regime is considered to be essential to the development of future operational hypersonic systems. The piggy-back experiments which are to be carried out on the Pegasus will develop instrumentation packages for hypersonic data acquisition and will provide unique data of high value to designers and researchers.

  2. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  3. Young PHD's in Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  4. Multiple Payload Ejector for Education, Science and Technology Experiments

    NASA Technical Reports Server (NTRS)

    Lechworth, Gary

    2005-01-01

    The education research community no longer has a means of being manifested on Space Shuttle flights, and small orbital payload carriers must be flown as secondary payloads on ELV flights, as their launch schedule, secondary payload volume and mass permits. This has resulted in a backlog of small payloads, schedule and cost problems, and an inability for the small payloads community to achieve routine, low-cost access to orbit. This paper will discuss Goddard's Wallops Flight Facility funded effort to leverage its core competencies in small payloads, sounding rockets, balloons and range services to develop a low cost, multiple payload ejector (MPE) carrier for orbital experiments. The goal of the MPE is to provide a low-cost carrier intended primarily for educational flight research experiments. MPE can also be used by academia and industry for science, technology development and Exploration experiments. The MPE carrier will take advantage of the DARPAI NASA partnership to perform flight testing of DARPA s Falcon small, demonstration launch vehicle. The Falcon is similar to MPE fiom the standpoint of focusing on a low-cost, responsive system. Therefore, MPE and Falcon complement each other for the desired long-term goal of providing the small payloads community with a low-cost ride to orbit. The readiness dates of Falcon and MPE are complementary, also. MPE is being developed and readied for flight within 18 months by a small design team. Currently, MPE is preparing for Critical Design Review in fall 2005, payloads are being manifested on the first mission, and the carrier will be ready for flight on the first Falcon demonstration flight in summer, 2006. The MPE and attached experiments can weigh up to 900 lb. to be compatible with Falcon demonstration vehicle lift capabilities fiom Wallops, and will be delivered to the Falcon demonstration orbit - 100 nautical mile circular altitude.

  5. SCORPI and SCORPI-T: Neurophysiological experiments on animals in space

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Ramacciotti, T.; Vigano, W.; Donati, A.; Porciani, M.; Zolesi, V.; Schulze-Varnholt, D.; Manieri, P.; El-Din Sallam, A.; Schmah, M.; Horn, E. R.

    2005-08-01

    The study of physiological adaptation to long-term space flights with special consideration of the internal clock systems of scorpions is the goal of the SCORPI and SCORPI-T experiments. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the ESA laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. SCORPI-T experiment, performed on the Russian FOTON-M2 satellite in May-June 2005, represents an important precursor for the success of the experiment SCORPI on BIOLAB. This paper outlines the main features of the hardware designed and developed in order to allow the analysis of critical aspects of experiment execution and the verification of experiment objectives. The capabilities of the hardware developed for SCORPI and SCORPI-T show its potential use for any future similar type of experiments in space.

  6. Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.

  7. Canadian medical experiments on Shuttle Flight 41-G

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.; Money, K. E.; Bondar, R. L.; Thirsk, R. B.; Garneau, M.

    1985-01-01

    During the 41-G mission, two payload specialist astronauts took part in six Canadian medical experiments designed to measure how the human nervous system adapts to weightlessness, and how this might contribute to space motion sickness. Similar tests conducted pre-flight provided base-line data, and post-flight experiments examined re-adaptation to the ground. No changes were detected in the vestibulo-ocular reflex during this 8-day mission. Pronounced proprioceptive illusions were experienced, especially immediately post-flight. Tactile acuity was normal in the fingers and toes, but the ability to judge limb position was degraded. Estimates of the locations of familiar targets were grossly distorted in the absence of vision. There were no differences in taste thresholds or olfaction. Despite pre-flight tests showing unusual susceptibility to motion sickness, the Canadian payload specialist turned out to be less susceptible than normal on-orbit. Re-adaptation to the normal gravity environment occurred within the first day after landing.

  8. Solar cell calibration facility validation of balloon flight data: A comparison of shuttle and balloon flight results

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.; Sidwell, L. B.

    1985-01-01

    The Solar Cell Calibration Facility (SCCF) experiment was designed and built to evaluate the effect of the Earth's upper atmosphere on the calibration of solar cell standards. During execution of the experiment, a collection of carefully selected solar cells was flown on the shuttle, and reflown on a high-altitude balloon, then their outputs were compared. After correction to standard temperature and intensity values of 28 C and an Earth-Sun distance of 1 AU, the solar cell outputs during the two flights were found to be identical. The conclusion is therefore that the high-altitude balloon flights are very good vehicles for calibrating solar cells for use as space flight reference standards.

  9. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL, a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  10. Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Leonard, Charles P.; Bruce, Walter E., III

    2004-01-01

    The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.

  11. Solid Surface Combustion Experiment Completes a Series of Eight Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Solid Surface Combustion Experiment (SSCE) was the first combustion experiment to fly in the space shuttle and the first such experiment in the NASA spaceflight program since Skylab. SSCE was actually a series of experiments designed to begin to characterize flame spreading over solid fuels in microgravity and the differences of this flame spreading from normal gravity behavior. These experiments should lead to a better understanding of the physical processes involved--increasing our understanding of fire behavior, both in space and on Earth. SSCE results will help researchers evaluate spacecraft fire hazards. These experiments were conceived by the principal investigator, Professor Robert A. Altenkirch, Dean of Engineering at Washington State University. In the first five flights, the fuel sample--ashless filter paper instrumented with three thermocouples--was mounted in a sealed chamber filled with a 50-percent or 35-percent mixture of oxygen in nitrogen at pressures of 1.0, 1.5, and 2.0 atm. In the next three flights, a polymethyl methacrylate (plexiglass) fuel was instrumented with three thermocouples and tested in a 70-percent or 50-percent mixture of oxygen and nitrogen at pressures of 1.0 and 2.0 atm. SSCE is a self-contained, battery-operated experiment that can be flown either in the shuttle middeck or in the Spacelab module. More information about the hardware configuration have been published. This past year, the final two of eight flights were completed on STS-64 and STS-63. The NASA Lewis Research Center designed and built the SSCE payload and performed engineering, testing, scientific, and flight operations support. The SSCE project was supported in some way by nearly every major sector of Lewis' organization. Professor Altenkirch developed a numerical simulation of the flame-spreading process from first principles (of fluid mechanics, heat transfer, and reaction kinetics). The spread rates, flame shape, and thermodynamic data from the SSCE flights are being compared directly with the results of the computational model. Results from the eight flights will be used to formulate an improved solid-phase pyrolysis model. In addition, some results of the flights have been published and presented at international combustion symposiums. Additional solid fuel combustion experiments are being investigated for future tests with the existing hardware.

  12. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    NASA Technical Reports Server (NTRS)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  13. JPL control/structure interaction test bed real-time control computer architecture

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1989-01-01

    The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.

  14. STS-69 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-69 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-first flight of the Space Shuttle Program, the forty-sixth flight since the return-to-flight, and the ninth flight of the Orbiter Endeavour(OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-72; three SSME's that were designated as serial numbers 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-074. The RSRMS, designated RSRM-44, were installed in each SRB and the individual RSRM's were designated as 36OL048A for the left SRB, and 36OW048B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirments of Wake Shield Facility (WSF) and SPARTAN-201. The secondary objectives were to perform the operation of the International Extreme Ultraviolet Hitchhiker (IEH-1), the Capillary Pumped Loop-2/GAS Bridge Assembly (CAPL-2/GBA), Thermal Energy Storage (TES), Auroral Photography Experiment-B (APE-B) and the Extravehicular Activity (EVA) Development Flight Test 02 (EDFT-02), the Biological Research in Canister (BRIC) payload, the Commercial Generic Bioprocessing Apparatus (CGBA) payload, the Electrolysis Performance Improvement Concept Study (EPICS) payload, the Space Tissue Loss, National Institute of Health-Cells (STL/NIH-CS) payload, and the Commercial Middeck Instrumentation Technology Associates Experiment (CMIX). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  15. Animals in biomedical space research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.

    1986-01-01

    Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalism function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertibrate development. Following these preliminary animal experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  16. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  17. History of suborbital spaceflight: medical and performance issues.

    PubMed

    Campbell, Mark R; Garbino, Alejandro

    2011-04-01

    The development of manned sub-orbital commercial space vehicles is rapidly occurring and flight testing followed by operational flights will soon begin. The experience of manned suborbital spaceflight at the designated altitude (100 km/62.14 mi) is very limited--two Mercury-Redstone flights, two X-15 flights, one inadvertent Soyuz launch abort, and three recent SpaceShipOne flights, with only 15 min of critical flight time each. All indications were that the sequence of acceleration-weightlessness-deceleration was well tolerated with minimal neurovestibular dysfunction. However, there are some indications that distraction and spatial disorientation did occur. Vertigo on transition from the boost phase to weightlessness was reported on most high-altitude X-15 flights. +Gz tolerance to re-entry deceleration forces (as high as 6 + Gz) after 4 min of weightlessness is still unknown. Only further suborbital spaceflight experience will clarify if pilot performance will be affected.

  18. Preparations for flight research to evaluate actuated forebody strakes on the F-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.

    1994-01-01

    As part of the NASA High-Angle-of-Attack Technology Program (HATP), flight tests are currently being conducted with a multi-axis thrust vectoring system applied to the NASA F-18 High Alpha Research Vehicle (HARV). A follow-on series of flight tests with the NASA F-18 HARV will be focusing on the application of actuated forebody strake controls. These controls are designed to provide increased levels of yaw control at high angles of attack where conventional aerodynamic controls become ineffective. The series of flight tests are collectively referred to as the Actuated Nose Strakes for Enhanced Rolling (ANSER) Flight Experiment. The development of actuated forebody strake controls for the F-18 HARV is discussed and a summary of the ground tests conducted in support of the flight experiment is provided. A summary of the preparations for the flight tests is also provided.

  19. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B

    NASA Technical Reports Server (NTRS)

    Frederick, Michael; Ratnayake, Nalin

    2011-01-01

    The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.

  20. The design, development, fabrication and testing of two (2) Non-Spin Platforms, (NSP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The non spin platform is a means for achieving the very low acceleration requirements for cost effective space processing experiments on research rocket flights. These platforms have a low initial cost, are re-usable and have extremely low refurbishment cost. In order to attain this goal, commercially available components were used and only the necessary quality control standards were imposed. A detailed system description, the very few design problems encountered, the operational procedures (both pre-flight and post-flight), and the maintenance requirements are described.

  1. Support activities to maintain SUMS flight readiness, volume 7. Attachment B: Flight STS-35 report, section E

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents data from the reentry of flight STS-35 in tabular and graphical format.

  2. Support activities to maintain SUMS flight readiness, volume 8. Attachment B: Flight STS-35 report, section F

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents tabular and graphical spectral data of the reentry of flight STS-35.

  3. Development and Flight of the NASA-Ames Research Center Payload on Spacelab-J

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.; Ball, Sally M.; Stolarik, Thomas M.; Eodice, Michael T.

    1993-01-01

    Spacelab-J was an international Spacelab mission with numerous innovative Japanese and American materials and life science experiments. Two of the Spacelab-J experiments were designed over a period of more than a decade by a team from NASA-Ames Research Center. The Frog Embryology Experiment investigated and is helping to resolve a century-long quandary on the effects of gravity on amphibian development. The Autogenic Feedback Training Experiment, flown on Spacelab-J as part of a multi-mission investigation, studied the effects of Autogenic Feedback Therapy on limiting the effects of Space Motion Sickness on astronauts. Both experiments employed the use of a wide variety of specially designed hardware to achieve the experiment objectives. This paper reviews the development of both experiments, from the initial announcement of opportunity in 1978, through selection on Spacelab-J and subsequent hardware and science procedures development, culminating in the highly successful Spacelab-J flight in September 1992.

  4. Pegasus Mated under Wing of B-52 Mothership - Close-up

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A close-up view of the Pegasus space-booster attached to the wing pylon of NASA's B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  5. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart lists the various experiments that flew on Skylab, along with their assigned numerical designations. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  6. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    NASA Technical Reports Server (NTRS)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  7. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  8. Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Diamond, John K.; Bertelrud, Arild

    1999-01-01

    This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.

  9. User Selection Criteria of Airspace Designs in Flexible Airspace Management

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung

    2011-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  10. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  11. Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan

    2014-11-01

    Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.

  12. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  13. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  14. Pegasus Engine Ignites after Drop from B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Against the midnight blue of a high-altitude sky, Orbital Sciences' Pegasus winged rocket booster ignites after being dropped from NASA's B-52 mothership on a July 1991 flight. A NASA chase plane for the flight is also visible above the rocket and below the B-52. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  15. Microgravity Particle Dynamics

    NASA Technical Reports Server (NTRS)

    Clark, Ivan O.; Johnson, Edward J.

