Aviation Safety: Efforts to Implement Flight Operational Quality Assurance Programs
DOT National Transportation Integrated Search
1997-12-01
Flight Operational Quality Assurance (FOQA) programs seek to use flight data to : detect technical flaws, unsafe practices, or conditions outside of desired : operating procedures early enough to allow timely intervention to avert : accidents or inci...
Development of flying qualities criteria for single pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.; Nixon, W. B.; Miller, G. E.
1982-01-01
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.
Mission operations and command assurance: Flight operations quality improvements
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.
1994-01-01
Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.
Mission operations and command assurance: Instilling quality into flight operations
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.
1993-01-01
Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.
Flight Dynamics Mission Support and Quality Assurance Process
NASA Technical Reports Server (NTRS)
Oh, InHwan
1996-01-01
This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.
DOT National Transportation Integrated Search
2012-01-01
Despite safety and economic advantages, as well as endorsements by the International Civil Aviation Organization, the : FAA, the National Transportation Safety Board, and Congress, voluntary Flight Operational Quality Assurance (FOQA) : participation...
(abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.
1993-01-01
Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.
NASA Technical Reports Server (NTRS)
1976-01-01
The quality assurance program demonstrates recognition of the quality aspects and an organized approach to achieve them. It ensures that quality requirements are determined and satisfied throughout all phases of contract performance, including preliminary and engineering design, development, fabrication, processing, assembly, inspection, test, checkout, packaging, shipping, storage, maintenance field use, flight preparations, flight operations and post-flight analysis, as applicable.
The U.S. commercial air tour industry: a review of aviation safety concerns.
Ballard, Sarah-Blythe
2014-02-01
The U.S. Title 14 Code of Federal Regulations defines commercial air tours as "flight[s] conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing." The incidence of air tour crashes in the United States is disproportionately high relative to similar commercial aviation operations, and air tours operating under Part 91 governance crash significantly more than those governed by Part 135. This paper reviews the government and industry response to four specific areas of air tour safety concern: surveillance of flight operations, pilot factors, regulatory standardization, and maintenance quality assurance. It concludes that the government and industry have successfully addressed many of these tenet issues, most notably by: advancing the operations surveillance infrastructure through implementation of en route, ground-based, and technological surveillance methods; developing Aeronautical Decision Making and cue-based training programs for air tour pilots; consolidating federal air tour regulations under Part 136; and developing public-private partnerships for raising maintenance operating standards and improving quality assurance programs. However, opportunities remain to improve air tour safety by: increasing the number and efficiency of flight surveillance programs; addressing pilot fatigue with more restrictive flight hour limitations for air tour pilots; ensuring widespread uptake of maintenance quality assurance programs, especially among high-risk operators not currently affiliated with private air tour safety programs; and eliminating the 25-mile exception allowing Part 91 operators to conduct commercial air tours without the safety oversight required of Part 135 operators.
Mission-oriented requirements for updating MIL-H-8501: Calspan proposed structure and rationale
NASA Technical Reports Server (NTRS)
Chalk, C. R.; Radford, R. C.
1985-01-01
This report documents the effort by Arvin/Calspan Corporation to formulate a revision of MIL-H-8501A in terms of Mission-Oriented Flying Qualities Requirements for Military Rotorcraft. Emphasis is placed on development of a specification structure which will permit addressing Operational Missions and Flight Phases, Flight Regions, Classification of Required Operational Capability, Categorization of Flight Phases, and Levels of Flying Qualities. A number of definitions is established to permit addressing the rotorcraft state, flight envelopes, environments, and the conditions under which degraded flying qualities are permitted. Tentative requirements are drafted for Required Operational Capability Class 1. Also included is a Background Information and Users Guide for the draft specification structure proposed for the MIL-H-8501A revision. The report also contains a discussion of critical data gaps and attempts to prioritize these data gaps and to suggest experiments that should be performed to generate data needed to support formulation of quantitative design criteria for the additional Operational Capability Classes 2, 3, and 4.
Ride qualities criteria validation/pilot performance study: Flight test results
NASA Technical Reports Server (NTRS)
Nardi, L. U.; Kawana, H. Y.; Greek, D. C.
1979-01-01
Pilot performance during a terrain following flight was studied for ride quality criteria validation. Data from manual and automatic terrain following operations conducted during low level penetrations were analyzed to determine the effect of ride qualities on crew performance. The conditions analyzed included varying levels of turbulence, terrain roughness, and mission duration with a ride smoothing system on and off. Limited validation of the B-1 ride quality criteria and some of the first order interactions between ride qualities and pilot/vehicle performance are highlighted. An earlier B-1 flight simulation program correlated well with the flight test results.
Low-speed longitudinal orbiter qualities
NASA Technical Reports Server (NTRS)
Powers, B. G.
1985-01-01
The shuttle program took on the challenge of providing a manual landing capability for an operational vehicle returning from orbit. Some complex challenges were encountered in developing the longitudinal flying qualities required to land the orbiter manually in an operational environment. Approach and landing test flights indicated a tendency for pilot-induced oscillation near landing. Changes in the operational procedures reduced the difficulty of the landing task, and an adaptive stick filter was incorporated to reduce the severity of any pilot-induced oscillatory motions. Fixed-base, movingbase, and in-flight simulations were used for the evaluations, and in general, flight simulation was the only reliable means of assessing the low-speed longitudinal flying qualities problems. Overall, the orbiter control system and operational procedures have produced a good capability to routinely perform precise landings with a large, unpowered vehicle with a low lift-to-drag ratio.
The U.S. Commercial Air Tour Industry: A Review of Aviation Safety Concerns
Ballard, Sarah-Blythe
2016-01-01
The U.S. Title 14 Code of Federal Regulations defines commercial air tours as “flight[s] conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing.” The incidence of air tour crashes in the United States is disproportionately high relative to similar commercial aviation operations, and air tours operating under Part 91 governance crash significantly more than those governed by Part 135. This paper reviews the government and industry response to four specific areas of air tour safety concern: surveillance of flight operations, pilot factors, regulatory standardization, and maintenance quality assurance. It concludes that the government and industry have successfully addressed many of these tenet issues, most notably by: advancing the operations surveillance infrastructure through implementation of en route, ground-based, and technological surveillance methods; developing Aeronautical Decision Making and cue-based training programs for air tour pilots; consolidating federal air tour regulations under Part 136; and developing public-private partnerships for raising maintenance operating standards and improving quality assurance programs. However, opportunities remain to improve air tour safety by: increasing the number and efficiency of flight surveillance programs; addressing pilot fatigue with more restrictive flight hour limitations for air tour pilots; ensuring widespread uptake of maintenance quality assurance programs, especially among high-risk operators not currently affiliated with private air tour safety programs; and eliminating the 25-mile exception allowing Part 91 operators to conduct commercial air tours without the safety oversight required of Part 135 operators. PMID:24597160
NASA Technical Reports Server (NTRS)
Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.
1985-01-01
Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.
NASA Technical Reports Server (NTRS)
Lawrence, Stella
1992-01-01
This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.
Flying qualities criteria for GA single pilot IFR operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.
1982-01-01
The flying qualities criteria in general aviation (GA) to decrease accidents are discussed. The following in-flight research is discussed: (1) identification of key aerodynamic configurations; (2) implementation of an in-flight simulator; (3) mission matrix design; (4) experimental systems; (5) data reduction; (6) optimal flight path reconstruction. Some of the accomplished work is reported: an integrated flight testing and flight path reconstruction methodology was developd, high accuracy in trajectory estimation was achieved with an experimental setup, and a part of the flight test series was flown.
Longitudinal flying qualities criteria for single-pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Bar-Gill, A.
1983-01-01
Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.
Integrated Neural Flight and Propulsion Control System
NASA Technical Reports Server (NTRS)
Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.
Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors
NASA Technical Reports Server (NTRS)
Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)
1993-01-01
This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.
A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft
NASA Technical Reports Server (NTRS)
Quigley, H. C.; Innis, R. C.; Grossmith, S.
1974-01-01
The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.
XV-15 Tiltrotor Aircraft: 1997 Acoustic Testing
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.
2003-01-01
XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during June - July 1997, at the BHTI test site near Waxahachie, Texas. This was the second in a series of three XV-15 tests to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to: (1) support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and (2) refine approach profiles, selected from previous (1995) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.
NASA Technical Reports Server (NTRS)
Fatig, Michael
1993-01-01
Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.
Bobkov, Iu G; Epishkin, A K
1988-01-01
This paper presents experimental findings indicating that bemithyl, an actoprotective agent, has a beneficial effect on the health status and work capacity of operators during simulated space flight and 56-hour continuous work. The drug enhanced psychophysiological tolerance of the operators and improved the quality of their work: the quality of their compensatory tracking was on the average 10% higher, the number of errors of their porsuit tracking was 1.8 times lower, and the time of visual signal detection was 2.4 times shorter as compared to the placebo controls.
Rotary-wing flight test methods used for the evaluation of night vision devices
NASA Astrophysics Data System (ADS)
Haworth, Loran A.; Blanken, Christopher J.; Szoboszlay, Zoltan P.
2001-08-01
The U.S. Army Aviation mission includes flying helicopters at low altitude, at night, and in adverse weather. Night Vision Devices (NVDs) are used to supplement the pilot's visual cues for night flying. As the military requirement to conduct night helicopter operations has increased, the impact of helicopter flight operations with NVD technology in the Degraded Visual Environment (DVE) became increasingly important to quantify. Aeronautical Design Standard-33 (ADS- 33) was introduced to update rotorcraft handling qualities requirements and to quantify the impact of the NVDs in the DVE. As reported in this paper, flight test methodology in ADS-33 has been used by the handling qualities community to measure the impact of NVDs on task performance in the DVE. This paper provides the background and rationale behind the development of ADS-33 flight test methodology for handling qualities in the DVE, as well as the test methodology developed for human factor assessment of NVDs in the DVE. Lessons learned, shortcomings and recommendations for NVD flight test methodology are provided in this paper.
Verification and Implementation of Operations Safety Controls for Flight Missions
NASA Technical Reports Server (NTRS)
Smalls, James R.; Jones, Cheryl L.; Carrier, Alicia S.
2010-01-01
There are several engineering disciplines, such as reliability, supportability, quality assurance, human factors, risk management, safety, etc. Safety is an extremely important engineering specialty within NASA, and the consequence involving a loss of crew is considered a catastrophic event. Safety is not difficult to achieve when properly integrated at the beginning of each space systems project/start of mission planning. The key is to ensure proper handling of safety verification throughout each flight/mission phase. Today, Safety and Mission Assurance (S&MA) operations engineers continue to conduct these flight product reviews across all open flight products. As such, these reviews help ensure that each mission is accomplished with safety requirements along with controls heavily embedded in applicable flight products. Most importantly, the S&MA operations engineers are required to look for important design and operations controls so that safety is strictly adhered to as well as reflected in the final flight product.
The impact of flying qualities on helicopter operational agility
NASA Technical Reports Server (NTRS)
Padfield, Gareth D.; Lappos, Nick; Hodgkinson, John
1993-01-01
Flying qualities standards are formally set to ensure safe flight and therefore reflect minimum, rather than optimum, requirements. Agility is a flying quality but relates to operations at high, if not maximum, performance. While the quality metrics and test procedures for flying, as covered for example in ADS33C, may provide an adequate structure to encompass agility, they do not currently address flight at high performance. This is also true in the fixed-wing world and a current concern in both communities is the absence of substantiated agility criteria and possible conflicts between flying qualities and high performance. AGARD is sponsoring a working group (WG19) title 'Operational Agility' that deals with these and a range of related issues. This paper is condensed from contributions by the three authors to WG19, relating to flying qualities. Novel perspectives on the subject are presented including the agility factor, that quantifies performance margins in flying qualities terms; a new parameter, based on maneuver acceleration is introduced as a potential candidate for defining upper limits to flying qualities. Finally, a probabilistic analysis of pilot handling qualities ratings is presented that suggests a powerful relationship between inherent airframe flying qualities and operational agility.
NASA Technical Reports Server (NTRS)
Carter, John; Stephenson, Mark
1999-01-01
The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.
Assessment of flying-quality criteria for air-breathing aerospacecraft
NASA Technical Reports Server (NTRS)
Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.
1992-01-01
A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).
XV-15 Tiltrotor Aircraft: 1999 Acoustic Testing - Test Report
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.
2003-01-01
An XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during October 1999, at the BHTI test site near Waxahachie, Texas. As part of the NASA-sponsored Short Haul Civil Tiltrotor noise reduction initiative, this was the third in a series of three major XV-15 acoustic tests. Their purpose was to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and to minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and refine approach profiles, selected from previous (1995 & 1997) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.
Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis
2013-01-01
To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.
NASA Technical Reports Server (NTRS)
Sahai, Ranjana; Pierce, Larry; Cicolani, Luigi; Tischler, Mark
1998-01-01
Helicopter slung load operations are common in both military and civil contexts. The slung load adds load rigid body modes, sling stretching, and load aerodynamics to the system dynamics, which can degrade system stability and handling qualities, and reduce the operating envelope of the combined system below that of the helicopter alone. Further, the effects of the load on system dynamics vary significantly among the large range of loads, slings, and flight conditions that a utility helicopter will encounter in its operating life. In this context, military helicopters and loads are often qualified for slung load operations via flight tests which can be time consuming and expensive. One way to reduce the cost and time required to carry out these tests and generate quantitative data more readily is to provide an efficient method for analysis during the flight, so that numerous test points can be evaluated in a single flight test, with evaluations performed in near real time following each test point and prior to clearing the aircraft to the next point. Methodology for this was implemented at Ames and demonstrated in slung load flight tests in 1997 and was improved for additional flight tests in 1999. The parameters of interest for the slung load tests are aircraft handling qualities parameters (bandwidth and phase delay), stability margins (gain and phase margin), and load pendulum roots (damping and natural frequency). A procedure for the identification of these parameters from frequency sweep data was defined using the CIFER software package. CIFER is a comprehensive interactive package of utilities for frequency domain analysis previously developed at Ames for aeronautical flight test applications. It has been widely used in the US on a variety of aircraft, including some primitive flight time analysis applications.
Product assurance policies and procedures for flight dynamics software development
NASA Technical Reports Server (NTRS)
Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon
1987-01-01
The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... Operational Quality Assurance (FOQA) Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... 1995, FAA invites public comments about our intention to request the Office of Management and Budget... approved Flight Operational Quality Assurance (FOQA) programs to periodically provide aggregate trend...
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.
2002-01-01
Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.
Cabin Air Quality Dynamics On Board the International Space Station
NASA Technical Reports Server (NTRS)
Perry, J. L.; Peterson, B. V.
2003-01-01
Spacecraft cabin air quality is influenced by a variety of factors. Beyond normal equipment offgassing and crew metabolic loads, the vehicle s operational configuration contributes significantly to overall air quality. Leaks from system equipment and payload facilities, operational status of the atmospheric scrubbing systems, and the introduction of new equipment and modules to the vehicle all influence air quality. The dynamics associated with changes in the International Space Station's (ISS) configuration since the launch of the U.S. Segment s laboratory module, Destiny, is summarized. Key classes of trace chemical contaminants that are important to crew health and equipment performance are emphasized. The temporary effects associated with attaching each multi-purpose logistics module (MPLM) to the ISS and influence of in-flight air quality on the post-flight ground processing of the MPLM are explored.
Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment
NASA Technical Reports Server (NTRS)
Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei
2013-01-01
Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.
Strøm-Tejsen, P; Zukowska, D; Fang, L; Space, D R; Wyon, D P
2008-06-01
Experiments were carried out in a three-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers' perception of cabin air quality is affected by the operation of a gas-phase adsorption (GPA) purification unit. A total of 68 subjects, divided into four groups of 17 subjects took part in simulated 11-h flights. Each group experienced four conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 l/s per person), with and without the GPA purification unit installed in the recirculated air system, a total of 2992 subject-hours of exposure. During each flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects' visual acuity, finger temperature, skin dryness, and nasal peak flow were measured three times during each flight. Analysis of the subjective assessments showed that operating a GPA unit in the recirculated air provided consistent advantages with no apparent disadvantages. Operating a gas-phase adsorption (GPA) air purifier unit in the recirculated air in a simulated airplane cabin provided a clear and consistent advantage for passengers and crew that became increasingly apparent at longer flight times. This finding indicates that the expense of undertaking duly blinded field trials on revenue flights would be justified.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... Operational Quality Assurance (FOQA) Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... invites public comments about our intention to request the Office of Management and Budget (OMB) approval to renew an information collection. Flight Operational Quality Assurance (FOQA) is a program for the...
JSC Metal Finishing Waste Minimization Methods
NASA Technical Reports Server (NTRS)
Sullivan, Erica
2003-01-01
THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.
An evaluation of helicopter noise and vibration ride qualities criteria
NASA Technical Reports Server (NTRS)
Hammond, C. E.; Hollenbaugh, D. D.; Clevenson, S. A.; Leatherwood, J. D.
