Sample records for flight hardware processing

  1. NASA-STD-(I)-6016, Standard Materials and Processes Requirements for Spacecraft

    NASA Technical Reports Server (NTRS)

    Pedley, Michael; Griffin, Dennis

    2006-01-01

    This document is directed toward Materials and Processes (M&P) used in the design, fabrication, and testing of flight components for all NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements. All flight hardware is covered by the M&P requirements of this document, including vendor designed, off-the-shelf, and vendor furnished items. Materials and processes used in interfacing ground support equipment (GSE); test equipment; hardware processing equipment; hardware packaging; and hardware shipment shall be controlled to prevent damage to or contamination of flight hardware.

  2. Development of Enhanced Avionics Flight Hardware Selection Process

    NASA Technical Reports Server (NTRS)

    Smith, K.; Watson, G. L.

    2003-01-01

    The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

  3. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.

  4. The Impact of Flight Hardware Scavenging on Space Logistics

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  5. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  6. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  7. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    NASA Technical Reports Server (NTRS)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  8. Comparative Modal Analysis of Sieve Hardware Designs

    NASA Technical Reports Server (NTRS)

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  9. Hardware cleanliness methodology and certification

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Lash, Thomas J.; Rawls, J. Richard

    1995-01-01

    Inadequacy of mass loss cleanliness criteria for selection of materials for contamination sensitive uses, and processing of flight hardware for contamination sensitive instruments is discussed. Materials selection for flight hardware is usually based on mass loss (ASTM E-595). However, flight hardware cleanliness (MIL 1246A) is a surface cleanliness assessment. It is possible for materials (e.g. Sil-Pad 2000) to pass ASTM E-595 and fail MIL 1246A class A by orders of magnitude. Conversely, it is possible for small amounts of nonconforming material (Huma-Seal conformal coating) to not present significant cleanliness problems to an optical flight instrument. Effective cleaning (precleaning, precision cleaning, and ultra cleaning) and cleanliness verification are essential for contamination sensitive flight instruments. Polish cleaning of hardware, e.g. vacuum baking for vacuum applications, and storage of clean hardware, e.g. laser optics, is discussed. Silicone materials present special concerns for use in space because of the rapid conversion of the outgassed residues to glass by solar ultraviolet radiation and/or atomic oxygen. Non ozone depleting solvent cleaning and institutional support for cleaning and certification are also discussed.

  10. Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Finckenor, Miria M.

    2009-01-01

    Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.

  11. Reliability and Qualification of Hardware to Enhance the Mission Assurance of JPL/NASA Projects

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    Packaging Qualification and Verification (PQV) and life testing of advanced electronic packaging, mechanical assemblies (motors/actuators), and interconnect technologies (flip-chip), platinum temperature thermometer attachment processes, and various other types of hardware for Mars Exploration Rover (MER)/Mars Science Laboratory (MSL), and JUNO flight projects was performed to enhance the mission assurance. The qualification of hardware under extreme cold to hot temperatures was performed with reference to various project requirements. The flight like packages, assemblies, test coupons, and subassemblies were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases. Qualification/life testing was performed by subjecting flight-like qualification hardware to the environmental temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experimental flight qualification test results will be described in this presentation.

  12. KSC-97PC1761

    NASA Image and Video Library

    1997-12-10

    United States Senator Bob Graham of Florida visits the Space Station Processing Facility at Kennedy Space Center (KSC) and is briefed on hardware processing for the International Space Station by Jon Cowart, Flight 2A Manager, NASA Space Station Hardware Integration Office. In the foreground, from left to right, are Howard DeCastro, Program Manager for the Space Flight Operations Contract, United Space Alliance; Senator Bob Graham; and Jon Cowart

  13. KSC-04pd1754

    NASA Image and Video Library

    2004-09-09

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Terry White inspects plastic-covered flight hardware in the Orbiter Processing Facility following Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. There was no damage to the Space Shuttle orbiters or to any other flight hardware.

  14. Software control and system configuration management - A process that works

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.; Flores, C., Jr.

    1983-01-01

    A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.

  15. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    NASA Astrophysics Data System (ADS)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  16. JSC Metal Finishing Waste Minimization Methods

    NASA Technical Reports Server (NTRS)

    Sullivan, Erica

    2003-01-01

    THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.

  17. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  18. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  19. The Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified insitu propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Glenn Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware that are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to (1) uncertainties in our knowledge of the Mars environment, and (2) conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenney, J.L.

    SARS is a data acquisition system designed to gather and process radar data from aircraft flights. A database of flight trajectories has been developed for Albuquerque, NM, and Amarillo, TX. The data is used for safety analysis and risk assessment reports. To support this database effort, Sandia developed a collection of hardware and software tools to collect and post process the aircraft radar data. This document describes the data reduction tools which comprise the SARS, and maintenance procedures for the hardware and software system.

  1. Software control and system configuration management: A systems-wide approach

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.; Flores, C., Jr.

    1984-01-01

    A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.

  2. Weight and the Future of Space Flight Hardware Cost Modeling

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.

    2003-01-01

    Weight has been used as the primary input variable for cost estimating almost as long as there have been parametric cost models. While there are good reasons for using weight, serious limitations exist. These limitations have been addressed by multi-variable equations and trend analysis in models such as NAFCOM, PRICE, and SEER; however, these models have not be able to address the significant time lags that can occur between the development of similar space flight hardware systems. These time lags make the cost analyst's job difficult because insufficient data exists to perform trend analysis, and the current set of parametric models are not well suited to accommodating process improvements in space flight hardware design, development, build and test. As a result, people of good faith can have serious disagreement over the cost for new systems. To address these shortcomings, new cost modeling approaches are needed. The most promising approach is process based (sometimes called activity) costing. Developing process based models will require a detailed understanding of the functions required to produce space flight hardware combined with innovative approaches to estimating the necessary resources. Particularly challenging will be the lack of data at the process level. One method for developing a model is to combine notional algorithms with a discrete event simulation and model changes to the total cost as perturbations to the program are introduced. Despite these challenges, the potential benefits are such that efforts should be focused on developing process based cost models.

  3. Advanced flight hardware for organic separations

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1997-01-01

    Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  4. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  5. The Application of Acoustic Measurements and Audio Recordings for Diagnosis of In-Flight Hardware Anomalies

    NASA Technical Reports Server (NTRS)

    Welsh, David; Denham, Samuel; Allen, Christopher

    2011-01-01

    In many cases, an initial symptom of hardware malfunction is unusual or unexpected acoustic noise. Many industries such as automotive, heating and air conditioning, and petro-chemical processing use noise and vibration data along with rotating machinery analysis techniques to identify noise sources and correct hardware defects. The NASA/Johnson Space Center Acoustics Office monitors the acoustic environment of the International Space Station (ISS) through periodic sound level measurement surveys. Trending of the sound level measurement survey results can identify in-flight hardware anomalies. The crew of the ISS also serves as a "detection tool" in identifying unusual hardware noises; in these cases the spectral analysis of audio recordings made on orbit can be used to identify hardware defects that are related to rotating components such as fans, pumps, and compressors. In this paper, three examples of the use of sound level measurements and audio recordings for the diagnosis of in-flight hardware anomalies are discussed: identification of blocked inter-module ventilation (IMV) ducts, diagnosis of abnormal ISS Crew Quarters rack exhaust fan noise, and the identification and replacement of a defective flywheel assembly in the Treadmill with Vibration Isolation (TVIS) hardware. In each of these examples, crew time was saved by identifying the off nominal component or condition that existed and in directing in-flight maintenance activities to address and correct each of these problems.

  6. Cryogenic Tank Technology Program (CTTP)

    NASA Technical Reports Server (NTRS)

    Vaughn, T. P.

    2001-01-01

    The objectives of the Cryogenic Tank Technology Program were to: (1) determine the feasibility and cost effectiveness of near net shape hardware; (2) demonstrate near net shape processes by fabricating large scale-flight quality hardware; and (3) advance state of current weld processing technologies for aluminum lithium alloys.

  7. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    In the Space Station Processing Facility (SSPF), Charles J. Precourt, deputy manager of NASA's International Space Station Program, is interviewed by a reporter from a local television station. Representatives from the media were invited to commemorate the fifth anniversary of the launch of the first element of the Station with a tour of the facility and had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. NASA and Boeing mission managers were on hand to talk about the various hardware elements currently being processed for flight.

  8. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; hide

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  9. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Barona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP Precursors (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  10. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience

    PubMed Central

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S.; Mcginnis, Issac

    2017-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions. PMID:29278255

  11. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience.

    PubMed

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S; Mcginnis, Issac

    2016-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions.

  12. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  13. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  14. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1999-01-01

    This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.

  15. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  16. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  17. Solid Rocket Booster (SRB) Flight System Integration at Its Best

    NASA Technical Reports Server (NTRS)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  18. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  19. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  20. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  1. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  2. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  3. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  4. The NASA, Marshall Space Flight Center drop tube user's manual

    NASA Technical Reports Server (NTRS)

    Rathz, Thomas J.; Robinson, Michael B.

    1990-01-01

    A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.

  5. Importance of Gravity for Plant Growth and Behavior

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1985-01-01

    Flight experiments on the importance of gravity to plant growth and behavior are reported. The following studies were undertaken: (1) hyperastic responses to incremental changes of an axially imposed centripetal force; (2) Spacelab-1 experiments, methods for preparing soil in flight hardware containers were impound, to ensure desired moisture content and minimal contamination probability; (3) mesocotyl growth patterns were established by Avena lore exposure to red light during early seedling outogency; (4) the development of flight hardware; (5) choice of member of seedlings in each cube; (6) data processing and reduction; (7) clinostat validation; circummutation in space was more vigorous than on Earth based clinostat.

  6. STS-114 Discovery Return to Flight: International Space Station Processing Overview

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bruce Buckingham, NASA Public Affairs, introduces Scott Higgenbotham, STS-114 Payload Manager. Higgenbotham gives a power point presentation on the hardware that is going to fly in the Discovery Mission to the International Space Station. He presents a layout of the hardware which includes The Logistics Flight 1 (LF1) launch package configuration Multipurpose Logistics Module (MPLM), External Stowage Platform-2 (ESP-2) and the Lightweight Mission Peculiar Equipment Support Structure Carrier (LMC). He explains these payloads in detail. The LF-1 team is also shown in the International Space Station Processing Facility. This presentation ends with a brief question and answer period.

  7. Assurance of COTS Boards for Space Flight. Part 1

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette; Helmold, Norm; Eveland, Clay

    1998-01-01

    Space Flight hardware and software designers are increasingly turning to Commercial-Off-the-Shelf (COTS) products in hopes of meeting the demands imposed on them by projects with short development cycle times. The Technology Validation Assurance (TVA) team at NASA GSFC has embarked on applying a method for inserting COTS hardware into the Spartan 251 spacecraft. This method includes Procurement, Characterization, Ruggedization/Remediation and Verification Testing process steps which are intended to increase the uses confidence in the hardware's ability to function in the intended application for the required duration. As this method is refined with use, it has the potential for becoming a benchmark for industry-wide use of COTS in high reliability systems.

  8. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    NASA Technical Reports Server (NTRS)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  9. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  10. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  11. Plasma arc welding repair of space flight hardware

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.

    1993-01-01

    Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  12. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  13. STS-56, RSRM-031, 360L031 KSC processing configuration and data report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    KSC Processing Configuration and Data Report is being provided as a historical document and as an enhancement to future RSRM manufacturing and processing operations. The following sections provide information on segment receipt, aft booster build-up, booster assembly, and closeout for STS-56, RSRM flight set 36OL031. Section 2.0 contains a summary of RSRM-031 processing. Section 3.0 discusses any significant problems or special issues that require special attention. Sections 4.0 through 6.0 contain narrative descriptions of all key events, including any related processing problems. Appendix A provides engineering specifications and changes. A list and matrix of all problem reports (PR's) pertinent to this flight set is provided in Appendix B. The matrix was provided by the Thiokol LSS Quality Engineering office. Copies of the PR's generated during the processing of RSRM-031 will be provided upon request. Appendix C contains the motor set status matrix, which provides milestone dates for the RSRM-031 flow. Section 7.0 provides recommendations, if any, for the improvement of flight hardware processing. Section 8.0 contains data sheets that provide flight hardware parts and consumables information installed during the booster build-up and stacking operations by location, lot/serial number, expiration and cure dates/times, and installation dates.

  14. STS-51, RSRM-033, 360T033 KSC processing configuration and data report

    NASA Technical Reports Server (NTRS)

    Hillard, Robert C.

    1993-01-01

    KSC Processing Configuration and Data Report is being provided as a historical document and as an enhancement to future RSRM manufacturing and processing operations. The following sections provide information on segment receipt, aft booster build up, motor assembly, and closeout for STS-51, RSRM flight set 360T033. Section 2.0 contains a summary of RSRM-033 processing. Section 3.0 discusses any significant problems or special issues that require special attention. Sections 4.0 through 6.0 contain narrative descriptions of all key events, including any related processing problems. Appendix A provides engineering specifications and changes. A list and matrix of all problem reports (PR's) pertinent to this flight set is provided in Appendix B. The matrix was provided by the Thiokol LSS Quality Engineering office. Copies of the PR's generated during the processing of RSRM-033 will be provided upon request. Appendix C contains the motor set status matrix, which provides milestone dates for the RSRM-033 flow. Section 7.0 provides recommendations for the improvement of flight hardware processing. Section 8.0 contains data sheets that provide flight hardware parts and consumable information installed during the booster build-up and stacking operations by location, lot/serial number, expiration and cure dates/times, and installation dates.

  15. 1301253

    NASA Image and Video Library

    2013-12-12

    JASON ELDRIDGE, AN ERC INCORPORATED EMPLOYEE SUPPORTING THE MATERIALS & PROCESSES LABORATORY AT NASA'S MARSHALL SPACE FLIGHT CENTER, SIGNS HIS NAME ON THE INTERIOR OF THE ADAPTER THAT WILL CONNECT THE ORION SPACECRAFT TO A UNITED LAUNCH ALLIANCE DELTA IV ROCKET FOR EXPLORATION FLIGHT TEST (EFT)-1. MARSHALL CENTER TEAM MEMBERS WHO WERE INVOLVED IN THE DESIGN, CONSTRUCTION AND TESTING OF THE ADAPTER HAD THE OPPORTUNITY TO AUTOGRAPH IT BEFORE THE HARDWARE IS SHIPPED TO NASA'S KENNEDY SPACE CENTER IN FEBRUARY. ELDRIDGE WAS ON A TEAM THAT PERFORMED ULTRASONIC INSPECTIONS ON THE ADAPTER'S WELDS -- ENSURING THEY ARE STRUCTURALLY SOUND. EFT-1, SCHEDULED FOR 2014, WILL PROVIDE EARLY EXPERIENCE FOR NASA SPACE LAUNCH SYSTEM (SLS) HARDWARE AHEAD OF THE ROCKET'S FIRST FLIGHT IN 2017.

  16. The deep space network, volume 15

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.

  17. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  18. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  19. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  20. Ship and Shoot

    NASA Technical Reports Server (NTRS)

    Woods, Ron

    2012-01-01

    Ron Woods shared incredibly valuable insights gained during his 28 years at the Kennedy Space Center (KSC) packaging Flight Crew Equipment for shuttle and ISS missions. In particular, Woods shared anecdotes and photos from various processing events. The moral of these stories and the main focus of this discussion were the additional processing efforts and effects related to a "ship-and-shoot" philosophy toward flight hardware.

  1. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  2. Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Marshall, Jennifer L.

    2010-01-01

    The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.

  3. A Common Approach for the Certifying of International Space Station (ISS) Basic Hardware for Ground Safety

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Trinchero, Jean-Pierre

    2005-01-01

    In order to support the International Space Station, as well as any future long term human missions, vast amounts of logistical-type hardware is required to be processed through the various launch sites. This category consists of such hardware as spare parts, replacement items, and upgraded hardware. The category also includes samples for experiments and consumables. One attribute that all these items have is they are generally non-hazardous, at least to ground personnel. Even though the items are non-hazardous, launch site ground safety has a responsibility for the protection of personnel, the flight hardware, and launch site resources. In order to fulfill this responsibility, the safety organization must have knowledge of the hardware and its operations. Conversely, the hardware providers are entitled to a process that is commensurate with the hazard. Additionally, a common system should be in place that is flexible enough to account for the requirements at all launch sites, so that, the hardware provider need only complete one process for ground safety regardless of the launch site.

  4. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  5. Advanced planning for ISS payload ground processing

    NASA Astrophysics Data System (ADS)

    Page, Kimberly A.

    2000-01-01

    Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .

  6. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip

    2016-01-01

    Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.

  7. ESA hardware for plant research on the International Space Station

    NASA Astrophysics Data System (ADS)

    Brinckmann, E.

    The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform on which long-term and shorter experiments with plants will be performed on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for in-flight 1 g controls and for studies with acceleration levels from 0.001 g to 2.0 g. Several experiments are in preparation investigating gravity relating to gene expression, gravisensing and phototropism of Arabidopsis thaliana and lentil roots. The experiment-specific hardware provides growth chambers for seedlings and whole A. thaliana plants and is connected to the EMCS Life Support System. Besides in-flight video observation, the experiments will be evaluated post-flight by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. About two years after the EMCS launch, ESA's Biolab will be launched in the European "Columbus" Module. In a similar way as in EMCS, Biolab will accommodate experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments are presented in this communication.

  8. Hardware

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The full complement of EDOMP investigations called for a broad spectrum of flight hardware ranging from commercial items, modified for spaceflight, to custom designed hardware made to meet the unique requirements of testing in the space environment. In addition, baseline data collection before and after spaceflight required numerous items of ground-based hardware. Two basic categories of ground-based hardware were used in EDOMP testing before and after flight: (1) hardware used for medical baseline testing and analysis, and (2) flight-like hardware used both for astronaut training and medical testing. To ensure post-landing data collection, hardware was required at both the Kennedy Space Center (KSC) and the Dryden Flight Research Center (DFRC) landing sites. Items that were very large or sensitive to the rigors of shipping were housed permanently at the landing site test facilities. Therefore, multiple sets of hardware were required to adequately support the prime and backup landing sites plus the Johnson Space Center (JSC) laboratories. Development of flight hardware was a major element of the EDOMP. The challenges included obtaining or developing equipment that met the following criteria: (1) compact (small size and light weight), (2) battery-operated or requiring minimal spacecraft power, (3) sturdy enough to survive the rigors of spaceflight, (4) quiet enough to pass acoustics limitations, (5) shielded and filtered adequately to assure electromagnetic compatibility with spacecraft systems, (6) user-friendly in a microgravity environment, and (7) accurate and efficient operation to meet medical investigative requirements.

