Sample records for flight operations lights

  1. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...

  2. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...

  3. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...

  4. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing combinations...

  5. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Flight operations lights. 707.11 Section 707.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY NAVIGATION SPECIAL RULES WITH... in night flight operations may display various arrangements of light systems containing combinations...

  6. 14 CFR 91.125 - ATC light signals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.125 ATC light signals. ATC light signals have the meaning shown in the following table: Color and type of signal Meaning... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false ATC light signals. 91.125 Section 91.125...

  7. 14 CFR 91.125 - ATC light signals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false ATC light signals. 91.125 Section 91.125... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.125 ATC light signals. ATC light signals have the meaning shown in the following table: Color and type of signal Meaning...

  8. 14 CFR 91.125 - ATC light signals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false ATC light signals. 91.125 Section 91.125... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.125 ATC light signals. ATC light signals have the meaning shown in the following table: Color and type of signal Meaning...

  9. 14 CFR 91.125 - ATC light signals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false ATC light signals. 91.125 Section 91.125... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.125 ATC light signals. ATC light signals have the meaning shown in the following table: Color and type of signal Meaning...

  10. 14 CFR 91.125 - ATC light signals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false ATC light signals. 91.125 Section 91.125... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.125 ATC light signals. ATC light signals have the meaning shown in the following table: Color and type of signal Meaning...

  11. Astronaut operations requirements document for the White Light Coronagraph experiment s-052 for the Apollo Telescope Mount

    NASA Technical Reports Server (NTRS)

    Ross, C. L.

    1973-01-01

    Information necessary for successful performance of the observer's function in the White Light Coronagraph portion of the Apollo Telescope Mount experiments is presented. The pre-flight, in-flight, and post-flight operations required to perform the S-052 experiment are described. A discussion of the scientific objectives of the experiment and a description of the hardware are provided.

  12. Navigation Operational Concept,

    DTIC Science & Technology

    1991-08-01

    Area Control Facility AFSS Automated Flight Service Station AGL Above Ground Level ALSF-2 Approach Light System with Sequence Flasher Model 2 ATC Air...equipment contributes less than 0.30 NM error at the missed approach point. This total system use accuracy allows for flight technical error of up to...means for transition from instrument to visual flight . This function is provided by a series of standard lighting systems : the Approach Lighting

  13. 75 FR 41986 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ...- Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating... rule, ``Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating,'' which was published on...

  14. 75 FR 15609 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...- Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating... regulations for sport pilots and flight instructors with a sport pilot rating to address airman certification... for the operation of light-sport aircraft were implemented in 2004. This document corrects errors in...

  15. Computational imaging of light in flight

    NASA Astrophysics Data System (ADS)

    Hullin, Matthias B.

    2014-10-01

    Many computer vision tasks are hindered by image formation itself, a process that is governed by the so-called plenoptic integral. By averaging light falling into the lens over space, angle, wavelength and time, a great deal of information is irreversibly lost. The emerging idea of transient imaging operates on a time resolution fast enough to resolve non-stationary light distributions in real-world scenes. It enables the discrimination of light contributions by the optical path length from light source to receiver, a dimension unavailable in mainstream imaging to date. Until recently, such measurements used to require high-end optical equipment and could only be acquired under extremely restricted lab conditions. To address this challenge, we introduced a family of computational imaging techniques operating on standard time-of-flight image sensors, for the first time allowing the user to "film" light in flight in an affordable, practical and portable way. Just as impulse responses have proven a valuable tool in almost every branch of science and engineering, we expect light-in-flight analysis to impact a wide variety of applications in computer vision and beyond.

  16. 14 CFR 61.303 - If I want to operate a light-sport aircraft, what operating limits and endorsement requirements...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false If I want to operate a light-sport aircraft...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart...

  17. 14 CFR 61.303 - If I want to operate a light-sport aircraft, what operating limits and endorsement requirements...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false If I want to operate a light-sport aircraft...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart...

  18. 14 CFR 61.303 - If I want to operate a light-sport aircraft, what operating limits and endorsement requirements...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false If I want to operate a light-sport aircraft...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart...

  19. 14 CFR 61.303 - If I want to operate a light-sport aircraft, what operating limits and endorsement requirements...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false If I want to operate a light-sport aircraft...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart...

  20. 14 CFR 61.303 - If I want to operate a light-sport aircraft, what operating limits and endorsement requirements...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false If I want to operate a light-sport aircraft...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart...

  1. 76 FR 59184 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Airmen for the Operation of Light-Sport Aircraft AGENCY: Federal Aviation Administration (FAA), DOT... airworthiness representatives to support the certification of new light-sport aircraft, pilots, flight...: OMB Control Number: 2120-0690. Title: Certification of Airmen for the Operation of Light-Sport...

  2. Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.

    2016-01-01

    Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  3. Interior noise levels of two propeller-driven light aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mayes, W. H.