    1996-01-01

    This research seeks to identify the experiment design parameters for future flight experiments to better resolve the effects of thermal and velocity gradients on gas-solid flows. By exploiting the reduced body forces and minimized thermal convection current of reduced gravity experiments, features of gas-solid flow normally masked by gravitationally induced effects can be studied using flow regimes unattainable under unigravity. This paper assesses the physical scales of velocity, length, time, thermal gradient magnitude, and velocity gradient magnitude likely to be involved in laminar gas-solid multiphase flight experiments for 1-100 micro-m particles.

  16. Demographic and psychological variables affecting test subject evaluations of ride quality

    NASA Technical Reports Server (NTRS)

    Duncan, N. C.; Conley, H. W.

    1975-01-01

    Ride-quality experiments similar in objectives, design, and procedure were conducted, one using the U.S. Air Force Total In-Flight Simulator and the other using the Langley Passenger Ride Quality Apparatus to provide the motion environments. Large samples (80 or more per experiment) of test subjects were recruited from the Tidewater Virginia area and asked to rate the comfort (on a 7-point scale) of random aircraft motion typical of that encountered during STOL flights. Test subject characteristics of age, sex, and previous flying history (number of previous airplane flights) were studied in a two by three by three factorial design. Correlations were computed between one dependent measure, the subject's mean comfort rating, and various demographic characteristics, attitudinal variables, and the scores on Spielberger's State-Trait Anxiety Inventory. An effect of sex was found in one of the studies. Males made higher (more uncomfortable) ratings of the ride than females. Age and number of previous flights were not significantly related to comfort ratings. No significant interactions between the variables of age, sex, or previous number of flights were observed.

  17. Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57

    NASA Technical Reports Server (NTRS)

    Dominick, S. M.; Tegart, J. R.; Driscoll, S. L.; Sledd, J. D.; Hastings, L. J.

    2011-01-01

    The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives.

  18. The ATIC Experiment : Performance of the Scintillator Hodoscope and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from McMurdo, Antarctica, 28/12/00 to 13/01/01, recording over 360 hours of data. The design goal for ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, operation, and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  19. The ATIC Experiment: Performance of the Scintillator Hodoscopes and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, Joachim; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from Mcmurdo, Antarctica 28/12/2000 to 13/01/2001, local time, recording over 360 hours of data. The design goal of ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, the operations and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  20. Cassini's Test Methodology for Flight Software Verification and Operations

    NASA Technical Reports Server (NTRS)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  1. Mission definition study for Stanford relativity satellite. Volume 2: Engineering flight test program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The need is examined for orbital flight tests of gyroscope, dewar, and other components, in order to reduce the technical and financial risk in performing the relativity experiment. A program is described that would generate engineering data to permit prediction of final performance. Two flight tests are recommended. The first flight would test a dewar smaller than that required for the final flight, but of size and form sufficient to allow extrapolation to the final design. The second flight would use the same dewar design to carry a set of three gyroscopes, which would be evaluated for spinup and drift characteristics for a period of a month or more. A proportional gas control system using boiloff helium gas from the dewar, and having the ability to prevent sloshing of liquid helium, would also be tested.

  2. Evaluation of a bar-code system to detect unaccompanied baggage

    DOT National Transportation Integrated Search

    1988-02-01

    The objective of the Unaccompanied Baggage Detection System (UBDS) Project has : been to gain field experience with a system designed to identify passengers who : check baggage for a flight and subsequently fail to board that flight. In the first : p...

  3. Passepartout Sherpa - A low-cost, reusable transportation system into the stratosphere for small experiments

    NASA Astrophysics Data System (ADS)

    Taraba, M.; Fauland, H.; Turetschek, T.; Stumptner, W.; Kudielka, V.; Scheer, D.; Sattler, B.; Fritz, A.; Stingl, B.; Fuchs, H.; Gubo, B.; Hettrich, S.; Hirtl, A.; Unger, E.; Soucek, A.; Frischauf, N.; Grömer, G.

    2014-12-01

    The Passepartout sounding balloon transportation system for low-mass (< 1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.

  4. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    NASA Technical Reports Server (NTRS)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  5. Linear Aerospike SR-71 Experiment (LASRE) during first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the LASRE pod on the upper rear fuselage of an SR-71 aircraft during take-off of the first flight to experience an in-flight cold flow test. The flight occurred on 4 March 1998. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  6. Design and simulation of flight control system for man-portable micro reconnaissance quadcopter

    NASA Astrophysics Data System (ADS)

    Yin, Xinfan; Zhang, Daibing; Fang, Qiang; Shen, Lincheng

    2017-10-01

    The quadcopter has been widely used in the field of aerial photography and environmental detection, because of its advantages of VTOL, simple structure, and easy-control. In the field of urban anti-terrorism or special operations, micro reconnaissance quadcpter has its unique advantages such as all-weather taking off and landing, small noise and so on, and it is very popular with special forces and riot police. This paper aims at the flight control problem of the micro quadcopter, for the purposes of attitude stabilization control and trajectory tracking control of the micro quadcopter, first, the modeling of the micro quadcopter is presented. And using the MATLAB/SIMULINK toolbox to build the flight controller of the micro quadcopter, and then simulation analysis and real flight test are given. The results of the experiment show that the designed PID controller can correct the flight attitude shift effectively and track the planned tracks well, and can achieve the goal of stable and reliable flight of the quadcopter. It can be a useful reference for the flight control system design of future special operations micro UAV.

  7. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    NASA Astrophysics Data System (ADS)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  8. STS-62 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  9. STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.

  10. Pilot interaction with cockpit automation - Operational experiences with the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1992-01-01

    Results are presented of two studies on the potential effect of cockpit automation on the pilot's performance, which provide data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS). The results of both studies indicate that, although pilots do become proficient in standard FMS operations through ground training and subsequent flight experience, they still have difficulties tracking the FMS status and behavior in certain flight contexts and show gaps in the understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties, which can affect the pilot's situation awareness.

  11. Linear Aerospike SR-71 Experiment (LASRE) refueling during first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 refuels with an Edwards Air Force Base KC-135 during the first flight of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE). The flight took place Oct. 31 at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  12. Skylab

    NASA Image and Video Library

    1972-01-01

    This set of photographs details Skylab's Human Vestibular Function experiment (M131). This experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. This experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  14. Flight Demonstration of Integrated Airport Surface Movement Technologies

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Jones, Denise R.

    1998-01-01

    This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Atlanta Hartsfield International Airport in Atlanta, GA. The test aircraft was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. Qualitative and quantitative results are discussed.

  15. Some special sub-systems for stratospheric balloon flights in India

    NASA Astrophysics Data System (ADS)

    Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.

    During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.

  16. LASRE pod being mated to SR-71

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Linear Aerospike SR-71 Experiment is mounted on a NASA SR-71 aircraft Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for the experiment's first flight, which took place on 31 October 1997. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  17. Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:14:57.

  18. Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:12:50.

  19. Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:04:38.

  20. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  1. Ares I-X Flight Test - On the Fast Track to the Future

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.

  2. STS-37 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-05-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  3. STS-37 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  4. STS-40 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  5. STS-40 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-07-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  6. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    NASA Technical Reports Server (NTRS)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on NASA's F-15B aircraft, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. For future flight data from this platform to be valid, more information must be gathered concerning the quality of the airflow underneath the body of the F-15B at various flight conditions, especially supersonic conditions. The flow angularity and Mach number must be known at multiple locations on any test article interface plane for measurement data at these locations to be valid. To determine this prerequisite information, flight data will be gathered in the Rake Airflow Gauge Experiment using a custom-designed flowfield rake to probe the airflow underneath the F-15B at the desired flight conditions. This paper addresses the design considerations of the rake and probe assembly, including the loads and stress analysis using analytical methods, computational fluid dynamics, and finite element analysis. It also details the flow calibration procedure, including the completed wind-tunnel test and posttest data reduction, calibration verification, and preparation for flight-testing.

  7. Development of an active structure flight experiment

    NASA Astrophysics Data System (ADS)

    Manning, R. A.; Wyse, R. E.; Schubert, S. R.

    1993-02-01

    The design and development of the Air Force and TRW's Advanced Control Technology Experiment (ACTEX) flight experiment is described in this paper. The overall objective of ACTEX is to provide an active structure trailblazer which will demonstrate the compatibility of active structures with operational spacecraft performance and lifetime measures. At the heart of the experiment is an active tripod driven by a digitally-programmable analog control electronics subsystem. Piezoceramic sensors and actuators embedded in a graphite epoxy host material provide the sensing and actuation mechanism for the active tripod. Low noise ground-programmable electronics provide a virtually unlimited number of control schemes that can be implemented in the space environment. The flight experiment program provides the opportunity to gather performance, reliability, adaptability, and lifetime performance data on vibration suppression hardware for the next generation of DoD and NASA spacecraft.

  8. Skylab

    NASA Image and Video Library

    1971-11-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.

  9. Skylab

    NASA Image and Video Library

    1971-10-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.

  10. Soviet experiments aimed at investigating the influence of space flight factors on the physiology of animals and man.

    PubMed

    Parin, V V; Gazenko, O G

    1963-01-01

    Results are given of biological experiments on space ship-satellites II, III, IV and V, and of scientific investigations made during the flights of Cosmonauts Gagarin and Titov aboard space ships Vostok I and Vostok II. Physiological reactions to the action of the flight stress-factors are not of a pathological character. In the post-flight period no alterations in health conditions of either cosmonauts or animals were observed. At the same time some peculiarities which were revealed while analyzing physiological reactions and a number of biological indices require further investigations. The most important tasks remaining are to study the influence of protracted weightlessness, of the biological action of space radiation, of the action of acceleration stresses after prolonged stay under zero-gravity conditions and also to analyze the influence on the organism of the whole combination of spaceflight factors, including emotional strain. In the Soviet Union, a great number of biological experiments have been conducted with a view to elucidating the action of space flight factors on living organisms and the design of systems necessary to ensure healthy activity during flight aboard rocket space vehicles. The first flight experiments with animals were conducted by means of geophysical rockets. The next step in this direction was made by the launching of Sputnik II in 1957 and by experiments on space ship-satellites in 1960-61. The main purpose of flight and laboratory investigations was to obtain the objective scientific criteria essential for ensuring the safety of manned space flight.

  11. A cyclic ground test of an ion auxiliary propulsion system: Description and operational considerations

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Kramer, Edward H.

    1988-01-01

    The Ion Auxiliary Propulsion System (IAPS) experiment is designed for launch on an Air Force Space Test Program satellite (NASA-TM-78859; AIAA Paper No. 78-647). The primary objective of the experiment is to flight qualify the 8 cm mercury ion thruster system for stationkeeping applications. Secondary objectives are measuring the interactions between operating ion thruster systems and host spacecraft, and confirming the design performance of the thruster systems. Two complete 8 cm mercury ion thruster subsystems will be flown. One of these will be operated for 2557 on and off cycles and 7057 hours at full thrust. Tests are currently under way in support of the IAPS flight experiment. In this test an IAPS thruster is being operated through a series of startup/run/shut-down cycles which simulate thruster operation during the planned flight experiment. A test facility description and operational considerations of this testing using an engineering model 8 cm thruster (S/N 905) is the subject of this paper. Final results will be published at a later date when the ground test has been concluded.

  12. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-051 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour and its subsequent inflation process, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over mountains. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  13. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-012 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload is backdropped over Earth as it continues its inflation process. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  14. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-010 (20 May 1996) --- Soon after leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through its inflation process, backdropped over clouds. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  15. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-004 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload begins to inflate, backdropped against clouds over the Pacific Ocean. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  16. Space processing applications rocket project. SPAR 8

    NASA Technical Reports Server (NTRS)

    Chassay, R. P. (Editor)

    1984-01-01

    The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space. This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled Glass Formation Experiment SPAR 74-42/1R, Glass Fining Experiment in Low-Gravity SPAR 77-13/1, and Dynamics of Liquid Bubbles SPAR Experiment 77-18/2.

  17. Payload Processing for Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Brown, Judy

    2007-01-01

    Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.