1981-01-01
Two methods of quantifying helicopter ride quality; absorbed power for vibration only and the NASA ride comfort model for both noise and vibration are discussed. Noise and vibration measurements were obtained on five operational US Army helicopters. The data were converted to both absorbed power and DISC's (discomfort units used in the NASA model) for specific helicopter flight conditions. Both models indicate considerable variation in ride quality between the five helicopters and between flight conditions within each helicopter.
NASA Technical Reports Server (NTRS)
Costa, Guillermo J.; Arteaga, Ricardo A.
2011-01-01
A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.
NASA Technical Reports Server (NTRS)
Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.
1994-01-01
The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.
NASA Technical Reports Server (NTRS)
Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.
1982-01-01
A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.
Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis
2013-01-01
Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977
Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)
NASA Technical Reports Server (NTRS)
Qureshi, Rizwan Hamid; Hughes, Steven P.
2014-01-01
The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.
Spaceship Columbia's first flight
NASA Technical Reports Server (NTRS)
Young, J. W.; Crippen, R. L.
1981-01-01
This is a review of the initial flight of the spaceship Columbia - the first of four test missions of the nation's space transportation system. Engineering test pilot/astronaut activity associated with operation, control, and monitoring of the spaceship are discussed. Demonstrated flying qualities and performance of the Space Shuttle are covered.
NASA Technical Reports Server (NTRS)
1991-01-01
A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.
Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport
NASA Astrophysics Data System (ADS)
Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh
2013-09-01
From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.
Research on the Effects of Fatigue within the Corporate/Business Aircraft Environment
NASA Technical Reports Server (NTRS)
Neri, David F.; Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.
1997-01-01
In 1980, responding to a Congressional request, NASA Ames Research Center created a program to examine whether 'there is a safety problem of uncertain magnitude, due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air transport operations.' The NASA Ames Fatigue/Jet Lag Program was created to collect systematic, scientific information on fatigue, sleep, circadian rhythms, and performance in flight operations. Three Program goals were established and continue to guide research efforts to: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine the impact of these factors on flight crew performance; (3) develop and evaluate countermeasures to mitigate the adverse effects of these factors and maximize flight crew performance and alertness. Since 1980, studies have been conducted in a variety of aviation environments, in controlled laboratory environments, as well as in a full-mission flight simulation. Early studies included investigations of short-haul, long-haul, and overnight cargo flight crews. In 1991, the name of the program was changed to the Fatigue Countermeasures Program to provide a greater emphasis on the development and evaluation of countermeasures. More recent work has examined the effects of planned cockpit rest as an operational countermeasure and provided analyses of the pertinent sleep/duty factors preceding an aviation accident at Guantanamo Bay, Cuba. The Short-Haul study examined the extent of sleep loss, circadian disruption, and fatigue engendered by flying commercial short-haul air transport operations (flight legs less than eight hours). This was one of the first field studies conducted by the NASA program and provided unique insight into the physiological and subjective effects of flying commercial short-haul operations. It demonstrated that a range of measures could be obtained in an operational environment without disturbing the regular performance of duties. The Long-Haul study examined how long-haul flight crews organized their sleep during a variety of international trip patterns and examined how duty requirements, local time, and the circadian system affected the timing, duration, and quality of sleep. Duty requirements and local time can be viewed as external/environmental constraints on time available for sleep, while the internal circadian system is a major physiological modulator of sleep duration and quality. The Overnight Cargo study documented the psychophysiological effects of flying overnight cargo operations. The data collected clearly demonstrated that overnight cargo operations, like other night work, involve physiological disruption not found in comparable daytime operations.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.
A flight evaluation of VTOL jet transport under visual and simulated instrument conditions
NASA Technical Reports Server (NTRS)
Holzhauser, C. A.; Morello, S. A.; Innis, R. C.; Patton, J. M., Jr.
1972-01-01
A flight investigation was performed with the Dornier DO-31 VTOL to evaluate the performance, handling qualities, and operating characteristics that are considered to be important in the operation of a commerical VTOL transport in the terminal area. The DO-31, a 20,000 kilogram transport, has a mixed jet propulsion system; main engines with nozzles deflect from a cruise to a hover position, and vertical lift engines operated below 170 knots. This VTOL mode incorporates pitch and roll attitude and yaw rate stabilization. The tests concentrated on the transition, approach, and vertical landing. The mixed jet propulsion system provided a large usable performance envelope that enabled simulated IFR approaches to be made on 7 deg and 12 deg glide slopes. In these approaches management of thrust magnitude and direction was a primary problem, and some form of integrating the controls will be necessary. The handling qualities evaluation pointed out the need for additional research of define flight path criteria. The aircraft had satisfactory control and stability in hover out of ground effect. The recirculation effects in vertical landing were large below 15 meters.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.; Halford, Carl
2007-01-01
In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
A Risk Management Architecture for Emergency Integrated Aircraft Control
NASA Technical Reports Server (NTRS)
McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.
2011-01-01
Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Silver Wings, Golden Valor: The USAF Remembers Korea
2006-01-01
better high-speed qualities and a better flight control system than the MiG-15. The Sabre jet came to be considered one of the greatest fighter...the advent of fully hydraulic flight control systems with various forms of stability augmentation led to the reintroduction of the slab tail. The...Calif.: Empire Interactive, 1999) designed for use on a Windows 95/98 CD-ROM operating system . This game, one of the finest flight simulations creat
Historical overview of V/STOL aircraft technology
NASA Technical Reports Server (NTRS)
Anderson, S. B.
1981-01-01
The requirements for satisfactory characteristics in several key technology areas are discussed and a review is made of various V/STOL aircraft for the purpose of assessing the success or failure of each design in meeting design requirements. Special operating techniques were developed to help circumvent deficiencies. For the most part performance and handling qualities limitations restricted operational evaluations. Flight operations emphasized the need for good STOL performance, good handling qualities, and stability and control augmentation. The majority of aircraft suffered adverse ground effects.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.
1971-01-01
The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.
XV-15 Tiltrotor Low Noise Approach Operations
NASA Technical Reports Server (NTRS)
Conner, David A.; Marcolini, Michael A.; Decker, William A.; Cline, John H.; Edwards, Bryan D.; Nicks, Colby O.; Klein, Peter D.
1999-01-01
Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing approach operations for a variety of different approach profile configurations. This flight test program was conducted jointly by NASA, the U.S. Army, and Bell Helicopter Textron, Inc. (BHTI) in June 1997. The XV-15 was flown over a large area microphone array, which was deployed to directly measure the noise footprint produced during actual approach operations. The XV-15 flew realistic approach profiles that culminated in IGE hover over a landing pad. Aircraft tracking and pilot guidance was provided by a Differential Global Positioning System (DGPS) and a flight director system developed at BHTI. Approach profile designs emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. A discussion of the approach profile design philosophy is provided. Five different approach profiles are discussed in detail -- 3 deg., 6 deg., and 9 deg. approaches, and two very different 3 deg. to 9 deg. segmented approaches. The approach profile characteristics are discussed in detail, followed by the noise footprints and handling qualities. Sound exposure levels are also presented on an averaged basis and as a function of the sideline distance for a number of up-range distances from the landing point. A comparison of the noise contour areas is also provided. The results document the variation in tiltrotor noise due to changes in operating condition, and indicate the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt.
The FAA's Approach to Quality Assurance in the Flight Safety Analysis of Launch and Reentry Vehicles
NASA Astrophysics Data System (ADS)
Murray, Daniel P.; Weil, Andre
2010-09-01
The U.S. Federal Aviation Administration(FAA) Office of Commercial Space Transportation’s safety mission is to ensure protection of the public, property, and the national security and foreign policy interests of the United States during commercial launch and reentry activities. As part of this mission, the FAA issues licenses to the operators of launch and reentry vehicles who successfully demonstrate compliance with FAA regulations. To meet these regulations, vehicle operators submit an application that contains, among other things, flight safety analyses of their proposed missions. In the process of evaluating these submitted analyses, the FAA often conducts its own independent analyses, using input data from the submitted license application. These analyses are conducted according to approved procedures using industry developed tools. To assist in achieving the highest levels of quality in these independent analyses, the FAA has developed a quality assurance program that consists of multiple levels of review. These reviews rely on the work of multiple teams, as well as additional, independently performed work of support contractors. This paper describes the FAA’s quality assurance process for flight safety analyses. Members of the commercial space industry may find that elements of this process can be easily applied to their own analyses, improving the quality of the material they submit to the FAA in their license applications.
A Look at Handling Qualities of Canard Configurations
NASA Technical Reports Server (NTRS)
Anderson, Seth B.
1986-01-01
The first human-powered flight was achieved by a canard-configured aircraft (Wright Brothers). Although other canard concepts were flown with varying degrees of success over the years, the tail-aft configuration has dominated the aircraft market for both military and civil use. Reviewed are the development of several canard aircraft with emphasis on stability and control, handling qualities, and operating problems. The results show that early canard concepts suffered adversely in flight behavior because of a lack of understanding of the sensitivities of these concepts to basic stability and control principles. Modern canard designs have been made competitive with tail-aft configurations by using appropriate handling qualities design criteria.
NASA Astrophysics Data System (ADS)
Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea
2009-12-01
This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.
NASA Technical Reports Server (NTRS)
Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara
1994-01-01
The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.
Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project
NASA Technical Reports Server (NTRS)
Owens, Donald B.; Cox, David E.; Morelli, Eugene A.
2006-01-01
An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.
NASA Technical Reports Server (NTRS)
Sarture, Charles M.; Chovit, Christopher J.; Chrien, Thomas G.; Eastwood, Michael L.; Green, Robert O.; Kurzwell, Charles G.
1998-01-01
From 1987 through 1997 the Airborne Visible-InfraRed Imaging Spectrometer has matured into a remote sensing instrument capable of producing prodigious amounts of high quality data. Using the NASA/Ames ER-2 high altitude aircraft platform, flight operations have become very reliable as well. Being exclusively dependent on the ER-2, however, has limitations: the ER-2 has a narrow cruise envelope which fixes the AVIRIS ground pixel at 20 meters; it requires a significant support infrastructure; and it has a very limited number of bases it can operate from. In the coming years, the ER-2 will also become less available for AVIRIS flights as NASA Earth Observing System satellite underflights increase. Adapting AVIRIS to lower altitude, less specialized aircraft will create a much broader envelope for data acquisition, i.e., higher ground geometric resolution while maintaining nearly the ideal spatial sampling. This approach will also greatly enhance flexibility while decreasing the overall cost of flight operations and field support. Successful adaptation is expected to culminate with a one-month period of demonstration flights.
Qualification and issues with space flight laser systems and components
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.
2006-02-01
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
Qualification and Issues with Space Flight Laser Systems and Components
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.
2006-01-01
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
Qualification and Issues with Space Flight Laser Systems and Components
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.
2006-01-01
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
NASA Technical Reports Server (NTRS)
Rising, J. J.
1982-01-01
The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.
Crew factors in flight operations. Part 4: Sleep and wakefulness in international aircrews
NASA Technical Reports Server (NTRS)
Graeber, R. C.
1986-01-01
Physiological recordings of sleep and wakefulness in operating international (B-747) flight crews were obtained. Crews spent their first layover (48 h) of a trip in a sleep laboratory where standardized EEG, electro-oculograph (EOC), and electromyograph (EMG) sleep recordings were carried out whenever volunteers chose to sleep. During periods of wakefulness they underwent multiple sleep latency tests every 2 h in order to assess daytime drowsiness. The same standardized recordings were carried out at a home-based laboratory before departure. Approximately four crews each participated in flights over 7 to 9 time zones on five routes. All participants were encouraged to use whatever sleep-wake strategies they thought would provide them with the most satisfactory crew rest. Overall, layover sleep quality was not seriously disturbed, but eastward flights produced greater sleep disruption. The contributors of individual factors and the usefulness of various sleep strategies are discussed in the individual laboratory reports and in an operational summary.
Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft
NASA Technical Reports Server (NTRS)
Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)
2002-01-01
A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.
Analyzing human errors in flight mission operations
NASA Technical Reports Server (NTRS)
Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef
1993-01-01
A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.
Application of Advanced Technologies to Small, Short-haul Air Transports
NASA Technical Reports Server (NTRS)
Adcock, C.; Coverston, C.; Knapton, B.
1980-01-01
A study was conducted of the application of advanced technologies to small, short-haul transport aircraft. A three abreast, 30 passenger design for flights of approximately 100 nautical miles was evaluated. Higher wing loading, active flight control, and a gust alleviation system results in improved ride quality. Substantial savings in fuel and direct operating cost are forecast. An aircraft of this configuration also has significant benefits in forms of reliability and operability which should enable it to sell a total of 450 units through 1990, of which 80% are for airline use.
In-flight evaluation of a fiber optic helmet-mounted display
NASA Astrophysics Data System (ADS)
Jennings, Sion A.; Gubbels, Arthur W.; Swail, Carl P.; Craig, Greg
1998-08-01
The National Research Council of Canada (NRC), in conjunction with the Canadian Department of National Defence (DND), is investigating the use of helmet-mounted displays (HMD) to improve pilot situational awareness in all-weather search and rescue helicopter operations. The National Research Council has installed a visually coupled HMD system in the NRC Bell 205 Airborne Simulator. Equipped with a full authority fly-by-wire control system, the Bell 205 has variable stability characteristics, which makes the airborne simulator the ideal platform for the integrated flight testing of HMDs in a simulated operational environment. This paper presents preliminary results from flight test of the NRC HMD. These results are in the form of numerical head tracker data, and subjective handling qualities ratings. Flight test results showed that the HMD degraded handling qualities due to reduced acuity, limited field-of-view, time delays in the sensor platform, and fatigue caused by excessive helmet inertia. Some evidence was found to support the hypothesis of an opto-kinetic cervical reflex whereby a pilot pitches and rolls his head in response to aircraft movements to maintain a level horizon in their field-of- view.
Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations
NASA Technical Reports Server (NTRS)
Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David
2007-01-01
The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A mission up to routine. The activities performed to validate all the Flight Dynamics functions, characterize the behaviour of the satellite and monitor the performances of the Flight Dynamics facility will be highlighted. The MetOp Flight Dynamics Operations team is led by Anders Meier Soerensen and composed by Pier Luigi Righetti, Francisco Sancho, Antimo Damiano and David Lazaro. The team is supported by Hilda Meixner, responsible for all Flight Dynamics validation activities.
Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting
NASA Technical Reports Server (NTRS)
Perry, J. L.
2017-01-01
Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering analysis. During the International Space Station's (ISS's) on-orbit assembly and outfitting, a series of engineering analyses were conducted to evaluate how effective the passive TCC methods were relative to providing adequate operational margin for the active TCC equipment's capabilities aboard the ISS. These analyses were based on habitable module and cargo vehicle offgassing test results. The offgassing test for a fully assembled module or cargo vehicle is an important preflight spacecraft evaluation method that has been used successfully during all crewed spacecraft programs to provide insight into how effectively the passive contamination control methods limit the equipment offgassing component of the overall trace contaminant generation load. The progression of TCC assessments beginning in 1998 with the ISS's first habitable element launch and continuing through the final pressurized element's arrival in 2010 are presented. Early cargo vehicle flight assessments between 2008 and 2011 are also presented as well as a discussion on predictive methods for assessing cargo via a purely analytical technique. The technical approach for TCC employed during this 13-year period successfully maintained the cabin atmospheric quality within specified parameters during the technically challenging ISS assembly and outfitting stages. The following narrative provides details on the important role of spacecraft offgassing testing, trace contaminant performance requirements, and flight rules for achieving the ultimate result-a cabin environment that enables people to live and work safely in space.
Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney
2012-01-01
This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.
The Legacy of Space Shuttle Flight Software
NASA Technical Reports Server (NTRS)
Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.
2011-01-01
The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1984-01-01
An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.
Quality of malaria information provided on Internet travel operator websites.
Bazaz, Rohit; Green, Edward; Green, Steve T
2010-09-01
Over the past 20 years, there has been a steady growth in the number of reported cases of malaria in the UK. With increasing Internet flight sales over recent years, online travel operator websites may be the only place many travellers could conceivably receive pre-travel malaria prevention advice. 29 Travel operator websites which allow for online flight purchases to malarious areas from the UK, identified using a Google(®) web search and the website of the International Air Transport Association, were assessed for the existence, accuracy and accessibility of malaria prevention advice available through internal and external website links. Eight (28%) websites provided malaria prevention information on their own pages. Five (17%) websites contained country specific malaria information relevant to the requested destination, including variation of malaria risk within that country and accurate destination specific chemoprophylaxis advice. No malaria information was available, either on internal or external links, on 8 (28%) websites. On average, it took 2.4 additional mouse clicks to access malaria information during the online flight booking process. Six of the 29 websites (21%) allowed for access to information with only 1 click. Malaria prevention information on online travel operator websites is most often absent or inadequate. Even on websites where such information is of good quality, it can be difficult to access. The travel industry should introduce and enforce guidelines for the malaria information provided by online travel operators. Copyright © 2010 Elsevier Ltd. All rights reserved.