  9. An Alternative Method Of Specifying Shock Test Criteria

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.; Clayton, J.; Alldredge, D.; Irvine, T.

    2008-01-01

    Shock testing of aerospace vehicle hardware has presented many challenges over the years due to the high magnitude and short duration of the specifications. Recently, component structural failures have occurred during testing that have not manifested themselves on over 200 Space Shuttle solid rocket booster (SRB) flights (two boosters per flight). It is suspected that the method of specifying shock test criteria may be leaving important information out of the test process. The traditional test criteria specification, the shock response spectrum, can be duplicated by any number of waveforms that may not resemble the actual flight test recorded time history. One method of overcoming this limitation is described herein, which may prove useful for qualifying hardware for the upcoming Constellation Program.

  10. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  11. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  12. Recognizing and optimizing flight opportunities with hardware and life sciences limitations.

    PubMed

    Luttges, M W

    1992-01-01

    The availability of orbital space flight opportunities to conduct life sciences research has been limited. It is possible to use parabolic flight and sounding rocket programs to conduct some kinds of experiments during short episodes (seconds to minutes) of reduced gravity, but there are constraints and limitations to these programs. Orbital flight opportunities are major undertakings, and the potential science achievable is often a function of the flight hardware available. A variety of generic types of flight hardware have been developed and tested, and show great promise for use during NSTS flights. One such payload configuration is described which has already flown.

  13. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  14. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  15. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  16. US experiments flown on the Soviet biosatellite Cosmos 2044. Volume 1: Mission description, experiments K-7-01 - K-7-15

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)

    1994-01-01

    Cosmos 2044 was launched on September 15, 1989, containing radiation dosimetry experiments and a biological payload including two young male rhesus monkeys, ten adult male Wistar rats, insects, amphibians, protozoa, cell cultures, worms, plants and fish. The biosatellite was launched from the Plesetsk Cosmodrome in the Soviet Union for a mission duration of 14 days, as planned. The major research objectives were: (1) Study adaptive response mechanisms of mammals during flight; (2) Study physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases; (3) Study the tissue regeneration processes of mammals; (4) Study the development of single-celled organisms, cell cultures and embryos in microgravity; (5) Study radiation characteristics during the mission and investigate doses, fluxes and spectra of cosmic radiation for various types of shielding. American and Soviet specialists jointly conducted 29 experiments on this mission including extensive preflight and post flight studies with rhesus monkeys, and tissue processing and cell culturing post flight. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included development of flight and ground-based hardware, the preparation of rat tissue sample procedures, the verification testing of hardware and experiment procedures, and the post flight analysis of biospecimens and data for the joint experiments. The U.S. investigations included four primate experiments, 24 rat experiments, and one radiation dosimetry experiment. Three scientists investigated tissue repair during flight for a subgroup of rats injured preflight by surgical intervention. A description of the Cosmos 2044 mission is presented in this report including preflight, on-orbit and post flight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and U.S.S.R. is also described, along with the associated preflight testing of the U.S. hardware.

  17. New Approaches in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    To qualify flight hardware for random vibration environments the following methods are used to limit the loads in the aerospace industry: (1) Response limiting and notching (2) Simple TDOF model (3) Semi-empirical force limits (4) Apparent mass, etc. and (5) Impedance method. In all these methods attempts are made to remove conservatism due to the mismatch in impedances between the test and the flight configurations of the hardware that are being qualified. Assumption is the hardware interfaces have correlated responses. A new method that takes into account the un-correlated hardware interface responses are described in this presentation.

  18. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  19. Fuel Subsystems Flight Test Handbook

    DTIC Science & Technology

    1981-12-01

    described in Flight and Maintenance Manuals and as it exists in hardware form. These versions may differ significantly in the development phase of a new ...Canter (AFFPTC), Edwards AFB, California. The work was done under the authority of the Study Plan for Development of a Handbook for Aircraft Fuel...10 Position of AFFTC in the Development and 10 Evaluation Process Agencies Involved 11 Multi-Purpose Flight Tests 11 FUEL SYSTEM FUNCTIONS AND

  20. Spacelab Level 4 Programmatic Implementation Assessment Study. Volume 2: Ground Processing requirements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Alternate ground processing options are summarized, including installation and test requirements for payloads, space processing, combined astronomy, and life sciences. The level 4 integration resource requirements are also reviewed for: personnel, temporary relocation, transportation, ground support equipment, and Spacelab flight hardware.

  1. Software for Managing Inventory of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  2. Innovative Contamination Certification of Multi-Mission Flight Hardware

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.

    1998-01-01

    Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.

  3. Innovative Contamination Certification of Multi-Mission Flight Hardware

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.

    1999-01-01

    Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.

  4. Orbiter Auxiliary Power Unit Flight Support Plan

    NASA Technical Reports Server (NTRS)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  5. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  6. TERSSE: Definition of the Total Earth Resources System for the Shuttle Era. Volume 2: An Assessment of the Current State-of-the-Art

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results of a state-of-the-art assessment of technology areas which affect the Earth Resources Program are presented along with a functional description of the basic earth resources system. Major areas discussed include: spacecraft flight hardware, remote sensors, data processing techniques and hardware, user models, user interfaces, and operations technology.

  7. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  8. Low level image processing techniques using the pipeline image processing engine in the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Nashman, Marilyn; Chaconas, Karen J.

    1988-01-01

    The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.

  9. Qualification of Engineering Camera for Long-Duration Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Pourangi, Ali M.; Lee, Steven W.

    2012-01-01

    Qualification and verification of advanced electronic packaging and interconnect technologies, and various other types of hardware elements for the Mars Exploration Rover s Spirit and Opportunity (MER)/Mars Science Laboratory (MSL) flight projects, has been performed to enhance the mission assurance. The qualification of hardware (engineering camera) under extreme cold temperatures has been performed with reference to various Mars-related project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times the total number of expected diurnal temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware, including all relevant manufacturing, ground operations, and mission phases. Qualification has been performed by subjecting above flight-like hardware to the environmental temperature extremes, and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Engineering camera packaging designs, charge-coupled devices (CCDs), and temperature sensors were successfully qualified for MER and MSL per JPL design principles. Package failures were observed during qualification processes and the package redesigns were then made to enhance the reliability and subsequent mission assurance. These results show the technology certainly is promising for MSL, and especially for longterm extreme temperature missions to the extreme temperature conditions. The engineering camera has been completely qualified for the MSL project, with the proven ability to survive on Mars for 2010 sols, or 670 sols times three. Finally, the camera continued to be functional, even after 2010 thermal cycles.

  10. Web-Based Requesting and Scheduling Use of Facilities

    NASA Technical Reports Server (NTRS)

    Yeager, Carolyn M.

    2010-01-01

    Automated User's Training Operations Facility Utilization Request (AutoFUR) is prototype software that administers a Web-based system for requesting and allocating facilities and equipment for astronaut-training classes in conjunction with scheduling the classes. AutoFUR also has potential for similar use in such applications as scheduling flight-simulation equipment and instructors in commercial airplane-pilot training, managing preventive- maintenance facilities, and scheduling operating rooms, doctors, nurses, and medical equipment for surgery. Whereas requesting and allocation of facilities was previously a manual process that entailed examination of documents (including paper drawings) from different sources, AutoFUR partly automates the process and makes all of the relevant information available via the requester s computer. By use of AutoFUR, an instructor can fill out a facility-utilization request (FUR) form on line, consult the applicable flight manifest(s) to determine what equipment is needed and where it should be placed in the training facility, reserve the corresponding hardware listed in a training-hardware inventory database, search for alternative hardware if necessary, submit the FUR for processing, and cause paper forms to be printed. Auto-FUR also maintains a searchable archive of prior FURs.

  11. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.

  12. LDEF Materials/Contamination

    NASA Technical Reports Server (NTRS)

    Pippin, Gary

    1997-01-01

    This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.

  13. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  14. Independent Orbiter Assessment (IOA): Analysis of the body flap subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Body Flap (BF) subsystem hardware are documented. The BF is a large aerosurface located at the trailing edge of the lower aft fuselage of the Orbiter. The proper function of the BF is essential during the dynamic flight phases of ascent and entry. During the ascent phase of flight, the BF trails in a fixed position. For entry, the BF provides elevon load relief, trim control, and acts as a heat shield for the main engines. Specifically, the BF hardware comprises the following components: Power Drive Unit (PDU), rotary actuators, and torque tubes. The IOA analysis process utilized available BF hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 35 failure modes analyzed, 19 were determined to be PCIs.

  15. Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture

    NASA Technical Reports Server (NTRS)

    Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.

    2003-01-01

    This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.

  16. KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  17. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  18. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  19. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  20. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  1. Potential Damage to Flight Hardware from MIL-STD-462 CS02 Setup

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.; Block, Nathan F.

    2003-01-01

    The MIL-STD-462 CS02 conducted susceptibility test setup includes an audio transformer, with the secondary used as an inductor, and a large capacitor. Together, these two components form an L-type low-pass filter to minimize the injected test signal input into the power source. Some flight hardware power input configurations are not compatible with this setup and break into oscillation when powered up. This, in turn, can damage flight hardware. Such an oscillation resulted in the catastrophic failure of an item tested in the Goddard Space Flight Center (GSFC) Large electromagnetic compatibility (EMC) Test Facility.

  2. Potential Damage to Flight Hardware from MIL-STD-462 CS02 Setup

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.; Block, Nathan F.

    2002-01-01

    The MIL-STD-462 CS02 conducted susceptibility test setup, performed during electromagnetic compatibility (EMC) testing, consists of an audio transformer with the secondary used as an inductor and a large capacitor. Together, these two components form an L-type low-pass filter to minimize the injected test signal input into the power source. Some flight hardware power input configurations are not compatible with this setup and break into oscillation when powered up. This can damage flight hardware and caused a catastrophic failure to an item tested in the Goddard Space Flight Center (GSFC) Large EMC Test Facility.

  3. Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.

  4. Qualification Testing of Engineering Camera and Platinum Resistance Thermometer (PRT) Sensors for Mars Science Laboratory (MSL) Project under Extreme Temperatures to Assess Reliability and to Enhance Mission Assurance

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.

    2008-01-01

    Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.

  5. KSC facilities status and planned management operations. [for Shuttle launches

    NASA Technical Reports Server (NTRS)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  6. Satellite servicing mission preliminary cost estimation model

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The cost model presented is a preliminary methodology for determining a rough order-of-magnitude cost for implementing a satellite servicing mission. Mission implementation, in this context, encompassess all activities associated with mission design and planning, including both flight and ground crew training and systems integration (payload processing) of servicing hardward with the Shuttle. A basic assumption made in developing this cost model is that a generic set of servicing hardware was developed and flight tested, is inventoried, and is maintained by NASA. This implies that all hardware physical and functional interfaces are well known and therefore recurring CITE testing is not required. The development of the cost model algorithms and examples of their use are discussed.

  7. Taking the Heat: Handling the Shuttle's RCC Wing Panels

    NASA Technical Reports Server (NTRS)

    Stegles, Katrine S.

    2008-01-01

    Innovative inspection technology was developed to inspect the Reinforced Carbon-Carbon (RCC) wing panels on the vehicle, thus eliminating need to remove/reinstall all 44 RCC panels for inspections per processing flow. Manually holding inspection tools up to the RCC panels was a 3-person job with high risk of personnel injury and flight hardware damage. To further enhance ergonomics, reduce personnel/flight hardware risks, and improve repeatability, an inspection cart and fixture were constructed to physically secure the instruments for Inspectors during 652 inspection points per flow. The electric lift used to handle RCCs was also utilized to raise the heavy, bulky inspection equipment up to the wing leading edge.

  8. The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments

    NASA Technical Reports Server (NTRS)

    Budney, T. J.; Stone, R. W.

    1982-01-01

    Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.

  9. Space shuttle solid rocket booster cost-per-flight analysis technique

    NASA Technical Reports Server (NTRS)

    Forney, J. A.

    1979-01-01

    A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.

  10. Design considerations for space flight hardware

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1990-01-01

    The environmental and design constraints are reviewed along with some insight into the established design and quality assurance practices that apply to low earth orbit (LEO) space flight hardware. It is intended as an introduction for people unfamiliar with space flight considerations. Some basic data and a bibliography are included.

  11. NASA Wallops Flight Center GEOS-3 altimeter data processing report

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Dwyer, R. E.

    1980-01-01

    The procedures used to process the GEOS-3 radar altimeter data from raw telemetry data to a final user data product are described. In addition, the radar altimeter hardware design and operating parameters are presented to aid the altimeter user in understanding the altimeter data.

  12. New Ways Of Doing Business (NWODB) cost quantification analysis

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph W.; Rosmait, Russell L.

    1992-01-01

    The cost of designing, producing, and operating typical aerospace flight hardware is necessarily more expensive than most other human endeavors. Because of the more stringent environment of space, hardware designed to operate there will probably always be more expensive than similar hardware which is designed for less taxing environments. It is the thesis of this study that there are very significant improvements that can be made in the cost of aerospace flight hardware.

  13. First incremental buy for Increment 2 of the Space Transportation System (STS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Thiokol manufactured and delivered 9 flight motors to KSC on schedule. All test flights were successful. All spent SRMs were recovered. Design, development, manufacture, and delivery of required transportation, handling, and checkout equipment to MSFC and to KSC were completed on schedule. All items of data required by DPD 400 were prepared and delivered as directed. In the system requirements and analysis area, the point of departure from Buy 1 to the operational phase was developed in significant detail with a complete set of transition documentation available. The documentation prepared during the Buy 1 program was maintained and updated where required. The following flight support activities should be continued through other production programs: as-built materials usage tracking on all flight hardware; mass properties reporting for all flight hardware until sample size is large enough to verify that the weight limit requirements were met; ballistic predictions and postflight performance assessments for all production flights; and recovered SRM hardware inspection and anomaly identification. In the safety, reliability, and quality assurance area, activities accomplished were assurance oriented in nature and specifically formulated to prevent problems and hardware failures. The flight program to date has adequately demonstrated the success of this assurance approach. The attention focused on details of design, analysis, manufacture, and inspection to assure the production of high-quality hardware has resulted in the absence of flight failures. The few anomalies which did occur were evaluated, design or manufacturing changes incorporated, and corrective actions taken to preclude recurrence.

  14. A highly reliable, high performance open avionics architecture for real time Nap-of-the-Earth operations

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Elks, Carl

    1995-01-01

    An Army Fault Tolerant Architecture (AFTA) has been developed to meet real-time fault tolerant processing requirements of future Army applications. AFTA is the enabling technology that will allow the Army to configure existing processors and other hardware to provide high throughput and ultrahigh reliability necessary for TF/TA/NOE flight control and other advanced Army applications. A comprehensive conceptual study of AFTA has been completed that addresses a wide range of issues including requirements, architecture, hardware, software, testability, producibility, analytical models, validation and verification, common mode faults, VHDL, and a fault tolerant data bus. A Brassboard AFTA for demonstration and validation has been fabricated, and two operating systems and a flight-critical Army application have been ported to it. Detailed performance measurements have been made of fault tolerance and operating system overheads while AFTA was executing the flight application in the presence of faults.

  15. Report by the Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The process of preparation for the first two shuttle flights was observed and information from both flights was gathered in order to confirm the concept and performance of the major elements of the space transportation system. To achieve truly operational operating safety, regularity, and minimum practical cost, the organization of efforts between the R&D community and any transportation service organization should be clearly separated with the latter organization assuming responsibilities for marketing its services; planning and acquiring prime hardware and spares; maintainance; certification of procedures; training; and creation of requirements for future development. A technical audit of the application of redundancy concepts to shuttle systems is suggested. The state of the art of space transportation hardware suggests that a number of concept changes may improve reliability, costs, and operational safety. For the remaining R&D flights, it is suggested that a redline audit be made of limits that should not be exceeded for ready to launch.

  16. The implementation of a lossless data compression module in an advanced orbiting system: Analysis and development

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Miller, Warner H.; Venbrux, Jack; Liu, Norley; Rice, Robert F.

    1993-01-01

    Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan.

  17. Welding process modelling and control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  18. Issues Related to Large Flight Hardware Acoustic Qualification Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.

    2011-01-01

    The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.

  19. Boeing CST-100 Starliner Processing

    NASA Image and Video Library

    2018-04-26

    Boeing’s CST-100 Starliner Orbital Flight Test vehicle will fly the first test flight to space on an uncrewed mission to the International Space Station. Here you see the spacecraft’s upper dome undergoing the final preparations before the upper and lower dome are mated for a pressure test, and then the two domes will move on to be populated with avionics, life support and other critical hardware.

  20. Mission Control Center (MCC) System Specification for the Shuttle Orbital Flight Test (OFT) Timeframe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.

  1. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  2. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  3. Model-Based Verification and Validation of Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Sievers, Michael; Standley, Shaun

    2012-01-01

    Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.

  4. KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  5. Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware - Final

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John

    2011-01-01

    An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.

  6. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  7. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2014-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  8. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  9. An overview of in-flight plume diagnostics for rocket engines

    NASA Technical Reports Server (NTRS)

    Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

    1992-01-01

    An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

  10. Lessons Learned during Thermal Hardware Integration on the Global Precipitation Measurement Satellite

    NASA Technical Reports Server (NTRS)

    Cottingham, Christine; Dwivedi, Vivek H.; Peters, Carlton; Powers, Daniel; Yang, Kan

    2012-01-01

    The Global Precipitation Measurement mission is a joint NASA/JAXA mission scheduled for launch in late 2013. The integration of thermal hardware onto the satellite began in the Fall of 2010 and will continue through the Summer of 2012. The thermal hardware on the mission included several constant conductance heat pipes, heaters, thermostats, thermocouples radiator coatings and blankets. During integration several problems arose and insights were gained that would help future satellite integrations. Also lessons learned from previous missions were implemented with varying degrees of success. These insights can be arranged into three categories. 1) the specification of flight hardware using analysis results and the available mechanical resources. 2) The integration of thermal flight hardware onto the spacecraft, 3) The preparation and implementation of testing the thermal flight via touch tests, resistance measurements and thermal vacuum testing.