  18. Previous experience in manned space flight: A survey of human factors lessons learned

    NASA Technical Reports Server (NTRS)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  19. OSSE Evaluation of Prospective Aircraft Reconnaissance Flight Patterns and their Impact on Hurricane Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Christophersen, H.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2015-12-01

    Each year, NOAA/AOML's Hurricane Research Division (HRD) conducts its Hurricane field Program in which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in design is valuable for determining the optimal air reconnaissance flight pattern for a given prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories are simulated in a variety of ways and are evaluated to investigate the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  20. Linear Aerospike SR-71 Experiment (LASRE) first flight takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 takes off Oct. 31, making its first flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  1. Linear Aerospike SR-71 Experiment (LASRE) first flight view from above

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  2. Linear Aerospike SR-71 Experiment (LASRE) first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 successfully completed its first flight 31 October 1997 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  3. Linear Aerospike SR-71 Experiment (LASRE) first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  4. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  5. In-flight performances of the PAMELA satellite experiment

    NASA Astrophysics Data System (ADS)

    Papini, P.; Adriani, O.; Ambriola, M.; Barbarino, G. C.; Basili, A.; Bazilevskaja, G. A.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bongiorno, L.; Bonvicini, V.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Conrad, J.; De Marzo, C.; De Pascale, M. P.; De Rosa, G.; Di Felice, V.; Fedele, D.; Galper, A. M.; Hofverberg, P.; Koldashov, S. V.; Krutkov, S. Yu.; Kvashnin, A. N.; Lund, J.; Lundquist, J.; Maksumov, O.; Malvezzi, V.; Marcelli, L.; Menn, W.; Mikhailov, V. V.; Minori, M.; Misin, S.; Mocchiutti, E.; Morselli, A.; Nikonov, N. N.; Orsi, S.; Osteria, G.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Runtso, M. F.; Russo, S.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu. I.; Taddei, E.; Vacchi, A.; Vannuccini, E.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2008-04-01

    PAMELA is a satellite-borne experiment designed to study with great accuracy charged particles in the cosmic radiation with a particular focus on antiparticles. The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June 15, 2006 in a 350 × 600 km orbit with an inclination of 70∘. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. In this work, the detector design is reviewed and the in-orbit performances in the first months after the launch are presented.

  6. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    NASA Technical Reports Server (NTRS)

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  7. Apollo experience report: Lunar module environmental control subsystem

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Brady, J. C.; Collier, F.

    1972-01-01

    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.

  8. The development and testing of the Lens Antenna Deployment Demonstration (LADD) test article

    NASA Technical Reports Server (NTRS)

    Pugh, Mark L.; Denton, Robert J., Jr.; Strange, Timothy J.

    1993-01-01

    The USAF Rome Laboratory and NASA Marshall Space Flight Center, through contract to Grumman Corporation, have developed a space-qualifiable test article for the Strategic Defense Initiative Organization to demonstrate the critical structural and mechanical elements of single-axis roll-out membrane deployment for Space Based Radar (SBR) applications. The Lens Antenna Deployment Demonstration (LADD) test article, originally designed as a shuttle-attached flight experiment, is a large precision space structure which is representative of operational designs for space-fed lens antennas. Although the flight experiment was cancelled due to funding constraints and major revisions in the Strategic Defense System (SDS) architecture, development of this test article was completed in June 1989. To take full advantage of the existence of this unique structure, a series of ground tests are proposed which include static, dynamic, and thermal measurements in a simulated space environment. An equally important objective of these tests is the verification of the analytical tools used to design and develop large precision space structures.

  9. Flight performance of Skylab attitude and pointing control system

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.

  10. SR-71 #844 with LASRE pod parked on ramp, rear view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Linear Aerospike SR-71 Experiment is seen here almost ready for its first flight aboard NASA's SR-71 No. 844. The initial test flight took place on 31 October 1997. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  11. Long Duration Exposure Facility (LDEF) low-temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1992-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.

  12. Building international experiences into an engineering curriculum - a design project-based approach

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-07-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.

  13. Pegasus Rocket Model

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  14. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  15. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{supmore » 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.« less

  16. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket.

    PubMed

    Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M; Braxmaier, Claus

    2016-06-01

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10(5) (87)Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  17. Flight Validation of On-Demand Operations: The Deep Space One Beacon Monitor Operations Experiment

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Sherwood, Rob; Sue, Miles; Szijjarto, John

    2000-01-01

    After a brief overview of the operational concept, this paper will provide a detailed description of the _as-flown_ flight software components, the DS1 experiment plan, and experiment results to date. Special emphasis will be given to experiment results and lessons learned since the basic system design has been previously reported. Mission scenarios where beacon operations is highly applicable will be described. Detailed cost savings estimates for a sample science mission will be provided as will cumulative savings that are possible over the next fifteen years of NASA missions.

  18. Use of a personal computer for the real-time reception and analysis of data from a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Herrick, W. D.; Penegor, G. T.; Cotton, D. M.; Kaplan, G. C.; Chakrabarti, S.

    1990-01-01

    In September 1988 the Earth and Planetary Atmospheres Group of the Space Sciences Laboratory of the University of California at Berkeley flew an experiment on a high-altitude sounding rocket launched from the NASA Wallops Flight Facility in Virginia. The experiment, BEARS (Berkeley EUV Airglow Rocket Spectrometer), was designed to obtain spectroscopic data on the composition and structure of the earth's upper atmosphere. Consideration is given to the objectives of the BEARS experiment; the computer interface and software; the use of remote data transmission; and calibration, integration, and flight operations.

  19. X-37 Storable Propulsion System Design and Operations

    NASA Technical Reports Server (NTRS)

    Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.

    2005-01-01

    In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.

  20. X-37 Storable Propulsion System Design and Operations

    NASA Technical Reports Server (NTRS)

    Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.

    2006-01-01

    In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.

  1. Man-machine interface analysis of the flight design system

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1978-01-01

    The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested.

  2. Linear Aerospike SR-71 Experiment (LASRE) first flight view from above

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the SR-71 with the Linear Aerospike SR-71 Experiment on the rear fuselage as seen from above. The photo was taken on the first flight of the aircraft with the experiment aboard, which took place on 31 October 1997. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  3. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    NASA Technical Reports Server (NTRS)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  4. KSC-08pd2575

    NASA Image and Video Library

    2008-08-29

    CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, a space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder

  5. KSC-08pd2579

    NASA Image and Video Library

    2008-08-29

    CAPE CANAVERAL, Fla. – In the Life Science Building at NASA's Kennedy Space Center, this space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder

  6. Integrated Cryogenic Experiment (ICE) microsphere investigation

    NASA Technical Reports Server (NTRS)

    Spradley, I.; Read, D.

    1989-01-01

    The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.

  7. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows the Rotating Litter Chair, a major component of Skylab's Human Vestibular Function experiment (M131). The experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. The M131 experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  8. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  9. Skylab

    NASA Image and Video Library

    1971-10-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM flight unit sun end canister in MSFC's building 4755.

  10. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows the flight unit for Skylab's Ultraviolet (UV) Scarning Polychromator Spectroheliometer, an Apollo Telescope Mount (ATM) facility. It was designed to observe temporal changes in UV radiation emitted by the Sun's chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  11. Experimental control requirements for life sciences

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Sharp, J. C.

    1978-01-01

    The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.

  12. STS-39 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  13. STS-39 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-06-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  14. Shape matters: improved flight in tapered auto-rotating wings

    NASA Astrophysics Data System (ADS)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.

  15. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  16. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  17. Space Processing Applications Rocket (SPAR) project: SPAR 10

    NASA Technical Reports Server (NTRS)

    Poorman, R. (Compiler)

    1986-01-01

    The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.

  18. Rocket study of auroral processes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1981-01-01

    Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered.

  19. Atmospheric, Magnetospheric and Plasmas in Space (AMPS) spacelab payload definition study - program analysis and planning for phase C/D document - Volume 7

    NASA Technical Reports Server (NTRS)

    Keeley, J. T.

    1976-01-01

    Typical missions identified for AMPS flights in the arly 1980's are described. Experiment objectives and typical scientific instruments selected to accomplish these objectives are discussed along with mission requirements and shuttle and Spacelab capabilities assessed to determine any AMPS unique requirements. Preliminary design concepts for the first two AMPS flights form the basis for the Phase C/D program plan. This plan implements flights 1 and 2 and indicates how both the scientific and flight support hardware can be systematically evolved for future AMPS flights.

  20. UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.

  1. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-016 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) part of the Spartan 207 payload nears completion of its inflation process over California?s Pacific Coast near Santa Barbara and Point Conception. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  2. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-022 (20 May 1996) --- After leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through the final stages its inflation process, backdropped over clouds and blue water. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  3. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  4. A practical concept for powered or tethered weight-lifting LTA vehicles

    NASA Technical Reports Server (NTRS)

    Balleyguier, M. A.

    1975-01-01

    A concept for a multi-hull weightlifting airship is presented. The concept is based upon experience in the design and handling of gas-filled balloons for commercial purposes, it was first tested in April, 1972. In the flight test, two barrage balloons were joined side-by-side, with an intermediate frame, and launched in captive flight. The success of this flight test led to plans for a development program calling for a powered, piloted prototype, a follow-on 40 ton model, and a 400 ton transport model. All of these airships utilize a tetrehedric three-line tethering method for loading and unloading phases of flight, which bypasses many of the difficulties inherent in the handling of a conventional airship near the ground. Both initial and operating costs per ton of lift capability are significantly less for the subject design than for either helicopters or airships of conventional mono-hull design.

  5. Design of a cooperative problem-solving system for enroute flight planning: An empirical study of its use by airline dispatchers

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, C. Elaine; Layton, Charles; Orasanu, Judith; Chappel, Sherry; Palmer, EV; Corker, Kevin

    1993-01-01

    In a previous report, an empirical study of 30 pilots using the Flight Planning Testbed was reported. An identical experiment using the Flight Planning Testbed (FPT), except that 27 airline dispatchers were studied, is described. Five general questions were addressed in this study: (1) under what circumstances do the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers (either in a beneficial or adverse manner); (2) what is the nature of such influences (i.e., how are the person's cognitive processes changed); (3) how beneficial are the general design concepts underlying FPT (use of a graphical interface, embedding graphics in a spreadsheet, etc.); (4) how effective are the specific implementation decisions made in realizing these general design concepts; and (5) how effectively do dispatchers evaluate situations requiring replanning, and how effectively do they identify appropriate solutions to these situations.

  6. A Modernized Approach to Meet Diversified Earth Observing System (EOS) AM-1 Mission Requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, "lights out" operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(trademark) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result. In addition, the fuzzy logic engine .enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  7. A modernized approach to meet diversified earth observing system (EOS) AM-1 mission requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, 'lights out' operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(TM) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result In addition, the fuzzy logic engine enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  8. Active member vibration control experiment in a KC-135 reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Lawrence, C. R.; Lurie, B. J.; Chen, G.-S.; Swanson, A. D.

    1991-01-01

    An active member vibration control experiment in a KC-135 reduced gravity environment was carried out by the Air Force Flight Dynamics Laboratory and the Jet Propulsion Laboratory. Two active members, consisting of piezoelectric actuators, displacement sensors, and load cells, were incorporated into a 12-meter, 104 kg box-type test structure. The active member control design involved the use of bridge (compound) feedback concept, in which the collocated force and velocity signals are feedback locally. An impact-type test was designed to accommodate the extremely short duration of the reduced gravity testing window in each parabolic flight. The moving block analysis technique was used to estimate the modal frequencies and dampings from the free-decay responses. A broadband damping performance was demonstrated up to the ninth mode of 40 Hz. The best damping performance achieved in the flight test was about 5 percent in the fourth mode of the test structure.

  9. Lockheed L-1101 avionic flight control redundant systems

    NASA Technical Reports Server (NTRS)

    Throndsen, E. O.

    1976-01-01

    The Lockheed L-1011 automatic flight control systems - yaw stability augmentation and automatic landing - are described in terms of their redundancies. The reliability objectives for these systems are discussed and related to in-service experience. In general, the availability of the stability augmentation system is higher than the original design requirement, but is commensurate with early estimates. The in-service experience with automatic landing is not sufficient to provide verification of Category 3 automatic landing system estimated availability.

  10. SR-71 being towed to hangar with LASRE pod installed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's SR-71 is being towed to its hangar with the Linear Aerospike SR-71 Experiment installed. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for its first flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  11. SR-71 with LASRE pod parked on ramp next to SR-71B trainer aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71A with the Linear Aerospike SR-71 Experiment mounted parks beside a NASA SR-71B trainer aircraft. The linear aerospike experiment was mounted on the SR-71 No. 844 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for its first flight, which took place on 31 October 1997. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  12. The Kosmos-1129 biosatellite. [experiments in biological effects of space flight

    NASA Technical Reports Server (NTRS)

    Nikitin, S. A.

    1980-01-01

    A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.

  13. Quantifying Pilot Contribution to Flight Safety during Drive Shaft Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Tim; Last, Mary Carolyn; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base simulation experiment specifically addressed this void by collecting data to quantify the human (pilot) contribution to safety-of-flight and the methods they use in today's National Airspace System. A human-in-the-loop test was conducted using the FAA's Oklahoma City Flight Simulation Branch Level D-certified B-737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Eighteen U.S. airline crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution to safety of flight, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance during single pilot and reduced crew operations were measured for comparison against the normal two-crew complement during normal and non-normal situations. This paper details the crew's actions, including decision-making, and responses while dealing with a drive shaft failure - one of 6 non-normal events that were simulated in this experiment.

  14. Evaluation of the Linear Aerospike SR-71 Experiment (LASRE) Oxygen Sensor

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Corpening, Griffin P.; Jarvis, Michele; Chiles, Harry R.

    1999-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test.

  15. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  16. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.

    1989-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  17. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, M. E.

    1990-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and unlink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  18. Development and approach to low-frequency microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.

    1990-01-01

    The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.

  19. Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Tietz, J. C.; Thomas, H. M.; Gremban, K. D.; Hughes, C.; Chang, C. Y.