The design, development, fabrication and testing of two (2) Non-Spin Platforms, (NSP)
NASA Technical Reports Server (NTRS)
1975-01-01
The non spin platform is a means for achieving the very low acceleration requirements for cost effective space processing experiments on research rocket flights. These platforms have a low initial cost, are re-usable and have extremely low refurbishment cost. In order to attain this goal, commercially available components were used and only the necessary quality control standards were imposed. A detailed system description, the very few design problems encountered, the operational procedures (both pre-flight and post-flight), and the maintenance requirements are described.
Quality Interaction Between Mission Assurance and Project Team Members
NASA Technical Reports Server (NTRS)
Kwong-Fu, Helenann H.; Wilson, Robert K.
2006-01-01
This viewgraph presentation demonstrates the importance of value added Mission Assurance to flight operations in order to assure mission success and the Health and Safety of the mission, (i.e., the Spitzer space Telescope.)
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus
2014-01-01
Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy
NASA Technical Reports Server (NTRS)
Houtas, Franzeska
2011-01-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.
Stability and Control Analysis of the F-15B Quiet SpikeTM Aircraft
NASA Technical Reports Server (NTRS)
McWherter, Shaun C.; Moua, Cheng M.; Gera, Joseph; Cox, Timothy H.
2009-01-01
The primary purpose of the Quiet Spike(TradeMark) flight research program was to analyze the aerodynamic, structural, and mechanical proof-of-concept of a large multi-stage telescoping nose spike installed on the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) F-15B airplane. This report describes the preflight stability and control analysis performed to assess the effect of the spike on the stability, controllability, and handling qualities of the airplane; and to develop an envelope expansion approach to maintain safety of flight. The overall flight test objective was to collect flight data to validate the spike structural dynamics and loads model up to Mach 1.8. Other objectives included validating the mechanical feasibility of a morphing fuselage at operational conditions and determining the near-field shock wave characterization. The two main issues relevant to the stability and control objectives were the effects of the spike-influenced aerodynamics on the F-15B airplane flight dynamics, and the air data and angle-of-attack sensors. The analysis covered the sensitivity of the stability margins, and the handling qualities due to aerodynamic variation and the maneuvering limitations of the F-15B Quiet Spike configuration. The results of the analysis and the implications for the flight test program are also presented.
NASA Technical Reports Server (NTRS)
Hindson, William S.
1987-01-01
A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.
Digital Fly-By-Wire Flight Control Validation Experience
NASA Technical Reports Server (NTRS)
Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.
1978-01-01
The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.
Digital control of highly augmented combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.
1987-01-01
Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.
Increases in efficiency and enhancements to the Mars Observer non-stored commanding process
NASA Technical Reports Server (NTRS)
Brooks, Robert N., Jr.; Torgerson, J. Leigh
1994-01-01
The Mars Observer team was, until the untimely loss of the spacecraft on August 21, 1993, performing flight operations with greater efficiency and speed than any previous JPL mission of its size. This level of through-put was made possible by a mission operations system which was composed of skilled personnel using sophisticated sequencing and commanding tools. During cruise flight operations, however, it was realized by the project that this commanding level was not going to be sufficient to support the activities planned for mapping operations. The project had committed to providing the science instrument principle investigators with a much higher level of commanding during mapping. Thus, the project began taking steps to enhance the capabilities of the flight team. One mechanism used by project management was a tool available from total quality management (TQM). This tool is known as a process action team (PAT). The Mars Observer PAT was tasked to increase the capacity of the flight team's nonstored commanding process by fifty percent with no increase in staffing and a minimal increase in risk. The outcome of this effort was, in fact, to increase the capacity by a factor of 2.5 rather than the desired fifty percent and actually reduce risk. The majority of these improvements came from the automation of the existing command process. These results required very few changes to the existing mission operations system. Rather, the PAT was able to take advantage of automation capabilities inherent in the existing system and make changes to the existing flight team procedures.
NASA Technical Reports Server (NTRS)
Bailey, R. E.; Smith, R. E.
1982-01-01
An investigation of pilot-induced oscillation suppression (PIOS) filters was performed using the USAF/Flight Dynamics Laboratory variable stability NT-33 aircraft, modified and operated by Calspan. This program examined the effects of PIOS filtering on the longitudinal flying qualities of fighter aircraft during the visual approach and landing task. Forty evaluations were flown to test the effects of different PIOS filters. Although detailed analyses were not undertaken, the results indicate that PIOS filtering can improve the flying qualities of an otherwise unacceptable aircraft configuration (Level 3 flying qualities). However, the ability of the filters to suppress pilot-induced oscillations appears to be dependent upon the aircraft configuration characteristics. Further, the data show that the filters can adversely affect landing flying qualities if improperly designed. The data provide an excellent foundation from which detail analyses can be performed.
Proto-Flight Manipulator Arm (P-FMA)
NASA Technical Reports Server (NTRS)
Britton, W. R.
1977-01-01
The technical development of the Proto-Flight Manipulator Arm (P-FMA) which is a seven-degree-of-freedom general-purpose arm capable of being remotely operated in an earth orbital environment is discussed. The P-FMA is a unique manipulator, combining the capabilities of significant dexterity, high tip forces, precise motion control, gear backdriveability, high end effector grip forces and torques, and the quality of flightworthiness. The 2.4-meter (8-foot) arm weighs 52.2 kilograms (115 pounds).
Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv
2001-01-01
Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.
2000-01-01
Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.
1984-01-01
A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.
NASA Technical Reports Server (NTRS)
Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.
2002-01-01
A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.
Radiation Safety Issues in High Altitude Commercial Aircraft
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.
1995-01-01
The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.
Rotorcraft Research at the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.
2009-01-01
In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.
AH-1S communication switch integration program
NASA Technical Reports Server (NTRS)
Haworth, Loran; Szoboszlay, Zoltan; Shively, Robert; Bick, Frank J.
1989-01-01
The C-6533/ARC communication system as installed on the test AH-1E Cobra helicopter was modified to allow discrete radio selection of all aircraft radios at the cyclic radio/intercommunication system switch. The current Cobra-fleet use of the C-6533 system is cumbersome, particularly during low-altitude operations. Operationally, the current system C-6533 configuration and design requires the pilot to estimate when he can safely remove his hand from an active flight control to select radios during low-altitude flight. The pilot must then physically remove his hand from the flight control, look inside the cockpit to select and verify the radio selection and then effect the selected radio transmission by activating the radio/ICS switch on the cyclic. This condition is potentially hazardous, especially during low-level flight at night in degraded weather. To improve pilot performance, communications effectiveness, and safety, manprint principles were utilized in the selection of a design modification. The modified C-6533 design was kept as basic as possible for potential Cobra-fleet modification. The communications system was modified and the design was subsequently flight-tested by the U.S. Army Aeroflightdynamics Directorate and NASA at the NASA Ames Research Center, Mountain View, California. The design modification enables the Cobra pilot to maintain hands-on flight controls while selecting radios during nap-of-the-Earth (NOE) flight without looking inside the cockpit which resulted in reduced pilot workload ratings, better pilot handling quality ratings and increased flight safety for the NOE flight environment.
The New Millennium Program Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.
Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope
NASA Technical Reports Server (NTRS)
Losch, Patricia; Lyons, James J., III; Hagopian, John
1998-01-01
The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.
AAtS over AeroMACS Technology Trials on the Airport Surface
NASA Technical Reports Server (NTRS)
Apaza, Rafael; Abraham, Biruk; Maeda, Toshihide
2016-01-01
Air-Ground component of SWIM; Enables enhanced two-way information exchanges between flight operators, aircrew, and ATSP (TFM); Used in all flight domains including pre-departure and post-arrival; Aircrew active in CDM; For strategic planning, advisory information; Not for command control (data voice) Wireless communications system for airport surface; Family member of Mobile WiMAX: (IEEE802.16e), Band 5091-5150 MHz, Bandwidth 5 MHz - TDDOFDMA - Adaptive Modulation and Coding - Quality of Service (QoS)
Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere
NASA Technical Reports Server (NTRS)
Perry, J. L.
2005-01-01
Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.
A proven approach for more effective software development and maintenance
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Hall, Dana; Sinclair, Craig
1994-01-01
Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.
NASA Technical Reports Server (NTRS)
Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.
1992-01-01
Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.
Reverse Engineering Crosswind Limits - A New Flight Test Technique?
NASA Technical Reports Server (NTRS)
Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.
2013-01-01
During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.
NASA Technical Reports Server (NTRS)
Powers, B. G.
1972-01-01
The magnitude and frequency of occurrence of aircraft responses and control inputs during 27 flights of the XB-70 airplane were measured. Exceedance curves are presented for the airplane responses and control usage. A technique is presented which makes use of these exceedance curves to establish or verify handling qualities criteria. This technique can provide a means of incorporating current operational experience in handling qualities requirements for future aircraft.
First incremental buy for Increment 2 of the Space Transportation System (STS)
NASA Technical Reports Server (NTRS)
1989-01-01
Thiokol manufactured and delivered 9 flight motors to KSC on schedule. All test flights were successful. All spent SRMs were recovered. Design, development, manufacture, and delivery of required transportation, handling, and checkout equipment to MSFC and to KSC were completed on schedule. All items of data required by DPD 400 were prepared and delivered as directed. In the system requirements and analysis area, the point of departure from Buy 1 to the operational phase was developed in significant detail with a complete set of transition documentation available. The documentation prepared during the Buy 1 program was maintained and updated where required. The following flight support activities should be continued through other production programs: as-built materials usage tracking on all flight hardware; mass properties reporting for all flight hardware until sample size is large enough to verify that the weight limit requirements were met; ballistic predictions and postflight performance assessments for all production flights; and recovered SRM hardware inspection and anomaly identification. In the safety, reliability, and quality assurance area, activities accomplished were assurance oriented in nature and specifically formulated to prevent problems and hardware failures. The flight program to date has adequately demonstrated the success of this assurance approach. The attention focused on details of design, analysis, manufacture, and inspection to assure the production of high-quality hardware has resulted in the absence of flight failures. The few anomalies which did occur were evaluated, design or manufacturing changes incorporated, and corrective actions taken to preclude recurrence.
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua
NASA Technical Reports Server (NTRS)
2002-01-01
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.
NASA Astrophysics Data System (ADS)
Kammel, H.; Haase, H.
An experimental psycho-physiological method is presented for the evaluation of visual-cognitive performance preconditions and operational reliability of pilots and cosmonauts. As visual-cognitive stress are used tachistoscopically presented instrument symbols under conditions of individual speed of work and time pressure. The results of the compared extreme groups consisting of pilots with good and insufficient flight performance showed that the pilots with impairments to the quality of flight activity differ already before the test in their individual habitual characteristics and actual motivation, during the stress in their operational parameters, in the dimensions of their cardiorespiratory activation as well as in their efficiency and after the stress in their subjective experience of the stress. Conclusions are drawn for the evaluation of the aptitude of pilots and cosmonauts.
NASA Technical Reports Server (NTRS)
Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.
2003-01-01
The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.
First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit
NASA Technical Reports Server (NTRS)
Meade, Carl J.
1995-01-01
The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.
14 CFR 121.597 - Flight release authority: Supplemental operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight following system without specific authority from the person authorized by the operator to exercise operational control over the flight. (b) No person may start a flight unless the pilot in command or the person authorized by the operator to exercise operational control over the flight has executed a flight...
Space Technology 5: Changing the Mission Design without Changing the Hardware
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. The validation objectives are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop, test and flight-validate three capable micro-satellites with new technologies. A three-month flight demonstration phase is planned, beginning in March 2006. This year, the mission was re-planned for a Pegasus XL dedicated launch into an elliptical polar orbit (instead of the Originally-planned Geosynchronous Transfer Orbit.) The re-plan allows the mission to achieve the same high-level technology validation objectives with a different launch vehicle. The new mission design involves a revised science validation strategy, a new orbit and different communication strategy, while minimizing changes to the ST-5 spacecraft itself. The constellation operations concepts have also been refined. While the system engineers, orbit analysts, and operations teams were re-planning the mission, the implementation team continued to make progress on the flight hardware. Most components have been delivered, and the first spacecraft is well into integration and test.
Tiltrotor Acoustic Flight Test: Terminal Area Operations
NASA Technical Reports Server (NTRS)
SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.
1991-01-01
This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
Evolution of Space Shuttle Range Safety Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan; Davis, Jerel; Glenn, Christopher
2011-01-01
For every space vehicle launch from the Eastern Range in Florida, the range user must provide specific Range Safety (RS) data products to the Air Force's 45th Space Wing in order to obtain flight plan approval. One of these data products is a set of RS ascent flight envelope trajectories that define the normal operating region of the vehicle during powered flight. With the Shuttle Program launching 135 manned missions over a 30-year period, 135 envelope sets were delivered to the range. During this time, the envelope methodology and design process evolved to support mission changes, maintain high data quality, and reduce costs. The purpose of this document is to outline the shuttle envelope design evolution and capture the lessons learned that could apply to future spaceflight endeavors.
Flight Hardware Fabricated for Combustion Science in Space
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2005-01-01
NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.
NASA Astrophysics Data System (ADS)
Bellido, E.
The EUTELSAT FDU (Flight Dynamics Unit) manages the resources to perform the typical activities of the large satellite operators and faces the usual difficulties raising from a vast and heterogeneous fleet. At present 20 satellites from 9 different platforms/sub-platforms are controlled from our Satellite Control Centre. The FDU was created in 2002 with the aim to respond to the operational needs of a growing fleet in terms of number of satellites and activities. It is at present composed of 6 engineering staff with the objective to provide operations service covering the whole lifecycle of the satellites from the procurement phase till the decommissioning. The most demanding activity is the daily operations, which must ensure maximum safety and continuity of service with the highest efficiency. Solutions have been applied from different areas: management, structure, operations organisation, processes, facilities, quality standards, etc. In addition to this, EUTELSAT is a growing communications operator and the FDU needs to contribute to the global objectives of the company. This paper covers our approach.
Apollo experience report guidance and control systems: Lunar module abort guidance system
NASA Technical Reports Server (NTRS)
Kurten, P. M.
1975-01-01
The history of a unique development program that produced an operational fixed guidance system of inertial quality is presented. Each phase of development, beginning with requirement definition and concluding with qualification and testing, is addressed, and developmental problems are emphasized. Software generation and mission operations are described, and specifications for the inertial reference unit are included, as are flight performance results. Significant program observations are noted.
SOFIA'S Challenge: Scheduling Airborne Astronomy Observations
NASA Technical Reports Server (NTRS)
Frank, Jeremy
2005-01-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can generate flights enables humans to assess and analyze complex tradeoffs between fuel consumption, estimated science quality and the percentage of scheduled observations. Due to the changing nature of SOFIA scheduling problems, this functionality will play a crucial role in optimizing science and minimizing costs during operations. In the full paper, we will summarize the technical challenges that have been met in order to build this system. These include: design of the search algorithm, design of appropriate heuristics and approximations, and reduction in the size of the search space. We will also describe technical challenges that are currently being addressed, including the extension of the existing approach to handle new solution criteria. Finally, we will describe a variety of cultural challenges that the astronomical community must address in order to successfully use SOFIA, and describe how the AFT can be used to address some of these challenges. Specifically, many of the intended science users are accustomed to using ground-based or space-based observatories; we will identify some differences that arise due to the nature of airborne observatories, and how the AFT can be extended to provide useful services to ease these cultural differences.
Proposal Improvements That Work
NASA Technical Reports Server (NTRS)
Dunn, F.
1998-01-01
Rocketdyne Propulsion and Power, an operating location of Boeing in Canoga Park, California is under contract with NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama for design, development, production, and mission support of Space Shuttle Main Engines (SSMEs). The contract was restructured in 1996 to emphasize a mission contracting environment under which Rocketdyne supports the Space Transportation System launch manifest of seven flights a year without the need for a detailed list of contract deliverables such as nozzles, turbopumps, and combustion devices. This contract structure is in line with the overall Space Shuttle program goals established by the NASA to fly safely, meet the flight manifest, and reduce cost. Rocketdyne's Contracts, Pricing, and Estimating team has worked for the past several years with representatives from MSFC, the local Defense Contract Management Command, and the DCAA to improve the quality of cost proposals to MSFC for contract changes on the SSME. The contract changes on the program result primarily from engineering change proposals for product enhancements to improve safety, maintainability, or operability in the space environment. This continuous improvement team effort has been successful in improving proposal quality, reducing cycle time, and reducing cost. Some of the principal lessons learned are highlighted here to show how proposal improvements can be implemented to enhance customer satisfaction and ensure cost proposals can be evaluated easily by external customers.
Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1977-01-01
An implicit model-following flight controller is proposed. This controller is relatively simple in concept: it provides an input/output relationship that is approximately that of any selected second order system; it provides good gust alleviation; and it is self-trimming. The flight controller was applied to all axes of a comprehensive mathematical model of a lift-fan V/STOL transport. Power management controls and displays were designed to match the various modes of control provided by the flight controller. A piloted simulation was performed using a six degree of freedom simulator. The fixed-operating-point handling qualities throughout the powered lift flight envelope received pilot ratings of 3-1/2 or better. Approaches and vertical landings in IFR zero-zero conditions received pilot ratings varying from 2-1/2 to 4 depending on the type of approach and weather conditions.
NASA Technical Reports Server (NTRS)
McCoy, Allen H.
1998-01-01
Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.
Shared responsibility for managing fatigue: Hearing the pilots
O’Keeffe, Karyn M.; Signal, T. Leigh; Gander, Philippa H.
2018-01-01
In commercial aviation, fatigue is defined as a physiological state of reduced mental or physical performance capability resulting from sleep loss, extended wakefulness, circadian phase, and/or workload. The International Civil Aviation Organisation mandates that responsibility for fatigue risk management is shared between airline management, pilots, and support staff. However, to date, the majority of research relating to fatigue mitigations in long range operations has focused on the mitigations required or recommended by regulators and operators. Little research attention has been paid to the views or operational experience of the pilots who use these (or other) mitigations. This study focused on pilots’ views and experiences of in-flight sleep as the primary fatigue mitigation on long range flights. It also sought information about other fatigue mitigation strategies they use. Thematic analysis was used to explore written comments from diary and survey data collected during long range and ultra-long range trips (N = 291 pilots on three different aircraft types, 17 different out-and-back trips, and four airlines based on three continents). The findings indicate that the recommended fatigue mitigation strategies on long-haul flights (particularly in-flight sleep) are effective and well-utilised, consistent with quantitative findings from the same trips. Importantly however, the analyses also highlight areas that require further investigation, including flight preparation strategies in relation to the uncertainty of in-flight break allocation. There were two strategies for sleep prior to a flight: maximising sleep if pilots were expecting later breaks in the flight; or minimising sleep if they were expecting breaks earlier or at unfavourable times in the circadian cycle. They also provide a broader view of the factors that affect the amount and quality of pilots’ in-flight sleep, about which evidence has previously been largely anecdotal. The study underscores the value of including the views and experience of pilots in fatigue risk management. PMID:29782533
Monitoring and Managing Cabin Crew Sleep and Fatigue During an Ultra-Long Range Trip.
van den Berg, Margo J; Signal, T Leigh; Mulrine, Hannah M; Smith, Alexander A T; Gander, Philippa H; Serfontein, Wynand
2015-08-01
The aims of this study were to monitor cabin crew fatigue, sleep, and performance on an ultra-long range (ULR) trip and to evaluate the appropriateness of applying data collection methods developed for flight crew to cabin crew operations under a fatigue risk management system (FRMS). Prior to, throughout, and following the ULR trip (outbound flight ULR; mean layover duration=52.6 h; inbound flight long range), 55 cabin crew (29 women; mean age 36.5 yr; 25 men; mean age 36.6 yr; one missing data) completed a sleep/duty diary and wore an actigraph. Across each flight, crewmembers rated their fatigue (Samn-Perelli Crew Status Check) and sleepiness (Karolinska Sleepiness Scale) and completed a 5-min Psychomotor Vigilance Task (PVT) at key times. Of crewmembers approached, 73% (N=134) agreed to participate and 41% (N=55) provided data of suitable quality for analysis. In the 24 h before departure, sleep averaged 7.0 h and 40% took a preflight nap. All crewmembers slept in flight (mean total sleep time=3.6 h outbound, 2.9 h inbound). Sleepiness and fatigue were lower, and performance better, on the longer outbound flight than on the inbound flight. Post-trip, crewmembers slept more on day 1 (mean=7.9 h) compared to baseline days, but there was no difference from day 2 onwards. The present study demonstrates that cabin crew fatigue can be managed effectively on a ULR flight and that FRMS data collection is feasible for cabin crew, but operational differences between cabin crew and flight crew need to be considered.
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
1984-07-01
results are caused only by the individual aerodynamic cleanliness. A table in thr lower part of this figure gives a, frst impression of the surface quality ...for the Tornado which will be the firso, iarc-iaft in operational service in t•• .. , SGersany and Italy to be so equipped. -nen considering the...and must be tested to the limits of their capability before being released to Service . The. final lesson is that when a high risk trial is undertaken
Summary of Terra and Aqua MODIS Long-Term Performance
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong (Jack); Wenny, Brian N.; Angal, Amit; Barnes, William; Salomonson, Vincent
2011-01-01
Since launch in December 1999, the MODIS ProtoFlight Model (PFM) onboard the Terra spacecraft has successfully operated for more than 11 years. Its Flight Model (FM) onboard the Aqua spacecraft, launched in May 2002, has also successfully operated for over 9 years. MODIS observations are made in 36 spectral bands at three nadir spatial resolutions and are calibrated and characterized regularly by a set of on-board calibrators (OBC). Nearly 40 science products, supporting a variety of land, ocean, and atmospheric applications, are continuously derived from the calibrated reflectances and radiances of each MODIS instrument and widely distributed to the world-wide user community. Following an overview of MODIS instrument operation and calibration activities, this paper provides a summary of both Terra and Aqua MODIS long-term performance. Special considerations that are critical to maintaining MODIS data quality and beneficial for future missions are also discussed.
NASA Technical Reports Server (NTRS)
1972-01-01
A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.
2012-01-01
regressive Integrated Moving Average ( ARIMA ) model for the data, eliminating the need to identify an appropriate model through trial and error alone...06 .11 13.67 16 .62 16 .14 .11 8.06 16 .95 * Based on the asymptotic chi-square approximation. 8 In general, ARIMA models address three...performance standards and measurement processes and a prevailing climate of organizational trust were important factors. Unfortunately, uneven
In-flight simulation of high agility through active control: Taming complexity by design
NASA Technical Reports Server (NTRS)
Padfield, Gareth D.; Bradley, Roy
1993-01-01
The motivation for research into helicopter agility stems from the realization that marked improvements relative to current operational types are possible, yet there is a dearth of useful criteria for flying qualities at high performance levels. Several research laboratories are currently investing resources in developing second generation airborne rotorcraft simulators. The UK's focus has been the exploitation of agility through active control technology (ACT); this paper reviews the results of studies conducted to date. The conflict between safety and performance in flight research is highlighted and the various forms of safety net to protect against system failures are described. The role of the safety pilot, and the use of actuator and flight envelope limiting are discussed. It is argued that the deep complexity of a research ACT system can only be tamed through a requirement specification assembled using design principles and cast in an operational simulation form. Work along these lines conducted at DRA is described, including the use of the Jackson System Development method and associated Ada simulation.
NASA Technical Reports Server (NTRS)
Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.
1982-01-01
A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
Flight Test Results on the Stability and Control of the F-15 Quiet Spike(TradeMark) Aircraft
NASA Technical Reports Server (NTRS)
Moua, Cheng M.; McWherter, Shaun C.; Cox, Timothy H.; Gera, Joe
2012-01-01
The Quiet Spike F-15B flight research program investigated supersonic shock reduction using a 24-ft sub-scale telescoping nose boom on an F-15B airplane. The program primary flight test objective was to collect flight data for aerodynamic and structural models validation up to 1.8 Mach. Other objectives were to validate the mechanical feasibility of a morphing fuselage at the operational conditions and determine the near-field shock wave characterization. The stability and controls objectives were to assess the effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire research flight envelop. The two main stability and controls issues were the effects of the telescoping nose boom influenced aerodynamics on the F-15B aircraft flight dynamics and air data and angle of attack sensors. This paper reports on the stability and controls flight envelope clearance methods and flight test analysis of the F-15B Quiet Spike. Brief pilot commentary on typical piloting tasks, approach and landing, refueling task, and air data sensitivity to the flight control system are also discussed in this report.
Aerial photography flight quality assessment with GPS/INS and DEM data
NASA Astrophysics Data System (ADS)
Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao
2018-01-01
The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.
UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni; Gonzalez, Daniel
We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.
Designing Flight Deck Procedures
NASA Technical Reports Server (NTRS)
Degani, Asaf; Wiener, Earl
2005-01-01
Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.
Orion Handling Qualities During ISS Proximity Operations and Docking
NASA Technical Reports Server (NTRS)
Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Brazzel, Jack; Spehar, Pete
2011-01-01
NASA's Orion spacecraft is designed to autonomously rendezvous and dock with many vehicles including the International Space Station. However, the crew is able to assume manual control of the vehicle s attitude and flight path. In these instances, Orion must meet handling qualities requirements established by NASA. Two handling qualities assessments were conducted at the Johnson Space Center to evaluate preliminary designs of the vehicle using a six degree of freedom, high-fidelity guidance, navigation, and control simulation. The first assessed Orion s handling qualities during the last 20 ft before docking, and included both steady and oscillatory motions of the docking target. The second focused on manual acquisition of the docking axis during the proximity operations phase and subsequent station-keeping. Cooper-Harper handling qualities ratings, workload ratings and comments were provided by 10 evaluation pilots for the docking study and 5 evaluation pilots for the proximity operations study. For the docking task, both cases received 90% Level 1 (satisfactory) handling qualities ratings, exceeding NASA s requirement. All ratings for the ProxOps task were Level 1. These evaluations indicate that Orion is on course to meet NASA's handling quality requirements for ProxOps and docking.
APMS: An Integrated Suite of Tools for Measuring Performance and Safety
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Lynch, Robert E.; Connors, Mary M. (Technical Monitor)
1997-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Connor, Mary M. (Technical Monitor)
1998-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data, The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS offers to the air transport community an open, voluntary standard for flight-data-analysis software; a standard that will help to ensure suitable functionality and data interchangeability among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs-of aircrews in mind. APMS tools must serve the needs of the government and air carriers, as well as aircrews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but also through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the aircrew.
APMS: An Integrated Suite of Tools for Measuring Performance and Safety
NASA Technical Reports Server (NTRS)
Statler, Irving C. (Technical Monitor)
1997-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions . APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
APMS: An Integrated Set of Tools for Measuring Safety
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Reynard, William D. (Technical Monitor)
1996-01-01
This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
14 CFR 91.189 - Category II and III operations: General operating rules.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...
14 CFR 91.189 - Category II and III operations: General operating rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...
14 CFR 91.189 - Category II and III operations: General operating rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean
2017-01-01
As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag minimization demonstrates the effectiveness of the proposed solution. In-flight structural loads are also an important consideration. As wing flexibility increases, maneuver load and gust load responses can be significant and therefore can pose safety and flight control concerns. In this paper, we will extend the multi-objective flight control framework to include load alleviation control. The study will focus initially on maneuver load minimization control, and then subsequently will address gust load alleviation control in future work.
14 CFR 91.303 - Aerobatic flight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...
14 CFR 91.303 - Aerobatic flight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...
14 CFR 91.303 - Aerobatic flight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...
14 CFR 91.303 - Aerobatic flight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...
14 CFR 91.303 - Aerobatic flight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...
2014-05-07
View of the High Definition Earth Viewing (HDEV) flight assembly installed on the exterior of the Columbus European Laboratory module. Image was released by astronaut on Twitter. The High Definition Earth Viewing (HDEV) experiment places four commercially available HD cameras on the exterior of the space station and uses them to stream live video of Earth for viewing online. The cameras are enclosed in a temperature specific housing and are exposed to the harsh radiation of space. Analysis of the effect of space on the video quality, over the time HDEV is operational, may help engineers decide which cameras are the best types to use on future missions. High school students helped design some of the cameras' components, through the High Schools United with NASA to Create Hardware (HUNCH) program, and student teams operate the experiment.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G.
1980-01-01
Several different flight research programs carried out by NASA and the Canadian Government using the Augmentor Wing Jet STOL Research Aircraft to investigate the design, operational, and systems requirements for powered-lift STOL aircraft are summarized. Some of these programs considered handling qualities and certification criteria for this class of aircraft, and addressed pilot control techniques, control system design, and improved cockpit displays for the powered-lift STOL approach configuration. Other programs involved exploiting the potential of STOL aircraft for constrained terminal-area approaches within the context of present or future air traffic control environments. Both manual and automatic flight control investigations are discussed, and an extensive bibliography of the flight programs is included.
International Space Station Payload Operations Integration
NASA Technical Reports Server (NTRS)
Fanske, Elizabeth Anne
2011-01-01
The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).
Perception-based synthetic cueing for night vision device rotorcraft hover operations
NASA Astrophysics Data System (ADS)
Bachelder, Edward N.; McRuer, Duane
2002-08-01
Helicopter flight using night-vision devices (NVDs) is difficult to perform, as evidenced by the high accident rate associated with NVD flight compared to day operation. The approach proposed in this paper is to augment the NVD image with synthetic cueing, whereby the cues would emulate position and motion and appear to be actually occurring in physical space on which they are overlaid. Synthetic cues allow for selective enhancement of perceptual state gains to match the task requirements. A hover cue set was developed based on an analogue of a physical target used in a flight handling qualities tracking task, a perceptual task analysis for hover, and fundamentals of human spatial perception. The display was implemented on a simulation environment, constructed using a virtual reality device, an ultrasound head-tracker, and a fixed-base helicopter simulator. Seven highly trained helicopter pilots were used as experimental subjects and tasked to maintain hover in the presence of aircraft positional disturbances while viewing a synthesized NVD environment and the experimental hover cues. Significant performance improvements were observed when using synthetic cue augmentation. This paper demonstrates that artificial magnification of perceptual states through synthetic cueing can be an effective method of improving night-vision helicopter hover operations.
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Administrator. (f) Disclosure. FOQA data and aggregate FOQA data, if submitted in accordance with an order... Program: Prohibition against use of data for enforcement purposes. 13.401 Section 13.401 Aeronautics and... Assurance Program: Prohibition against use of data for enforcement purposes. (a) Applicability. This section...
Integrated Medical Model Project - Overview and Summary of Historical Application
NASA Technical Reports Server (NTRS)
Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.;
2015-01-01
Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions: Historically, IMM simulations support Science and Technology planning, Exploration mission planning, and ISS program operations by supplying simulation support, iMED data information, and subject matter expertise to Crew Health and Safety and the HRP. Upcoming release of IMM version 4.0 seeks to provide enhanced functionality to increase the quality of risk decisions made using the IMM through a more accurate representation of the real world system.
14 CFR 91.305 - Flight test areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...
14 CFR 91.305 - Flight test areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...
14 CFR 91.305 - Flight test areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2013 CFR
2013-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2012 CFR
2012-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2011 CFR
2011-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2014 CFR
2014-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2010 CFR
2010-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
DOT National Transportation Integrated Search
1994-07-01
This report is the ninth in a series on physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Long-haul flight operations often involve rapid multiple time-zone changes, sl...
Vehicle for civil helicopter ride quality research
NASA Technical Reports Server (NTRS)
Snyder, W. J.; Schlegel, R. G.
1975-01-01
A research aircraft for investigating the factors involved in civil helicopter operations was developed for NASA Langley Research Center. The aircraft is a reconfigured 17000 kg (36000 lb) military transport helicopter. The basic aircraft was reconfigured with advanced acoustic treatment, air-conditioning, and a 16-seat airline cabin. During the spring of 1975, the aircraft was flight tested to measure interior environment characteristics - noise and vibration - and was flown on 60 subjective flight missions with over 600 different subjects. Data flights established noise levels somewhat higher than expected, with a pure tone at 1400 Hz and vertical vibration levels between 0.07g and 0.17g. The noise and vibration levels were documented during subjective flight evaluations as being the primary source of discomfort. The aircraft will be utilized to document in detail the impact of various noise and vibration levels on passenger comfort during typical short-haul missions.
Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle
NASA Technical Reports Server (NTRS)
Adams, Richard J.
1993-01-01
High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.
An Aircraft Encounter with Turbulence in the Vicinity of a Thunderstorm
NASA Technical Reports Server (NTRS)
Hamilton, David W.; Proctor, Fred H.
2003-01-01
Large eddy simulations of three convective turbulence events are investigated and compared with observational data. Two events were characterized with severe turbulence and the other with moderate turbulence. Two of the events occurred during NASA s turbulence flight experiments during the spring of 2002, and the third was an event identified by the Flight Operational Quality Assurance (FOQA) Program. Each event was associated with developing or ongoing convection and was characterized by regions of low to moderate radar reflectivity. Model comparisons with observations are favorable. The data sets from these simulations can be used to test turbulence detection sensors.
Assessment team report on flight-critical systems research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)
1989-01-01
The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
HIFIRE Flight 2 Overview and Status Update 2011
NASA Technical Reports Server (NTRS)
Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore
2011-01-01
A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices Begin...