    1975-01-01

    The relationships between aircraft operating conditions and interior noise and the degree to which ground testing can be used in lieu of flight testing for performing interior noise research were studied. The results show that the noise inside light aircraft is strongly influenced by the rotational speed of the engine and propeller. Both the overall noise and low frequency spectra levels were observed to decrease with increasing high speed rpm operations during flight. This phenomenon and its significance is not presently understood. Comparison of spectra obtained in flight with spectra obtained on the ground suggests that identification of frequency components and relative amplitude of propeller and engine noise sources may be evaluated on stationary aircraft.

  4. Douglas flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system failure and that crew interaction is required. A switch/light with blue or amber lettering and a BLACK BACKGROUND indicates a switch out of normal position and that crew action is necessary only if the system is in manual operation.

  5. Two lighter than air systems in opposing flight regimes: An unmanned short haul, heavy load transport balloon and a manned, light payload airship

    NASA Technical Reports Server (NTRS)

    Pohl, R. A.

    1975-01-01

    Lighter Than Air vehicles are generally defined or categorized by the shape of the balloon, payload capacity and operational flight regime. Two balloon systems that are classed as being in opposite categories are described. One is a cable guided, helium filled, short haul, heavy load transport Lighter Than Air system with a natural shaped envelope. The other is a manned, aerodynamic shaped airship which utilizes hot air as the buoyancy medium and is in the light payload class. While the airship is in the design/fabrication phase with flight tests scheduled for the latter part of 1974, the transport balloon system has been operational for some eight years.

  6. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    NASA Astrophysics Data System (ADS)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform detailed tasks of reading and assembling mechanical parts for an extended period of two uninterrupted hours. However, human subjects self-reported that blue LEDs provided the most white light and the favored light source over the white LED and the ISS fluorescent as a sole artificial light source for space travel. According to NASA standards, findings from this study indicate that LEDs meet criteria for the NASA TRL 7 rating, as study findings showed that commercial LED manufacturers passed the rigorous testing standards of suitability for space flight environments and human factor effects. Recommendations for future research include further testing for space flight using the basis of this study for replication, but reduce study limitations by 1) testing human subjects exposure to LEDs in a simulated space capsule environment over several days, and 2) installing and testing LEDs in space modules being tested for human spaceflight.

  7. 14 CFR 61.323 - How do I obtain privileges to operate a make and model of light-sport aircraft in the same...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... make and model of light-sport aircraft in the same category and class within a different set of... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.323 How do I obtain privileges to operate a make and model of light-sport aircraft in the same...

  8. Flying helicopters over mountains at night...guidance systems tested in 1965 phase of study

    Treesearch

    Ralph G. Johnston; Cal Ferris; James B. Davis

    1966-01-01

    Under conditions simulating fireline operations, 117 helicopter flights were made at night over mountain areas in southern California. The trials indicated that such flights, carrying passengers and cargo, can be made safely if (a) the night operation is well planned, (b) the helicopter is in excellent condition, (c) adequate lighting and guidance equipment are...

  9. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D...

  10. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D...

  11. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D...

  12. 14 CFR 61.327 - How do I obtain privileges to operate a light-sport aircraft that has a VH greater than 87 knots...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light-sport aircraft that has a VH greater than 87 knots CAS? 61.327 Section 61.327 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.327 How do I obtain privileges to operate a light-sport aircraft that has a VH greater than 87 knots CAS? If you hold a sport pilot...

  13. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D...

  14. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D...

  15. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  16. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  17. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  18. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  19. 14 CFR 91.209 - Aircraft lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft lights. 91.209 Section 91.209... Requirements § 91.209 Aircraft lights. No person may: (a) During the period from sunset to sunrise (or, in... position lights; (2) Park or move an aircraft in, or in dangerous proximity to, a night flight operations...

  20. Bypass Ratio: The US Air Force and Light-Attack Aviation

    DTIC Science & Technology

    2013-06-01

    for making recommendations which optimize base activity and its impact on the environment. Local and state politics can keep a base open even if it is...for the region, and this conduct can affect global commerce. Such disruption and destabilization in turn can have large impacts on the US diplomatic... IFR ) operations, emergency procedures, low-level flight and two-ship formation flight by this stage. Once track selection occurs, the light-attack

  1. Optical Fiber Illumination System for visual flight simulation

    NASA Technical Reports Server (NTRS)

    Hollow, R. H.

    1981-01-01

    An electronically controlled lighting system simulating runway, aircraft carrier, and landing aid lights for flight simulations is described. The various colored lights that would be visible to a pilot by day, at dusk, or at night are duplicated at the distances the lights would normally become visible. Plastic optical fiber illuminators using tungsten halogen lights are distributed behind the model. The tips of the fibers of illuminators simulating runway lights are bevelled in order that they may be seen from long distances and at low angles. Fibers representing taxiway lights are pointed and polished for omni-directional visibility. The electronic intensity controls, which can be operated either manually or remotely, regulate the intensity of the lights to simulate changes in distance. A dichronic mirror, infrared filter system is used to maintain color integrity.

  2. Anthropometric considerations for a 4-axis side-arm flight controller

    NASA Technical Reports Server (NTRS)

    Debellis, W. B.