    1983-01-01

    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped).

  20. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark

    2011-01-01

    A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.

  1. CFD to Flight: Some Recent Success Stories of X-plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and ight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the authors personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the authors experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further re ned CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of ow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  2. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena

    DTIC Science & Technology

    2007-06-01

    the CNES proposal to perform in-flight experimentation mainly on reusable thermal protections, aero-thermo-dynamics and guidance to secure the second...the vehicle. A preliminary in-flight experimentation and measurement plan has been assessed defining the main objectives in terms of reusable Thermal ...Energy Management THEFA Thermographie Face Arrière TPS Thermal Protection System VKI Von Karman Institute WRT With Respect To WTT Wind

  3. Operational experience and design recommendations for teleoperated flight hardware

    NASA Technical Reports Server (NTRS)

    Burgess, T. W.; Kuban, D. P.; Hankins, W. W.; Mixon, R. W.

    1988-01-01

    Teleoperation (remote manipulation) will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also presented.

  4. Particle Collections - Skylab Experiment S149

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  5. Particle Collection - Skylab Experiment S149

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This chart describes Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  6. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  7. STS-76 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  8. STS-59 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

  9. A rotorcraft flight/propulsion control integration study

    NASA Technical Reports Server (NTRS)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  10. Access to Space: Hands on flight instrument experience for sophomores at UW

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; Harnett, E. M.; Winglee, R. M.; Chinowsky, T. M.; McCarthy, M. P.

    2003-12-01

    Students at the college sophomore level, with no science or technical prerequisites, form teams to design and fabricate sounding balloon payloads. This 200 level class promotes interest in research and involves a mixture of lectures about the upper atmosphere and space environment coupled with an intense laboratory experience. Students are taught rudimentary electronics and fabrication techniques, culminating after just 4 weeks of the flight of a CricketSat instrument (single, thermistor-controlled tone telemetry modulation; kit by Bob Twiggs at Stanford) on a sounding balloon. Following this appetite whetting, student teams design, test, calibrate and interface an instrument of their own choosing to a telemetry system for sounding balloon flight. During Spring 2003 student built payloads included devices to measure direct and reflected solar radiation, magnetic field variations, temperature and pressure, and even a small 'biosphere' with crickets which actually survived flight to near 30km altitude! Students go on a one day field trip to launch the sounding balloons and attempt recovery. This is followed by the last two weeks of data analysis and final report writing.

  11. Space shuttle flying qualities and criteria assessment

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.

    1987-01-01

    Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.

  12. Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony

    1997-01-01

    NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.

  13. The right wing of the LEFT airplane

    NASA Technical Reports Server (NTRS)

    Powell, Arthur G.

    1987-01-01

    The NASA Leading-Edge Flight Test (LEFT) program addressed the environmental issues which were potential problems in the application of Laminar Flow Control (LFC) to transport aircraft. These included contamination of the LFC surface due to dirt, rain, insect remains, snow, and ice, in the critical leading-edge region. Douglas Aircraft Company designed and built a test article which was mounted on the right wing of the C-140 JetStar aircraft. The test article featured a retractable leading-edge high-lift shield for contamination protection and suction through perforations on the upper surface for LFC. Following a period of developmental flight testing, the aircraft entered simulated airline service, which included exposure to airborne insects, heavy rain, snow, and icing conditions both in the air and on the ground. During the roughly 3 years of flight testing, the test article has consistently demonstrated laminar flow in cruising flight. The experience with the LEFT experiment was summarized with emphasis on significant test findings. The following items were discussed: test article design and features; suction distribution; instrumentation and transition point reckoning; problems and fixes; system performance and maintenance requirements.

  14. The Objectives of NASA's Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  15. Design and development of Shuttle Get-Away-Special experiment G-0074. [off-load capability for a full-tank propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Orton, G. F.

    1984-01-01

    An experiment to investigate more versatile, lower cost surface tension propellant acquisition approaches for future satellite and spacecraft propellant tanks is designed to demonstrate a propellant off-load capability for a full-tank gallery surface tension device, such as that employed in the shuttle reaction control subsystem, and demonstrate a low-cost refillable trap concept that could be used in future orbit maneuver propulsion systems for multiple engine restarts. A Plexiglas test tank, movie camera and lights, auxiliary liquid accumulator, control electronics, battery pack, and associated valving and plumbing are used. The test liquid is Freon 113, dyed blue for color movie coverage. The fully loaded experiments weighs 106 pounds and is to be installed in a NASA five-cubic-foot flight canister. Vibration tests, acoustic tests, and high and low temperature tests were performed to quality the experiment for flight.

  16. STS-54 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  17. Electric Propulsion Space Experiment (ESEX): Spacecraft design issues for high-power electric propulsion

    NASA Astrophysics Data System (ADS)

    Kriebel, Mary M.; Sanks, Terry M.

    1992-02-01

    Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.

  18. The BIMDA shuttle flight mission: a low cost microgravity payload.

    PubMed

    Holemans, J; Cassanto, J M; Moller, T W; Cassanto, V A; Rose, A; Luttges, M; Morrison, D; Todd, P; Stewart, R; Korszun, R Z; Deardorff, G

    1991-01-01

    This paper presents the design, operation and experiment protocol of the Bioserve sponsored flights of the ITA Materials Dispersion Apparatus Payload (BIMDA) flown on the Space Shuttle on STS-37. The BIMDA payload represents a joint effort between ITA (Instrumentation Technology Associates, Inc.) and Bioserve Space Technologies, a NASA Center for the Commercial Development of Space, to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment of space. The BIMDA payload, flown in a Refrigerator/Incubator Module (R/IM) in the Orbiter middeck, consists of three different devices designed to mix fluids in space; four Materials Dispersion Apparatus (MDA) Minilabs developed by ITA, six Cell Syringes, and six Bioprocessing Modules both developed by NASA JSC and Bioserve. The BIMDA design and operation reflect user needs for late access prior to launch (<24 h) and early access after landing (<2 h). The environment for the payload is temperature controlled by the R/IM. The astronaut crew operates the payload and documents its operation. The temperature of the payload is recorded automatically during flight. The flight of the BIMDA payload is the first of two development flights of the MDA on the Space Shuttle. Future commercial flights of ITA's Materials Dispersion Apparatus on the Shuttle will be sponsored by NASA's Office of Commercial Programs and will take place over the next three years. Experiments for the BIMDA payload include research into the following areas: protein crystal growth, thin film membrane casting, collagen formation, fibrin clot formation, seed germination, enzymatic catalysis, zeolite crystallization, studies of mixing effects of lymphocyte functions, and solute diffusion and transport.

  19. Experimental investigation of a quad-rotor biplane micro air vehicle

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Christopher Michael

    Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.

  20. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1975-01-01

    A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  1. The X-31A quasi-tailless flight test results

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Stoliker, P. C.

    1996-01-01

    A quasi-tailless flight investigation was launched using the X-31A enhanced fighter maneuverability airplane. In-flight simulations were used to assess the effect of partial to total vertical tail removal. The rudder control surface was used to cancel the stabilizing effects of the vertical tail, and yaw thrust vector commands were used to restabilize and control the airplane. The quasi-tailless mode was flown supersonically with gentle maneuvering and subsonically in precision approaches and ground attack profiles. Pilot ratings and a full set of flight test measurements were recorded. This report describes the results obtained and emphasizes the lessons learned from the X-31A flight test experiment. Sensor-related issues and their importance to a quasi-tailless simulation and to ultimately controlling a directionally unstable vehicle are assessed. The X-31A quasi-tailless flight test experiment showed that tailless and reduced tail fighter aircraft are definitely feasible. When the capability is designed into the airplane from the beginning, the benefits have the potential to outweigh the added complexity required.

  2. Rigidity Spectra of Protons and Helium as Measured in the First Flight of the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure cosmic ray composition for elements from hydrogen to iron and their energy spectra from 30 GeV to near 100 TeV. It is comprised of a fully active BGO calorimeter, a carbon interaction target, scintillator hodoscopes, and a silicon matrix that is used as a charge detector in the experiment. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). Preliminary rigidity spectra of protons and helium nuclei and their ratio are presented for the test flight (ATIC-1). Particular attention is given to problems associated with measuring energy.

  3. Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and Users' Manual

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.; Behbehani, Roxanna

    1990-01-01

    NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.

  4. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  5. Flight Dynamics Analysis Branch 2005 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  6. An empirical evaulation of computerized tools to aid in enroute flight planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, C. Elaine; Layton, Charles

    1993-01-01

    The paper describes an experiment using the Flight Planning Testbed (FPT) in which 27 airline dispatchers were studied. Five general questions was addresses in the study: Under what circumstances does the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers; what is the nature of such influences; How beneficial are the general design concepts underlying FPT; How effective are the specific implementation decisions made in realizing these general design concepts; How effectively do dispatchers evaluate situations requiring replanning and how effectively do they identify appropriate solutions to these situations. The study leaves little doubt that the introduction of computer-generated suggestions for solving a flight planning problem can have a marked impact on the cognitive processes of the user and on the ultimate plan selected.

  7. Test results and flight experience of ball bearing momentum and reaction wheels

    NASA Technical Reports Server (NTRS)

    Auer, W.

    1990-01-01

    The required satellite mission durations and levels of reliability have been considerably increased: While in the beginning of the 70's 3 to 5 year missions were planned, the standard is now 10 years with an expansion to 15 years and more for such programs as INTELSAT VII. Based on a 20 year test and flight experience with basically the same design, ball bearing momentum and reaction wheels with the required 15 year mission capability can be provided.

  8. Experiences in integrating auto-translated state-chart designs for model checking

    NASA Technical Reports Server (NTRS)

    Pingree, P. J.; Benowitz, E. G.

    2003-01-01

    In the complex environment of JPL's flight missions with increasing dependency on advanced software designs, traditional software validation methods of simulation and testing are being stretched to adequately cover the needs of software development.

  9. Free-Flight Experiments in LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  10. STS-53 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-53 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during the fifty-second flight of the Space Shuttle Program, and the fifteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated as ET-49/LWT-42; three SSME's, which were serial numbers 2024, 2012, and 2017 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-055. The lightweight RSRM's that were installed in each SRB were designated 360L028A for the left SRB, and 360L028B for the right SRB. The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-III (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-1A (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Listed in the discussion of each anomaly is the officially assigned tracking number as published by each Project Office in their respective Problem Tracking List. All times given in this report are in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

  11. STS-53 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1993-02-01

    The STS-53 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during the fifty-second flight of the Space Shuttle Program, and the fifteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated as ET-49/LWT-42; three SSME's, which were serial numbers 2024, 2012, and 2017 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-055. The lightweight RSRM's that were installed in each SRB were designated 360L028A for the left SRB, and 360L028B for the right SRB. The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-III (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-1A (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Listed in the discussion of each anomaly is the officially assigned tracking number as published by each Project Office in their respective Problem Tracking List. All times given in this report are in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

  12. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  13. Shuttle free-flying teleoperator system experiment definition. Volume 3: program development requirements

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The planning data are presented for subsequent phases of free-flying teleoperator program (FFTO) and includes costs, schedules and supporting research and technology activities required to implement the free-flying teleoperator system and associated flight equipment. The purpose of the data presented is to provide NASA with the information needed to continue development of the FFTO and integrate it into the space shuttle program. The planning data describes three major program phases consisting of activities and events scheduled to effect integrated design, development, fabrication and operation of an FFTO system. Phase A, Concept Generation, represents a study effort directed toward generating and evaluating a number of feasible FFTO experiment system concepts. Phase B, Definition, will include preliminary design and supporting analysis of the FFTO, the shuttle based equipment and ground support equipment. Phase C/D, Design, Development and Operations will include detail design of the operational FFTO, its integration into the space shuttle, hardware fabrication and testing, delivery of flight hardware and support of flight operations. Emphasis is placed on the planning for Phases A and B since these studies will be implemented early in the development cycle. Phase C/D planning is more general and subject to refinement during the definition phase.

  14. Economical graphics display system for flight simulation avionics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.

  15. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for 1 hour and 57 minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine, and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on the NASA SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement. The goal of the X-33 program, and a major goal for the NASA Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space.

  16. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-094 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Mississippi River and metropolitan St. Louis. The metropolitan area lies just below the gold-colored Spartan at bottom of photo. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  17. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-129 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Atlantic Ocean and Hampton Roads, Virginia. (Hold photograph vertically with land mass at top.) Virginia Beach and part of Newport News can be delineated in the upper left quadrant of the frame. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  18. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  19. Extending a Flight Management Computer for Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Sugden, Paul C.

    2005-01-01

    In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.

  20. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  1. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  2. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  3. Design, fabrication and testing of a thermal diode

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  4. Integrated Real Time Contamination Monitor IRTCM

    NASA Technical Reports Server (NTRS)

    Luttges, W. E.