  11. Space Launch System Resource Reel 2017

    NASA Image and Video Library

    2017-12-01

    NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.

  12. Performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) and other hardware in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Hogan, Robert P.; Dalton, Bonnie P.

    1991-01-01

    This paper discusses the performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) plus other associated hardware during the recent flight of Spacelab Life Sciences 1 (SLS-1). The RAHF was developed to provide proper housing (food, water, temperature control, lighting and waste management) for up to 24 rodents during flights on the Spacelab. The GPWS was designed to contain particulates and toxic chemicals generated during plant and animal handling and dissection/fixation activities during space flights. A history of the hardware development involves as well as the redesign activities prior to the actual flight are discussed.

  13. Evaluation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Array

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Liddicoat, Albert; Ralston, Jesse; Pingree, Paula

    2006-01-01

    The current implementation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays (TRIGA) is equipped with CFDP protocol and CCSDS Telemetry and Telecommand framing schemes to replace the CPU intensive software counterpart implementation for reliable deep space communication. We present the hardware/software co-design methodology used to accomplish high data rate throughput. The hardware CFDP protocol stack implementation is then compared against the two recent flight implementations. The results from our experiments show that TRIGA offers more than 3 orders of magnitude throughput improvement with less than one-tenth of the power consumption.

  14. Advances in flexible optrode hardware for use in cybernetic insects

    NASA Astrophysics Data System (ADS)

    Register, Joseph; Callahan, Dennis M.; Segura, Carlos; LeBlanc, John; Lissandrello, Charles; Kumar, Parshant; Salthouse, Christopher; Wheeler, Jesse

    2017-08-01

    Optogenetic manipulation is widely used to selectively excite and silence neurons in laboratory experiments. Recent efforts to miniaturize the components of optogenetic systems have enabled experiments on freely moving animals, but further miniaturization is required for freely flying insects. In particular, miniaturization of high channel-count optical waveguides are needed for high-resolution interfaces. Thin flexible waveguide arrays are needed to bend light around tight turns to access small anatomical targets. We present the design of lightweight miniaturized optogentic hardware and supporting electronics for the untethered steering of dragonfly flight. The system is designed to enable autonomous flight and includes processing, guidance sensors, solar power, and light stimulators. The system will weigh less than 200mg and be worn by the dragonfly as a backpack. The flexible implant has been designed to provide stimuli around nerves through micron scale apertures of adjacent neural tissue without the use of heavy hardware. We address the challenges of lightweight optogenetics and the development of high contrast polymer waveguides for this purpose.

  15. Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Yau, M.; Guarro, S.; Apostolakis, G.

    1993-01-01

    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.

  16. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  17. Development of Advanced Spacecraft Thermal Subsystems

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates and embedded thermal management systems. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit/receive modules that are severely limited by thermal concerns.

  18. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Technical Reports Server (NTRS)

    Stephan, Amy; Erikson, Carol A.

    1991-01-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  19. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  20. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  1. Spaceborne computer executive routine functional design specification. Volume 1: Functional design of a flight computer executive program for the reusable shuttle

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.

  2. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  3. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  4. Liquid Nitrogen Removal of Critical Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.

  5. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F. (Editor); Taylor, Gerald R. (Editor); Smith, Wanda L. (Editor); Brown, J. Travis (Technical Monitor)

    1999-01-01

    Biomedical issues have presented a challenge to flight physicians, scientists, and engineers ever since the advent of high-speed, high-altitude airplane flight in the 1940s. In 1958, preparations began for the first manned space flights of Project Mercury. The medical data and flight experience gained through Mercury's six flights and the Gemini, Apollo, and Skylab projects, as well as subsequent space flights, comprised the knowledge base that was used to develop and implement the Extended Duration Orbiter Medical Project (EDOMP). The EDOMP yielded substantial amounts of data in six areas of space biomedical research. In addition, a significant amount of hardware was developed and tested under the EDOMP. This hardware was designed to improve data gathering capabilities and maintain crew physical fitness, while minimizing the overall impact to the microgravity environment. The biomedical findings as well as the hardware development results realized from the EDOMP have been important to the continuing success of extended Space Shuttle flights and have formed the basis for medical studies of crew members living for three to five months aboard the Russian space station, Mir. EDOMP data and hardware are also being used in preparation for the construction and habitation of International Space Station. All data sets were grouped to be non-attributable to individuals, and submitted to NASA s Life Sciences Data Archive.

  6. Parameter Validation for Evaluation of Spaceflight Hardware Reusability

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Dale, Thomas L.; Farrington, Phillip

    2017-01-01

    Within recent years, there has been an influx of companies around the world pursuing reusable systems for space flight. Much like NASA, many of these new entrants are learning that reusable systems are complex and difficult to acheive. For instance, in its first attempts to retrieve spaceflight hardware for future reuse, SpaceX unsuccessfully tried to land on a barge at sea, resulting in a crash-landing. As this new generation of launch developers continues to develop concepts for reusable systems, having a systematic approach for determining the most effective systems for reuse is paramount. Three factors that influence the effective implementation of reusability are cost, operability and reliability. Therefore, a method that integrates these factors into the decision-making process must be utilized to adequately determine whether hardware used in space flight should be reused or discarded. Previous research has identified seven features that contribute to the successful implementation of reusability for space flight applications, defined reusability for space flight applications, highlighted the importance of reusability, and presented areas that hinder successful implementation of reusability. The next step is to ensure that the list of reusability parameters previously identified is comprehensive, and any duplication is either removed or consolidated. The characteristics to judge the seven features as good indicators for successful reuse are identified and then assessed using multiattribute decision making. Next, discriminators in the form of metrics or descriptors are assigned to each parameter. This paper explains the approach used to evaluate these parameters, define the Measures of Effectiveness (MOE) for reusability, and quantify these parameters. Using the MOEs, each parameter is assessed for its contribution to the reusability of the hardware. Potential data sources needed to validate the approach will be identified.

  7. Skylab mission report, second visit. [postflight analysis of engineering, experimentation, and medical aspects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation is presented of the operational and engineering aspects of the second Skylab flight. Other areas described include: the performance of experimental hardware; the crew's evaluation of the flight; medical aspects; and hardware anomalies.

  8. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    To convert raw data into environmental products, the National Weather Service and other organizations use the Global 9000 image processing system marketed by Global Imaging, Inc. The company's GAE software package is an enhanced version of the TAE, developed by Goddard Space Flight Center to support remote sensing and image processing applications. The system can be operated in three modes and is combined with HP Apollo workstation hardware.

  9. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  10. Decal Process Document and Catalog

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Decal Process Document and Catalog, JSC 27260 is the standard flight decal catalog, complete with illustrations and part numbers. As hardware developers identify labels that have common applicability across end items, these labels can be evaluated for "standard decal classification" and entered into the decal catalog for general use. The hardware developer must have a label design that meets current, applicable labeling requirements, and submit to the Decal Design and Production Facility (DDPF) as a standard label candidate. Upon approval, the label will be added to the decal catalog. The Decal Process Document and Catalog provides a selection of decals from which the NASA and NASA contractor customers can easily order. The decals shown in the catalog have been previously produced and have released engineering/fabrication drawings on file in the (DDPF). A released drawing is required before a decal can be produced or placed into the catalog. Some decals included in the catalog have a common applicability and are used in various NASA vehicles/habitats. It is the intent of the DDPF to maintain this catalog as a "living document" to which decals/placards can be added as they are repeatedly used. The advantage of identifYing flight decals in this catalog is that a released drawing is already in place, and the products will be flight certified.

  11. Study of efficient video compression algorithms for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Poo, Z.

    1975-01-01

    Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.

  12. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  13. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    NASA Technical Reports Server (NTRS)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  14. Modifications to the rapid melt/rapid quench and transparent polymer video furnaces for the KC-135

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.

    1990-01-01

    Given here is a summary of tasks performed on two furnace systems, the Transparent Polymer (TPF) and the Rapid Melt/Rapid Quench (RMRQ) furnaces, to be used aboard NASA's KC-135. It was determined that major changes were needed for both furnaces to operate according to the scientific investigators' experiment parameters. Discussed here are what the problems were, what was required to solve the problems, and possible future enhancements. It was determined that the enhancements would be required for the furnaces to perform at their optimal levels. Services provided include hardware and software modifications, Safety DataPackage documentation, ground based testing, transportation to and from Ellington Air Field, operation of hardware during KC-135 flights, and post-flight data processing.

  15. Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  16. Water Processor and Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    Bedard, John

    1997-01-01

    This report documents the results of the tasks which initiated efforts on design issues relating to the Water Processor (WP) and the Oxygen Generation Assembly (OGA) Flight Hardware for the International Space Station. This report fulfills the Statement of Work deliverables requirement for contract H-29387D. The following lists the tasks required by contract H-29387D: (1) HSSSI shall coordinate a detailed review of WP/OGA Flight Hardware program requirements with personnel from MSFC to identify requirements that can be eliminated without affecting the technical integrity of the WP/OGA Hardware; (2) HSSSI shall conduct the technical interchanges with personnel from MSFC to resolve design issues related to WP/OGA Flight Hardware; (3) HSSSI will initiate discussions with Zellwegger Analytics, Inc. to address design issues related to WP and PCWQM interfaces.

  17. Propulsion/flight control integration technology (PROFIT) design analysis status

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.

  18. Flight Crew Integration (FCI) ISS Crew Comments Database & Products Summary

    NASA Technical Reports Server (NTRS)

    Schuh, Susan

    2016-01-01

    This Crew Debrief Data provides support for design and development of vehicles, hardware, requirements, procedures, processes, issue resolution, lessons learned, consolidation and trending for current Programs; and much of the data is also used to support development of future Programs.

  19. High-Speed Isolation Board for Flight Hardware Testing

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K.; Goodpasture, Richard L.

    2011-01-01

    There is a need to provide a portable and cost-effective galvanic isolation between ground support equipment and flight hardware such that any unforeseen voltage differential between ground and power supplies is eliminated. An interface board was designed for use between the ground support equipment and the flight hardware that electrically isolates all input and output signals and faithfully reproduces them on each side of the interface. It utilizes highly integrated multi-channel isolating devices to minimize size and reduce assembly time. This single-board solution provides appropriate connector hardware and breakout of required flight signals to individual connectors as needed for various ground support equipment. The board utilizes multi-channel integrated circuits that contain transformer coupling, thereby allowing input and output signals to be isolated from one another while still providing high-fidelity reproduction of the signal up to 90 MHz. The board also takes in a single-voltage power supply input from the ground support equipment and in turn provides a transformer-derived isolated voltage supply to power the portion of the circuitry that is electrically connected to the flight hardware. Prior designs used expensive opto-isolated couplers that were required for each signal to isolate and were time-consuming to assemble. In addition, these earlier designs were bulky and required a 2U rack-mount enclosure. The new design is smaller than a piece of 8.5 11-in. (.22 28-mm) paper and can be easily hand-carried where needed. The flight hardware in question is based on a lineage of existing software-defined radios (SDRs) that utilize a common interface connector with many similar input-output signals present. There are currently four to five variations of this SDR, and more upcoming versions are planned based on the more recent design.

  20. Evaluating Statistical Process Control (SPC) techniques and computing the uncertainty of force calibrations

    NASA Technical Reports Server (NTRS)

    Navard, Sharon E.

    1989-01-01

    In recent years there has been a push within NASA to use statistical techniques to improve the quality of production. Two areas where statistics are used are in establishing product and process quality control of flight hardware and in evaluating the uncertainty of calibration of instruments. The Flight Systems Quality Engineering branch is responsible for developing and assuring the quality of all flight hardware; the statistical process control methods employed are reviewed and evaluated. The Measurement Standards and Calibration Laboratory performs the calibration of all instruments used on-site at JSC as well as those used by all off-site contractors. These calibrations must be performed in such a way as to be traceable to national standards maintained by the National Institute of Standards and Technology, and they must meet a four-to-one ratio of the instrument specifications to calibrating standard uncertainty. In some instances this ratio is not met, and in these cases it is desirable to compute the exact uncertainty of the calibration and determine ways of reducing it. A particular example where this problem is encountered is with a machine which does automatic calibrations of force. The process of force calibration using the United Force Machine is described in detail. The sources of error are identified and quantified when possible. Suggestions for improvement are made.

  1. Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)

    2002-01-01

    This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.

  2. ARC-2007-ACD07-0073-126

    NASA Image and Video Library

    2007-08-07

    LCROSS flight hardware in clean room at Ames N-240. EEL personnel fabricating testing components with Jerry Wang of Ames, Engineering Evaluation labLCROSS flight hardware in clean room at Ames N-240. EEL personnel fabricating testing components with Jerry Wang of Ames, Engineering Evaluation lab

  3. CASIS Fact Sheet: Hardware and Facilities

    NASA Technical Reports Server (NTRS)

    Solomon, Michael R.; Romero, Vergel

    2016-01-01

    Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS

  4. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  5. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  8. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  9. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  10. KSC ground operations planning for Space Station

    NASA Technical Reports Server (NTRS)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  11. A Stream lined Approach for the Payload Customer in Identifying Payload Design Requirements

    NASA Technical Reports Server (NTRS)

    Miller, Ladonna J.; Schneider, Walter F.; Johnson, Dexer E.; Roe, Lesa B.

    2001-01-01

    NASA payload developers from across various disciplines were asked to identify areas where process changes would simplify their task of developing and flying flight hardware. Responses to this query included a central location for consistent hardware design requirements for middeck payloads. The multidisciplinary team assigned to review the numerous payload interface design documents is assessing the Space Shuttle middeck, the SPACEHAB Inc. locker, as well as the MultiPurpose Logistics Module (MPLM) and EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack design requirements for the payloads. They are comparing the multiple carriers and platform requirements and developing a matrix which illustrates the individual requirements, and where possible, the envelope that encompasses all of the possibilities. The matrix will be expanded to form an overall envelope that the payload developers will have the option to utilize when designing their payload's hardware. This will optimize the flexibility for payload hardware and ancillary items to be manifested on multiple carriers and platforms with minimal impact to the payload developer.

  12. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  13. NASA-STD-6016 Standard Materials and Processes Requirements for Spacecraft

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2009-01-01

    The standards for materials and processes surrounding spacecraft are discussed. Presentation focused on minimum requirements for Materials and Processes (M&P) used in design, fabrication, and testing of flight components for NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements.Included is information on flammability, offgassing, compatibility requirements, and processes; both metallic and non-metallic materials are mentioned.

  14. IAPSA 2 small-scale system specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Torkelson, Thomas C.

    1990-01-01

    The details of a hardware implementation of a representative small scale flight critical system is described using Advanced Information Processing System (AIPS) building block components and simulated sensor/actuator interfaces. The system was used to study application performance and reliability issues during both normal and faulted operation.

  15. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  16. The design of flight hardware: Organizational and technical ideas from the MITRE/WPI Shuttle Program

    NASA Technical Reports Server (NTRS)

    Looft, F. J.

    1986-01-01

    The Mitre Corporation of Bedford Mass. and the Worcester Polytechnic Institute are developing several experiments for a future Shuttle flight. Several design practices for the development of the electrical equipment for the flight hardware have been standardized. Some of the ideas are presented, not as hard and fast rules but rather in the interest of stimulating discussions for sharing such ideas.

  17. Use of Heritage Hardware on Orion MPCV Exploration Flight Test One

    NASA Technical Reports Server (NTRS)

    Rains, George Edward; Cross, Cynthia D.

    2012-01-01

    Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.

  18. Use of Heritage Hardware on MPCV Exploration Flight Test One

    NASA Technical Reports Server (NTRS)

    Rains, George Edward; Cross, Cynthia D.

    2011-01-01

    Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.

  19. Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Tabb, David; Tatara, James D.; Mason, Richard K.

    2005-01-01

    The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.

  20. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    NASA Technical Reports Server (NTRS)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  1. A lightweight, inexpensive robotic system for insect vision.

    PubMed

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Hopkins works with the MDCA hardware replacement, and CIR maintenance

    NASA Image and Video Library

    2013-12-31

    ISS038-E-024145 (30 Dec. 2013) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, performs in-flight maintenance on combustion research hardware in the Destiny laboratory of the International Space Station. Hopkins replaced a Multi-user Droplet Combustion Apparatus (MDCA) fuel reservoir inside the Combustion Integrated Rack (CIR).

  3. Pre-Flight Radiometric Model of Linear Imager on LAPAN-IPB Satellite

    NASA Astrophysics Data System (ADS)

    Hadi Syafrudin, A.; Salaswati, Sartika; Hasbi, Wahyudi

    2018-05-01

    LAPAN-IPB Satellite is Microsatellite class with mission of remote sensing experiment. This satellite carrying Multispectral Line Imager for captured of radiometric reflectance value from earth to space. Radiometric quality of image is important factor to classification object on remote sensing process. Before satellite launch in orbit or pre-flight, Line Imager have been tested by Monochromator and integrating sphere to get spectral and every pixel radiometric response characteristic. Pre-flight test data with variety setting of line imager instrument used to see correlation radiance input and digital number of images output. Output input correlation is described by the radiance conversion model with imager setting and radiometric characteristics. Modelling process from hardware level until normalize radiance formula are presented and discussed in this paper.

  4. Design and specification of a centralized manufacturing data management and scheduling system

    NASA Technical Reports Server (NTRS)

    Farrington, Phillip A.

    1993-01-01

    As was revealed in a previous study, the Materials and Processes Laboratory's Productivity Enhancement Complex (PEC) has a number of automated production areas/cells that are not effectively integrated, limiting the ability of users to readily share data. The recent decision to utilize the PEC for the fabrication of flight hardware has focused new attention on the problem and brought to light the need for an integrated data management and scheduling system. This report addresses this need by developing preliminary designs specifications for a centralized manufacturing data management and scheduling system for managing flight hardware fabrication in the PEC. This prototype system will be developed under the auspices of the Integrated Engineering Environment (IEE) Oversight team and the IEE Committee. At their recommendation the system specifications were based on the fabrication requirements of the AXAF-S Optical Bench.

  5. Impact of flight systems integration on future aircraft design

    NASA Technical Reports Server (NTRS)

    Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.

    1984-01-01

    Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.