    1986-01-01

    A data base on multiaxis side-arm flight controls was generated. The rapid advances in fly-by-light technology, automatic stability systems, and onboard computers have combined to create flexible flight control systems which could reduce the workload imposed on the operator by complex new equipment. This side-arm flight controller combines four controls into one unit and should simplify the pilot's task. However, the use of a multiaxis side-arm flight controller without complete cockpit integration may tend to increase the pilot's workload.

  3. Study of the Light Utility Helicopter (LUH) Acquisition Program as a Model for Defense Acquisition of Nondevelopmental Items

    DTIC Science & Technology

    2014-12-01

    Local Economic Impact of UH-72A Manufacture ................42  viii e.  EADS’ (Now Airbus Group’s) Suppliers and Subcontractors...Headquarters, Department of the Army IFR instrument flight rules IOTE initial operational test and evaluation IR infrared KO contracting officer kt...instrument flight rules ( IFR ) and visual flight rules (VFR) capabilities, thereby allowing flight at night and under low visibility weather

  4. Evidence-Based Recommendations for Optimizing Light in Day-to-Day Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra; Leveton, Lauren; Barger, Laura; Clark, Toni; Bollweg, Laura; Ohnesorge, Kristine; Brainard, George

    2015-01-01

    NASA Behavioral Health and Performance Element (BHP) personnel have previously reported on efforts to transition evidence-based recommendations for a flexible lighting system on the International Space Station (ISS). Based on these recommendations, beginning in 2016 the ISS will replace the current fluorescent-based lights with an LED-based system to optimize visual performance, facilitate circadian alignment, promote sleep, and hasten schedule shifting. Additional efforts related to lighting countermeasures in spaceflight operations have also been underway. As an example, a recent BHP research study led by investigators at Harvard Medical School and Brigham and Women's Hospital, evaluated the acceptability, feasibility, and effectiveness of blue-enriched light exposure during exercise breaks for flight controllers working the overnight shift in the Mission Control Center (MCC) at NASA Johnson Space Center. This effort, along with published laboratory studies that have demonstrated the effectiveness of appropriately timed light for promoting alertness, served as an impetus for new light options, and educational protocols for flight controllers. In addition, a separate set of guidelines related to the light emitted from electronic devices, were provided to the Astronaut Office this past year. These guidelines were based on an assessment led by NASA's Lighting Environment Test Facility that included measuring the spectral power distribution, irradiance, and radiance of light emitted from ISS-grade laptops and I-Pads, as well as Android devices. Evaluations were conducted with and without the use of off-the-shelf screen filters as well as a software application that touts minimizing the short-wave length of the visible light spectrum. This presentation will focus on the transition for operations process related to lighting countermeasures in the MCC, as well as the evidence to support recommendations for optimal use of laptops, I-Pads, and Android devices during all phases of spaceflight operations.

  5. In-Flight Decision-Making by General Aviation Pilots Operating in Areas of Extreme Thunderstorms.

    PubMed

    Boyd, Douglas D

    2017-12-01

    General aviation (comprised mainly of noncommercial, light aircraft) accounts for 94% of civil aviation fatalities in the United States. Although thunderstorms are hazardous to light aircraft, little research has been undertaken on in-flight pilot decision-making regarding their avoidance. The study objectives were: 1) to determine if the thunderstorm accident rate has declined over the last two decades; and 2) assess in-flight (enroute/landing) airman decision-making regarding adherence to FAA separation minima from thunderstorms. Thunderstorm-related accidents were identified from the NTSB database. To determine en route/arriving aircraft real-time thunderstorm proximity/relative position and airplane location, using a flight-tracking (Flight Aware®) website, were overlaid on a graphical weather image. Statistics employed Poisson and Chi-squared analyses. The thunderstorm-related accident rate was undiminished over the 1996-2014 period. In a prospective analysis the majority (enroute 77%, landing 93%) of flights violated the FAA-recommended separation distance from extreme convection. Of these, 79 and 69% (en route and landing, respectively) selected a route downwind of the thunderstorm rather than a less hazardous upwind flight path. Using a mathematical product of binary (separation distance, relative aircraft-thunderstorm position) and nominal (thunderstorm-free egress area) parameters, airmen were more likely to operate in the thunderstorm hazard zone for landings than en route operations. The thunderstorm-related accident rate, carrying a 70% fatality rate, remains unabated, largely reflecting nonadherence to the FAA-recommended separation minima and selection of a more hazardous route (downwind) for circumnavigation of extreme convective weather. These findings argue for additional emphasis in ab initio pilot training/recurrency on thunderstorm hazards and safe practices (separation distance and flight path).Boyd DD. In-flight decision-making by general aviation pilots operating in areas of extreme thunderstorms. Aerosp Med Hum Perform. 2017; 88(12):1066-1072.

  6. Methods and costs associated with outfitting light aircraft for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Rhodes, O. L.; Zetka, E. F.

    1973-01-01

    This document was designed to provide the potential user of a light aircraft remote sensor platform/data gathering system with general information on aircraft definition, implementation complexity, costs, scheduling and operational factors involved in this type of activity. Most of the subject material was developed from actual situations and problem areas encountered during the build-up cycle and early phases of flight operations.

  7. Sleep in space

    NASA Astrophysics Data System (ADS)

    Traon, A. Pavy-le; Roussel, B.