    1976-01-01

    Engineering and design work was performed on a monitoring device for particulate and gas contamination to be used in the space shuttle cargo area during launch at altitudes up to 50 km and during return phases of the flight. The gas sampling device consists of ampules filled with specific absorber materials which are opened and/or sealed at preprogrammed intervals. The design eliminates the use of valves which, according to experiments, are never sealing properly at hard vacuum. Methods of analysis including in-flight measuring possibilities are discussed.

  5. X-37 Flight Demonstrator: A Building Block in NASA's Future Access to Space

    NASA Technical Reports Server (NTRS)

    Jacobson, David

    2004-01-01

    X-37 is a fully automated winged vehicle designed to go into low-Earth orbit, maneuver, reenter Earth's atmosphere, and glide back to a landing site. This viewgraph presentation gives an overview of the X-37 flight demonstrator, including cut-away diagrams of its interior, the phased approach to its orbital flight demonstrations, and the experience the program will give aerospace engineers. The presentation also lists X-37 applications, partners, and milestones.

  6. Location and data collection for long stratospheric balloon flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  7. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  8. Animals in biomedical space research

    NASA Astrophysics Data System (ADS)

    Phillips, Robert W.

    The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  9. NASA Sounding Rocket Program educational outreach

    NASA Astrophysics Data System (ADS)

    Eberspeaker, P. J.

    2005-08-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NASA Sounding Rocket Program engages in a host of student flight projects providing unique and exciting hands-on student space flight experiences. These projects include single stage Orion missions carrying "active" high school experiments and "passive" Explorer School modules, university level Orion and Terrier-Orion flights, and small hybrid rocket flights as part of the Small-scale Educational Rocketry Initiative (SERI) currently under development. Efforts also include educational programs conducted as part of major campaigns. The student flight projects are designed to reach students ranging from Kindergarteners to university undergraduates. The programs are also designed to accommodate student teams with varying levels of technical capabilities - from teams that can fabricate their own payloads to groups that are barely capable of drilling and tapping their own holes. The program also conducts a hands-on student flight project for blind students in collaboration with the National Federation of the Blind. The NASA Sounding Rocket Program is proud of its role in inspiring the "next generation of explorers" and is working to expand its reach to all regions of the United States and the international community as well.

  10. Temperature control of the Mariner class spacecraft - A seven mission summary.

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.

    1973-01-01

    Mariner spacecraft have completed five missions of scientific investigation of the planets. Two additional missions are planned. A description of the thermal design of these seven spacecraft is given herein. The factors which have influenced the thermal design include the mission requirements and constraints, the flight environment, certain programmatic considerations and the experience gained as each mission is completed. These factors are reviewed and the impact of each on thermal design and developmental techniques is assessed. It is concluded that the flight success of these spacecraft indicates that adequate temperature control has been obtained, but that improvements in design data, hardware performance and analytical techniques are needed.

  11. Design Validation Methodology Development for an Aircraft Sensor Deployment System

    NASA Astrophysics Data System (ADS)

    Wowczuk, Zenovy S.

    The OCULUS 1.0 Sensor Deployment concept design, was developed in 2004 at West Virginia University (WVU), outlined the general concept of a deployment system to be used on a C-130 aircraft. As a sequel, a new system, OCULUS 1.1, has been developed and designed. The new system transfers the concept system design to a safety of flight design, and also enhanced to a pre-production system to be used as the test bed to gain full military certification approval. The OCULUS 1.1 system has an implemented standard deployment system/procedure to go along with a design suited for military certification and implementation. This design process included analysis of the system's critical components and the generation of a critical component holistic model to be used as an analysis tool for future payload modification made to the system. Following the completion of the OCULUS 1.1 design, preparations and procedures for obtaining military airworthiness certification are described. The airworthiness process includes working with the agency overseeing all modifications to the normal operating procedures made to military C-130 aircraft and preparing the system for an experimental flight test. The critical steps in his process include developing a complete documentation package that details the analysis performed on the OCULUS 1.1 system and also the design of experiment flight test plan to analyze the system. Following the approval of the documentation and design of experiment an experimental flight test of the OCULUS 1.1 system was performed to verify the safety and airworthiness of the system. This test proved successfully that the OCULUS 1.1 system design was airworthy and approved for military use. The OCULUS 1.1 deployment system offers an open architecture design that is ideal for use as a sensor testing platform for developmental airborne sensors. The system's patented deployment methodology presents a simplistic approach to reaching the systems final operating position which offers the most robust field of view area of rear ramp deployment systems.

  12. Ares I-X: First Step in a New Era of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, NASA's Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). On October 28, 2009, the Ares Projects successfully launched the first suborbital development flight test of the Ares I crew launch vehicle, Ares I-X, from Kennedy Space Center (KSC). Although the final Constellation Program architecture is under review, data and lessons obtained from Ares I-X can be applied to any launch vehicle. This presentation will discuss the mission background and future impacts of the flight. Ares I is designed to carry up to four astronauts to the International Space Station (ISS). It also can be used with the Ares V cargo launch vehicle for a variety of missions beyond LEO. The Ares I-X development flight test was conceived in 2006 to acquire early engineering, operations, and environment data during liftoff, ascent, and first stage recovery. Engineers are using the test flight data to improve the Ares I design before its critical design review the final review before manufacturing of the flight vehicle begins. The Ares I-X flight test vehicle incorporated a mix of flight and mockup hardware, reflecting a similar length and mass to the operational vehicle. It was powered by a four-segment SRB from the Space Shuttle inventory, and was modified to include a fifth, spacer segment that made the booster approximately the same size as the five-segment SRB. The Ares I-X flight closely approximated flight conditions the Ares I will experience through Mach 4.5, performing a first stage separation at an altitude of 125,000 feet and reaching a maximum dynamic pressure ("Max Q") of approximately 850 pounds per square foot. The Ares I-X Mission Management Office (MMO) was organized functionally to address all the major test elements, including: first stage, avionics, and roll control (Marshall Space Flight Center); upper stage simulator (Glenn Research Center); crew module/launch abort system simulator (Langley Research Center); and ground systems and operations (KSC). Interfaces between vehicle elements and vehicle-ground elements, as well as environment analyses were performed by a systems engineering and integration team at Langley. Experience and lessons learned from these integrated product teams area are already being integrated into the Ares Projects to support the next generation of exploration launch vehicles.

  13. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  14. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates

    PubMed Central

    2017-01-01

    Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations—particularly those that enable greater robustness and adaptability—into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo. PMID:28592663

  15. GPS-based precision orbit determination - A Topex flight experiment

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Davis, Edgar S.

    1988-01-01

    Plans for a Topex/Poseiden flight experiment to test the accuracy of using GPS data for precision orbit determination of earth satellites are presented. It is expected that the GPS-based precision orbit determination will provide subdecimeter accuracies in the radial component of the Topex orbit when the extant gravity model is tuned for wavelengths longer than about 1000 kms. The concept, design, flight receiver, antenna system, ground processing, and data processing of GPS are examined. Also, an accurate quasi-geometric orbit determination approach called nondynamic or reduced dynamic tracking which relies on the use of the pseudorange and the carrier phase measurements to reduce orbit errors arising from mismodeled dynamics is discussed.

  16. Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician adjusts the Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove before a loads-test at Scaled Composites, Inc., in Mojave, California, in January 1997. For the test, technicians slowly filled water bags beneath the wing to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. PHYSX was launched aboard a Pegasus rocket on October 22, 1998. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  17. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  18. Handbook for handling and storage of nickel-cadmium batteries: Lessons learned

    NASA Technical Reports Server (NTRS)

    Ford, Floyd E.; Rao, Gopalakrishna M.; Yi, Thomas Y.

    1994-01-01

    The handbook provides guidelines for the handling and storage of conventional NiCd flight batteries. The guidelines are based on many years of experience with ground and in-flight handling of batteries. The overall goal is to minimize the deterioration and irreversible effects of improper handling of NiCd flight batteries on flight performance. A secondary goal is to provide the reader with an understanding, in nonanalytical terms, of the degradation mechanisms of NiCd cells and how these mechanisms are affected by improper ground handling of flight hardware. Section 2 provides the reader with a brief introduction to NiCd cells. The effects of the environment on NiCd batteries are discussed in Section 3, and Section 4 contains 12 guidelines for battery handling and storage with supporting rationale for each guideline. The appendix provides a synopsis of NiCd cell design and evolution over 30 years of space flight on Goddard Space Flight Center (GSFC) satellites, along with a chronological review of key events that influenced the design of NiCd cells being flown today.

  19. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  20. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    NASA Technical Reports Server (NTRS)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  1. EASAMS' Ariane 5 on-board software experience

    NASA Astrophysics Data System (ADS)

    Birnie, Steven Andrew

    The design and development of the prototype flight software for the Ariane 5 satellite launch vehicle is considered. This was specified as being representative of the eventual real flight program in terms of timing constraints and target computer loading. The usability of HOOD (Hierarchical Object Oriented Design) and Ada for development of such preemptive multitasking computer programs was verified. Features of the prototype development included: design methods supplementary to HOOD for representation of concurrency aspects; visibility of Ada enumerated type literals across HOOD parent-child interfaces; deterministic timings achieved by modification of Ada delays; and linking of interrupts to Ada task entries.

  2. The effects of Crew Resource Management (CRM) training on flight attendants' safety attitudes.

    PubMed

    Ford, Jane; Henderson, Robert; O'Hare, David

    2014-02-01

    A number of well-known incidents and accidents had led the aviation industry to introduce Crew Resource Management (CRM) training designed specifically for flight attendants, and joint (pilot and flight attendant) CRM training as a way to improve teamwork and communication. The development of these new CRM training programs during the 1990s highlighted the growing need for programs to be evaluated using research tools that had been validated for the flight attendant population. The FSAQ (Flight Safety Attitudes Questionnaire-Flight Attendants) was designed specifically to obtain safety attitude data from flight attendants working for an Asia-Pacific airline. Flight attendants volunteered to participate in a study before receiving CRM training (N=563) and again (N=526) after CRM training. Almost half (13) of the items from the 36-item FSAQ showed highly significant changes following CRM training. Years of experience, crew position, seniority, leadership roles, flight attendant crew size, and length of route flown were all predictive of safety attitudes. CRM training for flight attendants is a valuable tool for increasing positive teamwork behaviors between the flight attendant and pilot sub-groups. Joint training sessions, where flight attendants and pilots work together to find solutions to in-flight emergency scenarios, provide a particularly useful strategy in breaking down communication barriers between the two sub-groups. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  3. The ISOMAX Magnetic Rigidity Spectrometer

    NASA Astrophysics Data System (ADS)

    Hams, Thomas

    1999-08-01

    The Isotope Magnet Experiment, (ISOMAX), is a balloon-borne superconducting magnetic spectrometer with a time-of-flight system and aerogel Cherenkov counters. Its purpose is to measure the isotopic composition of the light elements (3 < Z < 8) in the cosmic radiation. Particle mass is derived from a velocity vs. magnetic rigidity (momentum/charge) technique. The experiment had its first flight in August 1998. The precision magnetic spectrometer uses advanced drift-chamber tracking and a large, high-field, superconducting magnet. The drift-chamber system consists of three chambers with 24 layers of hexagonal drift cells (16 bending, 8 non-bending) and a vertical extent of 1.4 m. Pure CO2 gas is used. The magnet is a split-pair design with 79 cm diameter coils and a separation of 80 cm. During the 1998 flight, the central field was 0.8 T (60% of the full design field). Presented are results from flight data, for a range of incident particle Z, on the spatial resolution and efficiency of the tracking system, and on the maximum detectable rigidity (MDR) of the spectrometer. For in-flight data, spatial resolutions of 54 mm for Z=2 and 45 mm for Z=4 are obtained. An MDR of 970 GV/c is achieved for Z=2.

  4. The electron Echo 6 mechanical deployment systems

    NASA Technical Reports Server (NTRS)

    Meyers, S. C.; Steffen, J. E.; Malcolm, P. R.; Winckler, J. R.

    1984-01-01

    The Echo 6 sounding rocket payload was flown on a Terrier boosted Black Brant vehicle on March 30, 1983. The experiment requirements resulted in the new design of a rocket propelled Throw Away Detector System (TADS) with onboard Doppler radar, a free-flyer forward experiment designated the Plasma Diagnostic Package (PDP), and numerous other basic systems. The design, developmental testing, and flight preparations of the payload and the mechanical deployment systems are described.

  5. Support activities to maintain SUMS flight readiness

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation began about one hour prior to shuttle de-orbit entry maneuver and continued until reaching 1.6 torr (about 86 km altitude). The SUMS mass spectrometer consists of the spare unit from the Viking mission to Mars. Bendix Aerospace under contract to NASA LaRC incorporated the Viking mass spectrometer, a microprocessor based logic card, a pressurized instrument case, and the University of Texas at Dallas provided a gas inlet system into a configuration suited to interface with the shuttle Columbia. The SUMS experiment underwent static and dynamic calibration as well as vacuum maintenance before and after STS 40 shuttle flight. The SUMS flew a total of 3 times on the space shuttle Columbia. Between flights the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399.