  6. ORATOS: ESA's future flight dynamics operations system

    NASA Astrophysics Data System (ADS)

    Dreger, Frank; Fertig, Juergen; Muench, Rolf

    The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.

  7. Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James

    2016-01-01

    Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.

  8. Real-time Enhancement, Registration, and Fusion for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than-human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests.

  9. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  10. Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.

  11. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  12. KSC-2009-3603

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – TIn Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, STS-128 crew members are lowered into space shuttle Discovery's payload bay to check equipment. At center is Mission Specialist John "Danny" Olivas. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-128 flight will carry science and storage racks to the International Space Station on Discovery. Launch is targeted for Aug. 7. Photo credit: NASA/Jim Grossmann

  13. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  14. KSC-04PD-0870

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, United Space Alliance workers Ross Neubarth and Paul Ogletree (foreground, left and right) look at the monitor for results of thermography on Discoverys nose cap. Behind them is Ken Tauer. Thermography is one type of inspection to verify integrity of hardware before flight. This procedure uses high intensity light to heat areas that are immediately scanned with an infrared camera to check for internal flaws. Discovery is the vehicle assigned to the Return to Flight mission, STS-114.

  15. EVA design: lessons learned.

    PubMed

    Ross, J L

    1994-01-01

    Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.

  16. Porting the Core Flight System to the Dellingr Cubesat

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2017-01-01

    Dellingr is a 6U Cubesat developed by NASA Goddard Space Flight Center. It was delivered to the International Space Station in August 2017, and is scheduled to be deployed in November 2017. Compared to a typical NASA satellite, the Dellingr Cubesat had an extremely low budget and short schedule. Although the Dellingr Cubesat has minimal hardware resources, the cFS was ultimately chosen for the flight software. Using the cFS on the Dellingr Cubesat presented a few challenges, but also offered opportunities to help speed up development and verify the ACS flight software. This presentation will cover the lessons learned in porting the cFS to the Dellingr Cubesat, including working with the limited hardware resources, porting the cFS to FreeRTOS, and overcoming limitations related to data storage and file transfer. This presentation will also cover how hardware abstraction was used to run the flight software on multiple platforms and interface with the 42 dynamic simulator.

  17. BSM Delta qualification 2, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into Booster Separation Motor (BSM) flight hardware: (1) vulcanized-in-place nozzle aft closure insulation; (2) new isostatic ATJ bulk graphite throat insert material; (3) adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; (4) deletion of the igniter adapter insulator ring; (5) deletion of igniter adapter/igniter case interface RTV; and (6) deletion of Loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM Total Quality Management (TQM) Team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing - consisting of two motors, randomly selected by USBI's onsite quality personnel from production lot AAY, which were modified to accept the enhancements - were completed to provide the final qualification of the enhancements for incorporation into flight hardware. It is concluded that all of the enhancements herein tested are qualified to be incorporated into flight hardware for the BSM.

  18. In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Crocker, D. S.

    1991-01-01

    The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.

  19. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  20. Medical evaluations on the KC-135 1991 flight report summary

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    1993-01-01

    The medical investigations completed on the KC-135 during FY 1991 in support of the development of the Health Maintenance Facility and Medical Operations are presented. The experiments consisted of medical and engineering evaluations of medical hardware and procedures and were conducted by medical and engineering personnel. The hardware evaluated included prototypes of a crew medical restraint system and advanced life support pack, a shuttle orbiter medical system, an airway medical accessory kit, a supplementary extended duration orbiter medical kit, and a surgical overhead canopy. The evaluations will be used to design flight hardware and identify hardware-specific training requirements. The following procedures were evaluated: transport of an ill or injured crewmember at man-tended capability, surgical technique in microgravity, transfer of liquids in microgravity, advanced cardiac life support using man-tended capability Health Maintenance Facility hardware, medical transport using a model of the assured crew return vehicle, and evaluation of delivery mechanisms for aerosolized medications in microgravity. The results of these evaluation flights allow for a better understanding of the types of procedures that can be performed in a microgravity environment.

  1. Spacelab Life Sciences 1, development towards successive life sciences flights

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Jahns, G.; Hogan, R.

    1992-01-01

    A general review is presented of flight data and related hardware developments for Spacelab Life Sciences (SLS) 1 with an eye toward applying this knowledge to projected flight planning. Specific attention is given to the Research Animal Holding Facility (RAHF), the General Purpose Work Station (GPWS), the Small Mass Measuring Instrument (SMMI), and the Animal Enclosure Module (AEM). Preflight and in-flight testing methods are detailed including biocompatibility tests, parametric engineering sensitivity analyses, measurements of environmental parameters, and studies of operational interfaces. Particulate containment is demonstrated for some of the equipment, and successful use of the GPWS, RAHF, AEM, and SMMI are reported. The in-flight data are useful for developing more advanced hardware such as the AEM for SLS flight 2 and the modified RAHF for SLS flight 3.

  2. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  3. Results of the Stable Microgravity Vibration Isolation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean

    1996-01-01

    This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.

  4. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  5. Achieving Operability via the Mission System Paradigm

    NASA Technical Reports Server (NTRS)

    Hammer, Fred J.; Kahr, Joseph R.

    2006-01-01

    In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.

  6. 2nd Generation QUATARA Flight Computer Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven

    2015-01-01

    Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.

  7. First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.

    2014-01-01

    The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.

  8. Ares I-X Flight Test - On the Fast Track to the Future

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.

  9. Physics of Colloids in Space (PCS) Flight Hardware Developed

    NASA Technical Reports Server (NTRS)

    Koudelka, John M.

    2001-01-01

    investigation that will be located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack. The investigation will be conducted in the International Space Station U.S. laboratory, Destiny, over a period of approximately 10 months during the station assembly period from flight 6A through flight UF-2. This experiment will gather data on the basic physical properties of colloids by studying three different colloid systems with the objective of understanding how they grow and what structures they form. A colloidal suspension consists of fine particles (micrometer to submicrometer) suspended in a fluid for example, paints, milk, salad dressings, and aerosols. The long-term goal of this investigation is to learn how to steer the growth of colloidal suspensions to create new materials and new structures. This experiment is part of a two-stage investigation conceived by Professor David Weitz of Harvard University along with Professor Peter Pusey of the University of Edinburgh. The experiment hardware was developed by the NASA Glenn Research Center through contracts with Dynacs, Inc., and ZIN Technologies.

  10. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  11. KSC-2009-3673

    NASA Image and Video Library

    2009-06-11

    CAPE CANAVERAL, Fla. – At the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, Robert Lightfoot, acting center director of NASA's Marshall Space Flight Center, speaks to employees who were involved in the processing of the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) . The forward assembly is being moved to the Vehicle Assembly Building's High Bay 4 for processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller

  12. An application of the Multi-Purpose System Simulation /MPSS/ model to the Monitor and Control Display System /MACDS/ at the National Aeronautics and Space Administration /NASA/ Goddard Space Flight Center /GSFC/

    NASA Technical Reports Server (NTRS)

    Mill, F. W.; Krebs, G. N.; Strauss, E. S.

    1976-01-01

    The Multi-Purpose System Simulator (MPSS) model was used to investigate the current and projected performance of the Monitor and Control Display System (MACDS) at the Goddard Space Flight Center in processing and displaying launch data adequately. MACDS consists of two interconnected mini-computers with associated terminal input and display output equipment and a disk-stored data base. Three configurations of MACDS were evaluated via MPSS and their performances ascertained. First, the current version of MACDS was found inadequate to handle projected launch data loads because of unacceptable data backlogging. Second, the current MACDS hardware with enhanced software was capable of handling two times the anticipated data loads. Third, an up-graded hardware ensemble combined with the enhanced software was capable of handling four times the anticipated data loads.

  13. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  14. Microgravity Flight - Accommodating Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights. The RRF accommodated two adult 8-11 kg rhesus monkeys, while the Russian experiments and hardware were configured for a younger animal in the 44 kg range. Both the American and Russian hardware maintained a controlled environmental system, specifically temperature, humidity, a timed lighting cycle, and had means for providing food and fluids to the animal(s). Crew availability during a Shuttle mission was to be an optimal condition for retrieval and refrigeration of the animal urine samples along with a manual calcein injection which could lead to greater understanding of bone calcium incorporation. A special portable bioisolation glove box was under development to support this aspect of the experiment profile along with the capability of any contingency human intervention. As a result of recent U.S./Russian negotiations, funding for Space Station, and a series of other events, the SLS-3 mission was cancelled and applicable Rhesus Project experiments incorporated into the Russian Bion 11 and 12 missions. A presentation of the RRF and COSMOS/Bion rhesus hardware is presented along with current plans for the hardware.

  15. Microgravity Flight: Accommodating Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights. The RRF accommodated two adult 8-11 kg rhesus monkeys, while the Russian experiments and hardware were configured for a younger animal in the 44 kg range. Both the American and Russian hardware maintained a controlled environmental system, specifically temperature, humidity, a timed lighting cycle, and had means for providing food and fluids to the animal(s). Crew availability during a Shuttle mission was to be an optimal condition for retrieval and refrigeration of the animal urine samples along with a manual calcein injection which could lead to greater understanding of bone calcium incorporation. A special portable bioisolation glove box was under development to support this aspect of the experiment profile along with the capability of any contingency human intervention. As a result of recent U.S./Russian negotiations, funding for Space Station, and a series of other events, the SLS-3 mission was cancelled and applicable Rhesus Project experiments incorporated into the Russian Bion 11 and 12 missions. A presentation of the RRF and COSMOS/Bion rhesus hardware is presented along with current plans for the hardware.

  16. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  17. The Art of Space Flight Exercise Hardware: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Beyene, Nahom M.

    2004-01-01

    The design of space flight exercise hardware depends on experience with crew health maintenance in a microgravity environment, history in development of flight-quality exercise hardware, and a foundation for certifying proper project management and design methodology. Developed over the past 40 years, the expertise in designing exercise countermeasures hardware at the Johnson Space Center stems from these three aspects of design. The medical community has steadily pursued an understanding of physiological changes in humans in a weightless environment and methods of counteracting negative effects on the cardiovascular and musculoskeletal system. The effects of weightlessness extend to the pulmonary and neurovestibular system as well with conditions ranging from motion sickness to loss of bone density. Results have shown losses in water weight and muscle mass in antigravity muscle groups. With the support of university-based research groups and partner space agencies, NASA has identified exercise to be the primary countermeasure for long-duration space flight. The history of exercise hardware began during the Apollo Era and leads directly to the present hardware on the International Space Station. Under the classifications of aerobic and resistive exercise, there is a clear line of development from the early devices to the countermeasures hardware used today. In support of all engineering projects, the engineering directorate has created a structured framework for project management. Engineers have identified standards and "best practices" to promote efficient and elegant design of space exercise hardware. The quality of space exercise hardware depends on how well hardware requirements are justified by exercise performance guidelines and crew health indicators. When considering the microgravity environment of the device, designers must consider performance of hardware separately from the combined human-in-hardware system. Astronauts are the caretakers of the hardware while it is deployed and conduct all sanitization, calibration, and maintenance for the devices. Thus, hardware designs must account for these issues with a goal of minimizing crew time on orbit required to complete these tasks. In the future, humans will venture to Mars and exercise countermeasures will play a critical role in allowing us to continue in our spirit of exploration. NASA will benefit from further experimentation on Earth, through the International Space Station, and with advanced biomechanical models to quantify how each device counteracts specific symptoms of weightlessness. With the continued support of international space agencies and the academic research community, we will usher the next frontier in human space exploration.

  18. Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusion

  19. KSC-04PD-1756

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. United Space Alliance employee James Calloway checks the temperature and humidity level recorder in the Orbiter Processing Facility following Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. There was no damage to the Space Shuttle orbiters or to any other flight hardware.

  20. KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  1. Launch and landing site science processing for ISS utilization

    NASA Astrophysics Data System (ADS)

    Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy

    2000-01-01

    Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .

  2. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  3. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  4. CATE: A Case Study of an Interdisciplinary Student-Led Microgravity Experiment

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Dove, A.; Lane, S. S.; Tiller, C.; Whitaker, A.; Lai, K.; Hoover, B.; Benjamin, S.

    2015-12-01

    The Collisional Accretion Experiment (CATE) was designed, built, and flown on NASA's C-9 parabolic flight airplane in less than a year by an interdisciplinary team of 6 undergraduate students under the supervision of two faculty. CATE was selected in the initial NASA Undergraduate Student Instrument Project (USIP) solicitation in the Fall of 2013, and the experiment flight campaign was in July 2014. The experiment studied collisions between different particle populations at low velocities (sub-m/s) in a vacuum and microgravity to gain insight into processes in the protoplanetary disk and planetary ring systems. Faculty provided the experiment concept and key experiment design parameters, and the student team developed the detailed hardware design for all components, manufactured and tested hardware, operated the experiment in flight, and analyzed data post-flight. Students also developed and led an active social media campaign and education and public outreach campaign to engage local high school students in the project. The ability to follow an experiment through from conception to flight was a key benefit for undergraduate students whose available time for projects such as this is frequently limited to their junior and senior years. Key factors for success of the program included having an existing laboratory infrastructure and experience in developing flight payloads and an intrinsically simple experiment concept. Students were highly motivated, in part, by their sense of technical and scientific ownership of the project, and this engagement was key to the project's success.

  5. VEG-01: Veggie Hardware Verification Testing

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  6. Manned space flight nuclear system safety. Volume 1: base nuclear system safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.

  7. Point of a space experiment proposal.

    PubMed

    Fukui, Keiji; Shimazu, Toru; Higashibata, Akira; Fujimoto, Nobuyoshi; Ishioka, Noriaki

    2003-10-01

    JAXA will solicit research proposals for space flight experiments that would be conducted for less than three years after the selection. In principle, available samples will be limited to Arabidopsis and C. elegans and flight hardware and protocol of space flight experiment will be pre-fixed. Proposals using different combinations of species and flight hardware will not be acceptable. Besides scientific issues, it is very important for proposer to write an impressive proposal. Hypothesis basis research proposal is the accepted standard. Reviewers will dislike a descriptive and unfocused research proposal without hypothesis. Ground preparation experiments, which are not related directly to space experiments, should not be included in the solicitation.

  8. A representational basis for the development of a distributed expert system for Space Shuttle flight control

    NASA Technical Reports Server (NTRS)

    Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.

    1984-01-01

    A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.

  9. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  10. KSC-07pd0306

    NASA Image and Video Library

    2007-02-06

    KENNEDY SPACE CENTER, FLA. -- On the floor of the Space Station Processing Facility, astronauts Dan Tani (left) and Peggy Whitson practice working with a cover, something they may handle during an upcoming shuttle flight. With construction of the Space Station the primary focus of future shuttle missions, astronaut crews will be working with one or more of the elements and hardware already being processed in the SSPF. Photo credit: NASA/Kim Shiflett

  11. On-Orbit Constraints Test - Performing Pre-Flight Tests with Flight Hardware, Astronauts and Ground Support Equipment to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad, Michael E.

    2008-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  12. P-MASS and P-GBA: Two new hardware developments for growing plants in space

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Luttges, Marvin W.; Robinson, Michael C.; Stodieck, Louis S.; Kliss, Mark H.

    1994-01-01

    Plant growth, and especially plant performance experiments in microgravity are limited by the currently available plant growth facilities (low light levels, inadequate nutrient delivery and atmosphere conditioning systems, insufficient science instrumentation, infrequent flight opportunities). In addition, mission durations of 10 to 14 days aboard the NSTS Space Shuttle allow for only brief periods of microgravity exposure with respect to the life cycle of a plant. Based on seed germination experiments, using the Generic BioProcessing Apparatus hardware (GBA), two new payloads have been designed specifically for plant growth. These payloads provide new opportunities for plant gravitational and space biology research and emphasize the investigation of plant performance (photosynthesis, biomass accumulations) in microgravity. The Plant-Module for Autonomous Space Support (P-MASS) was designed to utilize microgravity exposure times in excess of 30 days on the first flight of the recoverable COMET satellite (Commercial Experiment Transporter). The Plant-Generic Bioprocessing Apparatus (P-GBA), is designed for the National Space Transportation System (NSTS) Space Shuttle middeck and the SPACEHAB environment. The P-GBA is an evolution from the GBA hardware and P-MASS (plant chamber and instrumentation). The available light levels of both payloads more than double currently available capabilities.

  13. Transplantable tissue growth-a commercial space venture

    NASA Astrophysics Data System (ADS)

    Giuntini, Ronald E.; Vardaman, William K.

    1997-01-01

    Rantek was incorporated in 1984 to pursue research toward product development in space based biotechnology. The company has maintained an aggressive experiment flight program since 1989 having flown biotechnology experiments in six Consort rockets flights, one Joust rocket flight and eight Space Shuttle missions. The objective of these flights was to conduct a series of research experiments to resolve issues affecting transplantable tissue growth feasibility. The purpose of the flight research was to determine the behavior of lymphocyte mixing, activation, magnetic mixing and process control, drug studies in a model leukemia cell line, and various aspects of the hardware system process control in the low gravity of space. The company is now preparing for a two Space Shuttle flight program as precursors to a sustained, permanent, commercial venture at the Space Station. The shuttle flights will enable new, larger scale tissue growth systems to be tested to determine fundamental process control sensitivity and growth rates unique to a number of tissue types. The answer to these issues will ultimately determine the commercial viability of the Rantek Biospace program. This paper addresses considerations that will drive the cost of a space venture-the largest cost driver will be the cost to and from the station and the cost at the station.

  14. KSC-04pd1697

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  15. KSC-04pd1692

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  16. KSC-04pd1694

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the wheel bay to stow Atlantis’ landing gear in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  17. KSC-04pd1711

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility finish Hurricane preparations on the payload bay doors of Atlantis. Preparing for the expected impact of Hurricane Frances on Saturday, workers also powered down the Space Shuttle orbiters, and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  18. KSC-04pd1691

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  19. KSC-04pd1688

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the orbiter Atlantis and related equipment for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  20. KSC-04pd1703

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  1. KSC-04pd1710

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  2. KSC-04pd1693

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  3. KSC-04pd1699

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ payload bay doors are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  4. KSC-04pd1698

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  5. KSC-04pd1690

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  6. KSC-04pd1689

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  7. KSC-04pd1708

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  8. KSC-04pd1702

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  9. KSC-04pd1700

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  10. KSC-04pd1696

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ wheels are raised into their wheel bays in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  11. KSC-04pd1704

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  12. KSC-04pd1701

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker checks out part of Atlantis after payload bay doors were closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  13. KSC-04pd1695

    NASA Image and Video Library

    2004-08-31

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ wheels are raised into their wheel bays in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  14. KSC-04pd1709

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  15. KSC-2012-4344

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  16. Research & Technology Report Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  17. Tissue culture apparatus for flight experimentation

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Krikorian, A. D.