    1993-09-01

    Manned space flights have shown it is possible to sleep in microgravity. However, some sleep disturbances have been reported which influence performance of the crew and safety of space flight. This paper reviews the main studies of in-flight sleep in animal and man. Most disturbances are related to phase lags due to operational requirements. Factors which can disturb in-flight sleep are analysed: • environmental factors. Some of them are secondary to space flight ergonomics. Conversely, effects of microgravity on light-dark alternance are less known and lead to interesting problems of fundamental research, • psychological factors, especially during long duration flights.

  8. Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike

    2004-01-01

    To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.

  9. Satellite Ground Operations Automation: Lessons Learned and Future Approaches

    NASA Technical Reports Server (NTRS)

    Catena, John; Frank, Lou; Saylor, Rick; Weikel, Craig; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Reducing spacecraft ground system operations costs is a major goal in all missions. The Fast Auroral Snapshot (FAST) flight operations team at the NASA/Goddard Spacecraft Flight Center developed in-house scripts and procedures to automate monitoring of critical spacecraft functions. The initial staffing profile of 16x7 was reduced first to 8x5 and then to 'lights out'. Operations functions became an offline review of system performance and the generation of future science plans for subsequent upload to the spacecraft. Lessons learned will be applied to the challenging Triana mission, where 24x7 contact with the spacecraft will be necessary at all times.

  10. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  11. 14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...

  12. 14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...

  13. 14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...

  14. 14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...

  15. 14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...

  16. 14 CFR 61.319 - Can I operate a make and model of aircraft other than the make and model aircraft for which I...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.319 Can I operate a make and... you hold a sport pilot certificate you may operate any make and model of light-sport aircraft in the...

  17. Toward Head-Up and Head-Worn Displays for Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Arthur, Jarvis J.; Bailey, Randall E.; Shelton, Kevin J.; Kramer, Lynda J.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.; Ellis, Kyle K.

    2015-01-01

    A key capability envisioned for the future air transportation system is the concept of equivalent visual operations (EVO). EVO is the capability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. Enhanced Flight Vision Systems (EFVS) offer a path to achieve EVO. NASA has successfully tested EFVS for commercial flight operations that has helped establish the technical merits of EFVS, without reliance on natural vision, to runways without category II/III ground-based navigation and lighting requirements. The research has tested EFVS for operations with both Head-Up Displays (HUDs) and "HUD equivalent" Head-Worn Displays (HWDs). The paper describes the EVO concept and representative NASA EFVS research that demonstrate the potential of these technologies to safely conduct operations in visibilities as low as 1000 feet Runway Visual Range (RVR). Future directions are described including efforts to enable low-visibility approach, landing, and roll-outs using EFVS under conditions as low as 300 feet RVR.

  18. Light Echo

    NASA Image and Video Library

    2017-12-08

    "Light Echo" Illuminates Dust Around Supergiant Star V838 Monocerotis (V838 Mon) Credit: NASA and The Hubble Heritage Team (AURA/STScI) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  19. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  20. 75 FR 5203 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... V H less than or equal to 87 knots CAS. 8. Remove the requirement for all flight instructors to log... certificate must log within 60 days prior to taking the practical test. 16. Remove expired ultralight... flight training an applicant for a sport pilot certificate must log within the preceding 2 calendar...

  1. Syncom 4 deploy, LDEF retrieval highlight 10-day Columbia flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-32 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objectives of STS-32 are the deployment of a Navy synchronous communications satellite (Syncom 4) and the retrieval of the Long Duration Exposure Facility (LDEF) launched from the Challenger in April 1984. Secondary STS-32 payloads include a protein crystal growth experiment, the Fluids Experiment Apparatus (FEA) for the investigation of microgravity materials processing, the Mesoscale Lighting Experiment, the Latitude-Longitude Locator Experiment, the Americal Flight Echocardiograph, and an experiment to investigate neurospora circadian rhythms in a microgravity environment.

  2. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  3. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside air near the tropopause at the operating altitude of 10 ~ 12 km. We shall compare some of these data with the data from the ultra-light aircraft at remote locations, albeit at lower altitudes. References http://www.cgsplus.si/portals/0/WGF/wglfPage.htm Science, 335 (6074), p. 1286, 16 March 2012

  4. Overview of medical operations for a manned stratospheric balloon flight.

    PubMed

    Blue, Rebecca S; Law, Jennifer; Norton, Sean C; Garbino, Alejandro; Pattarini, James M; Turney, Matthew W; Clark, Jonathan B

    2013-03-01

    Red Bull Stratos was a commercial program designed to bring a test parachutist protected by a full-pressure suit via a stratospheric balloon with a pressurized capsule to 120,000 ft (36,576 m), from which he would freefall and subsequently parachute to the ground. On March 15, 2012, the Red Bull Stratos program successfully conducted a preliminary manned balloon test flight and parachute jump, reaching a final altitude of 71,581 ft (21,818 m). In light of the uniqueness of the operation and medical threats faced, a comprehensive medical plan was needed to ensure prompt and efficient response to any medical contingencies. This report will serve to discuss the medical plans put into place before the first manned balloon flight and the actions of the medical team during that flight. The medical operations developed for this program will be systematically evaluated, particularly, specific recommendations for improvement in future high-altitude and commercial space activities. A multipronged approach to medical support was developed, consisting of event planning, medical personnel, equipment, contingency-specific considerations, and communications. Medical operations were found to be highly successful when field-tested during this stratospheric flight, and the experience allowed for refinement of medical operations for future flights. The lessons learned and practices established for this program can easily be used to tailor a plan specific to other aviation or spaceflight events.