  6. Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    Flight tests of the Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the National Aeronautics and Space Administration Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B (836) airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, instead of a centerline mounting, a forward-pointing boom was attached to the radar bulkhead of the airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets flying over land. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. Because of flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for-flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight-testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This report provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project.

  7. Flight test experience with high-alpha control system techniques on the F-14 airplane

    NASA Technical Reports Server (NTRS)

    Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.

    1981-01-01

    Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.

  8. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  9. The Charlotte (TM) intra-vehicular robot

    NASA Technical Reports Server (NTRS)

    Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.

    1994-01-01

    NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.

  10. X-37 Flight Demonstrator Project: Capabilities for Future Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2004-01-01

    The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.

  11. Skylab

    NASA Image and Video Library

    1970-01-01

    This chart describes Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  12. Skylab

    NASA Image and Video Library

    1970-01-01

    This photograph shows Skylab's Particle Collection device, a scientific experiment designed to study micro-meteoroid particles in near-Earth space and determine their abundance, mass distribution, composition, and erosive effects. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. EC91-436-8

    NASA Image and Video Library

    1991-08-16

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, during a research flight. The former Navy aircraft was flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused in alternative fiber-optic designs for position measurement sensors as well as operational experience in handling optical sensor systems. Other experiments flown on this testbed aircraft included electronically-controlled control surface actuators, flush air data collection systems, "smart" skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  14. An overview of the Evaluation of Oxygen Interaction with Materials-third phase (EOIM-3) experiment: Space Shuttle Mission 46

    NASA Technical Reports Server (NTRS)

    Leger, Lubert J.; Koontz, Steven L.; Visentine, James T.; Hunton, Donald

    1993-01-01

    The interaction of the atomic oxygen (AO) component of the low earth orbit (LEO) environment with spacecraft materials has been the subject of several flight experiments over the past 11 years. The effect of AO interactions with materials has been shown to be significant for long-lived spacecraft such as Space Station Freedom and has resulted in materials changes for externally exposed surfaces. The data obtained from previous flight experiments, augmented by limited ground-based evaluation, have been used to evaluate hardware performance and select materials. Questions pertaining to the accuracy of this data base remain, resulting from the use of long-term ambient density models to estimate the O-atom fluxes and fluences needed to calculate materials reactivity in short-term flight experiments. The EOIM-3 flight experiment was designed to produce benchmark AO reactivity data and was carried out during STS-46. Ambient density measurements were made with a quadrupole mass spectrometer which was calibrated for AO measurements in a unique ground-based test facility. The combination of these data with the predictions of ambient density models allows an assessment of the accuracy of measured reaction rates on a wide variety of materials, many of which had never been tested in LEO before. The mass spectrometer is also used to obtain a better definition of the local neutral and plasma environments resulting from interaction of the ambient atmosphere with various spacecraft surfaces. In addition, the EOIM-3 experiment was designed to produce information on the effects of temperature, mechanical stress, and solar exposure on the AO reactivity of a wide range of materials. An overview of the EOIM-3 methods and results are presented.

  15. LASRE ground hotfire #2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at NASA Dryden Flight Research Center, Edwards, California, in November 1998. The experiment's goal was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds of up to approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on NASA's SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement.The goal of the X-33 program, and a major goal for NASA's Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space. The following 19-second clip shows one of two 'hot firings' of the Linear Aerospike engine on it's SR-71 test aircraft while on the ground at NASA Dryden Flight Research Center.

  16. Linear Aerospike SR-71 Experiment (LASRE) ground cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  17. Assessment and control of spacecraft electromagnetic interference

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.

  18. EVA design: lessons learned.

    PubMed

    Ross, J L

    1994-01-01

    Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.

  19. Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)

    1996-01-01

    The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.

  20. Piloted simulation of one-on-one helicopter air combat at NOE flight levels

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Aiken, E. W.

    1985-01-01

    A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.

  1. Assess II - A simulated mission of Spacelab

    NASA Technical Reports Server (NTRS)

    Wegmann, H. M.; Hermann, R.; Wingett, C. M.; De Muizon, M.; Rouan, D.; Lena, P.; Wijnbergen, J.; Olthof, H.; Michel, K. W.; Werner, CH.

    1978-01-01

    For Assess II, the Spacelab mission simulation conducted in mid-1977, four payload specialists aboard a Convair 990 research aircraft performed six American and six European experiments during nine research flights each of six hours duration in order to evaluate the compatibility of training and experimental design. Mission organization and some initial data from the European experiments are reported. The experiments, conducted over the western U.S., involved infrared astronomy, solar brightness temperature, lidar, airglow TV, and a medical experiment for which physiological parameters were monitored. Conclusions concerning general principles of experiment design are discussed.

  2. Testing of gallium arsenide solar cells on the CRRES vehicle

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  3. Experiment S-191 visible and infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Linnell, E. R.

    1974-01-01

    The design, development, fabrication test, and utilization of the visible and infrared spectrometer portion of the S-191 experiment, part of the Earth Resources Experiment Package, on board Skylab is discussed. The S-191 program is described, as well as conclusions and recommendations for improvement of this type of instrument for future applications. Design requirements, instrument design approaches, and the test verification program are presented along with test results, including flight hardware calibration data. A brief discussion of operation during the Skylab mission is included. Documentation associated with the program is listed.

  4. The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments

    NASA Technical Reports Server (NTRS)

    Budney, T. J.; Stone, R. W.

    1982-01-01

    Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.

  5. Cognitive representations of flight-deck information attributes

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.

    1993-01-01

    The experiment described in this paper had two ojectives. The first objective was to empirically identify how pilots organize flight-deck information attributes. Such an organization should provide a useful nomenclature for classifying Information Management (IM) issues and problems. The second objective of this study was to empirically assess pilots' estimate of the relative importance of each attribute on managing information. Results from addressing this latter objective were intended to suggest areas on which flight-deck researchers and designers will want to focus their attention.

  6. Active plasma release experiments

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A pulse code modulator (PCM) encoder capable of storing data onboard into the mass memory in the encoder at up to 12 megabits per second was designed and constructed. This telemetry system was programed for two successful flights. All parts of the electronic system functioned perfectly during both previous flights and the detectors performed perfectly. However, in the first flight in Pokerflat, Alaska, an electron arm did not deploy for reasons as yet unkown. The ion arm deployed perfectly and good data was acquired.

  7. Ares I-X: First Flight of a New Generation

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    The Ares I-X suborbital development flight test demonstrated NASA s ability to design, develop, launch and control a new human-rated launch vehicle (Figure 14). This hands-on missions experience will provide the agency with necessary skills and insights regardless of the future direction of space exploration. The Ares I-X team, having executed a successful launch, will now focus on analyzing the flight data and extracting lessons learned that will be used to support the development of future vehicles.

  8. Flight Dynamics Analysis Branch End of Fiscal Year 2004 Report

    NASA Technical Reports Server (NTRS)

    DeLion, Anne (Editor); Stengle, Thomas

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2004. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  9. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  10. Flight Dynamics Analysis Branch End of Fiscal Year 2005 Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based), spacecraft trajectory design and maneuver planning, attitude analysis, attitude determination and sensor calibration, and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  11. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  12. ORATOS: ESA's future flight dynamics operations system

    NASA Astrophysics Data System (ADS)

    Dreger, Frank; Fertig, Juergen; Muench, Rolf

    The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.

  13. Welding in Space: Lessons Learned for Future In Space Repair Development

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.

    2005-01-01

    Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.

  14. F-15B/Flight Test Fixture 2: A Test Bed for Flight Research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.

    1996-01-01

    NASA Dryden Flight Research Center has developed a second-generation flight test fixture for use as a generic test bed for aerodynamic and fluid mechanics research. The Flight Test Fixture 2 (FTF-2) is a low-aspect-ratio vertical fin-like shape that is mounted on the centerline of the F-I5B lower fuselage. The fixture is designed for flight research at Mach numbers to a maximum of 2.0. The FTF-2 is a composite structure with a modular configuration and removable components for functional flexibility. This report documents the flow environment of the fixture, such as surface pressure distributions and boundary-layer profiles, throughout a matrix of conditions within the F-15B/FTF-2 flight envelope. Environmental conditions within the fixture are presented to assist in the design and testing of future avionics and instrumentation. The intent of this document is to serve as a user's guide and assist in the development of future flight experiments that use the FTF-2 as a test bed. Additional information enclosed in the appendices has been included to assist with more detailed analyses, if required.

  15. Ares I-X Flight Test--The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than one year, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately 130,000 feet (39,600 meters (m)) and through maximum dynamic pressure ('Max Q') of approximately 800 pounds per square foot (38.3 kilopascals (kPa)). Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by a two-part integrated vehicle CDR in March and July 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008. Ares I-X is the first step in the long journey to the Moon and farther destinations. This suborbital test will be NASA's first flight of a new human-rated launch vehicle in more than a generation. This promises to be an exciting time for NASA and the nation, as we reach for new goals in space exploration. A visual presentation is included.

  16. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  17. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  18. A linear refractive photovoltaic concentrator solar array flight experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.A.; Murphy, D.M.; Piszczor, M.F.

    1995-12-31

    Concentrator arrays deliver a number of generic benefits for space including high array efficiency, protection from space radiation effects, and minimized plasma interactions. The line focus concentrator concept delivers two added advantages: (1) low-cost mass production of the lens material and, (2) relaxation of precise array tracking requirements to only a single axis. New array designs emphasize lightweight, high stiffness, stow-ability and ease of manufacture and assembly. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal pointing errors for satellites having only single-axis tracking capability. In this paper the authorsmore » address the current status of the SCARLET linear concentrator program with special emphasis on hardware development of an array-level linear refractive concentrator flight experiment. An aggressive, 6-month development and flight validation program, sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center, will quantify and verify SCARLET benefits with in-orbit performance measurements.« less

  19. Integration and Test Flight Validation Plans for the Pulsed Plasma Thruster Experiment on EO- 1

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Benson, Scott; Sanneman, Paul; Hoskins, Andy; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 uN-s) at low average power (less than 1 to 100 W). Teflon fuel is ablated and slightly ionized by means of a capacitative discharge. The discharge also generates electromagnetic fields that accelerate the plasma by means of the Lorentz Force. EO-1 has a single PPT that can produce thrust in either the positive or negative pitch direction. The flight validation has been designed to demonstrate of the ability of the PPT to provide precision pointing accuracy, response and stability, and confirmation of benign plume and EMI effects. This paper will document the success of the flight validation.

  20. Symbology Development for General Aviation Synthetic Vision Primary Flight Displays for the Approach and Missed-Approach Modes of Flight

    NASA Technical Reports Server (NTRS)

    Bartolone, Anthony P.; Hughes, Monica F.; Wong, Douglas T.; Takallu, Mohammad A.

    2004-01-01

    Spatial disorientation induced by inadvertent flight into instrument meteorological conditions (IMC) continues to be a leading cause of fatal accidents in general aviation. The Synthetic Vision Systems General Aviation (SVS-GA) research element, an integral part of NASA s Aviation Safety and Security Program (AvSSP), is investigating a revolutionary display technology designed to mitigate low visibility events such as controlled flight into terrain (CFIT) and low-visibility loss of control (LVLoC). The integrated SVS Primary Flight Display (SVS-PFD) utilizes computer generated 3-dimensional imagery of the surrounding terrain augmented with flight path guidance symbology. This unique combination will provide GA pilots with an accurate representation of their environment and projection of their flight path, regardless of time of day or out-the-window (OTW) visibility. The initial Symbology Development for Head-Down Displays (SD-HDD) simulation experiment examined 16 display configurations on a centrally located high-resolution PFD installed in NASA s General Aviation Work Station (GAWS) flight simulator. The results of the experiment indicate that situation awareness (SA) can be enhanced without having a negative impact on flight technical error (FTE), by providing a general aviation pilot with an integrated SVS display to use when OTW visibility is obscured.

  1. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  2. Development of a Self-contained Heat Rejection Module (SHRM), phase 1

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.

  3. Long Duration Exposure Facility (LDEF) low temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1993-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.

  4. Flight Integral Field Spectrograph (IFS) Optical Design for WFIRST Coronagraphic Exoplanet Demonstration

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Groff, Tyler D.; Zimmerman, Neil; Mandell, Avi; McElwain, Michael; Rizzo, Maxime; Saxena, Prabal

    2017-01-01

    Based on the experience from Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST, we have moved to the flight instrument design phase. The specifications for flight IFS have similarities and differences from the prototype. This paper starts with the science and system requirement, discusses a number of critical trade-offs: such as IFS type selection, lenslet array shape and layout versus detector pixel accuracy, how to accommodate the larger Field Of View (FOV) and wider wavelength band for a potential add-on StarShade occulter. Finally, the traditional geometric optical design is also investigated and traded: reflective versus refractive, telecentric versus non-telecentric relay. The relay before the lenslet array controls the chief angle distribution on the lenslet array. Our previous paper has addressed how the relay design combined with lenslet arraypinhole mask can further compress the residual star light and increase the contrast. Finally, a complete phase A IFS optical design is presented.