    1985-01-01

    The development of an apparatus for in-flight treatment of cells, tissues, or small organisms for microscopic and chemical analyses is discussed. The hardware for the apparatus is to have: (1) automated functions, (2) the capability to interface with ground-based facilities, (3) independently controlled chambers, (4) variable chamber configurations and volumes, and (4) the capabilities for processing the materials. The components of the equipment used on Skylab 3 for the study of animal cells are described. The design of an apparatus which incorporates all the required capabilities is proposed.

  18. KSC-2009-6141

    NASA Image and Video Library

    2009-11-06

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, STS-130 Commander George Zamka dressed in clean-room attire, known as a "bunny suit," gets the feel of the cockpit of space shuttle Endeavour. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-130 flight will carry the Tranquility pressurized module with a built-in cupola to the International Space Station aboard Endeavour. Launch is targeted for Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  19. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  20. STS-83 Columbia Rollout to PAD-39A (fish eye view in VAB)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Orbiter Columbia begins its rollout from the Vehicle Assembly Building (VAB) to Launch Pad 39A in preparation for the STS-83 mission. The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is the primary payload on this 16-day space flight. The MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the seven-member flight crew conducts combustion, protein crystal growth and materials processing experiments.

  1. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  2. KSC-2009-5142

    NASA Image and Video Library

    2009-09-15

    EDWARDS AIR FORCE BASE, Calif. – (ED09-0253-81) Space Shuttle Discovery is surrounded by the Mate-DeMate Device gantry and ground support equipment at NASA’s Dryden Flight Research Center during processing for its ferry flight back to the Kennedy Space Center in Florida. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. Photo credit: NASA/Carla Thomas

  3. Human-rated Safety Certification of a High Voltage Robonaut Lithium-ion Battery

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Yayathi, S.; Johnson, M.; Waligora, T.; Verdeyen, W.

    2013-01-01

    NASA's rigorous certification process is being followed for the R2 high voltage battery program for use of R2 on International Space Station (ISS). Rigorous development testing at appropriate levels to credible off-nominal conditions and review of test data led to design improvements for safety at the virtual cell, cartridge and battery levels. Tests were carried out at all levels to confirm that both hardware and software controls work. Stringent flight acceptance testing of the flight battery will be completed before launch for mission use on ISS.

  4. KSC-04PD-0871

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, United Space Alliance (USA) worker Paul Ogletree points to an area on Discoverys nose cap while Ross Neubarth (right), also with USA, looks at the monitor. Behind Ogletree is USA worker Ken Tauer. The nose cap is undergoing thermography, one type of inspection to verify integrity of hardware before flight. This procedure uses high intensity light to heat areas that are immediately scanned with an infrared camera to check for internal flaws. Discovery is the vehicle assigned to the Return to Flight mission, STS-114.

  5. Discovery: Under the Microscope at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Howard, Philip M.

    2013-01-01

    The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.

  6. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  7. A criterion for establishing life limits. [for Space Shuttle Main Engine service

    NASA Technical Reports Server (NTRS)

    Skopp, G. H.; Porter, A. A.

    1990-01-01

    The development of a rigorous statistical method that would utilize hardware-demonstrated reliability to evaluate hardware capability and provide ground rules for safe flight margin is discussed. A statistical-based method using the Weibull/Weibayes cumulative distribution function is described. Its advantages and inadequacies are pointed out. Another, more advanced procedure, Single Flight Reliability (SFR), determines a life limit which ensures that the reliability of any single flight is never less than a stipulated value at a stipulated confidence level. Application of the SFR method is illustrated.

  8. Containerless preparation of advanced optical glasses: Experiment 77F095

    NASA Technical Reports Server (NTRS)

    Happe, R. A.; Kim, K. S.

    1982-01-01

    Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment.

  9. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    NASA Technical Reports Server (NTRS)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and verification/validation of the MSFC SDR, called PULSAR, which contributes to advancing the state-of-the-art in transponder design - directly applicable to the SmallSat and CubeSat communities. This paper focuses on lessons learned on the first sub-orbital flight (high altitude balloon) and the follow-on steps taken to validate PULSAR. A sounding rocket launch, currently planned for 03/2015, will further expose PULSAR to the high dynamics of sub-orbital flights. Future opportunities for orbiting satellite incorporation reside in the small satellite missions (FASTSat, CubeSat. etc.).

  10. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Sun, Wenhao; Cai, Xudong; Meng, Qiao

    2016-04-01

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  11. The Use af Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2002-01-01

    The USA LLC Materials & Processes (M&P) Engineering Department had recommended the application and evaluation of Ion Vapor Deposition (IVD) aluminum to SRB Hardware for corrosion protection and elimination of hazardous materials and processes such as cadmium plating. IVD is an environmentally friendly process that has no volatile organic compounds (VOCs), or hazardous waste residues. It lends itself to use with hardware exposed to corrosive seacoast environments as found at Kennedy Space Center (KSC), and Cape Canaveral Air Force Station (CCAFS), Florida. Lifting apparatus initially coated with cadmium plating for corrosion protection; was stripped and successfully re-coated with IVD aluminum after the cadmium plating no longer protected the GSE from corrosion, Since then, and after completion of a significant test program, the first flight application of the IVD Aluminum process on the Drogue Parachute Ratchet Assembly is scheduled for 2002.

  12. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    NASA Technical Reports Server (NTRS)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  13. Design and Characterization of a Secure Automatic Dependent Surveillance-Broadcast Prototype

    DTIC Science & Technology

    2015-03-26

    during the thesis process. Thank you to Mr. Dave Prentice of AFRL for providing the Aeroflex IFR 6000 baseband signals, upon which many design decisions...35 25 Example Aeroflex IFR 6000 signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 26...Global Positioning System HDL hardware description language I in-phase IFR Instrument Flight Rules IP Internet Protocol IP intellectual property IPSec

  14. Synthetic Flight Training System Study

    DTIC Science & Technology

    1983-12-23

    Distribution unlimited IC. SUPPLEMENTARY NOTiS - 19. KEY WORDS (Continue on reveree side if necoeeary and Identify by block nunber) Visual Systems Computer ...platforms, instructional features, computer hardware and software, student stations, etc. DOR 1473 EDITON OF INMOV6S ISOSOLETE Unclassified SECURITY... Computational Systems .................................... 4-I I 4.5.3 Visual Processing Systems .......................... 4-13 4.5.4 Instructor Stations

  15. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  16. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  17. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  18. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check components of the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  19. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environment Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  20. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the control panel on hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  1. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  2. KSC-07pd3565

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd3566

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  4. Ares I-X: On the Threshold of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce

    2009-01-01

    Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.

  5. CHeCS: International Space Station Medical Hardware Catalog

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  6. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    NASA Technical Reports Server (NTRS)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  7. Generic Health Management: A System Engineering Process Handbook Overview and Process

    NASA Technical Reports Server (NTRS)

    Wilson, Moses Lee; Spruill, Jim; Hong, Yin Paw

    1995-01-01

    Health Management, a System Engineering Process, is one of those processes-techniques-and-technologies used to define, design, analyze, build, verify, and operate a system from the viewpoint of preventing, or minimizing, the effects of failure or degradation. It supports all ground and flight elements during manufacturing, refurbishment, integration, and operation through combined use of hardware, software, and personnel. This document will integrate Health Management Processes (six phases) into five phases in such a manner that it is never a stand alone task/effort which separately defines independent work functions.

  8. Characterization of Al 2219 material for the application of the spin-forming-process

    NASA Astrophysics Data System (ADS)

    Mueller-Wiesner, D.; Sieger, E.; Ernsberger, K.

    1991-10-01

    The shells of the propellant tanks of the Ariane 5 EPS stage are to be manufactured by the spin forming process. The material for the shells (hemispheres) is the aluminum alloy 2219. By a material characterization program optimized parameters for the application of the forming process starting from different material conditions (T31 temper and '0' condition) are determined. Based on the results of this program it was decided to start spin forming in the '0' condition for flight hardware.

  9. NASA Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.

  10. Low extractable wipers for cleaning space flight hardware

    NASA Technical Reports Server (NTRS)

    Tijerina, Veronica; Gross, Frederick C.

    1986-01-01

    There is a need for low extractable wipers for solvent cleaning of space flight hardware. Soxhlet extraction is the method utilized today by most NASA subcontractors, but there may be alternate methods to achieve the same results. The need for low non-volatile residue materials, the history of soxhlet extraction, and proposed alternate methods are discussed, as well as different types of wipers, test methods, and current standards.

  11. KSC-04PD-0008

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  12. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  13. KSC-04PD-0003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  14. KSC-04PD-0007

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  15. KSC-04PD-0002

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  16. KSC-04PD-0001

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  17. Proximity operations considerations affecting spacecraft design

    NASA Technical Reports Server (NTRS)

    Staas, Steven K.

    1991-01-01

    Experience from several recent spacecraft development programs, such as Space Station Freedom (SSF) and the Orbital Maneuvering Vehicle (OMV) has shown the need for factoring proximity operations considerations into the vehicle design process. Proximity operations, those orbital maneuvers and procedures which involve operation of two or more spacecraft at ranges of less than one nautical mile, are essential to the construction, servicing, and operation of complex spacecraft. Typical proximity operations considerations which drive spacecraft design may be broken into two broad categories; flight profile characteristics and concerns, and use of various spacecraft systems during proximity operations. Proximity operations flight profile concerns include the following: (1) relative approach/separation line; (2) relative orientation of the vehicles; (3) relative translational and rotational rates; (4) vehicle interaction, in the form of thruster plume impingement, mating or demating operations, or uncontrolled contact/collision; and (5) active vehicle piloting. Spacecraft systems used during proximity operations include the following: (1) sensors, such as radar, laser ranging devices, or optical ranging systems; (2) effector hardware, such as thrusters; (3) flight control software; and (4) mating hardware, needed for docking or berthing operations. A discussion of how these factors affect vehicle design follows, addressing both active and passive/cooperative vehicles.

  18. Automated data acquisition technology development:Automated modeling and control development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1995-01-01

    This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.

  19. Microgravity Manufacturing Via Fused Deposition

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Griffin, M. R.

    2003-01-01

    Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

  20. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  1. Proton Exchange Membrane (PEM) Fuel Cell Status and Remaining Challenges for Manned Space-Flight Applications

    NASA Technical Reports Server (NTRS)

    Reaves, Will F.; Hoberecht, Mark A.

    2003-01-01

    The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.

  2. Using Automation to Improve the Flight Software Testing Process

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.

    2001-01-01

    One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.

  3. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  4. The failure analysis, redesign, and final preparation of the Brilliant Eyes Thermal Storage Unit for flight testing

    NASA Astrophysics Data System (ADS)

    Lamkin, T.; Whitney, Brian

    1995-09-01

    This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.

  5. Hardware and Programmatic Progress on the Ares I-X Flight Test

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will execute the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle; which, together with the Ares V cargo launch vehicle (Figure 1), will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and, in some cases, already fabricating vehicle hardware in preparation for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.

  6. Object oriented design (OOD) in real-time hardware-in-the-loop (HWIL) simulations

    NASA Astrophysics Data System (ADS)

    Morris, Joe; Richard, Henri; Lowman, Alan; Youngren, Rob

    2006-05-01

    Using Object Oriented Design (OOD) concepts in AMRDEC's Hardware-in-the Loop (HWIL) real-time simulations allows the user to interchange parts of the simulation to meet test requirements. A large-scale three-spectral band simulator connected via a high speed reflective memory ring for time-critical data transfers to PC controllers connected by non real-time Ethernet protocols is used to separate software objects from logical entities close to their respective controlled hardware. Each standalone object does its own dynamic initialization, real-time processing, and end of run processing; therefore it can be easily maintained and updated. A Resource Allocation Program (RAP) is also utilized along with a device table to allocate, organize, and document the communication protocol between the software and hardware components. A GUI display program lists all allocations and deallocations of HWIL memory and hardware resources. This interactive program is also used to clean up defunct allocations of dead processes. Three examples are presented using the OOD and RAP concepts. The first is the control of an ACUTRONICS built three-axis flight table using the same control for calibration and real-time functions. The second is the transportability of a six-degree-of-freedom (6-DOF) simulation from an Onyx residence to a Linux-PC. The third is the replacement of the 6-DOF simulation with a replay program to drive the facility with archived run data for demonstration or analysis purposes.

  7. Toward a Model-Based Approach to Flight System Fault Protection

    NASA Technical Reports Server (NTRS)

    Day, John; Murray, Alex; Meakin, Peter

    2012-01-01

    Fault Protection (FP) is a distinct and separate systems engineering sub-discipline that is concerned with the off-nominal behavior of a system. Flight system fault protection is an important part of the overall flight system systems engineering effort, with its own products and processes. As with other aspects of systems engineering, the FP domain is highly amenable to expression and management in models. However, while there are standards and guidelines for performing FP related analyses, there are not standards or guidelines for formally relating the FP analyses to each other or to the system hardware and software design. As a result, the material generated for these analyses are effectively creating separate models that are only loosely-related to the system being designed. Development of approaches that enable modeling of FP concerns in the same model as the system hardware and software design enables establishment of formal relationships that has great potential for improving the efficiency, correctness, and verification of the implementation of flight system FP. This paper begins with an overview of the FP domain, and then continues with a presentation of a SysML/UML model of the FP domain and the particular analyses that it contains, by way of showing a potential model-based approach to flight system fault protection, and an exposition of the use of the FP models in FSW engineering. The analyses are small examples, inspired by current real-project examples of FP analyses.

  8. National Emission Standards for Hazardous Air Pollutants (NESHAP) Memorandum of Agreement (MOA) Between NASA Headquarters and MSFC (Marshall Space Flight Center) for NASA Principal Center for Review of Clean Air Regulations

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Clark-Ingram, Marceia A.

    2000-01-01

    This paper presents a memorandum of agreement on Clean Air Regulations. NASA headquarters (code JE and code M) has asked MSFC to serve as principle center for review of Clean Air Act (CAA) regulations. The purpose of the principle center is to provide centralized support to NASA headquarters for the management and leadership of NASA's CAA regulation review process and to identify the potential impact of proposed CAA reguations on NASA program hardware and supporting facilities. The materials and processes utilized in the manufacture of NASA's programmatic hardware contain HAPs (Hazardous Air Pollutants), VOCs (Volatile Organic Compounds), and ODC (Ozone Depleting Chemicals). This paper is presented in viewgraph form.

  9. KSC-04pd1707

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility unwrap plastic for use in covering equipment as part of preparations for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  10. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  11. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  12. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  13. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  14. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  15. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) was used for these algorithms. This airplane has been modified by the addition of canards and by changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals included demonstration of revolutionary control approaches that can efficiently optimize aircraft performance for both normal and failure conditions, and to advance neural-network-based flight control technology for new aerospace systems designs. Before the NF-15B IFCS airplane was certified for flight test, however, certain processes needed to be completed. This paper presents an overview of these processes, including a description of the initial adaptive controller concepts followed by a discussion of modeling formulation and performance testing. Upon design finalization, the next steps are: integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness.

  16. Current Status of NASA's NEXT-C Ion Propulsion System Development Project

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George; Aulisio, Michael; Schmidt, George

    2017-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is a 7-kW class gridded ion thruster-based propulsion system that was initially developed from 2002 to 2012 under NASAs In-Space Propulsion Technology Program to meet future science mission requirements. In 2015, a contract was awarded to Aerojet Rocketdyne, with subcontractor ZIN Technologies, to design, build and test two NEXT flight thrusters and two power processing units that would be available for use on future NASA science missions. Because an additional goal of this contract is to take steps towards offering NEXT as a commercialized system, it is called the NEXT-Commercial project, or NEXT-C. This paper reviews the capabilities of the NEXT-C system, status of the NEXT-C project, and the forward plan to build, test, and deliver flight hardware in support of future NASA and commercial applications. It also briefly addresses some of the potential applications that could utilize the hardware developed and built by the project.

  17. Mechanics of Granular Materials labeled hardware

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).

  18. Cometary Matter Analyser (COMA/CRAF)

    NASA Technical Reports Server (NTRS)

    Buechler, K.; Igenbergs, E.; Klein, J. W.; Krueger, F. R.; Kuczera, H.; Morfill, G.; Palme, H.; Roessler, K.; Weishaupt, U.; Zerrull, R.; hide

    1994-01-01

    This project was part of an international program under which the chemical composition of cometary dust particles was to be measured 'in situ' during a rendezvous and flyby mission of a Mariner Mark 2 space probe and a comet (depending on the time of launch). Two necessary tasks, preliminary hardware development and interface definition, have been completed within the projects submitted for approval. As a result a model close to the flight configuration has been created, which was to be made available to the flight hardware contractor and his purposes. The Comet Rendezvous and Asteroid Flyby (CRAF) mission was abandoned after joint resolution adopted by NASA and the Federal Ministry for Research and Technology in 1992. Since an instrument like CoMA is an important contribution both to future cometary rendezvous missions, such as ROSETTA, as well as for accompanying laboratory activities, this project was terminated in a 'qualified conclusion'. In the process, components suitable for the laboratory developed from the preliminary units were produced and put into operation.

  19. Planetary quarantine: Principles, methods, and problems.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1971-01-01

    Microbial survival in deep space environment, contamination of planets by nonsterile flight hardware, and hazards of back contamination are among the topics covered in papers concerned with the analytical basis for planetary quarantine. The development of the technology and policies of planetary quarantine is covered in contributions on microbiologic assay and sterilization of space flight hardware and control of microbial contamination. A comprehensive subject index is included. Individual items are abstracted in this issue.

  20. Long range targeting for space based rendezvous

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.; Redfield, R. C.