  5. Prescribed Travel Schedules for Fatigue Management

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra; Johnston, Smith; Lockley, Steven

    2011-01-01

    The NASA Fatigue Management Team is developing recommendations for managing fatigue during travel and for shift work operations, as Clinical Practice Guidelines for the Management of Circadian Desynchrony in ISS Operations. The Guidelines provide the International Space Station (ISS ) flight surgeons and other operational clinicians with evidence-based recommendations for mitigating fatigue and other factors related to sleep loss and circadian desynchronization. As much international travel is involved both before and after flight, the guidelines provide recommendations for: pre-flight training, in-flight operations, and post-flight rehabilitation. The objective of is to standardize the process by which care is provided to crewmembers, ground controllers, and other support personnel such as trainers, when overseas travel or schedule shifting is required. Proper scheduling of countermeasures - light, darkness, melatonin, diet, exercise, and medications - is the cornerstone for facilitating circadian adaptation, improving sleep, enhancing alertness, and optimizing performance. The Guidelines provide, among other things, prescribed travel schedules that outline the specific implementation of these mitigation strategies. Each travel schedule offers evidence based protocols for properly using the NASA identified countermeasures for fatigue. This presentation will describe the travel implementation schedules and how these can be used to alleviate the effects of jet lag and/or schedule shifts.

  6. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. "A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back," said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  7. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  8. Saturn's Rings in Ultraviolet Light

    NASA Image and Video Library

    2017-12-08

    Saturn's Rings in Ultraviolet Light Credit: NASA and E. Karkoschka (University of Arizona) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  9. Development of a high-velocity free-flight launcher : the Ames light-gas gun

    NASA Technical Reports Server (NTRS)

    Charters, A C; Denardo, B Pat; Rossow, Vernon J

    1955-01-01

    Recent interest in long-range missiles has stimulated a search for new experimental techniques which can reproduce in the laboratory the high temperatures and Mach numbers associated with the missiles' flight. One promising possibility lies in free-flight testing of laboratory models which are flown at the full velocity of the missile. In this type of test, temperatures are approximated and aerodynamic heating of the model is representative of that experienced by the missile in high-velocity flight. A prime requirement of the free-flight test technique is a device which had the capacity for launching models at the velocities desired. In response to thie need, a gun firing light models at velocities up to 15,000 feet per second has been developed at the Ames Aeronautical Laboratory. The design of this gun, the analysis of its performance, and the results of the initial firing trials are described in this paper. The firing trials showed that the measured velocities and pressures agreed well with the predicted values. Also, the erosion of the launch tube was very small for the eleven rounds fired. The performance of the gun suggests that it will prove to be a satisfactory launcher for high-velocity free-flight tests. However, it should be mentioned that only the gross performance has been evaluated so far, and, consequently, the operation of the gun must be investigated in further detail before its performance can be reliably predicted over its full operating range.

  10. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  11. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  12. Traveling-wave tube reliability estimates, life tests, and space flight experience

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Speck, C. E.

    1977-01-01

    Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.

  13. Chromatically corrected virtual image visual display. [reducing eye strain in flight simulators

    NASA Technical Reports Server (NTRS)

    Kahlbaum, W. M., Jr. (Inventor)

    1980-01-01

    An in-line, three element, large diameter, optical display lens is disclosed which has a front convex-convex element, a central convex-concave element, and a rear convex-convex element. The lens, used in flight simulators, magnifies an image presented on a television monitor and, by causing light rays leaving the lens to be in essentially parallel paths, reduces eye strain of the simulator operator.

  14. Analysis of oscillatory motion of a light airplane at high values of lift coefficient

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1983-01-01

    A modified stepwise regression is applied to flight data from a light research air-plane operating at high angles at attack. The well-known phenomenon referred to as buckling or porpoising is analyzed and modeled using both power series and spline expansions of the aerodynamic force and moment coefficients associated with the longitudinal equations of motion.

  15. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  16. Black Carbon Measurements in SOLVE-2

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Baumgardner, Darrel R.

    2004-01-01

    Droplet Measurement Technologies (DMT), under funding from NASA s Radiation Sciences Program, participated in the SOLVE II field campaign with measurements of light absorbing particles (black carbon and metals). These measurements were made with the Single Particle Soot Photometer (SP-2) on the NASA DC-8. The SP-2 is a new measurement technique that was developed under the SBIR program with funding from the Office of Naval Research. The original instrument suite for the DC-8 did not include the SP-2 and its addition and operation during SOLVE II was intended solely as a means to test its functionality and prepare it for future flight operations. For this reason it required several flights in the early stages of the project to tune its operation and fix some problems that arose. During the flights of January 26, 29, and 30, and February 2, 4 and 6, however, it worked as designed and acquired credible data.