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
NASA Technical Reports Server (NTRS)
1971-01-01
Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera
2015-05-14
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.
Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry
2014-11-05
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/
Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin
2014-10-17
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/
Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones
NASA Technical Reports Server (NTRS)
Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.
1989-01-01
The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.
V/STOL Dynamics, Control, and Flying Qualities
NASA Technical Reports Server (NTRS)
Franklin, James A.
2000-01-01
This publication presents material that constituted the lectures presented by the author as part of Course AA 234, Dynamics, Control, and Flying Qualities of Vertical/Short Takeoff and Landing (V/STOL) Aircraft that was taught in the Department of Aeronautics and Astronautics at Stanford University. It covers representative operations of vertical and short takeoff and landing (V/STOL) aircraft, a discussion of the pilot's strategy in controlling these aircraft, the equations of motion pertinent to V/STOL tasks, and their application in the analysis of longitudinal and lateral-directional control in hover and forward flight. Following that development, which applies to the characteristics of the basic airframe and propulsion system, the text concludes with a discussion of the contributions of control augmentation in specific flight tasks and of the integration of modern electronic displays with these controls.
14 CFR 375.33 - Transit flights, irregular operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...
14 CFR 375.33 - Transit flights, irregular operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...
14 CFR 375.33 - Transit flights, irregular operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...
14 CFR 375.33 - Transit flights, irregular operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...
Agile Development Methods for Space Operations
NASA Technical Reports Server (NTRS)
Trimble, Jay; Webster, Chris
2012-01-01
Main stream industry software development practice has gone from a traditional waterfall process to agile iterative development that allows for fast response to customer inputs and produces higher quality software at lower cost. How can we, the space ops community, adopt state of the art software development practice, achieve greater productivity at lower cost, and maintain safe and effective space flight operations? At NASA Ames, we are developing Mission Control Technologies Software, in collaboration with Johnson Space Center (JSC) and, more recently, the Jet Propulsion Laboratory (JPL).
14 CFR 415.127 - Flight safety system design and operation data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Expendable Launch Vehicle From a Non-Federal Launch Site § 415.127 Flight safety system design and operation...: flight termination system; command control system; tracking; telemetry; communications; flight safety... control system. (7) Flight termination system component storage, operating, and service life. A listing of...
Data Requirement (DR) MA-03: Payload missions integration. [Spacelab payloads
NASA Technical Reports Server (NTRS)
1985-01-01
Project management and payload integration requirements definition activities are reported. Mission peculiar equipment; systems integration; ground operations analysis and requirement definition; safety and quality assurance; and support systems development are examined for payloads planned for the following missions: EOM-1; SL-2; Sl-3 Astro-1; MSL-2; EASE/ACCESS; MPESS; and the middeck ADSF flight.
Meter Designs Reduce Operation Costs for Industry
NASA Technical Reports Server (NTRS)
2013-01-01
Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.
32 CFR 707.11 - Flight operations lights.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...
32 CFR 707.11 - Flight operations lights.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...
32 CFR 707.11 - Flight operations lights.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...
32 CFR 707.11 - Flight operations lights.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...
2001-12-01
product operator, Ucg = X body axis velocity at the cg, Uvane = X body axis velocity at the cg, Vcg = Y body axis velocity at the cg, Vvane = Y body axis...Tan vane Uvane α β = = (5) Ucg = VtrueCOS(βtrue)COS(αtrue) Vcg = VtrueSIN(βtrue) Wcg = VtrueCOS(βtrue)SIN...from the definitions of these angles. 2 2 2 1 1 V U V Wcg cg cgtrue Wcg Tantrue Ucg Vcg Sintrue Vtrue α β = + + −= −= (12) 53
14 CFR 91.1061 - Augmented flight crews.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...
14 CFR 91.1061 - Augmented flight crews.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...
14 CFR 417.311 - Flight safety crew roles and qualifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...
14 CFR 417.311 - Flight safety crew roles and qualifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...
14 CFR 417.311 - Flight safety crew roles and qualifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...
Flight simulator for hypersonic vehicle and a study of NASP handling qualities
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.
1992-01-01
The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.
14 CFR 121.537 - Responsibility for operational control: Supplemental operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...
14 CFR 121.537 - Responsibility for operational control: Supplemental operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...
14 CFR 121.537 - Responsibility for operational control: Supplemental operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...
14 CFR 121.537 - Responsibility for operational control: Supplemental operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...
14 CFR 121.537 - Responsibility for operational control: Supplemental operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...
NASA Technical Reports Server (NTRS)
Scott, David W.; Underwood, Debrah (Technical Monitor)
2002-01-01
At the Marshall Space Flight Center's (MSFC) Payload Operations Integration Center (POIC) for International Space Station (ISS), each flight controller maintains detailed logs of activities and communications at their console position. These logs are critical for accurately controlling flight in real-time as well as providing a historical record and troubleshooting tool. This paper describes logging methods and electronic formats used at the POIC and provides food for thought on their strengths and limitations, plus proposes some innovative extensions. It also describes an inexpensive PC-based scheme for capturing and/or transcribing audio clips from communications consoles. Flight control activity (e.g. interpreting computer displays, entering data/issuing electronic commands, and communicating with others) can become extremely intense. It's essential to document it well, but the effort to do so may conflict with actual activity. This can be more than just annoying, as what's in the logs (or just as importantly not in them) often feeds back directly into the quality of future operations, whether short-term or long-term. In earlier programs, such as Spacelab, log keeping was done on paper, often using position-specific shorthand, and the other reader was at the mercy of the writer's penmanship. Today, user-friendly software solves the legibility problem and can automate date/time entry, but some content may take longer to finish due to individual typing speed and less use of symbols. File layout can be used to great advantage in making types of information easy to find, and creating searchable master logs for a given position is very easy and a real lifesaver in reconstructing events or researching a given topic. We'll examine log formats from several console position, and the types of information that are included and (just as importantly) excluded. We'll also look at when a summary or synopsis is effective, and when extensive detail is needed.
Orion Pad Abort 1 Flight Test - Ground and Flight Operations
NASA Technical Reports Server (NTRS)
Hackenbergy, Davis L.; Hicks, Wayne
2011-01-01
This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.
Airworthiness Qualification Criteria for Rotorcraft with External Sling Loads
NASA Technical Reports Server (NTRS)
Key, David L.
2002-01-01
This report presents the results of a study to develop airworthiness requirements for rotorcraft with external sling loads. The report starts with a review of the various phenomena that limit external sling load operations. Specifically discussed are the rotorcraft-load aeroservoelastic stability, load-on handling qualities, effects of automatic flight control system failure, load suspension system failure, and load stability at speed. Based on past experience and treatment of these phenomena, criteria are proposed to form a package for airworthiness qualification. The desired end objective is a set of operational flight envelopes for the rotorcraft with intended loads that can be provided to the user to guide operations in the field. The specific criteria proposed are parts of ADS-33E-PRF; MIL-F-9490D, and MIL-STD-913A all applied in the context of external sling loads. The study was performed for the Directorate of Engineering, U.S. Army Aviation and Missile Command (AMCOM), as part of the contract monitored by the Aerothermodynamics Directorate, U.S. Army AMCOM.
Managing storm water at airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halm, M.J.
1996-09-01
Airports are active facilities with numerous on-going operations at their sites. The following operations may adversely affect the water quality of nearby aquatic environments: De-icing runways; de-icing taxiways; de-icing and anti-icing aircraft; aircraft maintenance; and salt de-icer application. Until the amendments to the Clean Water Act of 1972, referred to as the Water Quality Act of 1987, were passed by Congress, the majority of storm water discharges in the US were unregulated. The Water Quality Act of 1987 was promulgated as an effort to manage the pollution resulting from storm water runoff. Many industrial facilities, especially airports, were faced withmore » complex problems in attempting to comply with these new federal regulations. National Pollution Discharge Elimination System (NPDES) permits for airports with more than 50,000 flight operations per year require periodic monitoring of receiving waters and storm sewer outfalls. The federal government has given states jurisdiction in issuing NPDES permits for storm water discharges. States may require composite or grab samples.« less
NASA Astrophysics Data System (ADS)
Blumenthal, D.; Trijonis, J.
1984-09-01
A decrease in visibility in the R2508 airspace (in the western Mojave Desert in southern California) since the mid-1940s, when flight test and training facilities were established in this region, is adversely affecting flight and test operations. The Joint Policy and Planning Board (JPPB) of the Department of Defense has initiated studies and discussions of the visibility issue with the goal of developing a management strategy to maintain and optimize the operational capabilities of the test facilities. To identify trends in and sources of visibility degradation in the desert, JPPB initiated two programs: (1) a compilation and review of the historical visibility and air quality data in the California desert region, to be coordinated by the California Desert Air Working Group (CDAWG) and funded by CDAWG participants; and (2) RESearch on Operations-Limiting Visual Extinction (RESOLVE), which involves measuring the visibility at key receptor sites (monitoring stations) in the R2508 region. The report describes the current status of and future plans for the RESOLVE program.
NASA Technical Reports Server (NTRS)
Wieland, P.; Hutchens, C.; Long, D.; Salyer, B.
1998-01-01
Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPA'S, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.97 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.
Operational Issues: What Science in Available?
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Neri, David F.
1997-01-01
Flight/duty/rest considerations involve two highly complex factors: the diverse demands of aviation operations and human physiology (especially sleep and circadian rhythms). Several core operational issues related to fatigue have been identified, such as minimum rest requirements, duty length, flight time considerations, crossing multiple time zones, and night flying. Operations also can involve on-call reserve status and callout, delays due to unforeseen circumstances (e.g., weather, mechanical), and on-demand flights. Over 40 years of scientific research is now available to apply to these complex issues of flight/duty/rest requirements. This research involves controlled 'laboratory studies, simulations, and data collected during regular flight operations. When flight/duty/rest requirements are determined they are typically based on a variety of considerations, such as operational demand, safety, economic, etc. Rarely has the available, state-of-the-art science been a consideration along with these other factors when determining flight/duty/rest requirements. While the complexity of the operational demand and human physiology precludes an absolute solution, there is an opportunity to take full advantage of the current scientific data. Incorporating these data in a rational operational manner into flight/duty/rest requirements can improve flight crew performance, alertness, and ultimately, aviation safety.
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
49 CFR 1544.237 - Flight deck privileges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...
Mentoring SFRM: A New Approach to International Space Station Flight Control Training
NASA Technical Reports Server (NTRS)
Huning, Therese; Barshi, Immanuel; Schmidt, Lacey
2009-01-01
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.
1984-01-01
NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.
Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B
NASA Technical Reports Server (NTRS)
Buschbacher, Mark; Maliska, Heather
2006-01-01
The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.
System for Secure Integration of Aviation Data
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao; Keller, Rich; Chidester, Tom; Statler, Irving; Lynch, Bob; Patel, Hemil; Windrem, May; Lawrence, Bob
2007-01-01
The Aviation Data Integration System (ADIS) of Ames Research Center has been established to promote analysis of aviation data by airlines and other interested users for purposes of enhancing the quality (especially safety) of flight operations. The ADIS is a system of computer hardware and software for collecting, integrating, and disseminating aviation data pertaining to flights and specified flight events that involve one or more airline(s). The ADIS is secure in the sense that care is taken to ensure the integrity of sources of collected data and to verify the authorizations of requesters to receive data. Most importantly, the ADIS removes a disincentive to collection and exchange of useful data by providing for automatic removal of information that could be used to identify specific flights and crewmembers. Such information, denoted sensitive information, includes flight data (here signifying data collected by sensors aboard an aircraft during flight), weather data for a specified route on a specified date, date and time, and any other information traceable to a specific flight. The removal of information that could be used to perform such tracing is called "deidentification." Airlines are often reluctant to keep flight data in identifiable form because of concerns about loss of anonymity. Hence, one of the things needed to promote retention and analysis of aviation data is an automated means of de-identification of archived flight data to enable integration of flight data with non-flight aviation data while preserving anonymity. Preferably, such an automated means would enable end users of the data to continue to use pre-existing data-analysis software to identify anomalies in flight data without identifying a specific anomalous flight. It would then also be possible to perform statistical analyses of integrated data. These needs are satisfied by the ADIS, which enables an end user to request aviation data associated with de-identified flight data. The ADIS includes client software integrated with other software running on flight-operations quality-assurance (FOQA) computers for purposes of analyzing data to study specified types of events or exceedences (departures of flight parameters from normal ranges). In addition to ADIS client software, ADIS includes server hardware and software that provide services to the ADIS clients via the Internet (see figure). The ADIS server receives and integrates flight and non-flight data pertaining to flights from multiple sources. The server accepts data updates from authorized sources only and responds to requests from authorized users only. In order to satisfy security requirements established by the airlines, (1) an ADIS client must not be accessible from the Internet by an unauthorized user and (2) non-flight data as airport terminal information system (ATIS) and weather data must be displayed without any identifying flight information. ADIS hardware and software architecture as well as encryption and data display scheme are designed to meet these requirements. When a user requests one or more selected aviation data characteristics associated with an event (e.g., a collision, near miss, equipment malfunction, or exceedence), the ADIS client augments the request with date and time information from encrypted files and submits the augmented request to the server. Once the user s authorization has been verified, the server returns the requested information in de-identified form.
Flight Deck Surface Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.
2017-01-01
Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.
STS-56, RSRM-031, 360L031 KSC processing configuration and data report
NASA Technical Reports Server (NTRS)
1993-01-01
KSC Processing Configuration and Data Report is being provided as a historical document and as an enhancement to future RSRM manufacturing and processing operations. The following sections provide information on segment receipt, aft booster build-up, booster assembly, and closeout for STS-56, RSRM flight set 36OL031. Section 2.0 contains a summary of RSRM-031 processing. Section 3.0 discusses any significant problems or special issues that require special attention. Sections 4.0 through 6.0 contain narrative descriptions of all key events, including any related processing problems. Appendix A provides engineering specifications and changes. A list and matrix of all problem reports (PR's) pertinent to this flight set is provided in Appendix B. The matrix was provided by the Thiokol LSS Quality Engineering office. Copies of the PR's generated during the processing of RSRM-031 will be provided upon request. Appendix C contains the motor set status matrix, which provides milestone dates for the RSRM-031 flow. Section 7.0 provides recommendations, if any, for the improvement of flight hardware processing. Section 8.0 contains data sheets that provide flight hardware parts and consumables information installed during the booster build-up and stacking operations by location, lot/serial number, expiration and cure dates/times, and installation dates.
STS-51, RSRM-033, 360T033 KSC processing configuration and data report
NASA Technical Reports Server (NTRS)
Hillard, Robert C.
1993-01-01
KSC Processing Configuration and Data Report is being provided as a historical document and as an enhancement to future RSRM manufacturing and processing operations. The following sections provide information on segment receipt, aft booster build up, motor assembly, and closeout for STS-51, RSRM flight set 360T033. Section 2.0 contains a summary of RSRM-033 processing. Section 3.0 discusses any significant problems or special issues that require special attention. Sections 4.0 through 6.0 contain narrative descriptions of all key events, including any related processing problems. Appendix A provides engineering specifications and changes. A list and matrix of all problem reports (PR's) pertinent to this flight set is provided in Appendix B. The matrix was provided by the Thiokol LSS Quality Engineering office. Copies of the PR's generated during the processing of RSRM-033 will be provided upon request. Appendix C contains the motor set status matrix, which provides milestone dates for the RSRM-033 flow. Section 7.0 provides recommendations for the improvement of flight hardware processing. Section 8.0 contains data sheets that provide flight hardware parts and consumable information installed during the booster build-up and stacking operations by location, lot/serial number, expiration and cure dates/times, and installation dates.
CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes
NASA Astrophysics Data System (ADS)
Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael
2016-05-01
Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.
Applications of flight control system methods to an advanced combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.
1989-01-01
Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.
14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...
14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...
14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...
14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...
14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...
Robotic and automatic welding development at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Jones, C. S.; Jackson, M. E.; Flanigan, L. A.
1988-01-01
Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.
78 FR 79061 - Noise Exposure Map Notice; Key West International Airport, Key West, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
..., Flight Track Utilization by Aircraft Category for East Flow Operations; Table 4-3, Flight Track Utilization by Aircraft Category for West Flow Operations; Table 4-4, 2013 Air Carrier Flight Operations; Table 4-5, 2013 Commuter and Air Taxi Flight Operations; Table 4-6, 2013 Average Daily Engine Run-Up...
NASA Technical Reports Server (NTRS)
Dunbar, J. C.
1972-01-01
The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Leatherwood, J. D.; Hollenbaugh, D. D.