    1995-01-01

    The work performed under this grant supported the Dexterous Flight Experiment one STS-62 The project required developing hardware and software for automating a TRAC sensor on orbit. The hardware developed by for the flight has been documented through standard NASA channels since it has to pass safety, environmental, and other issues. The software has not been documented previously, therefore, this report provides a software manual for the TRAC code developed for the grant.

  1. Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.

    2006-01-01

    The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such as the real-time angle of attack system and the new programmable logic controller enhance the test efficiency of the facility. The motivation for the upgrades and the expanded capabilities is described here.

  2. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    Packed inside its canister, the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket arrives at the low bay entrance of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  3. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    Packed inside its canister, the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  4. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    Packed inside its canister, the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is moved into the low bay entrance of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  5. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  6. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart describes Skylab's Extreme Ultraviolet (XUV) Coronal Spectroheliograph, one of the eight Apollo Telescope Mount facilities. It was designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths . The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  7. A Vision-Based Relative Navigation Approach for Autonomous Multirotor Aircraft

    NASA Astrophysics Data System (ADS)

    Leishman, Robert C.

    Autonomous flight in unstructured, confined, and unknown GPS-denied environments is a challenging problem. Solutions could be tremendously beneficial for scenarios that require information about areas that are difficult to access and that present a great amount of risk. The goal of this research is to develop a new framework that enables improved solutions to this problem and to validate the approach with experiments using a hardware prototype. In Chapter 2 we examine the consequences and practical aspects of using an improved dynamic model for multirotor state estimation, using only IMU measurements. The improved model correctly explains the measurements available from the accelerometers on a multirotor. We provide hardware results demonstrating the improved attitude, velocity and even position estimates that can be achieved through the use of this model. We propose a new architecture to simplify some of the challenges that constrain GPS-denied aerial flight in Chapter 3. At the core, the approach combines visual graph-SLAM with a multiplicative extended Kalman filter (MEKF). More importantly, we depart from the common practice of estimating global states and instead keep the position and yaw states of the MEKF relative to the current node in the map. This relative navigation approach provides a tremendous benefit compared to maintaining estimates with respect to a single global coordinate frame. We discuss the architecture of this new system and provide important details for each component. We verify the approach with goal-directed autonomous flight-test results. The MEKF is the basis of the new relative navigation approach and is detailed in Chapter 4. We derive the relative filter and show how the states must be augmented and marginalized each time a new node is declared. The relative estimation approach is verified using hardware flight test results accompanied by comparisons to motion capture truth. Additionally, flight results with estimates in the control loop are provided. We believe that the relative, vision-based framework described in this work is an important step in furthering the capabilities of indoor aerial navigation in confined, unknown environments. Current approaches incur challenging problems by requiring globally referenced states. Utilizing a relative approach allows more flexibility as the critical, real-time processes of localization and control do not depend on computationally-demanding optimization and loop-closure processes.

  8. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing Program. Together, these validation flight findings demonstrate the capability to support long-duration RR on the ISS to achieve both basic science and biomedical objectives.

  9. The JPL/KSC telerobotic inspection demonstration

    NASA Technical Reports Server (NTRS)

    Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob

    1990-01-01

    An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.

  10. Status of the Development of Flight Power Processing Units for the NASAs Evolutionary Xenon Thruster - Commercial (NEXT-C) Project

    NASA Technical Reports Server (NTRS)

    Aulisio, Michael V.; Pinero, Luis R.; White, Brandon L.; Hickman, Tyler A.; Bontempo, James J.; Hertel, Thomas A.; Birchenough, Arthur G.

    2016-01-01

    A pathfinder prototype unit and two flight power processing units (PPUs) are being developed by the Aerojet Rocketdyne Corporation in Redmond, Washington and ZIN Technologies in Cleveland, Ohio, in support of the NEXT-C Project. This project is being led by the NASA Glenn Research Center in Cleveland, Ohio, and will also yield two flight thrusters. This hardware is being considered to be provided as Government Furnished Equipment for the New Frontiers Program, and is applicable to a variety of planetary science missions and astrophysics science missions. The design of the NEXT-C PPU evolves from the hardware fabricated under the NEXT technology development project. The power processing unit operates from two sources: a wide input 80 to 160 V high-power bus and a nominal 28 V low-power bus. The unit includes six power supplies. Four power supplies (beam, accelerator, discharge, and neutralizer keeper) are needed for steady state operation, while two cathode heater power supplies (neutralizer and discharge) are utilized during thruster startup. The unit in total delivers up to 7 kW of regulated power to a single gridded-ion thruster. Significant modifications to the initial design include: high-power adaptive-delay control, upgrade of design to EEE-INST-002 compliance, telemetry accuracy improvements, incorporation of telemetry to detect plume-mode operation, and simplification of the design in select areas to improve manufacturability and commercialization potential. The project is presently in the prototype phase and preparing for qualification level environmental testing.

  11. Ares I-X Flight Test--The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than one year, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately 130,000 feet (39,600 meters (m)) and through maximum dynamic pressure ('Max Q') of approximately 800 pounds per square foot (38.3 kilopascals (kPa)). Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by a two-part integrated vehicle CDR in March and July 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008. Ares I-X is the first step in the long journey to the Moon and farther destinations. This suborbital test will be NASA's first flight of a new human-rated launch vehicle in more than a generation. This promises to be an exciting time for NASA and the nation, as we reach for new goals in space exploration. A visual presentation is included.

  12. Novel Exercise Hardware Requirements, Development, and Selection Process for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Weaver, Aaron S.; Funk, Justin H.; Funk, Nathan W.; Dewitt, John K.; Fincke, Renita S.; Newby, Nathaniel; Caldwell, Erin; Sheehan, Christopher C.; Moore, E. Cherice; Ploutz-Snyder, Lori; hide

    2014-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat the physical toll that exploration space flight may take on the crew, NASAs Human Research Program is charged with developing exercise protocols and hardware to maintain astronaut health and fitness during long-term missions. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. As NASA aims toward space travel outside of low-earth orbit (LEO), the constraints placed upon exercise equipment onboard the vehicle increase. Proposed vehicle architectures for transit to and from locations outside of LEO call for limits to equipment volume, mass, and power consumption. While NASA has made great strides in providing for the physical welfare of the crew, the equipment currently used onboard ISS is too large, too massive, and too power hungry to consider for long-duration flight. The goal of the Advanced Exercise Concepts (AEC) project is to maintain the resistive and aerobic capabilities of the current, ISS suite of exercise equipment, while making reductions in size, mass, and power consumption in order to make the equipment suitable for long-duration missions.

  13. KSC-2012-4345

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  14. KSC-2012-4346

    NASA Image and Video Library

    2012-08-09

    CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

  15. KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

    NASA Image and Video Library

    1997-02-13

    KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

  16. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  17. Prototype Common Bus Spacecraft: Hover Test Implementation and Results. Revision, Feb. 26, 2009

    NASA Technical Reports Server (NTRS)

    Hine, Butler Preston; Turner, Mark; Marshall, William S.

    2009-01-01

    In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.

  18. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.

  19. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, LED plant growth lights are being checked out on the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  20. CHeCS (Crew Health Care Systems): International Space Station (ISS) Medical Hardware Catalog. Version 10.0

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  2. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  3. Environmental Control and Life Support Systems Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  4. Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, B.

    2013-01-01

    A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.

  5. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  6. Digital data processing system dynamic loading analysis

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Tucker, A. E.

    1976-01-01

    Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.

  7. 14 CFR 1214.119 - Spacelab payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...

  8. 14 CFR 1214.119 - Spacelab payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...

  9. 14 CFR 1214.119 - Spacelab payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...

  10. 14 CFR 1214.119 - Spacelab payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding...

  11. Microgravity

    NASA Image and Video Library

    2000-01-31

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  12. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  13. Evaluation of RSRM case hardware fretting concerns

    NASA Technical Reports Server (NTRS)

    Swauger, Thomas R.

    1990-01-01

    Fretting corrosion was first noted on Shuttle flight STS-26. This flight was the first usage of the Redesigned Solid Rocket Motor (RSRM). The occurrence of fretting has since been observed on both the field and factory joints of the RSRM. Fretting is a form of corrosion that occurs at the interface between contacting, highly loaded, metal surfaces when exposed to slight relative vibratory motions. The engineering effort performed to evaluate the effect of fretting on the RSRM case hardware is summarized. Based on the results of this evaluation, several conclusions were made concerning flight safety. Also, recommendations were made concerning trending the effects of multiple generations of fretting damage.

  14. Gerst works with the EML hardware in the Columbus Module

    NASA Image and Video Library

    2014-09-11

    ISS041-E-000184 (11 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 41 flight engineer, works with Electromagnetic Levitation (EML) hardware in the Columbus laboratory of the International Space Station.

  15. Gerst works with the EML hardware in the Columbus Module

    NASA Image and Video Library

    2014-09-11

    ISS041-E-000173 (11 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 41 flight engineer, works with Electromagnetic Levitation (EML) hardware in the Columbus laboratory of the International Space Station.

  16. Multi-user Droplet Combustion Apparatus (MDCA) Hardware Replacement

    NASA Image and Video Library

    2013-10-02

    ISS037-E-004956 (2 Oct. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, performs the Multi-user Droplet Combustion Apparatus (MDCA) hardware replacement in the Harmony node of the International Space Station.

  17. Multi-user Droplet Combustion Apparatus (MDCA) Hardware Replacement

    NASA Image and Video Library

    2013-10-02

    ISS037-E-004959 (2 Oct. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, performs the Multi-user Droplet Combustion Apparatus (MDCA) hardware replacement in the Harmony node of the International Space Station.

  18. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    NASA Astrophysics Data System (ADS)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall performance analyzed. The success of the BRRISON power system during testing and flight proves its utility, both for BRRISON and for future balloon telescopes.

  19. Latex samples for RAMSES electrophoresis experiment on IML 2

    NASA Technical Reports Server (NTRS)

    Seaman, Geoffrey V. F.; Knox, Robert J.

    1994-01-01

    The objectives of these reported studies were to provide ground based support services for the flight experiment team for the RAMSES experiment to be flown aboard IML-2. The specific areas of support included consultation on the performance of particle based electrophoresis studies, development of methods for the preparation of suitable samples for the flight hardware, the screening of particles to obtain suitable candidates for the flight experiment, and the electrophoretic characterization of sample particle preparations. The first phases of these studies were performed under this contract, while the follow on work was performed under grant number NAG8 1081, 'Preparation and Characterization of Latex Samples for RAMSES Experiment on IML 2.' During this first phase of the experiment the following benchmarks were achieved: Methods were tested for the concentration and resuspension of latex samples in the greater than 0.4 micron diameter range to provide moderately high solids content samples free of particle aggregation which interferred with the normal functioning of the RAMSES hardware. Various candidate latex preparations were screened and two candidate types of latex were identified for use in the flight experiments, carboxylate modified latex (CML) and acrylic acid-acrylamide modified latex (AAM). These latexes have relatively hydrophilic surfaces, are not prone to aggregate, and display sufficiently low electrophoretic mobilities in the flight buffer so that they can be used to make mixtures to test the resolving power of the flight hardware.

  20. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.

  1. Romanenko works with the Electronic Nose (Enose) Hardware in the SM

    NASA Image and Video Library

    2013-02-21

    ISS034-E-051551 (21 Feb. 2013) --- Cosmonaut Roman Romanenko, Expedition 34 flight engineer, works with the Electronic Nose hardware in the Zvezda service module aboard the International Space Station in Earth orbit. This hardware is used to measure contamination in the environment should there be hard to detect chemical leaks or spills.

  2. 14 CFR § 1214.119 - Spacelab payloads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data...§ 1214.119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...

  3. Compound simulator IR radiation characteristics test and calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Zhang, Li; Li, Fan; Tian, Yi; Yang, Yang; Li, Zhuo; Shi, Rui

    2015-10-01

    The Hardware-in-the-loop simulation can establish the target/interference physical radiation and interception of product flight process in the testing room. In particular, the simulation of environment is more difficult for high radiation energy and complicated interference model. Here the development in IR scene generation produced by a fiber array imaging transducer with circumferential lamp spot sources is introduced. The IR simulation capability includes effective simulation of aircraft signatures and point-source IR countermeasures. Two point-sources as interference can move in two-dimension random directions. For simulation the process of interference release, the radiation and motion characteristic is tested. Through the zero calibration for optical axis of simulator, the radiation can be well projected to the product detector. The test and calibration results show the new type compound simulator can be used in the hardware-in-the-loop simulation trial.

  4. KSC-04pd1716

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, modules and equipment are being covered in plastic in preparation for the expected impact of Hurricane Frances on Saturday. KSC workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  5. Cold Stowage: An ISS Project

    NASA Technical Reports Server (NTRS)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  6. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1975-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.

  7. The development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies

    NASA Technical Reports Server (NTRS)

    Katembe, W. J.; Edelmann, R. E.; Brinckmann, E.; Kiss, J. Z.

    1998-01-01

    Experiments with Arabidopsis have been developed for spaceflight studies in the European Space Agency's Biorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants of Arabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate small Arabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions for Arabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.

  8. Preflight and In-Flight Exercise Conditions for Astronauts on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guilliams, Mark E.; Nieschwitz, Bruce; Hoellen, David; Loehr, Jim

    2011-01-01

    The physiological demands of spaceflight require astronauts to have certain physical abilities. They must be able to perform routine and off-nominal physical work during flight and upon re-entry into a gravity environment to ensure mission success, such as an Extra Vehicular Activity (EVA) or emergency egress. To prepare the astronauts for their mission, a Wyle Astronaut Strength Conditioning and Rehabilitation specialist (ASCR) works individually with the astronauts to prescribe preflight strength and conditioning programs and in-flight exercise, utilizing Countermeasure Systems (CMS) exercise hardware. PURPOSE: To describe the preflight and in-flight exercise programs for ISS crewmembers. METHODS: Approximately 2 years before a scheduled launch, an ASCR is assigned to each astronaut and physical training (PT) is routinely scheduled. Preflight PT of astronauts consists of carrying out strength, aerobic and general conditioning, employing the principles of periodization. Exercise programs are prescribed to the astronauts to account for their individual fitness levels, planned mission-specific tasks, areas of concern, and travel schedules. Additionally, astronauts receive instruction on how to operate CMS exercise hardware and receive training for microgravity-specific conditions. For example, astronauts are scheduled training sessions for the International Space Station (ISS) treadmill (TVIS) and cycle ergometer (CEVIS), as well as the Advanced Resistive Exercise Device (ARED). In-flight programs are designed to maintain or even improve the astronauts pre-flight levels of fitness, bone health, muscle strength, power and aerobic capacity. In-flight countermeasure sessions are scheduled in 2.5 h blocks, six days a week, which includes 1.5 h for resistive training and 1 h for aerobic exercise. CONCLUSIONS: Crewmembers reported the need for more scheduled time for preflight training. During flight, crewmembers have indicated that the in-flight exercise is sufficient, but would like more reliable and capable hardware.

  9. Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) using Currently Existing Flight Resources

    NASA Technical Reports Server (NTRS)

    Bingham, Gail; Bates, Scott; Bugbee, Bruce; Garland, Jay; Podolski, Igor; Levinskikh, Rita; Sychev, Vladimir; Gushin, Vadim

    2009-01-01

    Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) is a study to advance the technology required for plant growth in microgravity and to research related food safety issues. Lada-VPU-P3R also investigates the non-nutritional value to the flight crew of developing plants on-orbit. The Lada-VPU-P3R uses the Lada hardware on the ISS and falls under a cooperative agreement between National Aeronautics and Space Administration (NASA) and the Russian Federal Space Association (FSA). Research Summary: Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) will optimize hardware and

  10. Bioculture System Validation

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.

    2012-01-01

    The Bioculture System first flight will be to validate the performance of the hardware and its automated and manual operational capabilities in the space flight environment of the International Space Station. Biology, Engineering, and Operations tests will be conducted in the Bioculture System fully characterize its automated and manual functions to support cell culturing for short and long durations. No hypothesis-driven research will be conducted with biological sample, and the science leads have all provided their concurrence that none of the data they collect will be considered as proprietary and can be free distributed to the science community. The outcome of the validation flight will be to commission the hardware for use by the science community. This presentation will provide non-proprietary details about the Bioculture System and information about the activities for the first flight.

  11. KSC-07pd3567

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members get a close look inside space shuttle Endeavour's payload bay. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  12. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    NASA Astrophysics Data System (ADS)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  13. Thirsk with FPEF MS hardware in Kibo

    NASA Image and Video Library

    2009-10-07

    ISS020-E-048792 (7 Oct. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20/21 flight engineer, holds Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station.

  14. View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)

    NASA Image and Video Library

    2009-10-22

    ISS021-E-011438 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.

  15. View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)

    NASA Image and Video Library

    2009-10-22

    ISS021-E-011443 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.

  16. View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)

    NASA Image and Video Library

    2009-10-22

    ISS021-E-011440 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.

  17. Without Gravity: Designing Science Equipment for the International Space Station and Beyond

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.

    2016-01-01

    This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.

  18. Final postflight hardware evaluation report RSRM-32 (STS-57)

    NASA Technical Reports Server (NTRS)

    Nielson, Greg

    1993-01-01

    This document is the final report for the postflight assessment of the RSRM-32 (STS-57) flight set. This report presents the disassembly evaluations performed at the Thiokol facilities in Utah and is a continuation of the evaluations performed at KSC (TWR-64239). The PEEP for this assessment is outlined in TWR-50051, Revision B. The PEEP defines the requirements for evaluating RSRM hardware. Special hardware issues pertaining to this flight set requiring additional or modified assessment are outlined in TWR-64237. All observed hardware conditions were documented on PFOR's which are included in Appendix A. Observations were compared against limits defined in the PEEP. Any observation that was categorized as reportable or had no defined limits was documented on a preliminary PFAR by the assessment engineers. Preliminary PFAR's were reviewed by the Thiokol SPAT Executive Board to determine if elevation to PFAR's was required.

  19. Spacelab experiment computer study. Volume 1: Executive summary (presentation)

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.; Hodges, B. C.; Christy, J. O.