  17. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2006. The observatory is expected to operate for over 20 years. The first light science instruments and some science projects will be discussed.

  18. Benign Episodic Unilateral Mydriasis in a Flight Nurse.

    PubMed

    Schiemer, Anthony

    2017-05-01

    Benign episodic unilateral mydriasis is one cause of anisocoria. This phenomenon is thought to be related to an imbalance between the sympathetic and parasympathetic nervous systems. There is a documented association with migraines, but asymptomatic cases have also been reported. A challenge with all cases is the level of investigation required to exclude more sinister causes of nervous system dysfunction. In a dynamic flight environment, additional considerations need to be made, such as varying light levels and use of night vision devices. A 27-yr-old woman on deployment to Afghanistan as a flight nurse presented to the role one clinic with right-sided mydriasis. The patient denied headache or any history of migraines. A dilated right pupil that was reactive to light was found on exam. Symptoms and exam findings resolved shortly after initial presentation. We consulted an ophthalmologist who requested patient transfer for review. He made a diagnosis of benign episodic unilateral mydriasis. There are a variety of causes for anisocoria. A thorough history and examination are required to avoid unnecessary investigations that may not be locally available in the more austere deployed military settings. From an operational perspective, the decision needs to be made regarding the maintenance of flight status. Consideration needs to be given to patient care capability when treating a flight nurse. In cases of rapid resolution such as this, removal from operational status is not reasonable should a clinician be confident of the diagnosis.Schiemer A. Benign episodic unilateral mydriasis in a flight nurse. Aerosp Med Hum Perform. 2017; 88(5):500-502.

  19. Documentary views of Flight Director and Controller activity during STS-2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eugene F. Kranz, left, and Dr. Christopher C. Kraft, Jr., Deputy Director of the Flight Operations Directorate (FOD), monitor data displayed on the FOD console in the Mission Operations Control Room (MOCR) following the launch of Columbia STS-2 mission (39431); wide view of overall activity in the MOCR on Nov. 12, 1981. The two consoles in the foreground are EGIL (Electric Power Instrumentation and Light Systems Engineer) and EECOM (Environmental Consumable and Mechanical Systems Engineer) (39432); Flight Director Neil B. Hutchinson monitors data displayed on a cathode ray tube (CRT) at his console in the the MOCR (39433); Astronauts Daniel C. Brandenstein, seated left, and Terry J. Hart, seated right, are both at the spacecraft communicators console (CAPCOM). Behind them is Astronaut Robert L. Crippen, pilot for STS-1 (39434).

  20. Tug fleet and ground operations schedules and controls. Volume 2: part 2, addenda

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a study to assess the tug safing requirements at postlanding are presented. The study considered the normal (green light) conditions from orbiter landing to completion of preparations for the next launch. Normal tug ground turnaround operations include handling and transportation activities and the performance of inspections, tests, and checkout functions. These activities dictate that hazards to ground personnel, the tug, GSE, facilities, and ecology be reduced to the lowest practical level consistent with program objectives, cost, and schedules. During flight operations, the tug contains energy sources that constitute potential hazards but are required for mission accomplishment. These potential hazards have been reduced to an acceptable level for flight operation by design features and by providing for control of energy sources.

  1. Around Marshall

    NASA Image and Video Library

    2003-09-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  2. Hall station and camera system operation and maintenance manual

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.; Strader, E. A.

    1986-01-01

    The major components of the Hall station and camera system are described. The Hall film record of an event provides the time of flight of the projectile between the slits. A time mark generator is used to supply extremely short pulses of light at a known frequency. These pulses of light are used to produce timing marks on the edge of the film. Comparison of these marks with the spacing of the projectile images provides the information necessary to determine the time of flight of the projectile. Since the slits are installed with a known separation distance, calculation of the velocity of any object passing both slits is a simple matter.

  3. Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.

    PubMed

    Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie

    2015-05-01

    To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. © 2015. Published by The Company of Biologists Ltd.

  4. Characteristics and requirements of robotic manipulators for space operations

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Hewitt, Dennis R.; Spidaliere, Peter D.; Lambeck, Robert W.

    1992-01-01

    A robotic manipulator, DTF-1, developed as part of the Flight Telerobotic Servicer (FTS) project at Goddard Space Flight Center is discussed focusing on the technical, operational, and safety requirements. The DTF-1 system design, which is based on the manipulator, gripper, cameras, computer, and an operator control station incorporates the fundamental building blocks of the original FTS, the end product of which was to have been a light-weight, dexterous telerobotic device. For the first time in the history of NASA, space technology and robotics were combined to find new and unique solutions to the demanding requirements of flying a sophisticated robotic manipulator in space. DTF-1 is considered to be the prototype for all future development in space robotics.

  5. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  6. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint US and German SOFIA project to develop and operate a 2.5 m infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2007. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  7. Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2016-01-01

    Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  8. Landsat Data Continuity Mission (LDCM) Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Good, Susan M.; Nicholson, Ann M.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.