1983-01-01
Balka (1981) has identified the attainment of a 'jet-smooth' ride as a primary goal of the helicopter industry for commercial and certain military helicopters. It was noted that criteria accounting for both multiple axis vibration and interior noise are needed. The present investigation has the objective to present a vibration and interior noise data base in a format suitable for direct evaluation of aircraft ride quality. The investigation is also concerned with an assessment of the measured environment against available criteria as an indication of the state-of-the-art for current machines. Interior noise and vibration measurements were obtained on eight military helicopters during routine operational flights. The data are presented in the form of a number of parameters.
78 FR 12233 - Policy Clarification on Charitable Medical Flights
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... on Charitable Medical Flights AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... operating charitable medical flights. Charitable medical flights are flights where a pilot, aircraft owner... Volunteer Pilots Operating Charitable Medical Flights. DATES: This action becomes effective on February 22...
Achieving Operability via the Mission System Paradigm
NASA Technical Reports Server (NTRS)
Hammer, Fred J.; Kahr, Joseph R.
2006-01-01
In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
Analysis of the Quality of Parabolic Flight
NASA Technical Reports Server (NTRS)
Lambot, Thomas; Ord, Stephan F.
2016-01-01
Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.
An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas
1996-01-01
The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.
14 CFR 375.22 - Flight operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...
14 CFR 375.22 - Flight operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...
14 CFR 375.22 - Flight operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...
14 CFR 375.22 - Flight operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...
14 CFR 375.22 - Flight operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...
Flight Test Evaluation of the ATD-1 Interval Management Application
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.; Roper, Roy D.; Abbott, Terence S.; Levitt, Ian; Scharl, Julien
2017-01-01
Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.
Spacecraft servicing demonstration plan
NASA Technical Reports Server (NTRS)
Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.
1984-01-01
A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.
Trends and individual differences in response to short-haul flight operations
NASA Technical Reports Server (NTRS)
Chidester, Thomas R.
1990-01-01
A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber (1987) and by Gander et al. (1988), using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.
Space shuttle low cost/risk avionics study
NASA Technical Reports Server (NTRS)
1971-01-01
All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
Decision-Making in Flight with Different Convective Weather Information Sources: Preliminary Results
NASA Technical Reports Server (NTRS)
Latorella, Kara A.; Chamberlain, James P.
2004-01-01
This paper reports preliminary and partial results of a flight experiment to address how General Aviation (GA) pilots use weather cues to make flight decisions. This research presents pilots with weather cue conditions typically available to GA pilots in visual meteorological conditions (VMC) and instrument meteorological conditions (IMC) today, as well as in IMC with a Graphical Weather Information System (GWIS). These preliminary data indicate that both VMC and GWIS-augmented IMC conditions result in better confidence, information sufficiency and perceived performance than the current IMC condition. For all these measures, the VMC and GWIS-augmented conditions seemed to provide similar pilot support. These preliminary results are interpreted for their implications on GWIS display design, training, and operational use guidelines. Final experimental results will compare these subjective data with objective data of situation awareness and decision quality.
Pulse Based Time-of-Flight Range Sensing.
Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas
2018-05-23
Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.
NASA Astrophysics Data System (ADS)
Brigos, Miguel; Perez-Poch, Antoni; Alpiste, Francesc; Torner, Jordi; González Alonso, Daniel Ventura
2014-11-01
We report the results of residual acceleration obtained from initial tests of parabolic flights (more than 100 hours) performed with a small single-engine aerobatic aircraft (CAP10B), and propose a method that improves these figures. Such aircraft have proved capable of providing researchers with periods of up to 8 seconds of reduced gravity in the cockpit, with a gravity quality in the range of 0.1 g 0, where g 0 is the gravitational acceleration of the Earth. Such parabolas may be of interest to experimenters in the reduced gravity field, when this range of reduced gravity is acceptable for the experiment undertaken. They have also proven to be useful for motivational and educational campaigns. Furthermore, these flights may be of interest to researchers as a test-bed for obtaining a proof-of-concept for subsequent access to parabolic flights with larger aircraft or other microgravity platforms. The limited cost of the operations with these small aircraft allows us to perform them as part of a non-commercial joint venture between the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), the Barcelona cluster BAIE and the Aeroclub Barcelona-Sabadell. Any improvements in the length and quality of reduced gravity would increase the capabilities of these small aircraft. To that end, we have developed a method based on a simulator for training aerobatic pilots. The simulation is performed with the CAD software for mechanical design Solidworks Motion{circledR }, which is widely distributed in industry and in universities. It specifically simulates the parabolic flight manoeuvre for our small aircraft and enables us to improve different aspects of the manoeuvre. The simulator is first validated with experimental data from the test flights. We have conducted an initial intensive period of specific pilot training with the aid of the simulator output. After such initial simulation-aided training, results show that the reduced gravity quality has significantly improved from 0.1 g 0 to 0.05 g 0. We conclude that single-engine aerobatic aircraft are capable of conducting small hypogravity experiments with the limitations described in the paper.
14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...
14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...
14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...
Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project
NASA Technical Reports Server (NTRS)
Tomayko, James E.
2000-01-01
An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
UTM UAS Service Supplier Specification
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio
2017-01-01
Within the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) system, the UAS Service Supplier (USS) is a key component. The USS serves several functions. At a high level, those include the following: Bridging communication between UAS Operators and Flight Information Management System (FIMS) Supporting planning of UAS operations Assisting strategic deconfliction of the UTM airspace Providing information support to UAS Operators during operations Helping UAS Operators meet their formal requirements This document provides the minimum set of requirements for a USS. In order to be recognized as a USS within UTM, successful demonstration of satisfying the requirements described herein will be a prerequisite. To ensure various desired qualities (security, fairness, availability, efficiency, maintainability, etc.), this specification relies on references to existing public specifications whenever possible.
14 CFR 135.107 - Flight attendant crewmember requirement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight attendant crewmember requirement... Flight Operations § 135.107 Flight attendant crewmember requirement. No certificate holder may operate an... is a flight attendant crewmember on board the aircraft. ...
14 CFR 135.107 - Flight attendant crewmember requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight attendant crewmember requirement... Flight Operations § 135.107 Flight attendant crewmember requirement. No certificate holder may operate an... is a flight attendant crewmember on board the aircraft. ...
14 CFR 135.107 - Flight attendant crewmember requirement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight attendant crewmember requirement... Flight Operations § 135.107 Flight attendant crewmember requirement. No certificate holder may operate an... is a flight attendant crewmember on board the aircraft. ...
Crew factors in flight operations VI : psychophysiological responses to helicopter operations
DOT National Transportation Integrated Search
1994-07-01
This report is the sixth in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Thirty-two helicopter pilots were studied before, during, and after 4- to ...
Shuttle operations era planning for flight operations
NASA Technical Reports Server (NTRS)
Holt, J. D.; Beckman, D. A.
1984-01-01
The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.
Analysis of the Quality of Parabolic Flight
NASA Technical Reports Server (NTRS)
Lambot, Thomas; Ord, Stephan F.
2016-01-01
Parabolic flight allows researchers to conduct several micro-gravity experiments, each with up to 20 seconds of micro-gravity, in the course of a single day. However, the quality of the flight environment can vary greatly over the course of a single parabola, thus affecting the experimental results. Researchers therefore require knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) has reviewed the acceleration data for over 400 parabolas and investigated the level of micro-gravity quality. It was discovered that a typical parabola can be segmented into multiple phases with different qualities and durations. The knowledge of the microgravity characteristics within the parabola will prove useful when planning an experiment.
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer
1997-01-01
The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
Orbiter Flying Qualities (OFQ) Workstation user's guide
NASA Technical Reports Server (NTRS)
Myers, Thomas T.; Parseghian, Zareh; Hogue, Jeffrey R.
1988-01-01
This project was devoted to the development of a software package, called the Orbiter Flying Qualities (OFQ) Workstation, for working with the OFQ Archives which are specially selected sets of space shuttle entry flight data relevant to flight control and flying qualities. The basic approach to creation of the workstation software was to federate and extend commercial software products to create a low cost package that operates on personal computers. Provision was made to link the workstation to large computers, but the OFQ Archive files were also converted to personal computer diskettes and can be stored on workstation hard disk drives. The primary element of the workstation developed in the project is the Interactive Data Handler (IDH) which allows the user to select data subsets from the archives and pass them to specialized analysis programs. The IDH was developed as an application in a relational database management system product. The specialized analysis programs linked to the workstation include a spreadsheet program, FREDA for spectral analysis, MFP for frequency domain system identification, and NIPIP for pilot-vehicle system parameter identification. The workstation also includes capability for ensemble analysis over groups of missions.
Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet
NASA Technical Reports Server (NTRS)
Holladay, Jon; McClendon, Randy (Technical Monitor)
2002-01-01
The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
14 CFR 135.99 - Composition of flight crew.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR 121.550 - Secret Service Agents: Admission to flight deck.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
DOT National Transportation Integrated Search
1994-11-01
This report is the second in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. This overview presents a comprehensive review and interpretation of the m...
NASA Technical Reports Server (NTRS)
Crane, D. F.
1984-01-01
When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.
Gas Emission Measurements from the RD 180 Rocket Engine
NASA Technical Reports Server (NTRS)
Ross, H. R.
2001-01-01
The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.
Journal of Air Transportation, Volume 12, No. 1
NASA Technical Reports Server (NTRS)
Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)
2007-01-01
Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.
1950-10-10
1947. 91 20. Salmi, Reino , J.: Effects of Leading-Edge Devices and Trailing- F,4,e Flaps on Longitudinal Characteristics of Two 47.70 Swept- back...in a similar manner, but the entire handling qualities specifications -re too numerous to allow dio - cussion in this paper. In order to illust-,ate the
NASA Astrophysics Data System (ADS)
Heitzman, Nicholas
There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
An evaluation of head-up displays in civil transport operations
NASA Technical Reports Server (NTRS)
Lauber, J. K.; Bray, R. S.; Scott, B. C.
1981-01-01
To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches.
Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)
NASA Technical Reports Server (NTRS)
Tow, David K.
2011-01-01
This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
14 CFR 121.542 - Flight crewmember duties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...
14 CFR 121.542 - Flight crewmember duties.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...
14 CFR 121.542 - Flight crewmember duties.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...
14 CFR 121.542 - Flight crewmember duties.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...
14 CFR 121.542 - Flight crewmember duties.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...
High-integrity databases for helicopter operations
NASA Astrophysics Data System (ADS)
Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg
2009-05-01
Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.
NASA Technical Reports Server (NTRS)
Decker, Ryan; Barbre, Robert E., Jr.
2011-01-01
Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.
NASA Technical Reports Server (NTRS)
Kelly, Mark W; Anderson, Seth B; Innis, Robert C
1958-01-01
A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying blowing-type boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effects of boundary-layer control on the handling qualities and operation of the airplane, particularly during landing and take-off. The wind-tunnel and flight tests indicated that blowing over the flaps produced large increases in flap lift increment, and significant increases in maximum lift. The use of blowing permitted reductions in the landing approach speeds of as much as 12 knots.
Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.
Expert systems and advanced automation for space missions operations
NASA Technical Reports Server (NTRS)
Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas
1990-01-01
Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.
NASA Technical Reports Server (NTRS)
Wieland, Paul O.
1998-01-01
Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.
NASA Technical Reports Server (NTRS)
1973-01-01
Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.
Forebody and Inlet Design for the HIFiRE 2 Flight Test
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.
2008-01-01
A forebody and inlet have been designed for the HIFiRE 2 scramjet flight test. The test will explore the operating, performance, and stability characteristics of a simple hydrocarbon-fueled scramjet combustor as it transitions from dual-mode to scramjet-mode operation and during supersonic combustion at Mach 8+ flight conditions. Requirements for the compression system were derived from inlet starting and combustor inflow requirements as well as physical size constraints. The design process is described. A planar, fixed geometry, mixed compression concept was used to produce laterally uniform flow at the inlet entrance and a conservative amount of internal contraction with respect to inlet starting. A grid sensitivity study was performed so that important flow physics caused by three-dimensional shock boundary layer interactions could be captured with confidence. Results from low Mach number operability studies, nominal trajectory cases, and high dynamic pressure heat load cases are discussed. The forebody and inlet solutions provide information for on-going combustor calculations, mass capture across the trajectory for fuel system design, and surface heating rates for thermal/structural analysis. The design has a one freestream Mach number margin for inlet starting, exceeds the high Mach number combustor entrance pressure requirement, produces high quality flow at the inlet exit for all Mach numbers and vehicle attitudes in the design space, and fits inside the booster shroud.
Gałazkowski, Robert
2010-01-01
In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come.
14 CFR 135.100 - Flight crewmember duties.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmember duties. 135.100 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...
14 CFR 135.100 - Flight crewmember duties.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmember duties. 135.100 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...
14 CFR 91.105 - Flight crewmembers at stations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 91.105 - Flight crewmembers at stations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 135.100 - Flight crewmember duties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmember duties. 135.100 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 91.105 - Flight crewmembers at stations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
NASA Technical Reports Server (NTRS)
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
Feeling Well Rested and Wide Awake When it Counts
NASA Technical Reports Server (NTRS)
2006-01-01
Responding to a congressional concern about aviation safety, NASA's Ames Research Center created the Ames Fatigue/Jet Lag Program in 1980 to examine the extent to which fatigue, sleep loss, and circadian disruption affect pilot performance. The program s primary research was conducted in field settings, as well as in a variety of aviation, controlled laboratory, and full-mission flight-simulation environments, to study fatigue factors and circadian disruption in short-haul, long-haul, military, cargo, and helicopter operations. In 1990, NASA changed the program s name to the Fatigue Countermeasures Group, to provide a greater emphasis on the development and evaluation of countermeasures that would mitigate the adverse effects of fatigue and maximize flight crew performance and alertness. The research conducted by this group at Ames included field studies of cockpit rest, quantity and quality of onboard sleep, and performance changes associated with long-haul flights.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G. H.; Innis, R. C.
1982-01-01
The essential features of using pitch attitude for glidepath control in conjunction with longitudinal thrust modulation for speed control are described, using a simple linearized model for a powered-lift STOL aircraft operating on the backside of the drag curve and at a fixed setting of propulsive lift. It is shown that an automatic speed-hold system incorporating heave-damping augmentation can allow use of the front-side control technique with satisfactory handling qualities, and the results of previous flight investigations are reviewed. Manual control considerations, as they might be involved following failure of the automatic system, are emphasized. The influence of alternative cockpit controller configurations and flight-director display features were assessed for their effect on the control task, which consisted of a straight-in steep approach flown at constant speed in simulated instrument conditions.
JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion
NASA Technical Reports Server (NTRS)
Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan
1990-01-01
As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik
2004-01-01
Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.
NASA Technical Reports Server (NTRS)
James, John T.; Limero, Tom; Beck, Steve; Martin, Millie; Covington, Phillip; Boyd, John; Peters, Randy
2003-01-01
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples returned from ISS on flights 8A, UF2, 9A, and 11A were analyzed for trace pollutants. On average, the air during this period of operations was safe for human respiration. However, about 3 hours into the regeneration of 2 Metox canisters in the U.S. airlock on 20 February 2002 the crew reported an intolerable odor that caused them to stop the regeneration, take refuge in the Russian segment, and scrub air in the U.S. segment for 30 hours. Analytical data from grab samples taken during the incident showed that the pollutants released were characteristic of nominal air pollutants, but were present in much higher concentrations. The odors reported by the crew were due to relatively high concentrations of n-butanol, and possibly other pollutants in the mixture. Later data taken during regeneration of Metox canisters that had not been subject to long-term flows showed minimal effects on air quality. Long-term trending data suggest that a disruption in atmospheric mixing between the Service Module and the U.S. Laboratory has occurred and that formaldehyde concentrations are gradually increasing in the U.S. Laboratory. Trending data also show that the releases of octafluoropropane (OFP) have subsided.
14 CFR 91.883 - Special flight authorizations for jet airplanes weighing 75,000 pounds or less.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special flight authorizations for jet... OPERATING AND FLIGHT RULES Operating Noise Limits § 91.883 Special flight authorizations for jet airplanes weighing 75,000 pounds or less. (a) After December 31, 2015, an operator of a jet airplane weighing 75,000...
Impact of flying qualities on mission effectiveness for helicopter air combat
NASA Technical Reports Server (NTRS)
Harris, T. M.; Beerman, D. A.; Bivens, C. C.
1984-01-01
Battlefield nap-of-the-earth (NOE) helicopter operations are vital for a use of the helicopter in a high-threat environment. As the pilot's workload in this flight regime is very high, the helicopter's handling qualities become an important factor. The present investigation is concerned with overall mission effectiveness, flying qualities, and their interaction with other parameters. A description is presented of a study which generated a significant amount of date relating the importance of flying qualities to the ability to perform several specific mission tasks. It was found that flying qualities do have a major impact on the ability to perform a specific mission. The impact of flying qualities on Scout helicopter mission effectiveness is mainly related to the probability of being detected. The flying qualities effect most critical to the Scout mission was found to be precision of hover control.