    1976-01-01

    A quantitative cost for various Spacelab flight hardware configurations is provided along with varied software development options. A cost analysis of Spacelab computer hardware and software is presented. The cost study is discussed based on utilization of a central experiment computer with optional auxillary equipment. Groundrules and assumptions used in deriving the costing methods for all options in the Spacelab experiment study are presented. The groundrules and assumptions, are analysed and the options along with their cost considerations, are discussed. It is concluded that Spacelab program cost for software development and maintenance is independent of experimental hardware and software options, that distributed standard computer concept simplifies software integration without a significant increase in cost, and that decisions on flight computer hardware configurations should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

  20. Microgravity Flight - Accommodating Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights.

  1. Guidelines for mission integration, a summary report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Guidelines are presented for instrument/experiment developers concerning hardware design, flight verification, and operations and mission implementation requirements. Interface requirements between the STS and instruments/experiments are defined. Interface constraints and design guidelines are presented along with integrated payload requirements for Spacelab Missions 1, 2, and 3. Interim data are suggested for use during hardware development until more detailed information is developed when a complete mission and an integrated payload system are defined. Safety requirements, flight verification requirements, and operations procedures are defined.

  2. Orbiter subsystem hardware/software interaction analysis. Volume 8: AFT reaction control system, part 2

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.

  3. The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented.

  4. Report of the 1st Planning Workshop for CELSS Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Tremor, John W.; Macelroy, Robert D.

    1988-01-01

    A workshop held March 23 and 24, 1987 to establish a base upon which a CELSS flight experiment program will be developed, is summarized. The kind of information necessary for productivity assessment was determined. In addition, generic experiments necessary to gather that information were identified and prioritized. General problems of hardware and equipment were defined. The need for the hardware to provide a stress-free environment, not only for productivity, but also to make more readily identifiable disturbing mission factors, was recognized.

  5. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  6. Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Duval, J. D.; Davidson, W. R.; Parkman, William E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.

  7. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in the planning stages.

  8. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science was as important as the hardware functionality. How the CVTE payload was designed and what it is capable of, the philosophy of including the scientists in design and operations decisions, and the lessons learned during the integration process are descussed.

  9. Ares I-X Flight Test Philosophy

    NASA Technical Reports Server (NTRS)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  10. The Future of New Discoveries on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian

    2000-01-01

    The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.

  11. The Hyper-X Flight Systems Validation Program

    NASA Technical Reports Server (NTRS)

    Redifer, Matthew; Lin, Yohan; Bessent, Courtney Amos; Barklow, Carole

    2007-01-01

    For the Hyper-X/X-43A program, the development of a comprehensive validation test plan played an integral part in the success of the mission. The goal was to demonstrate hypersonic propulsion technologies by flight testing an airframe-integrated scramjet engine. Preparation for flight involved both verification and validation testing. By definition, verification is the process of assuring that the product meets design requirements; whereas validation is the process of assuring that the design meets mission requirements for the intended environment. This report presents an overview of the program with emphasis on the validation efforts. It includes topics such as hardware-in-the-loop, failure modes and effects, aircraft-in-the-loop, plugs-out, power characterization, antenna pattern, integration, combined systems, captive carry, and flight testing. Where applicable, test results are also discussed. The report provides a brief description of the flight systems onboard the X-43A research vehicle and an introduction to the ground support equipment required to execute the validation plan. The intent is to provide validation concepts that are applicable to current, follow-on, and next generation vehicles that share the hybrid spacecraft and aircraft characteristics of the Hyper-X vehicle.

  12. Kuipers works with DSC Hardware in the U.S. Laboratory

    NASA Image and Video Library

    2012-01-16

    ISS030-E-155917 (16 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, prepares to place Diffusion Soret Coefficient (DSC) hardware in stowage containers in the Destiny laboratory of the International Space Station.

  13. Apollo experience report: Battery subsystem

    NASA Technical Reports Server (NTRS)

    Trout, J. B.

    1972-01-01

    Experience with the Apollo command service module and lunar module batteries is discussed. Significant hardware development concepts and hardware test results are summarized, and the operational performance of batteries on the Apollo 7 to 13 missions is discussed in terms of performance data, mission constraints, and basic hardware design and capability. Also, the flight performance of the Apollo battery charger is discussed. Inflight data are presented.

  14. Computer-Aided Systems Engineering for Flight Research Projects Using a Workgroup Database

    NASA Technical Reports Server (NTRS)

    Mizukami, Masahi

    2004-01-01

    An online systems engineering tool for flight research projects has been developed through the use of a workgroup database. Capabilities are implemented for typical flight research systems engineering needs in document library, configuration control, hazard analysis, hardware database, requirements management, action item tracking, project team information, and technical performance metrics. Repetitive tasks are automated to reduce workload and errors. Current data and documents are instantly available online and can be worked on collaboratively. Existing forms and conventional processes are used, rather than inventing or changing processes to fit the tool. An integrated tool set offers advantages by automatically cross-referencing data, minimizing redundant data entry, and reducing the number of programs that must be learned. With a simplified approach, significant improvements are attained over existing capabilities for minimal cost. By using a workgroup-level database platform, personnel most directly involved in the project can develop, modify, and maintain the system, thereby saving time and money. As a pilot project, the system has been used to support an in-house flight experiment. Options are proposed for developing and deploying this type of tool on a more extensive basis.

  15. KSC-04PD-0005

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  16. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  17. Space Flight Operations Center local area network

    NASA Technical Reports Server (NTRS)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  18. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  19. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  20. Spacelab dedicated discipline laboratory (DDL) utilization concept

    NASA Technical Reports Server (NTRS)

    Wunsch, P.; De Sanctis, C.

    1984-01-01

    The dedicated discipline laboratory (DDL) concept is a new approach for implementing Spacelab missions that involves the grouping of science instruments into mission complements of single or compatible disciplines. These complements are evolved in such a way that the DDL payloads can be left intact between flights. This requires the dedication of flight hardware to specific payloads on a long-term basis and raises the concern that the purchase of additional flight hardware will be required to implement the DDL program. However, the payoff is expected to result in significant savings in mission engineering and assembly effort. A study has been conducted recently to quantify both the requirements for new hardware and the projected mission cost savings. It was found that some incremental additions to the current inventory will be needed to fly the mission model assumed. Cost savings of $2M to 6.5M per mission were projected in areas analyzed in depth, and additional savings may occur in areas for which detailed cost data were not available.

  1. Technical Aspects of Acoustical Engineering for the ISS [International Space Station

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2009-01-01

    It is important to control acoustic levels on manned space flight vehicles and habitats to protect crew-hearing, allow for voice communications, and to ensure a healthy and habitable environment in which to work and live. For the International Space Station (ISS) this is critical because of the long duration crew-stays of approximately 6-months. NASA and the JSC Acoustics Office set acoustic requirements that must be met for hardware to be certified for flight. Modules must meet the NC-50 requirement and other component hardware are given smaller allocations to meet. In order to meet these requirements many aspects of noise generation and control must be considered. This presentation has been developed to give an insight into the various technical activities performed at JSC to ensure that a suitable acoustic environment is provided for the ISS crew. Examples discussed include fan noise, acoustic flight material development, on-orbit acoustic monitoring, and a specific hardware development and acoustical design case, the ISS Crew Quarters.

  2. Apollo experience report: Television system

    NASA Technical Reports Server (NTRS)

    Coan, P. P.

    1973-01-01

    The progress of the Apollo television systems from the early definition of requirements through the development and inflight use of color television hardware is presented. Television systems that have been used during the Apollo Program are discussed, beginning with a description of the specifications for each system. The document describes the technical approach taken for the development of each system and discusses the prototype and engineering hardware built to test the system itself and to perform the testing to verify compatibility with the spacecraft systems. Problems that occurred during the design and development phase are described. Finally, the flight hardware, operational characteristics, and performance during several Apollo missions are described, and specific recommendations for the remaining Apollo flights and future space missions are made.

  3. Effects of long-term exposure on LDEF fastener assemblies

    NASA Astrophysics Data System (ADS)

    Spear, Steve; Dursch, Harry

    1992-09-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  4. Effects of long-term exposure on LDEF fastener assemblies

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1992-01-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  5. Space Shuttle STS-1 SRB damage investigation

    NASA Technical Reports Server (NTRS)

    Nevins, C. D.

    1982-01-01

    The physical damage incurred by the solid rocket boosters during reentry on the initial space shuttle flight raised the question of whether the hardware, as designed, would yield the low cost per flight desired. The damage was quantified, the cause determined and specific design changes recommended which would preclude recurrence. Flight data, postflight analyses, and laboratory hardware examinations were used. The resultant findings pointed to two principal causes: failure of the aft skirt thermal curtain at the onset of reentry aerodynamic heating, and overloading of the aft shirt stiffening rings during water impact. Design changes were recommended on both the thermal curtain and the aft skirt structural members to prevent similar damage on future missions.

  6. Role of CFD in propulsion design - Government perspective

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.; Mcconnaughey, H. V.; Mcconnaughey, P. K.

    1990-01-01

    Various aspects of computational fluid dynamics (CFD), as it relates to design applications in rocket propulsion activities from the government perspective, are discussed. Specific examples are given that demonstrate the application of CFD to support hardware development activities, such as Space Shuttle Main Engine flight issues, and the associated teaming strategy used for solving such problems. In addition, select examples that delineate the motivation, methods of approach, goals and key milestones for several space flight progams are cited. An approach is described toward applying CFD in the design environment from the government perspective. A discussion of benchmark validation, advanced technology hardware concepts, accomplishments, needs, future applications, and near-term expectations from the flight-center perspective is presented.

  7. Performance Testing of a Trace Contaminant Control Subassembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Curtis, R. E.; Alexandre, K. L.; Ruggiero, L. L.; Shtessel, N.

    1998-01-01

    As part of the International Space Station (ISS) Trace Contaminant Control Subassembly (TCCS) development, a performance test has been conducted to provide reference data for flight verification analyses. This test, which used the U.S. Habitation Module (U.S. Hab) TCCS as the test article, was designed to add to the existing database on TCCS performance. Included in this database are results obtained during ISS development testing; testing of functionally similar TCCS prototype units; and bench scale testing of activated charcoal, oxidation catalyst, and granular lithium hydroxide (LiOH). The present database has served as the basis for the development and validation of a computerized TCCS process simulation model. This model serves as the primary means for verifying the ISS TCCS performance. In order to mitigate risk associated with this verification approach, the U.S. Hab TCCS performance test provides an additional set of data which serve to anchor both the process model and previously-obtained development test data to flight hardware performance. The following discussion provides relevant background followed by a summary of the test hardware, objectives, requirements, and facilities. Facility and test article performance during the test is summarized, test results are presented, and the TCCS's performance relative to past test experience is discussed. Performance predictions made with the TCCS process model are compared with the U.S. Hab TCCS test results to demonstrate its validation.

  8. 14 CFR 1214.804 - Services, pricing basis, and other considerations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...

  9. 14 CFR 1214.804 - Services, pricing basis, and other considerations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...

  10. 14 CFR 1214.804 - Services, pricing basis, and other considerations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...

  11. 14 CFR 1214.205 - Revisit and/or retrieval services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...

  12. 14 CFR 1214.804 - Services, pricing basis, and other considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...

  13. 14 CFR 1214.205 - Revisit and/or retrieval services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...

  14. 14 CFR 1214.205 - Revisit and/or retrieval services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...

  15. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    A section of the International Space Station truss assembly arrived at the Marshall Space Flight Center on NASA's Super Guppy cargo plane for structural and design testing as well as installation of critical flight hardware.

  16. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  17. Microcontroller uses in Long-Duration Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required during the initial fabrication and also refurbishing processes of flight hardware systems. The recent use of microcontrollers in the design of both LDB flight hardware and test equipment has shown some examples of the adaptability and usefulness they have provided for our workplace.

  18. X-38 Experimental Controls Laws

    NASA Technical Reports Server (NTRS)

    Munday, Steve; Estes, Jay; Bordano, Aldo J.

    2000-01-01

    X-38 Experimental Control Laws X-38 is a NASA JSC/DFRC experimental flight test program developing a series of prototypes for an International Space Station (ISS) Crew Return Vehicle, often called an ISS "lifeboat." X- 38 Vehicle 132 Free Flight 3, currently scheduled for the end of this month, will be the first flight test of a modem FCS architecture called Multi-Application Control-Honeywell (MACH), originally developed by the Honeywell Technology Center. MACH wraps classical P&I outer attitude loops around a modem dynamic inversion attitude rate loop. The dynamic inversion process requires that the flight computer have an onboard aircraft model of expected vehicle dynamics based upon the aerodynamic database. Dynamic inversion is computationally intensive, so some timing modifications were made to implement MACH on the slower flight computers of the subsonic test vehicles. In addition to linear stability margin analyses and high fidelity 6-DOF simulation, hardware-in-the-loop testing is used to verify the implementation of MACH and its robustness to aerodynamic and environmental uncertainties and disturbances.

  19. Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.

    2007-01-01

    The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.

  20. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  1. Shkaplerov works with EVA Hardware in the SM

    NASA Image and Video Library

    2012-02-03

    ISS030-E-061158 (3 Feb. 2012) --- Russian cosmonaut Oleg Kononenko, Expedition 30 flight engineer, works with extravehicular activity (EVA) hardware in the Zvezda Service Module of the International Space Station in preparation for an EVA scheduled for Feb. 16, 2012.

  2. Shkaplerov works with EVA Hardware in the SM

    NASA Image and Video Library

    2012-02-03

    ISS030-E-061157 (3 Feb. 2012) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, works with extravehicular activity (EVA) hardware in the Zvezda Service Module of the International Space Station in preparation for an EVA scheduled for Feb. 16, 2012.

  3. Hopins with ARED hardware

    NASA Image and Video Library

    2013-10-03

    ISS037-E-006562 (3 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.

  4. Hopins with ARED hardware

    NASA Image and Video Library

    2013-10-03

    ISS037-E-006563 (3 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.

  5. NASA’s Super Guppy Transports SLS Flight Hardware to Kennedy Space Center

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft prepares to depart the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 3, with flight hardware for NASA’s Space Launch System – the agency’s new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads. SLS will send Orion beyond the Moon, about 280,000 miles from Earth. This is farther from Earth than any spacecraft built for humans has ever traveled. For more information about SLS, visit nasa.gov/sls.

  6. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  7. Solid Surface Combustion Experiment Completes a Series of Eight Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Solid Surface Combustion Experiment (SSCE) was the first combustion experiment to fly in the space shuttle and the first such experiment in the NASA spaceflight program since Skylab. SSCE was actually a series of experiments designed to begin to characterize flame spreading over solid fuels in microgravity and the differences of this flame spreading from normal gravity behavior. These experiments should lead to a better understanding of the physical processes involved--increasing our understanding of fire behavior, both in space and on Earth. SSCE results will help researchers evaluate spacecraft fire hazards. These experiments were conceived by the principal investigator, Professor Robert A. Altenkirch, Dean of Engineering at Washington State University. In the first five flights, the fuel sample--ashless filter paper instrumented with three thermocouples--was mounted in a sealed chamber filled with a 50-percent or 35-percent mixture of oxygen in nitrogen at pressures of 1.0, 1.5, and 2.0 atm. In the next three flights, a polymethyl methacrylate (plexiglass) fuel was instrumented with three thermocouples and tested in a 70-percent or 50-percent mixture of oxygen and nitrogen at pressures of 1.0 and 2.0 atm. SSCE is a self-contained, battery-operated experiment that can be flown either in the shuttle middeck or in the Spacelab module. More information about the hardware configuration have been published. This past year, the final two of eight flights were completed on STS-64 and STS-63. The NASA Lewis Research Center designed and built the SSCE payload and performed engineering, testing, scientific, and flight operations support. The SSCE project was supported in some way by nearly every major sector of Lewis' organization. Professor Altenkirch developed a numerical simulation of the flame-spreading process from first principles (of fluid mechanics, heat transfer, and reaction kinetics). The spread rates, flame shape, and thermodynamic data from the SSCE flights are being compared directly with the results of the computational model. Results from the eight flights will be used to formulate an improved solid-phase pyrolysis model. In addition, some results of the flights have been published and presented at international combustion symposiums. Additional solid fuel combustion experiments are being investigated for future tests with the existing hardware.

  8. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance...

  9. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance...

  10. 14 CFR § 1214.804 - Services, pricing basis, and other considerations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...

  11. Skylab

    NASA Image and Video Library

    1971-04-01

    This photograph shows Skylab's Extreme Ultraviolet (XUV) Spectroheliograph during an acceptance test and checkout procedures in April 1971. The unit was an Apollo Telescope Mount (ATM) instrument designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths. The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  12. Cockpit Resource Management Proficiency as a Factor of Primary Flight Training

    DTIC Science & Technology

    1992-07-01

    Cockpit Resource Management ( CRM ). CRM attempts to explain and address the need and importance of "the communication process in the cockpit, and an...6 Definition of Terms Cockpit Resource Management ( CRM ) : The effective use and coordination of all skills and resources- hardware, software, liveware...E. & Williams K. R. (1987). The Application of CRM to Military Operations. In: Cockpit Resource Management Training-NASA Conference’Publication 2455

  13. Future Experiments to Measure Liquid-Gas Phase Change and Heat Transfer Phenomena on the International Space Station

    NASA Astrophysics Data System (ADS)

    Tóth, Balázs; Development; Operations Teams, ESA's Science Management, Payload; Teams, Science; Industry, Space

    2012-06-01

    The article presents the approach of the European Space Agency to promote research in weightlessness and in particular onboard the International Space Station. In order to maximize the return on investments, a strong international scientific collaboration is encouraged. These Science Teams support the preparation and utilisation of the flight hardware and exploit the measurement data. In the domain of physical sciences the topics dealt with at the time of writing the present paper cover fundamental physics, fluid physics, material sciences research and specific preparatory studies in anticipation of space exploration missions. The present article focuses on two-phase (liquid-gas phase change) heat transfer related experiments. These activities cover evaporation driven thermocapillary convection, pool- and flow boiling, evaporation and condensation of films together with wettability realted issues on both reference and structured surfaces, and heat pipe systems. Some hardware are in an advanced state of development, the feasibility of some was studied or is under definition at the time of the preparation of this paper. The objectives of the experiments are described together with their expected capabilities. Beyond the understanding of mostly fundamental physical processes, the data of all the described experiments are intended to be used to validate theoretical approaches and numerical tools, which are often developed by the Science Teams in parallel with the the flight hardware design activities of space industry.