  9. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  10. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  11. Skylab experiment performance evaluation manual. Appendix T: Experiment T027/S073 contamination measurement, photometer and Gegenschein/zodiacal light (MSFC)

    NASA Technical Reports Server (NTRS)

    Meyers, J. E.

    1973-01-01

    A series of analyses for Experiment T027/S073, contamination measurement, photometer and gegenschein/zodiacal light (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditons is presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  12. The NIRIM two-stage light-gas gun: Performance test results

    NASA Astrophysics Data System (ADS)

    Sekine, T.; Tashiro, S.; Kobayashi, T.; Matsumura, T.

    1996-05-01

    A two-stage light-gun has been installed at the NIRIM in order to investigate the high pressure behavior of materials. For operation and safety test, we used helium and carried out performance test shots. Piston velocity in the pump tube and projectile velocity during free flight are measured by means of gas-pressure profile records at fixed locations and x-ray beam cutting method, respectively.

  13. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  14. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2008. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of 1-st light spectroscopic astrochemistry science are discussed.

  15. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  16. KSC-07pd1438

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Trailing fire, Space Shuttle Atlantis roars toward the sky on mission STS-117. Below it can be seen the lighting mast atop the fixed service structure. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Reuters.

  17. Flight performance in night-flying sweat bees suffers at low light levels.

    PubMed

    Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J

    2007-11-01

    The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.

  18. Analysis of Limitations Imposed on One-spool Turboprop-engine Designs by Compressors and Turbines at Flight Mach Numbers of 0, 0.6, and 0.8

    NASA Technical Reports Server (NTRS)

    Cavicchi, Richard H

    1956-01-01

    Turbine centrifugal stress is a limiting factor for all flight conditions studied. This stress is more severe for sea-level operations than for subsonic flight at the tropopause. Turbines designed for a stress of 30,000 psi are capable of driving a light, compact, high-spedd compressor but only at high values of specific fuel consumption. An increase in turbine-inlet temperature is accompanied by an increase in turbine centrifugal stress. If stresses in excess of 50,000 psi can be tolerated, compressor aerodynamics may become a primary limitation.

  19. Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications

    NASA Astrophysics Data System (ADS)

    Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.

    2017-08-01

    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.

  20. Hubble Captures Cosmic Ice Sculptures

    NASA Image and Video Library

    2017-12-08

    NASA image release September 16, 2010 Enjoying a frozen treat on a hot summer day can leave a sticky mess as it melts in the Sun and deforms. In the cold vacuum of space, there is no edible ice cream, but there is radiation from massive stars that is carving away at cold molecular clouds, creating bizarre, fantasy-like structures. These one-light-year-tall pillars of cold hydrogen and dust, imaged by the Hubble Space Telescope, are located in the Carina Nebula. Violent stellar winds and powerful radiation from massive stars are sculpting the surrounding nebula. Inside the dense structures, new stars may be born. This image of dust pillars in the Carina Nebula is a composite of 2005 observations taken of the region in hydrogen light (light emitted by hydrogen atoms) along with 2010 observations taken in oxygen light (light emitted by oxygen atoms), both times with Hubble's Advanced Camera for Surveys. The immense Carina Nebula is an estimated 7,500 light-years away in the southern constellation Carina. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  1. Limited Artificial and Natural Icing Tests Production UH-60A Helicopter (Re-Evaluation).

    DTIC Science & Technology

    1981-08-01

    parameters , and definitions of icing types and severities are presented in appendix D. 2 RESULTS AND DISCUSSION GENERAL 9. Artificial and natural icing flight...anti-ice off, the system may be reactivated by cycling the appropriate windshield anti-ice switch. The windshield anti-ice system is fully operational...is off, then the fault monitor illuminates the respective PWR light on its front panel. The light informs the crew that further action is requied to

  2. Liberty and Lethality: Integrating MC-12W Liberty and Light Attack/Armed Reconnaissance Aircraft operations

    DTIC Science & Technology

    2010-05-20

    Ziemba , Syllabus, Project Liberty MQT Scenarios (Meridian: Mississippi Air National Guard, 2009), 1. 73Ibid. 26 their NVG skills.74 Flight...76Craig Ziemba , Syllabus, Project Liberty MQT Scenarios (Meridian: Mississippi Air National Guard, 2009), 1. 77Ibid., 3. 78Ibid., 1. 27 with

  3. Simulation Evaluation of Synthetic Vision as an Enabling Technology for Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.