  5. Intelsat solar array coupon atomic oxygen flight experiment

    NASA Technical Reports Server (NTRS)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-01-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  6. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  7. Development of Enhanced Avionics Flight Hardware Selection Process

    NASA Technical Reports Server (NTRS)

    Smith, K.; Watson, G. L.

    2003-01-01

    The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

  8. STARS: a software application for the EBEX autonomous daytime star cameras

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel; Didier, Joy; Hanany, Shaul; Hillbrand, Seth; Limon, Michele; Miller, Amber; Reichborn-Kjennerud, Britt; Tucker, Greg; Vinokurov, Yury

    2014-07-01

    The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. EBEX employs two star cameras to achieve its real-time and post-flight pointing requirements. We wrote a software application called STARS to operate, command, and collect data from each of the star cameras, and to interface them with the main flight computer. We paid special attention to make the software robust against potential in-flight failures. We report on the implementation, testing, and successful in flight performance of STARS.

  9. Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Larson, Richard R.

    2009-01-01

    F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.

  10. EURECA mission control experience and messages for the future

    NASA Technical Reports Server (NTRS)

    Huebner, H.; Ferri, P.; Wimmer, W.

    1994-01-01

    EURECA is a retrievable space platform which can perform multi-disciplinary scientific and technological experiments in a Low Earth Orbit for a typical mission duration of six to twelve months. It is deployed and retrieved by the NASA Space Shuttle and is designed to support up to five flights. The first mission started at the end of July 1992 and was successfully completed with the retrieval in June 1993. The operations concept and the ground segment for the first EURECA mission are briefly introduced. The experiences in the preparation and the conduction of the mission from the flight control team point of view are described.

  11. A landmark recognition and tracking experiment for flight on the Shuttle/Advanced Technology Laboratory (ATL)

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1975-01-01

    The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.

  12. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  13. The SHEFEX II Thermal Protection System

    NASA Astrophysics Data System (ADS)

    Bohrk, H.; Elsaber, H.; Weihs, H.

    2011-05-01

    The SHEFEXII payload tip is ready for flight. Within a period of three years, the experiment has been designed, laid out, parts have been manufactured, mounted and instrumented for the upcoming flight in autumn 2011. The present paper gives an overview over the thermal protection system (TPS) of the SHEFEX II vehicle including the TPS-material, the overall TPS-setup, and detailed informations on the faceted ther- mal protection including the gap seal, the sharp leading edge, the transpiration-cooling experiment AKTIV, and the aerodynamic control surfaces, i.e. canards.

  14. The IMISS-1 Experiment for Recording and Analysis of Accelerations in Orbital Flight

    NASA Astrophysics Data System (ADS)

    Sadovnichii, V. A.; Alexandrov, V. V.; Bugrov, D. I.; Lemak, S. S.; Pakhomov, V. B.; Panasyuk, M. I.; Petrov, V. L.; Yashin, I. V.

    2018-03-01

    The IMISS-1 experiment represents the second step in solving the problem of the creation of the gaze stabilization corrector. This device is designed to correct the effect of the gaze stabilization delay under microgravity. IMISS-1 continues research started by the Tat'yana-2 satellite. This research will be continued on board the International Space Station. At this stage we study the possibility of registration of angular and linear accelerations acting on the sensitive mass in terms of Low Earth Orbit flight, using MEMS sensors.

  15. Description of the meteoroid detection experiment flown on the Pioneer 10 and 11 Jupiter flyby missions

    NASA Technical Reports Server (NTRS)

    Oneal, R. L. (Compiler)

    1974-01-01

    The meteoroid detection experiment has the objective of measuring the population of 10 to the minus 9th power and 10 to the minus 8th power grams mass particles in interplanetary space with emphasis on making these measurements in the Asteroid Belt. The instrument design, which uses the pressurized-cell-penetration detection technique, and the tests involved in obtaining a flight-qualified instrument are described. The successful demonstration of flight-quality penetration detectors to function properly under long-term simulated space environments is also described.

  16. The ATIC Experiment: First Balloon Flight

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its maiden test flight from McMurdo, Antarctica 28/12/00 to 13/01/01, local time, recording over 360 hours of data. ATIC was designed to measure the composition and energy spectra of cosmic rays from approx. 10 GeV to near 100 TeV utilizing a Si matrix detector to determine charge in conjunction with a scintillator hodoscope which measures charge and trajectory. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO (Bismuth Germanate) crystals. ATIC's geometry factor is about 0.25 sq. m -sr. During line-of-sight operations much of the datastream was transmitted to the ground. For most of the flight, the data was recorded on-board, yielding 45 GB of flight data for analysis. The payload construction, operations and in-flight performance are described, along with preliminary results from the on-going analysis.

  17. The ATIC Experiment: First Balloon Flight

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its maiden, test, flight from McMurdo, Antarctica 28/12/00 to 13/01/01, local time, recording over 360 hours of data. ATIC was designed to measure the composition and energy spectra of cosmic rays from approximately 10 GeV to near 100 TeV utilizing a Si-matrix detector to determine charge in conjunction with a scintillator hodoscope which measures charge and trajectory. Cosmic rays that interact in a Carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. ATIC's geometry factor is about 0.25 m**2-sr. During line-of-sight operations much of the datastream was transmitted to the ground. For most of the flight, the data was recorded on-board, yielding 45 GB of flight data for analysis. The payload construction, operations and in-flight performance are described, along with preliminary results from the on-going analysis.

  18. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  19. Experimental Results From the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Jacqmin, David

    1995-01-01

    The Thermal Energy Storage (TES) experiments are designed to provide data to help researchers understand the long-duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data, which have never been obtained before, have direct application to space-based solar dynamic power systems. These power systems will store solar energy in a thermal energy salt, such as lithium fluoride (LiF) or a eutectic of lithium fluoride/calcium difluoride (LiF-CaF2) (which melts at a lower temperature). The energy will be stored as the latent heat of fusion when the salt is melted by absorbing solar thermal energy. The stored energy will then be extracted during the shade portion of the orbit, enabling the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed to predict the performance of a spacebased solar dynamic power system. However, the analytical predictions must be verified experimentally before the analytical results can be used for future space power design applications. Four TES flight experiments will be used to obtain the needed experimental data. This article focuses on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code.

  20. Skylab

    NASA Image and Video Library

    1971-12-01

    The Apollo Telescope Mount (ATM) was designed and constructed at the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab. The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This photograph shows the flight unit solar shield for the ATM that formed the base for the rack, a complex frame, and the canister that contained the instruments.

  1. Skylab

    NASA Image and Video Library

    1971-12-01

    Workmen at the Martin Marietta Corporation's Space Center facility in Denver, Colorado, lower the Skylab Multiple Docking Adapter (MDA) flight article into the horizontal rotation fixture in preparation for the crew compartment and function review. Designed and manufactured by the Marshall Space Flight Center and outfitted by Martin Marietta, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.

  2. Skylab

    NASA Image and Video Library

    1972-09-01

    This September 1972 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) flight article as it appeared during the Crew Compartment and Function Review at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.

  3. Design of a water electrolysis flight experiment

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Grigger, David J.; Thompson, C. Dean; Cusick, Robert J.

    1993-01-01

    Supply of oxygen (O2) and hydrogen (H2) by electolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missios. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. The Electrolysis Performance Improvement Concept Study (EPICS) flight experiment described herein is sponsored by NASA Headquarters as a part of the In-Space Technology Experiment Program (IN-STEP). The objective of the EPICS is to further contribute to the improvement of the SEF technology, specifially by demonstrating and validating the SFE electromechanical process in microgravity as well as investigating perrformance improvements projected possible in a microgravity environment. This paper defines the experiment objective and presents the results of the preliminary design of the EPICS. The experiment will include testing three subscale self-contained SFE units: one containing baseline components, and two units having variations in key component materials. Tests will be conducted at varying current and thermal condition.

  4. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  5. STS-45 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  6. STS-45 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1992-05-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  7. Conceptual design of a closed loop nutrient solution delivery system for CELSS implementation in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.

    1990-01-01

    Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.

  8. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data collection, and subsequent data analysis. Their pedagogical skills in teaching STEM content were enhanced through the collaborative development of curriculum units, critique of curriculum plans by education faculty experts, and exploration of NASA educational resources. AREE also engaged educators in the NASA-sponsored Classroom of the Future's Virtual Design Center (http://vdc.cet.edu/overview.htm), which provides curriculum designers with research-based guidelines to help them design inquiry-based learning activities. The AREE Master Teachers are currently in process of a pilot implementation of their developed curricula, with results due at the end of October 2009. This session will report on program evaluation data and identify best practices for replication of the model. Three perspectives will be provided, including views from the NASA Flight Operations Director, AREE Project Manager, and University Science Education Faculty Mentor. Three AREE Master Educators will present examples of their curriculum materials.

  9. On-orbit experience with the HEAO attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Berkery, E. A.

    1978-01-01

    The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.

  10. Ground Testing of a 10 K Sorption Cryocooler Flight Experiment (BETSCE)

    NASA Technical Reports Server (NTRS)

    Bard, S.; Wu, J.; Karlmann, P.; Cowgill, P.; Mirate, C.; Rodriguez, J.

    1994-01-01

    The Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is a Space Shuttle side-wall-mounted flight experiment designed to demonstrate 10 K sorption cryocooler technology in a space environment. The BETSCE objectives are to: (1) provide a thorough end-to-end characterization and space performance validation of a complete, multistage, automated, closed-cycle hydride sorption cryocooler in the 10 to 30 K temperature range, (2) acquire the quantitative microgravity database required to provide confident engineering design, scaling, and optimization, (3) advance the enabling technologies and resolve integration issues, and (4) provide hardware qualification and safety verification heritage. BETSCE ground tests were the first-ever demonstration of a complete closed-cycle 10 K sorption cryocooler. Test results exceeded functional requirements. This paper summarizes functional and environmental ground test results, planned characterization tests, important development challenges that were overcome, and valuable lessons-learned.

  11. Thermal Design and Analysis for the Cryogenic MIDAS Experiment

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth McElroy

    1997-01-01

    The Materials In Devices As Superconductors (MIDAS) spaceflight experiment is a NASA payload which launched in September 1996 on the Shuttle, and was transferred to the Mir Space Station for several months of operation. MIDAS was developed and built at NASA Langley Research Center (LaRC). The primary objective of the experiment was to determine the effects of microgravity and spaceflight on the electrical properties of high-temperature superconductive (HTS) materials. The thermal challenge on MIDAS was to maintain the superconductive specimens at or below 80 K for the entire operation of the experiment, including all ground testing and 90 days of spaceflight operation. Cooling was provided by a small tactical cryocooler. The superconductive specimens and the coldfinger of the cryocooler were mounted in a vacuum chamber, with vacuum levels maintained by an ion pump. The entire experiment was mounted for operation in a stowage locker inside Mir, with the only heat dissipation capability provided by a cooling fan exhausting to the habitable compartment. The thermal environment on Mir can potentially vary over the range 5 to 40 C; this was the range used in testing, and this wide range adds to the difficulty in managing the power dissipated from the experiment's active components. Many issues in the thermal design are discussed, including: thermal isolation methods for the cryogenic samples; design for cooling to cryogenic temperatures; cryogenic epoxy bonds; management of ambient temperature components self-heating; and fan cooling of the enclosed locker. Results of the design are also considered, including the thermal gradients across the HTS samples and cryogenic thermal strap, electronics and thermal sensor cryogenic performance, and differences between ground and flight performance. Modeling was performed in both SINDA-85 and MSC/PATRAN (with direct geometry import from the CAD design tool Pro/Engineer). Advantages of both types of models are discussed. Correlation of several models to ground testing and flight data (where available) is presented. Both SINDA and PATRAN models predicted the actual thermal performance of the experiment well, even without post-flight correlation adjustments of the models.

  12. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  13. The First Development of Human Factors Engineering Requirements for Application to Ground Task Design for a NASA Flight Program

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.

    2008-01-01

    The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.

  14. A flight test design for studying airborne applications of air to ground duplex data link communications

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1988-01-01

    The Automatic En Route Air Traffic Control (AERA) and the Advanced Automated System (AAS) of the NAS plan, call for utilization of data links for such items as computer generated flight clearances, enroute minimum safe altitude warnings, sector probes, out of conformance check, automated flight services, and flow management of advisories. A major technical challenge remaining is the integration, flight testing, and validation of data link equipment and procedures in the aircraft cockpit. The flight test organizational chart, was designed to have the airplane side of data link experiments implemented in the NASA Langley Research Center (LaRC) experimental Boeing 737 airplane. This design would enable investigations into implementation of data link equipment and pilot interface, operations, and procedures. The illustrated ground system consists of a work station with links to a national weather database and a data link transceiver system. The data link transceiver system could be a Mode-S transponder, ACARS, AVSAT, or another type of radio system such as the military type HF data link. The airborne system was designed so that a data link transceiver, workstation, and touch panel could be interfaced with an input output processor to the aircraft system bus and thus have communications access to other digital airplane systems.