  14. SLS Model Based Design: A Navigation Perspective

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  15. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  16. KSC-04pd1714

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers cover with plastic the Multi-Purpose Logistics Module Donatello in preparation for the expected impact of Hurricane Frances on Saturday. Other modules and equipment are being covered as well. Workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  17. KSC-04pd1712

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers cover with plastic the U.S. Node 2 in preparation for the expected impact of Hurricane Frances on Saturday. Other modules and equipment are being covered as well. Workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  18. KSC-04pd1713

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers cover with plastic the Multi-Purpose Logistics Module Raffaello in preparation for the expected impact of Hurricane Frances on Saturday. Other modules and equipment are being covered as well. Workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  19. KSC-04pd1715

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, modules wrapped in plastic line one wall. The modules and equipment are being covered in preparation for the expected impact of Hurricane Frances on Saturday. KSC workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.

  20. Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kniffin, Scott

    2016-01-01

    X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.

  1. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  2. GRC-2010-C-05148

    NASA Image and Video Library

    2006-11-08

    Communications, Navigation, and Network Reconfigurable Test-bed (CoNNeCT) Flight Hardware Compatibility Test Sets - Glenn Research Center and Networks Integration Management Office (NIMO) Testing for the Tracking and Data Relay Satellite System (TDRSS) - Goddard Space Flight Center Testing

  3. GRC-2010-C-05136

    NASA Image and Video Library

    2006-11-16

    Communications, Navigation, and Network Reconfigurable Test-bed (CoNNeCT) Flight Hardware Compatibility Test Sets - Glenn Research Center and Networks Integration Management Office (NIMO) Testing for the Tracking and Data Relay Satellite System (TDRSS) - Goddard Space Flight Center Testing

  4. Operating System Abstraction Layer (OSAL)

    NASA Technical Reports Server (NTRS)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  5. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2010-01-01

    NASA-MSFC directive MID 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply. MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412. Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities. Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills. Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.

  6. Some issues related to simulation of the tracking and communications computer network

    NASA Technical Reports Server (NTRS)

    Lacovara, Robert C.

    1989-01-01

    The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.

  7. Some issues related to simulation of the tracking and communications computer network

    NASA Astrophysics Data System (ADS)

    Lacovara, Robert C.

    1989-12-01

    The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.

  8. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  9. BUNDLE: A Novel Furnace for Performing Controlled Directional Solidification Experiments in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.

    2000-01-01

    NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature indicating uniform axial heat flow. Delineation between the growing dendrites and eutectic structure with the "quenched-in" liquid was sharp, attesting to the efficacy of the helium quench. BUNDLE's conception, development, capability, and adaptability are presented (in view of Flight PI's needs and science requirements) through viewgraphs depicting actual hardware, generated thermal analysis, and micrographs prepared from BUNDLE processed, flight-like samples.

  10. BUNDLE - A Novel Furnace for Performing Controlled Directional Solidification Experiments in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.

    2001-01-01

    NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature indicating uniform axial heat flow. Delineation between the growing dendrites and eutectic structure with the "quenched-in" liquid was sharp, attesting to the efficacy of the helium quench. BUNDLE's conception, development, capability, and adaptability are presented (in view of Flight PI's needs and science requirements) through viewgraphs depicting actual hardware, generated thermal analysis, and micrographs prepared from BUNDLE processed, flight-like samples.

  11. Software-Reconfigurable Processors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey

    2005-01-01

    A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).

  12. A High-Throughput Processor for Flight Control Research Using Small UAVs

    NASA Technical Reports Server (NTRS)

    Klenke, Robert H.; Sleeman, W. C., IV; Motter, Mark A.

    2006-01-01

    There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.

  13. The design, fabrication and delivery of a spacelab neutral buoyancy Instrument Pointing System (IPS) mockup. [underwater training simulator

    NASA Technical Reports Server (NTRS)

    Vanvalkenburgh, C. N.

    1984-01-01

    Underwater simulations of EVA contingency operations such as manual jettison, payload disconnect, and payload clamp actuation were used to define crew aid needs and mockup pecularities and characteristics to verify the validity of simulation using the trainer. A set of mockup instrument pointing system tests was conducted and minor modifications and refinements were made. Flight configuration struts were tested and verified to be operable by the flight crew. Tasks involved in developing the following end items are described: IPS gimbal system, payload, and payload clamp assembly; the igloos (volumetric); spacelab pallets, experiments, and hardware; experiment, and hardware; experiment 7; and EVA hand tools, support hardware (handrails and foot restraints). The test plan preparation and test support are also covered.

  14. FLASH fly-by-light flight control demonstration results overview

    NASA Astrophysics Data System (ADS)

    Halski, Don J.

    1996-10-01

    The Fly-By-Light Advanced Systems Hardware (FLASH) program developed Fly-By-Light (FBL) and Power-By-Wire (PBW) technologies for military and commercial aircraft. FLASH consists of three tasks. Task 1 developed the fiber optic cable, connectors, testers and installation and maintenance procedures. Task 3 developed advanced smart, rotary thin wing and electro-hydrostatic (EHA) actuators. Task 2, which is the subject of this paper,l focused on integration of fiber optic sensors and data buses with cable plant components from Task 1 and actuators from Task 3 into centralized and distributed flight control systems. Both open loop and piloted hardware-in-the-loop demonstrations were conducted with centralized and distributed flight control architectures incorporating the AS-1773A optical bus, active hand controllers, optical sensors, optimal flight control laws in high speed 32-bit processors, and neural networks for EHA monitoring and fault diagnosis. This paper overviews the systems level testing conducted under the FLASH Flight Control task. Preliminary results are summarized. Companion papers provide additional information.

  15. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  16. Lessons learned in creating spacecraft computer systems: Implications for using Ada (R) for the space station

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1986-01-01

    Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.

  17. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  18. 14 CFR § 1214.205 - Revisit and/or retrieval services.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accomplished on a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... services will be priced on the basis of estimated costs. If a special dedicated Shuttle flight is required...

  19. ACTEX flight experiment: development issues and lessons learned

    NASA Astrophysics Data System (ADS)

    Schubert, S. R.

    1993-09-01

    The ACTEX flight experiment is scheduled for launch and to begin its on orbit operations in early 1994. The objective of the ACTEX experiment is to demonstrate active vibration control in space, using the smart structure technology. This paper discusses primarily the hardware development and program management issues associated with delivering low cost flight experiments.

  20. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    NASA Technical Reports Server (NTRS)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For testing, plug-ins are implemented in COSMOS to control the NOS3 simulations, while the command and telemetry tools available in COSMOS are used to communicate with FSW. NOS3 is actively being used for FSW development and component testing of the Simulation-to-Flight 1 (STF-1) CubeSat. As NOS3 matures, hardware models have been added for common CubeSat components such as Novatel GPS receivers, ClydeSpace electrical power systems and batteries, ISISpace antenna systems, etc. In the future, NASA IVV plans to distribute NOS3 to other CubeSat developers and release the suite to the open-source community.

  1. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance (ULA) in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the OSA and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 t to LEO, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the EUS, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the proving ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.

  2. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations program is transforming Kennedy Space Center into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the Exploration Upper Stage, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the Proving Ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.

  3. FASTRACK (TM): Parabolic and Suborbital Experiment Support Facility

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, V.

    2016-01-01

    FASTRACK was developed by NASA Kennedy Space Center and Space Florida to provide capabilities to conduct frequent, affordable, and responsive flight opportunities for reduced gravity experiments, technology development, and hardware testing on suborbital vehicles and parabolic flights.

  4. A Piloted Flight to a Near-Earth Object: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Korsmeyer, Dave; Abell, Paul; Adamo, Dan; Morrison, Dave; Lu, Ed; Lemke, Larry; Gonzales, Andy; Jones, Tom; Gershman, Bob; hide

    2007-01-01

    This viewgraph presentation examines flight hardware elements of the Constellation Program (CxP) and the utilization of the Crew Exploration Vehicle (CEV), Evolvable Expendable Launch Vehicles (EELVs) and Ares launch vehicles for NEO missions.

  5. Electronic Flight Bag (EFB) 2015 Industry Survey.

    DOT National Transportation Integrated Search

    2015-10-01

    This document provides an overview of Electronic Flight Bag (EFB) hardware and software capabilities, including portable electronic devices (PEDs) used as EFBs, as of July 2015. This document updates and replaces the Volpe Centers previous EFB ind...

  6. LISA Pathfinder Instrument Data Analysis

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  7. KSC-07pd3549

    NASA Image and Video Library

    2007-11-30

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 Mission Specialist Takao Doi tries out one of the cameras that will be used on the mission. Doi represents the Japanese Aerospace and Exploration Agency. He and other crew members are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett

  8. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  9. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2010-01-01

    The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing

  10. Postflight hardware evaluation 360T026 (RSRM-26, STS-47)

    NASA Technical Reports Server (NTRS)

    Nielson, Greg

    1993-01-01

    The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the 360T026 (STS-47) Redesigned Solid Rocket Motor (RSRM) flight set is provided. All observed hardware conditions were documented on PFOR's and are included in Appendices A, B, and C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64203), represents a summary of the 360T026 hardware evaluation. The as-flown hardware configuration is documented in TWR-60472. Disassembly evaluation photograph numbers are logged in TWA-1987. The 360T026 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on 12 April 1993. Detailed evaluations were performed in accordance with the Clearfield Postflight Engineering Evaluation Plan (PEEP), TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.

  11. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  12. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  13. Cost Optimization and Technology Enablement COTSAT-1

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Lindsay, Michael C.; Klupar, Peter Damian; Swank, Aaron J.

    2010-01-01

    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The space industry was a hot bed of innovation and development at its birth. Many new technologies were developed for and first demonstrated in space. In the recent past this trend has reversed with most of the new technology funding and research being driven by the private industry. Most of the recent advances in spaceflight hardware have come from the cell phone industry with a lag of about 10 to 15 years from lab demonstration to in space usage. NASA has started a project designed to address this problem. The prototype spacecraft known as Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) and CheapSat work to reduce these issues. This paper highlights the approach taken by NASA Ames Research center to achieve significant subsystem cost reductions. The COSTAT-1 research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing spacecraft. The COTSAT-1 team demonstrated building a fully functional spacecraft for $500K parts and $2.0M labor. The COTSAT-1 system, including a selected science payload, is described within this paper. Many of the advancements identified in the process of cost reduction can be attributed to the use of a one-atmosphere pressurized structure to house the spacecraft components. By using COTS hardware, the spacecraft program can utilize investments already made by commercial vendors. This ambitious project development philosophy/cycle has yielded the COTSAT-1 flight hardware. This paper highlights the advancements of the COTSAT-1 spacecraft leading to the delivery of the current flight hardware that is now located at NASA Ames Research Center. This paper also addresses the plans for COTSAT-2.

  14. Localized coating removal using plastic media blasting

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Wyckoff, Michael G.; Zook, Lee M.

    1988-01-01

    Steps taken to qualify the use of plastic media blasting for safely and effectively removing paint and other coatings from solid rocket booster aluminum structures are described. As a result of the effort, an improvement was made in the design of surface finishing equipment for processing flight hardware, in addition to a potentially patentable idea on improved plastic media composition. The general arrangement of the blast equipment and the nozzle configuration are presented.

  15. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  16. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  17. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  18. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  19. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  20. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  1. KSC-2009-3675

    NASA Image and Video Library

    2009-06-11

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly comprising the frustum, forward skirt extension and forward skirt , at left, moves toward the Vehicle Assembly Building, in the background. In the VAB's High Bay 4, the forward assembly will undergo processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-3671

    NASA Image and Video Library

    2009-06-11

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) moves out of the Assembly and Refurbishment Facility. It is being transferred to the Vehicle Assembly Building's High Bay 4 for processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-3676

    NASA Image and Video Library

    2009-06-11

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly comprising the frustum, forward skirt extension and forward skirt heads for the Vehicle Assembly Building, in the background. In the VAB's High Bay 4, the forward assembly will undergo processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-3677

    NASA Image and Video Library

    2009-06-11

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly comprising the frustum, forward skirt extension and forward skirt moves into the transfer aisle of the Vehicle Assembly Building. The assembly will be placed in the VAB's High Bay 4 where it will undergo processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller

  5. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket, packed inside a canister, exits the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station for its move to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  6. Interim Cryogenic Propulsion Stage (ICPS) Prep for Transport fro

    NASA Image and Video Library

    2017-07-25

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is packed inside a canister and ready to be moved from the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  7. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket, packed inside a canister, is transported from the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station along the route to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  8. NASA IVHM Technology Experiment for X-vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Sandra, Hayden; Bajwa, Anupa

    2001-01-01

    The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.

  9. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  10. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  11. Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing

    NASA Image and Video Library

    2018-03-08

    A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.

  12. Safety Considerations in the Ground Environment

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Palo, Thomas E.

    2007-01-01

    In the history of humankind, every great space adventure has begun on the ground. While this seems to be stating the obvious, mission and spacecraft designers who have overlooked this fact have paid a high price, either in loss or damage to the spacecraft pre-launch, or in mission failure or reduction. Spacecraft personnel may risk not only their flight hardware, but they may also risk their lives, their co-workers lives and even the general public by not heeding safety on the ground. Their eyes may be on the stars but their feet are on the ground! One additional comment: Although the design requirements are very different for human rated and nonhuman rated flight hardware, while on the ground that flight hardware (and its ground support equipment) doesn't care about what it is flying on. On the ground, additional requirements are often levied to protect the work force and general public. (Authors' Note: The source material for this chapter is primarily taken from the Kennedy Space Center Handbook (KHB) 1700.7/45 SW Handbook S-100 Space Shuttle Payload Ground Safety Handbook and the authors' personal experiences.

  13. New Developments in Spaceflight Hardware for Plant Research

    NASA Astrophysics Data System (ADS)

    Brinckmann, E.

    The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform to perform long term and shorter experiments with plants on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for flight 1xg controls and for studies with accelerations from 0.001xg to 2.0xg. Several experiments are in preparation, investigating gravity related gene expressions, gravisensing and phototropism of Arabidopsis thaliana, fern spores and lentil rots. The experiment specific hardware provides growth chambers for seedlings and whole A. thaliana plants, connected to the EMCS Life Support System. Besides video observation, the experiments will be evaluated on ground by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. Two years after EMCS, ESA's BIOLAB will be launched in the European "Columbus" Module. In a similar way as in EMCS, BIOLAB accommodates experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments will be presented in this communication.

  14. Demonstration of automated proximity and docking technologies

    NASA Astrophysics Data System (ADS)

    Anderson, Robert L.; Tsugawa, Roy K.; Bryan, Thomas C.

    An autodock was demonstrated using straightforward techniques and real sensor hardware. A simulation testbed was established and validated. The sensor design was refined with improved optical performance and image processing noise mitigation techniques, and the sensor is ready for production from off-the-shelf components. The autonomous spacecraft architecture is defined. The areas of sensors, docking hardware, propulsion, and avionics are included in the design. The Guidance Navigation and Control architecture and requirements are developed. Modular structures suitable for automated control are used. The spacecraft system manager functions including configuration, resource, and redundancy management are defined. The requirements for autonomous spacecraft executive are defined. High level decisionmaking, mission planning, and mission contingency recovery are a part of this. The next step is to do flight demonstrations. After the presentation the following question was asked. How do you define validation? There are two components to validation definition: software simulation with formal and vigorous validation, and hardware and facility performance validated with respect to software already validated against analytical profile.

  15. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Farrington, Philip; Thomas, Dale

    2016-01-01

    Within the space flight community, reusability has taken center stage as the new buzzword. In order for reusable hardware to be competitive with its expendable counterpart, two major elements must be closely scrutinized. First, recovery and refurbishment costs must be lower than the development and acquisition costs. Additionally, the reliability for reused hardware must remain the same (or nearly the same) as "first use" hardware. Therefore, it is imperative that a systematic approach be established to enhance the development of reusable systems. However, before the decision can be made on whether it is more beneficial to reuse hardware or to replace it, the parameters that are needed to deem hardware worthy of reuse must be identified. For reusable hardware to be successful, the factors that must be considered are reliability (integrity, life, number of uses), operability (maintenance, accessibility), and cost (procurement, retrieval, refurbishment). These three factors are essential to the successful implementation of reusability while enabling the ability to meet performance goals. Past and present strategies and attempts at reuse within the space industry will be examined to identify important attributes of reusability that can be used to evaluate hardware when contemplating reusable versus expendable options. This paper will examine why reuse must be stated as an initial requirement rather than included as an afterthought in the final design. Late in the process, changes in the overall objective/purpose of components typically have adverse effects that potentially negate the benefits. A methodology for assessing the viability of reusing hardware will be presented by using the Space Shuttle Main Engine (SSME) to validate the approach. Because reliability, operability, and costs are key drivers in making this critical decision, they will be used to assess requirements for reuse as applied to components of the SSME.

  16. Scientific ballooning in India Recent developments

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.

    Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  17. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  18. BSM Delta Qualification 2, volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM) flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material; adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor tests -- consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- were completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 2 details the environmental testing (vibration and shock) conducted at Marshall Space Flight Center (MSFC) to which the motors were subjected prior to static tests.

  19. Thermal Hardware for the Thermal Analyst

    NASA Technical Reports Server (NTRS)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  20. Oxygen Generation System Laptop Bus Controller Flight Software

    NASA Technical Reports Server (NTRS)

    Rowe, Chad; Panter, Donna

    2009-01-01

    The Oxygen Generation System Laptop Bus Controller Flight Software was developed to allow the International Space Station (ISS) program to activate specific components of the Oxygen Generation System (OGS) to perform a checkout of key hardware operation in a microgravity environment, as well as to perform preventative maintenance operations of system valves during a long period of what would otherwise be hardware dormancy. The software provides direct connectivity to the OGS Firmware Controller with pre-programmed tasks operated by on-orbit astronauts to exercise OGS valves and motors. The software is used to manipulate the pump, separator, and valves to alleviate the concerns of hardware problems due to long-term inactivity and to allow for operational verification of microgravity-sensitive components early enough so that, if problems are found, they can be addressed before the hardware is required for operation on-orbit. The decision was made to use existing on-orbit IBM ThinkPad A31p laptops and MIL-STD-1553B interface cards as the hardware configuration. The software at the time of this reporting was developed and tested for use under the Windows 2000 Professional operating system to ensure compatibility with the existing on-orbit computer systems.

Top