STS-3 FLIGHT DAY 1 ACTIVITIES - MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC
1982-03-22
MOCR during Flight Day 1 of the STS-3 Mission. View: Thomas L. Moser, of the Structures and Mechanics Division, briefing Flight Director Eugene Kranz, Flight Operations, and Dr. Kraft, JSC Director. JSC, HOUSTON, TX
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 121.135 - Manual contents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight control or flight following procedures, as applicable. (5) En route flight, navigation, and... of equipment required for the particular type of operation becomes inoperative or unserviceable en route. (6) For domestic or flag operations, appropriate information from the en route operations...
NASA Technical Reports Server (NTRS)
Olson, E. M.
1986-01-01
Presently, there are many difficulties associated with implementing application specific custom or semi-custom (standard cell based) integrated circuits (ICs) into JPL flight projects. One of the primary difficulties is developing prototype semi-custom integrated circuits for use and evaluation in engineering prototype flight hardware. The prototype semi-custom ICs must be extremely cost-effective and yet still representative of flight qualifiable versions of the design. A second difficulty is encountered in the transport of the design from engineering prototype quality to flight quality. Normally, flight quality integrated circuits have stringent quality standards, must be radiation resistant and should consume minimal power. It is often not necessary or cost effective, however, to impose such stringent quality standards on engineering models developed for systems analysis in controlled lab environments. This article presents work originally initiated for ground based applications that also addresses these two problems. Furthermore, this article suggests a method that has been shown successful in prototyping flight quality semi-custom ICs through the Metal Oxide Semiconductor Implementation Service (MOSIS) program run by the University of Southern California's Information Sciences Institute. The method has been used successfully to design and fabricate through the MOSIS three different semi-custom prototype CMOS p-well chips. The three designs make use of the work presented and were designed consistent with design techniques and structures that are flight qualifiable, allowing one hour transfer of the design from engineering model status to flight qualifiable foundry-ready status through methods outlined in this article.
Hygienic support of the ISS air quality (main achievements and prospects)
NASA Astrophysics Data System (ADS)
Moukhamedieva, Lana; Tsarkov, Dmitriy; Pakhomova, Anna
Hygienic preventive measures during pre-flight processing of manned spaceships, selection of polymeric materials, sanitary-hygienic evaluation of cargo and scientific hardware to be used on the ISS and life support systems allow to maintain air quality in limits of regulatory requirements. However, graduate increase of total air contamination by harmful chemicals is observed as service life of the ISS gets longer. It is caused by polymeric materials used on the station overall quantity rise, by additional contamination brought by cargo spacecrafts and modules docking to the ISS and by the cargo. At the same time the range of contaminants that are typical for off-gassing from polymeric materials where modern stabilizers, plasticizers, flame retarders and other additives are used gets wider. In resolving the matters of the ISS service life extension the main question of hygienic researches is to determine real safe operation life of the polymeric material used in structures and hardware of the station, including: begin{itemize} research of polymers degradation (ageing) and its effect on intensity of off gassing and its toxicity; begin{itemize} introduction of polymers with minimal volatile organic compounds off gassing under conditions of space flight and thermal-oxidative degradation. In order to ensure human safety during long-term flight it is important to develop: begin{itemize} real-time air quality monitoring systems, including on-line analysis of highly toxic contaminants evolving during thermo-oxidative degradation of polymer materials and during blowouts of toxic contaminants; begin{itemize} hygienic standards of contaminants level for extended duration of flight up to 3 years. It is essential to develop an automated control system for on-line monitoring of toxicological status and to develop hygienic and engineer measures of its management in order to ensure crew members safety during off-nominal situation.
Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project
NASA Technical Reports Server (NTRS)
Macatangay, Ariel
2014-01-01
A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.
NASA Astrophysics Data System (ADS)
Squibb, Gael F.
1984-10-01
The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.
Casto, Kristen L; Casali, John G
2013-06-01
This study was designed to determine the effects of hearing loss, aviation headset type, flight workload complexity, and communication signal quality on pilots' performance in an army rotary-wing flight simulator. To maintain flight status, army aviators who do not meet current audiometric standards require a hearing loss waiver, which is based on speech intelligibility in quiet conditions. Because hearing loss characteristics of hearing-impaired aviators can vary greatly, and because performance is likely also influenced by degree of flight workload and communication demand, it was expected that performance among hearing-impaired aviators would also vary. Participants were 20 army helicopter pilots. Pilots flew three flights in a full motion-based helicopter simulator,with a different headset configuration and varying flight workload levels and communication signal quality characterizing each flight. Objective flight performance parameters of heading, altitude, and airspeed deviation and air traffic control command read-backs were measured. Statistically significant results suggest that high levels of flight workload, especially in combination with poor communications signal quality, lead to deficits in flight performance and speech intelligibility. These results support a conclusion that factors other than hearing thresholds and speech intelligibility in quiet should be considered when evaluating helicopter pilots' flight safety. The results also support a recommendation that hearing-impaired pilots use assistive communication technology and not fly with strictly passive headsets. The combined effects of flight environment with individual hearing levels should be considered when making recommendations concerning continued aviation flight status and those concerning communications headsets used in high-noise cockpits.
Alertness management in two-person long-haul flight operations
NASA Technical Reports Server (NTRS)
Rosekind, M. R.; Gander, P. H.
1992-01-01
Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.
14 CFR 23.1459 - Flight data recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight data recorders. 23.1459 Section 23... Equipment § 23.1459 Flight data recorders. (a) Each flight recorder required by the operating rules of this... electrical power from the bus that provides the maximum reliability for operation of the flight data recorder...
14 CFR 23.1459 - Flight data recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight data recorders. 23.1459 Section 23... Equipment § 23.1459 Flight data recorders. (a) Each flight recorder required by the operating rules of this... electrical power from the bus that provides the maximum reliability for operation of the flight data recorder...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominick, F.; Lockwood, R.A.
1986-07-01
The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less
NASA Technical Reports Server (NTRS)
Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter
1998-01-01
During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
2011-04-01
Elaine M. Pfleiderer Thomas R. Chidester Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 April 2011 Final...Aerospace Medical Institute’s publications Web site: www.faa.gov/library/reports/ medical /oamtechreports i Technical Report Documentation Page 1. Report...Work Unit No. (TRAIS) FAA Civil Aerospace Medical Institute P.O. Box 25082 11. Contract or Grant No. Oklahoma City, OK 73125
Code of Federal Regulations, 2014 CFR
2014-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Code of Federal Regulations, 2011 CFR
2011-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Code of Federal Regulations, 2013 CFR
2013-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Code of Federal Regulations, 2012 CFR
2012-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
LANDSAT-D flight segment operations manual. Appendix B: OBC software operations
NASA Technical Reports Server (NTRS)
Talipsky, R.
1981-01-01
The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.
Enhancing the usability of CRT displays in test flight monitoring
NASA Astrophysics Data System (ADS)
Granaas, Michael M.; Sredinski, Victoria E.
1991-01-01
Enhancing the usability of Mission Control Center (MCC) CRT displays stands to improve the quality, productivity, and safety of flight-test research at the NASA Ames-Dryden Flight Research Facility. The results of this research suggests that much can be done to assist the user and improve the quality of flight research through the enhancement of current displays. This research has applications to a variety of flight data monitoring displays.
X-33 Ascent Flight Controller Design by Trajectory Linearization: A Singular Perturbational Approach
NASA Technical Reports Server (NTRS)
Zhu, J. Jim; Banker, Brad D.; Hall, Charles E.
2000-01-01
The flight control of X-33 poses a challenge to conventional gain-scheduled flight controllers due to its large attitude maneuvers from liftoff to orbit and reentry. In addition, a wide range of uncertainties in vehicle handling qualities and disturbances must be accommodated by the attitude control system. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point on the flight trajectory. Therefore it provides robust stability and performance at all stages of flight without interpolation of controller gains and eliminates costly controller redesigns due to minor airframe alteration or mission reconfiguration. In this paper, a prototype trajectory linearization design for an X-33 ascent flight controller is presented along with 3-DOF and 6-DOF simulation results. It is noted that the 6-DOF results were obtained from the 3-DOF design with only a few hours of tuning, which demonstrates the inherent robustness of the design technique. It is this "plug-and-play" feature that is much needed by NASA for the development, test and routine operations of the RLV'S. Plans for further research are also presented, and refined 6-DOF simulation results will be presented in the final version of the paper.
Effective Training for Flight in Icing Conditions
NASA Technical Reports Server (NTRS)
Barnhart, Billy P.; Ratvasky, Thomas P.
2007-01-01
The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstrations.
Demonstration of an Ice Contamination Effects Flight Training Device
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Ranaudo, Richard J.; Blankenship, Kurt S.; Lee, Sam
2006-01-01
The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstrations
Opals: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS
NASA Technical Reports Server (NTRS)
Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.
2014-01-01
In April of 2014, the Optical PAyload for Lasercomm Science (OPALS) Flight System (FS) launched to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a planned 90-day baseline mission, the OPALS FS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) ground station in Wrightwood, California. Interfaces to the ISS payload operations infrastructure have been established to facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes, such as pointing prediction and data processing, satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The ORTs have provided valuable insight into operational considerations for the instrument on the ISS.
NASA's Microgravity Science Program
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.
Code of Federal Regulations, 2011 CFR
2011-04-01
... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...
Code of Federal Regulations, 2012 CFR
2012-04-01
... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...
Code of Federal Regulations, 2010 CFR
2010-04-01
... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...
Code of Federal Regulations, 2014 CFR
2014-04-01
... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...
Code of Federal Regulations, 2013 CFR
2013-04-01
... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...
Space transportation system biomedical operations support study
NASA Technical Reports Server (NTRS)
White, S. C.
1983-01-01
The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.
The Wide-Field Imaging Interferometry Testbed: Recent Progress
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.
Flared landing approach flying qualities. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Weingarten, Norman C.; Berthe, Charles J., Jr.; Rynaski, Edmund G.; Sarrafian, Shahan K.
1986-01-01
An in-flight research study was conducted utilizing the USAF/Total In-Flight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. A consistent set of data were generated for: determining what kind of command response the pilot prefers/requires in order to flare and land an aircraft with precision, and refining a time history criterion that took into account all the necessary variables and the characteristics that would accurately predict flying qualities. Seven evaluation pilots participated representing NASA Langley, NASA Dryden, Calspan, Boeing, Lockheed, and DFVLR (Braunschweig, Germany). The results of the first part of the study provide guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots prefer in flared landings. The results of the second part provide the flying qualities engineer with a derived flying qualities predictive tool which appears to be highly accurate. This time-domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1%, 60% of the time.
Quiet Short-Haul Research Airplane (QSRA) model select panel functional description
NASA Technical Reports Server (NTRS)
Watson, D. M.
1982-01-01
The QSRA, when equipped with programmable color cathode ray tube displays, a head up display, a general purpose digital computer and a microwave landing system receiver, will provide a capability to do handling qualities studies and terminal area operating systems experiments as well as to enhance an experimenter's ability to obtain repeatable aircraft performance data. The operating systems experiments include the capability to generate minimum fuel approach and departure paths and to conduct precision approaches to a STOLport runway. The mode select panel is designed to provide both the flexibility needed for a variety of flight test experiments and the minimum workload operation required by pilots flying into congested terminal traffic areas.
14 CFR 133.41 - Flight characteristics requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight characteristics requirements. 133.41... EXTERNAL-LOAD OPERATIONS Airworthiness Requirements § 133.41 Flight characteristics requirements. (a) The applicant must demonstrate to the Administrator, by performing the operational flight checks prescribed in...
14 CFR 133.41 - Flight characteristics requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight characteristics requirements. 133.41... EXTERNAL-LOAD OPERATIONS Airworthiness Requirements § 133.41 Flight characteristics requirements. (a) The applicant must demonstrate to the Administrator, by performing the operational flight checks prescribed in...
14 CFR 133.41 - Flight characteristics requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight characteristics requirements. 133.41... EXTERNAL-LOAD OPERATIONS Airworthiness Requirements § 133.41 Flight characteristics requirements. (a) The applicant must demonstrate to the Administrator, by performing the operational flight checks prescribed in...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
14 CFR 91.1025 - Program operating manual contents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...
32 CFR 707.11 - Flight operations lights.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Flight operations lights. 707.11 Section 707.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY NAVIGATION SPECIAL RULES WITH... in night flight operations may display various arrangements of light systems containing combinations...
Trace Gases and Aerosol Optical Properties Over the US Mid-Atlantic During Summer 2001
NASA Astrophysics Data System (ADS)
Doddridge, B. G.; Piety, C. A.
2001-12-01
Anthropogenic emissions from rapid urban sprawl, commuter/commercial traffic and industrialization along the East Coast of the United States have a profound effect on urban and regional air quality. During summer 2001 we used a light aircraft research platform operated from North Carolina northward through Pennsylvania measuring meteorological scalars, selected trace gases and aerosol optical properties on selected pollution episode days. The goal of this research is to gain an improved understanding of the sources, sinks, transport and photochemical transformations controlling the observed abundance of photochemical oxidants and fine particulate haze over the U.S. Mid-Atlantic region. The aircraft research capabilities will be described, over 60 research flights totaling in excess of 160 flight hours summarized, and key findings presented. Although westerly transport of remnant ozone and haze along with precursors can make substantial contributions to observed urban corridor air quality aloft, significant production downwind of the urban center often can occur within the planetary boundary layer during the afternoon hours.
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.
2000-01-01
Corporate flight crews face unique challenges including unscheduled flights, quickly changing schedules, extended duty days, long waits, time zone changes, and peripheral tasks. Most corporate operations are regulated by Part 91 FARs which set no flight or duty time limits. The objective of this study was to identify operationally significant factors that may influence fatigue, alertness, and performance in corporate operations. In collaboration with the National Business Aircraft Association and the Flight Safety Foundation, NASA developed and distributed a retrospective survey comprising 107 questions addressing demographics, home sleep habits, flight experience, duty schedules, fatigue during operations, and work environment. Corporate crewmembers returned 1,488 surveys. Respondents averaged 45.2 years of age, had 14.9 years of corporate flying experience, and 9,750 total flight hours. The majority (89%) rated themselves as 'good' or 'very good' sleepers at home. Most (82%) indicated they are subject to call for duty and described an average duty day of 9.9 h. About two-thirds reported having a daily duty time limit and over half (57%) reported a daily flight time limit. Nearly three-quarters (71%) acknowledged having 'nodded off' during a flight. Only 21% reported that their flight departments offer training on fatigue issues. Almost three-quarters (74%) described fatigue as a 'moderate' or 'serious' concern, and a majority (61%) characterized it as a common occurrence. Most (85%) identified fatigue as a 'moderate' or 'serious' safety issue.
Telemetry Tracking and Control Through Commercial LEO Satellites
NASA Technical Reports Server (NTRS)
Streich, Ronald C.; Morgan, Dwayne R.; Bull, Barton B.; Grant, Charles E.; Powers, Edward I. (Technical Monitor)
2001-01-01
Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF in Virginia have successfully tested commercial LEO communications satellites for sounding rocket, balloon and aircraft flight TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Ground tests of the Flight Modem verified duplex communications quality of service and measured transmission latencies. These tests were completed last year and results reported in the John Hopkins University (JHU) Applied Physics Laboratory (APL) 4th International Symposium on Reducing Spacecraft Costs for Ground Systems and Operations. The second phase of the Flight Modem baseline test program was a demonstration of the ruggedized version of the WFF Flight Modem flown on a sounding rocket launched it the Swedish rocket range (Esrangc) near Kiruna, Sweden, with results contained in this paper. Aircraft flight tests have been and continue to be conducted. Flights of opportunity are being actively pursued with other centers, ranges and users at universities. The WFF Flight Modem contains a CPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture, which integrates antennas, CPS receiver, commercial satellite packet data modem and a single board computer with custom software, is described. Small satellite use of the WFF Flight Modem is also being investigated, The Flight Modem provides an independent vehicle position source for Range Safety applications. The LEO communication system contains a coarse position location system, which is compared to GPS ace acy. This comparison allows users, to determine the need for a CPS receiver in addition to the satellite packet data modem for their application.
Summary of the effects of engine throttle response on airplane formation-flying qualities
NASA Technical Reports Server (NTRS)
Walsh, Kevin R.
1992-01-01
A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.
14 CFR 91.1059 - Flight time limitations and rest requirements: One or two pilot crews.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Rest 10 Hours 12 Hours. (6) Minimum After Duty Rest Period for Multi-Time Zone Flights 14 Hours 18... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight time limitations and rest... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1059 Flight time...
NASA Technical Reports Server (NTRS)
Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace
2012-01-01
The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.
14 CFR 135.79 - Flight locating requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight locating requirements. 135.79... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.79 Flight locating requirements. (a) Each certificate holder must have procedures...