  15. Experimental Results from the Thermal Energy Storage-2 (TES-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol

    2000-01-01

    Thermal Energy Storage-2 (TES-2) is a flight experiment that flew on the Space Shuttle Endeavour (STS-72), in January 1996. TES-2 originally flew with TES-1 as part of the OAST-2 Hitchhiker payload on the Space Shuttle Columbia (STS-62) in early 1994. The two experiments, TES-1 and TES-2 were identical except for the fluoride salts to be characterized. TES-1 provided data on lithium fluoride (LiF), TES-2 provided data on a fluoride eutectic (LiF/CaF2). Each experiment was a complex autonomous payload in a Get-Away-Special payload canister. TES-1 operated flawlessly for 22 hr. Results were reported in a paper entitled, Effect of Microgravity on Materials Undergoing Melting and Freezing-The TES Experiment, by David Namkoong et al. A software failure in TES-2 caused its shutdown after 4 sec of operation. TES-1 and 2 were the first experiments in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store energy in a thermal energy salt such as lithium fluoride or a eutectic of lithium fluoride/calcium difluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes were developed for predicting performance of a space-based solar dynamic power system. Experimental verification of the analytical predictions were needed prior to using the analytical results for future space power design applications. The four TES flight experiments were to be used to obtain the needed experimental data. This paper will address the flight results from the first and second experiments, TES-1 and 2, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. An analysis of the TES-2 data was conducted by Cleveland State University Professor, Mounir Ibrahim. TESSIM validation was based on two types of results; temperature history of various points on the containment vessel and TES material distribution within the vessel upon return from flight. The TESSIM prediction showed close comparison with the flight data. Distribution of the TES material within the vessel was obtained by a tomography imaging process. The frozen TES material was concentrated toward the colder end of the canister. The TESSIM prediction indicated a similar pattern. With agreement between TESSIM and the flight data, a computerized representation was produced to show the movement and behavior of the void during the entire melting and freezing cycles.

  16. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  17. Spacelab 4: Primate experiment support hardware

    NASA Astrophysics Data System (ADS)

    Fusco, P. R.; Peyran, R. J.

    1984-05-01

    A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.

  18. Spacelab 4: Primate experiment support hardware

    NASA Technical Reports Server (NTRS)

    Fusco, P. R.; Peyran, R. J.

    1984-01-01

    A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.

  19. Lewis Research Center battery overview

    NASA Technical Reports Server (NTRS)

    Odonnell, Patricia

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.

  20. MSFC shuttle lightning research

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1993-01-01

    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  1. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  2. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1976-01-01

    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  3. Spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1988-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.

  4. Design, fabrication and delivery of a prototype saturator for ACPL

    NASA Technical Reports Server (NTRS)

    Keyser, G.; Rogers, C. F.; Squires, P.

    1979-01-01

    The design configuration and performance characteristics of a saturator developed to provide ground-based simulation for some of the experiments for ACPL-1 first flights of Spacelab are described, some difficulties encountered with the apparatus are discussed, and recommendations concerning testing of this type of instrument are presented. The saturators provide a means of accurately fixing the water vapor mixing ratio of an aerosol sample. Dew point temperatures from almost freezing to ambient room temperatures can be attained with high precision. The instruments can accommodate aerosol flow rates approaching 1000 cc/s. Provisions were made to inject aerosols upstream of these saturators, although downstream injection can be accomplished as well. A device of this type will be used in the ACPL-1 to condition various aerosols delivered concurrently to a CFD, expansion chamber, and static diffusion chamber used in zero gravity cloud-forming experiments. The saturator was designed to meet the requirements projected for the flight instrument.

  5. Effects of Self-Instructional Methods and Above Real Time Training (ARTT) for Maneuvering Tasks on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat; Khan, Javed Khan; Rossi, Marcia J.; Crane, Peter; Heath, Bruce E.; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    Personal computer based flight simulators are expanding opportunities for providing low-cost pilot training. One advantage of these devices is the opportunity to incorporate instructional features into training scenarios that might not be cost effective with earlier systems. Research was conducted to evaluate the utility of different instructional features using a coordinated level turn as an aircraft maneuvering task. In study I, a comparison was made between automated computer grades of performance with certified flight instructors grades. Every one of the six student volunteers conducted a flight with level turns at two different bank angles. The automated computer grades were based on prescribed tolerances on bank angle, airspeed and altitude. Two certified flight instructors independently examined the video tapes of heads up and instrument displays of the flights and graded them. The comparison of automated grades with the instructors grades was based on correlations between them. In study II, a 2x2 between subjects factorial design was used to devise and conduct an experiment. Comparison was made between real time training and above real time training and between feedback and no feedback in training. The performance measure to monitor progress in training was based on deviations in bank angle and altitude. The performance measure was developed after completion of the experiment including the training and test flights. It was not envisaged before the experiment. The experiment did not include self- instructions as it was originally planned, although feedback by experimenter to the trainee was included in the study.

  6. Effects of Self-Instructional Methods and Above Real Time Training (ARTT) for Maneuvering Tasks on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Norlin, Ken (Technical Monitor); Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Crane, Peter; Heath, Bruce E.; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    Personal computer based flight simulators are expanding opportunities for providing low-cost pilot training. One advantage of these devices is the opportunity to incorporate instructional features into training scenarios that might not be cost effective with earlier systems. Research was conducted to evaluate the utility of different instructional features using a coordinated level turn as an aircraft maneuvering task. In study I, a comparison was made between automated computer grades of performance with certified flight instructors grades. Every one of the six student volunteers conducted a flight with level turns at two different bank angles. The automated computer grades were based on prescribed tolerances on bank angle, airspeed and altitude. Two certified flight instructors independently examined the video tapes of heads up and instrument displays of the flights and graded them. The comparison of automated grades with the instructors grades ms based on correlations between them. In study II, a 2x2 between subjects factorial design was used to devise and conduct an experiment. Comparison was made between real time training and above real time training and between feedback and no feedback in training. The performance measure to monitor progress in training was based on deviations in bank angle and altitude. The performance measure was developed after completion of the experiment including the training and test flights. It was not envisaged before the experiment. The experiment did not include self-instructions as it was originally planned, although feedback by experimenter to the trainee was included in the study.

  7. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1990-01-01

    A flight experiment is planned for the validation, in a microgravity environment, of several ground-proven simplification features relating to SPE fuel cells and SPE electrolyzers. With a successful experiment, these features can be incorporated into equipment designs for specific extraterrestrial energy storage applications.

  8. Skylab

    NASA Image and Video Library

    1973-01-01

    This photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA), including callouts for its various internal experiments and facilities. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.

  9. OSSE Evaluation of Aircraft Reconnaissance Observations and their Impact on Hurricane Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Delgado, J.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2016-12-01

    NOAA/AOML's Hurricane Research Division (HRD) annually conducts its Hurricane Field Program during which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in track design is valuable for determining the optimal air reconnaissance flight pattern for a prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories of NOAA aircraft are simulated in a variety of ways and are evaluated to examine the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  10. Design, integration and preliminary results of the IXV Catalysis experiment

    NASA Astrophysics Data System (ADS)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2017-06-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  11. Parasitic current collection by PASP Plus solar arrays

    NASA Technical Reports Server (NTRS)

    Davis, Victoria Ann; Gardner, Barbara M.

    1995-01-01

    Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-power arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus (Photovoltaic Array Space Power Plus Diagnostics) experiment is an improved understanding fo parasitic current collection. We have done computer modeling of parasitic current collection and have examined current collection flight data from the first year of operations. Prior to the flight we did computer modeling to improve our understanding of the physical processes that control parasitic current collection. At high potentials, the current rapidly rises due to a phenomenon called snapover. Under snapover conditions, the equilibrium potential distribution across the dielectric surface is such that part of the area is at potentials greater than the first crossover of the secondary yield curve. Therefore, each incident electron generates more than one secondary electron. The net effect is that the high potential area and the collecting area increase. We did two-dimensional calculations for the various geometries to be flown. The calculations span the space of anticipated plasma conditions, applied potential, and material parameters. We used the calculations and early flight data to develop an analytic formula for the dependence of the current on the primary problem variables. The analytic formula was incorporated into the EPSAT computer code. EPSAT allows us to easily extend the results to other conditions. PASP Plus is the principal experiment integrated onto the Advanced Photovoltaic and Electronics Experiments (APEX) satellite bus. The experiment is testing twelve different solar array designs. Parasitic current collection is being measured for eight of the designs under various operational and environment conditions. We examined the current collected as a function of the various parameters for the six non-concentrator designs. The results are similar to those obtained in previous experiments and predicted by the calculations. We are using the flight data to validate the analytic formula developed. The formula can be used to quantify the parasitic current collected. Anticipating the parasitic current value allows the spacecraft designer to include this interaction when developing the design.

  12. Cellular changes in microgravity and the design of space radiation experiments

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1994-01-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  13. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.

    PubMed

    Chin, Diana D; Matloff, Laura Y; Stowers, Amanda Kay; Tucci, Emily R; Lentink, David

    2017-06-01

    Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo . © 2017 The Author(s).

  14. Demonstrations of LSS active vibration control technology on representative ground-based testbeds

    NASA Technical Reports Server (NTRS)

    Hyland, David C.; Phillips, Douglas J.; Collins, Emmanuel G., Jr.

    1991-01-01

    This paper describes two experiments which successfully demonstrate control of flexible structures. The first experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center, while the second experiment was conducted using the Multi-Hex Prototype structure. The paper concludes with some remarks on the lessons learned from conducting these experiments.

  15. X-34 Main Propulsion System Design and Operation

    NASA Technical Reports Server (NTRS)

    Champion, R. J., Jr.; Darrow, R. J., Jr.

    1998-01-01

    The X-34 program is a joint industry/government program to develop, test, and operate a small, fully-reusable hypersonic flight vehicle, utilizing technologies and operating concepts applicable to future Reusable Launch Vehicle (RLV) systems. The vehicle will be capable of Mach 8 flight to 250,000 feet altitude and will demonstrate an all composite structure, composite RP-1 tank, the Marshall Space Flight Center (MSFC) developed Fastrac engine, and the operability of an advanced thermal protection systems. The vehicle will also be capable of carrying flight experiments. MSFC is supporting the X-34 program in three ways: Program Management, the Fastrac engine as Government Furnished Equipment (GFE), and the design of the Main Propulsion System (MPS). The MPS Product Development Team (PDT) at MSFC is responsible for supplying the MPS design, analysis, and drawings to Orbital. The MPS consists of the LOX and RP-1 Fill, Drain, Feed, Vent, & Dump systems and the Helium & Nitrogen Purge, Pressurization, and Pneumatics systems. The Reaction Control System (RCS) design was done by Orbital. Orbital is the prime contractor and has responsibility for integration, procurement, and construction of all subsystems. The paper also discusses the design, operation, management, requirements, trades studies, schedule, and lessons learning with the MPS and RCS designs.

  16. Comparison of closed loop model with flight test results

    NASA Technical Reports Server (NTRS)

    George, F. L.

    1981-01-01

    An analytic technique capable of predicting the landing characteristics of proposed aircraft configurations in the early stages of design was developed. In this analysis, a linear pilot-aircraft closed loop model was evaluated using experimental data generated with the NT-33 variable stability in-flight simulator. The pilot dynamics are modeled as inner and outer servo loop closures around aircraft pitch attitude, and altitude rate-of-change respectively. The landing flare maneuver is of particular interest as recent experience with military and other highly augmented vehicles shows this task to be relatively demanding, and potentially a critical design point. A unique feature of the pilot model is the incorporation of an internal model of the pilot's desired flight path for the flare maneuver.

  17. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  18. In-flight results of adaptive attitude control law for a microsatellite

    NASA Astrophysics Data System (ADS)

    Pittet, C.; Luzi, A. R.; Peaucelle, D.; Biannic, J.-M.; Mignot, J.

    2015-06-01

    Because satellites usually do not experience large changes of mass, center of gravity or inertia in orbit, linear time invariant (LTI) controllers have been widely used to control their attitude. But, as the pointing requirements become more stringent and the satellite's structure more complex with large steerable and/or deployable appendices and flexible modes occurring in the control bandwidth, one unique LTI controller is no longer sufficient. One solution consists in designing several LTI controllers, one for each set point, but the switching between them is difficult to tune and validate. Another interesting solution is to use adaptive controllers, which could present at least two advantages: first, as the controller automatically and continuously adapts to the set point without changing the structure, no switching logic is needed in the software; second, performance and stability of the closed-loop system can be assessed directly on the whole flight domain. To evaluate the real benefits of adaptive control for satellites, in terms of design, validation and performances, CNES selected it as end-of-life experiment on PICARD microsatellite. This paper describes the design, validation and in-flight results of the new adaptive attitude control law, compared to nominal control law.

  19. SLS-1 flight experiments preliminary significant results

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  20. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

Top