14 CFR 91.533 - Flight attendant requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...
14 CFR 135.79 - Flight locating requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight locating requirements. 135.79... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.79 Flight locating requirements. (a) Each certificate holder must have procedures...
14 CFR 91.529 - Flight engineer requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...
14 CFR 91.533 - Flight attendant requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...
14 CFR 135.79 - Flight locating requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight locating requirements. 135.79... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.79 Flight locating requirements. (a) Each certificate holder must have procedures...
14 CFR 91.529 - Flight engineer requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
Aerospace safety advisory panel
NASA Technical Reports Server (NTRS)
1983-01-01
Data acquired on the actual flight experience with the various subsystems are assessed. These subsystems include: flight control and performance, structural integrity, orbiter landing gear, lithium batteries, EVA and prebreathing, and main engines. Improvements for routine operations are recommended. Policy issues for operations and flight safety for aircraft operations are discussed.
NASA Technical Reports Server (NTRS)
James, John T.
2004-01-01
The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.
NASA Technical Reports Server (NTRS)
1976-01-01
Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.
NASA Technical Reports Server (NTRS)
Neal, Bradford; Sengupta, Upal
1989-01-01
During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.
Automated Aerial Refueling Hitches a Ride on AFF
NASA Technical Reports Server (NTRS)
Hansen, Jennifer L.; Murray, James E.; Bever, Glenn; Campos, Norma V.; Schkolnik, Gerard
2007-01-01
The recent introduction of uninhabited aerial vehicles [UAVs (basically, remotely piloted or autonomous aircraft)] has spawned new developments in autonomous operation and posed new challenges. Automated aerial refueling (AAR) is a capability that will enable UAVs to travel greater distances and loiter longer over targets. NASA Dryden Flight Research Center, in cooperation with the Defense Advanced Research Projects Agency (DARPA), the Naval Air Systems Command (NAVAIR), the Naval Air Force Pacific Fleet, and the Air Force Research Laboratory, rapidly conceived and accomplished an AAR flight research project focused on collecting a unique, high-quality database on the dynamics of the hose and drogue of an aerial refueling system. This flight-derived database would be used to validate mathematical models of the dynamics in support of design and analysis of AAR systems for future UAVs. The project involved the use of two Dryden F/A-18 airplanes and an S-3 hose-drogue refueling store on loan from the Navy. In this year-long project, which was started on October 1, 2002, 583 research maneuvers were completed during 23 flights.
Flight Operations . [Zero Knowledge to Mission Complete
NASA Technical Reports Server (NTRS)
Forest, Greg; Apyan, Alex; Hillin, Andrew
2016-01-01
Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.
14 CFR 121.533 - Responsibility for operational control: Domestic operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...
14 CFR 121.533 - Responsibility for operational control: Domestic operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...
14 CFR 121.533 - Responsibility for operational control: Domestic operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...
14 CFR 121.533 - Responsibility for operational control: Domestic operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...
14 CFR 121.533 - Responsibility for operational control: Domestic operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...
Initial flight qualification and operational maintenance of X-29A flight software
NASA Technical Reports Server (NTRS)
Earls, Michael R.; Sitz, Joel R.
1989-01-01
A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Drury, Douglas W; Whitesell, Matthew E; Wade, Michael J
2016-03-01
We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution.
An overview of European space transportation systems
NASA Technical Reports Server (NTRS)
Lo, R. E.
1985-01-01
With the completion of the launch rocket series Ariane 1 to 4, Europe will have reached the same capacity to transport commercial payloads as the USA has with the Space Shuttle and the kick stages which are presently operative. The near term development of these capacities would require Europe to develop a larger launch rocket, Araine 5. Further motivations for this rocket are access to manned spaceflight, the development of an European space station, and the demand for shuttle technology. Shuttle technology is the subject of research being done in France on the winged re-entry vehicle Hermes. Operation of the European space station Columbus will require development of an interorbital transport system to facilitate traffic between the various segments of the space station. All European space transportation systems will have to match their quality to that of the other countries involve in space flight. All areas of development are marked not only by possible cooperation but also by increased competition because of increasing commercialization of space flight.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1989-01-01
This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.
Investigation of the misfueling of reciprocating piston aircraft engines
NASA Technical Reports Server (NTRS)
Scott, J. Holland, Jr.
1988-01-01
The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.
Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.
2007-01-01
A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 91.515 - Flight altitude rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight altitude rules. 91.515 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.515 Flight altitude rules. (a...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
Code of Federal Regulations, 2010 CFR
2010-10-01
... telecommand operations for flight testing of aircraft and missiles, or their major components. The bands 2310... expendable and re-usable launch vehicles, whether or not such operations involve flight testing: 2364.5, 2370... Flight Test Stations § 87.303 Frequencies. (a) These frequencies are available for assignment to flight...
14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...
14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...
14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...
14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...
14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...
14 CFR 375.50 - Transit flights; scheduled international air service operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...
14 CFR 375.50 - Transit flights; scheduled international air service operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...
14 CFR 375.50 - Transit flights; scheduled international air service operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...
14 CFR 375.50 - Transit flights; scheduled international air service operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...
14 CFR 375.50 - Transit flights; scheduled international air service operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...
78 FR 15876 - Activation of Ice Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (2) Visual cues... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (3) If the... operating rules for flight in icing conditions. This document corrects an error in the amendatory language...
14 CFR 10 - Functional Classification-Operating Expenses of Group I Air Carriers
Code of Federal Regulations, 2012 CFR
2012-01-01
... shall include expenses incurred directly in the in-flight operation of aircraft and expenses attaching...-flight status. (b) This function shall not include expenses incurred in repairing, servicing or storing... aircraft or aircraft operational personnel for flight assignment. Such expenses shall be included in...
NASA Technical Reports Server (NTRS)
Sarpkaya, Turgut
2006-01-01
The reduction of the separation of the leading and following aircrafts is desirable to enhance the airport capacity provided that there is a physics-based operational model applicable to all regions of the flight domain (out of ground effect, OGE; near ground effect, NGE; and in ground effect, IGE) and that the quality of the quantitative input from the measurements of the prevailing atmospheric conditions and the quality of the total airport operations regarding the safety and the sound interpretation of the prevailing conditions match the quality of the analysis and numerical simulations. In the absence of an analytical solution, the physics of the flow is best expressed by a mathematical model based on numerical simulations, field and laboratory experiments, and heuristic reasoning. This report deals with the creation of a sound physics-based real-time IGE model of the aircraft wake vortices subjected to crosswind, stratification and shear.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
The flight planning - flight management connection
NASA Technical Reports Server (NTRS)
Sorensen, J. A.
1984-01-01
Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.
1983-01-01
SUPERSONIC FLIGHT OPERATIONS ’• I • IN THE RESERVE MILITARY OPERATIONS AREA . HOLLOMAN AFB, NE MEXICO ~~DEPARTMENT OF THE AIR FORCE I Environme nta IImpac...Force (b) Proposed Action: Supersonic Flight Operations in the Reserve Mill ary Operations Area in Catron County, New Mexico . (c) Responsible...Abstract: The 49th Tactical Fighter Wing (TFW) at Holloman AFB, New Mexico , proposes to fly approximately 200 supersonic sorties per month in the Reserve
1997-02-25
Bob Cummings, a technician at NASA's Dryden Flight Research Center, Edwards, California, checks out a new "Smart Skin" antenna mounted on the tip of the right vertical fin of Dryden's F/A-18 Systems Research Aircraft. Flight tests of the antenna system demonstrated a five-fold increase in voice communications range and a substantial improvement in the pattern of radiation and quality of transmission compared to the standard dorsal blade antenna on the aircraft. The Smart Skin antenna system was electrically as well as physically connected to the airframe, making the aircraft skin operate as an antenna along with the antenna itself. The concept was developed by TRW Avionics Systems Division and integrated into the F/A-18's vertical fin by Northrop-Grumman Corporation.
A translational velocity command system for VTOL low speed flight
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1982-01-01
A translational velocity flight controller, suitable for very low speed maneuvering, is described and its application to a large class of VTOL aircraft from jet lift to propeller driven types is analyzed. Estimates for the more critical lateral axis lead to the conclusion that the controller would provide a jet lift (high disk loading) VTOL aircraft with satisfactory "hands off" station keeping in operational conditions more stringent than any specified in current or projected requirements. It also seems likely that ducted fan or propeller driven (low disk loading) VTOL aircraft would have acceptable hovering handling qualities even in high turbulence, although in these conditions pilot intervention to maintain satisfactory station keeping would probably be required for landing in restricted areas.
NASA Technical Reports Server (NTRS)
Cook, Woodrow L; Anderson, Seth B; Cooper, George E
1958-01-01
A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying area-suction boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effect of boundary-layer control in the handling qualities and operation of the airplane, particularly during landing. The wind-tunnel and flight tests indicated that area suction applied to the trailing-edge flaps produced significant increases in flap lift increment. Although the flap boundary-layer control reduced the stall speed only slightly, a reduction in minimum comfortable approach speed of about 12 knots was obtained.
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
This paper describes some novel flight tests and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays. The resulting open-loop and closed-loop frequency responses and the time history comparison using flight and linear simulation data are discussed.
ISS Potable Water Quality for Expeditions 26 through 30
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2012-01-01
International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 117.11 - Flight time limitation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitation. 117.11 Section 117...) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS FLIGHT AND DUTY LIMITATIONS AND REST REQUIREMENTS: FLIGHTCREW MEMBERS (EFF. 1-4-14) § 117.11 Flight time limitation. (a) No...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 117.19 - Flight duty period extensions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight duty period extensions. 117.19... (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS FLIGHT AND DUTY LIMITATIONS AND REST REQUIREMENTS: FLIGHTCREW MEMBERS (EFF. 1-4-14) § 117.19 Flight duty period extensions. (a...
DOT National Transportation Integrated Search
1995-01-01
Prepared ca. 1995. This paper describes Air-MIDAS, a model of pilot performance in interaction with varied levels of automation in flight management operations. The model was used to predict the performance of a two person flight crew responding to c...
Code of Federal Regulations, 2010 CFR
2010-01-01
... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds or...
14 CFR 135.100 - Flight crewmember duties.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operation of the aircraft. Duties such as company required calls made for such nonsafety related purposes as... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmember duties. 135.100 Section... Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...
14 CFR 121.689 - Flight release form: Supplemental operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight release form: Supplemental operations. 121.689 Section 121.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather...
14 CFR 121.689 - Flight release form: Supplemental operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight release form: Supplemental operations. 121.689 Section 121.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather...
14 CFR 121.689 - Flight release form: Supplemental operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight release form: Supplemental operations. 121.689 Section 121.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather...
14 CFR 121.689 - Flight release form: Supplemental operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight release form: Supplemental operations. 121.689 Section 121.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather...
14 CFR 121.689 - Flight release form: Supplemental operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight release form: Supplemental operations. 121.689 Section 121.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2014 CFR
2014-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin
2011-01-01
The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed.
Views of the mission control center during STS-9
NASA Technical Reports Server (NTRS)
1983-01-01
Busy moment in the customer management room (CMR) of JSC's mission control center during Spacelab 1 day 2. Three personnel from the European Space Agency (ESA) huddle around a console along with Ralph Hoodless (seated at left), of the George C. Marshall Space Flight Center. Others pictured are Lars Tedeman and Hildegard Binck (standing); and Frank Longhurst (seated right). Tedeman is with ESA's quality control division and Longhurst is Spacelab operations manager.
Conceptual Design of a Tiltrotor Transport Flight Deck
NASA Technical Reports Server (NTRS)
Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Control of Technology Transfer at JPL
NASA Technical Reports Server (NTRS)
Oliver, Ronald
2006-01-01
Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software
WFIRST: STScI Science Operations Center (SSOC) Activities and Plans
NASA Astrophysics Data System (ADS)
Gilbert, Karoline M.; STScI WFIRST Team
2018-01-01
The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.
AIRSAR Web-Based Data Processing
NASA Technical Reports Server (NTRS)
Chu, Anhua; Van Zyl, Jakob; Kim, Yunjin; Hensley, Scott; Lou, Yunling; Madsen, Soren; Chapman, Bruce; Imel, David; Durden, Stephen; Tung, Wayne
2007-01-01
The AIRSAR automated, Web-based data processing and distribution system is an integrated, end-to-end synthetic aperture radar (SAR) processing system. Designed to function under limited resources and rigorous demands, AIRSAR eliminates operational errors and provides for paperless archiving. Also, it provides a yearly tune-up of the processor on flight missions, as well as quality assurance with new radar modes and anomalous data compensation. The software fully integrates a Web-based SAR data-user request subsystem, a data processing system to automatically generate co-registered multi-frequency images from both polarimetric and interferometric data collection modes in 80/40/20 MHz bandwidth, an automated verification quality assurance subsystem, and an automatic data distribution system for use in the remote-sensor community. Features include Survey Automation Processing in which the software can automatically generate a quick-look image from an entire 90-GB SAR raw data 32-MB/s tape overnight without operator intervention. Also, the software allows product ordering and distribution via a Web-based user request system. To make AIRSAR more user friendly, it has been designed to let users search by entering the desired mission flight line (Missions Searching), or to search for any mission flight line by entering the desired latitude and longitude (Map Searching). For precision image automation processing, the software generates the products according to each data processing request stored in the database via a Queue management system. Users are able to have automatic generation of coregistered multi-frequency images as the software generates polarimetric and/or interferometric SAR data processing in ground and/or slant projection according to user processing requests for one of the 12 radar modes.
NASA Astrophysics Data System (ADS)
Santoni, G. W.; Daube, B. C.; Kort, E. A.; Jiménez, R.; Park, S.; Pittman, J. V.; Gottlieb, E.; Xiang, B.; Zahniser, M. S.; Nelson, D. D.; McManus, J. B.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Andrews, A. E.; Sweeney, C.; Hall, B.; Hintsa, E. J.; Moore, F. L.; Elkins, J. W.; Hurst, D. F.; Stephens, B. B.; Bent, J.; Wofsy, S. C.
2014-06-01
We present an evaluation of aircraft observations of the carbon and greenhouse gases CO2, CH4, N2O, and CO using a direct-absorption pulsed quantum cascade laser spectrometer (QCLS) operated during the HIPPO and CalNex airborne experiments. The QCLS made continuous 1 Hz measurements with 1σ Allan precisions of 20, 0.5, 0.09, and 0.15 ppb for CO2, CH4, N2O, and CO, respectively, over > 500 flight hours on 79 research flights. The QCLS measurements are compared to two vacuum ultraviolet (VUV) CO instruments (CalNex and HIPPO), a cavity ring-down spectrometer (CRDS) measuring CO2 and CH4 (CalNex), two broadband non-dispersive infrared (NDIR) spectrometers measuring CO2 (HIPPO), two onboard gas chromatographs measuring a variety of chemical species including CH4, N2O, and CO (HIPPO), and various flask-based measurements of all four species. QCLS measurements are tied to NOAA and WMO standards using an in-flight calibration system, and mean differences when compared to NOAA CCG flask data over the 59 HIPPO research flights were 100, 1, 1, and 2 ppb for CO2, CH4, N2O, and CO, respectively. The details of the end-to-end calibration procedures and the data quality assurance and quality control (QA/QC) are presented. Specifically, we discuss our practices for the traceability of standards given uncertainties in calibration cylinders, isotopic and surface effects for the long-lived greenhouse gas tracers, interpolation techniques for in-flight calibrations, and the effects of instrument linearity on retrieved mole fractions.
ERIC Educational Resources Information Center
Boyne, Matthew
2013-01-01
Commercial flight operational safety has dramatically improved in the last 30 years because of enhanced crew coordination, communication, leadership and team development. Technology insertion into cockpit operations, however, has been shown to create crew distractions, resulting in flight safety risks, limited use given policy limitations and…
Initial Concept of Operations for Full Management by Trajectory
NASA Technical Reports Server (NTRS)
Fernandes, Alicia D.; Atkins, Steve; Leiden, Ken; Kaler, Curt; Evans, Mark; Bell, Alan; Kilbourne, Todd; Jackson, Michael
2017-01-01
This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which flights are assigned four-dimensional trajectories (4DTs) through a negotiation process between the Federal Aviation Administration (FAA) and flight operators that respects the flight operator's goals while complying with National Airspace System (NAS) constraints.
14 CFR 91.715 - Special flight authorizations for foreign civil aircraft.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RULES Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United... required under § 91.203 if a special flight authorization for that operation is issued under this section... which the airshow is located. (b) The Administrator may issue a special flight authorization for a...
Nickel-Cadmium Battery Operation Management Optimization Using Robust Design
NASA Technical Reports Server (NTRS)
Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador
1996-01-01
In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.
14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight
Code of Federal Regulations, 2014 CFR
2014-01-01
... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...
14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight
Code of Federal Regulations, 2013 CFR
2013-01-01
... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...