    2008-01-01

    Enhanced Vision (EV) and synthetic vision (SV) systems may serve as enabling technologies to meet the challenges of the Next Generation Air Transportation System (NextGen) Equivalent Visual Operations (EVO) concept ? that is, the ability to achieve or even improve on the safety of Visual Flight Rules (VFR) operations, maintain the operational tempos of VFR, and even, perhaps, retain VFR procedures independent of actual weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A piloted simulation experiment was conducted to evaluate the effects of the presence or absence of Synthetic Vision, the location of this information during an instrument approach (i.e., on a Head-Up or Head-Down Primary Flight Display), and the type of airport lighting information on landing minima. The quantitative data from this experiment were analyzed to begin the definition of performance-based criteria for all-weather approach and landing operations. Objective results from the present study showed that better approach performance was attainable with the head-up display (HUD) compared to the head-down display (HDD). A slight performance improvement in HDD performance was shown when SV was added, as the pilots descended below 200 ft to a 100 ft decision altitude, but this performance was not tested for statistical significance (nor was it expected to be statistically significant). The touchdown data showed that regardless of the display concept flown (SV HUD, Baseline HUD, SV HDD, Baseline HDD) a majority of the runs were within the performance-based defined approach and landing criteria in all the visibility levels, approach lighting systems, and decision altitudes tested. For this visual flight maneuver, RVR appeared to be the most significant influence in touchdown performance. The approach lighting system clearly impacted the pilot's ability to descend to 100 ft height above touchdown based on existing Federal Aviation Regulation (FAR) 91.175 using a 200 ft decision height, but did not appear to influence touchdown performance or approach path maintenance

  4. Aircrew laser eye protection: visual consequences and mission performance.

    PubMed

    Thomas, S R

    1994-05-01

    Battlefield laser proliferation poses a mounting risk to aircrew and ground personnel. Laser eye protection (LEP) based on current mature, mass-producible technologies absorbs visible light and can impact visual performance and color identification. These visual consequences account for many of the mission incompatibilities associated with LEP. Laboratory experiments and field investigations that examined the effects of LEP on visual performance and mission compatibility are reviewed. Laboratory experiments assessed the ability of subjects to correctly read and identify the color of head-down display symbology and tactical pilotage charts (TPC's) with three prototype LEP visors. Field investigations included Weapons Systems Trainer (WST), ground, and flight tests of the LEP visors. Recommendations for modifying aviation lighting systems to improve LEP compatibility are proposed. Issues concerning flight safety when using LEP during air operation are discussed.

  5. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  6. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; hide

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  7. Multi-spectrum-based enhanced synthetic vision system for aircraft DVE operations

    NASA Astrophysics Data System (ADS)

    Kashyap, Sudesh K.; Naidu, V. P. S.; Shanthakumar, N.

    2016-04-01

    This paper focus on R&D being carried out at CSIR-NAL on Enhanced Synthetic Vision System (ESVS) for Indian regional transport aircraft to enhance all weather operational capabilities with safety and pilot Situation Awareness (SA) improvements. Flight simulator has been developed to study ESVS related technologies and to develop ESVS operational concepts for all weather approach and landing and to provide quantitative and qualitative information that could be used to develop criteria for all-weather approach and landing at regional airports in India. Enhanced Vision System (EVS) hardware prototype with long wave Infrared sensor and low light CMOS camera is used to carry out few field trials on ground vehicle at airport runway at different visibility conditions. Data acquisition and playback system has been developed to capture EVS sensor data (image) in time synch with test vehicle inertial navigation data during EVS field experiments and to playback the experimental data on ESVS flight simulator for ESVS research and concept studies. Efforts are on to conduct EVS flight experiments on CSIR-NAL research aircraft HANSA in Degraded Visual Environment (DVE).

  8. Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture

    NASA Technical Reports Server (NTRS)

    Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.

    2003-01-01

    This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.

  9. A Future Vision for Remotely Piloted Aircraft: Leveraging Interoperability and Networked Operations

    DTIC Science & Technology

    2013-06-21

    over the next 25 years  Balances the effects envisioned in the USAF UAS Flight Plan with the reality of constrained resources and ambitious...theater-level unmanned systems must detect, avoid, or counter threats – operating from permissive to highly contested access in all weather...Rapid Reaction Group II/III SUAS Unit  Light Footprint, Low Cost ISR Option  Networked Autonomous C2 System  Air-Launched SUAS  Common

  10. A Modernized Approach to Meet Diversified Earth Observing System (EOS) AM-1 Mission Requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, "lights out" operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(trademark) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result. In addition, the fuzzy logic engine .enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  11. A modernized approach to meet diversified earth observing system (EOS) AM-1 mission requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, 'lights out' operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(TM) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result In addition, the fuzzy logic engine enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  12. Multiwalled carbon nanotubes for stray light suppression in space flight instruments

    NASA Astrophysics Data System (ADS)

    Hagopian, John G.; Getty, Stephanie A.; Quijada, Manuel; Tveekrem, June; Shiri, Ron; Roman, Patrick; Butler, James; Georgiev, Georgi; Livas, Jeff; Hunt, Cleophus; Maldonado, Alejandro; Talapatra, Saikat; Zhang, Xianfeng; Papadakis, Stergios J.; Monica, Andrew H.; Deglau, David

    2010-08-01

    Observations of the Earth are extremely challenging; its large angular extent floods scientific instruments with high flux within and adjacent to the desired field of view. This bright light diffracts from instrument structures, rattles around and invariably contaminates measurements. Astrophysical observations also are impacted by stray light that obscures very dim objects and degrades signal to noise in spectroscopic measurements. Stray light is controlled by utilizing low reflectance structural surface treatments and by using baffles and stops to limit this background noise. In 2007 GSFC researchers discovered that Multiwalled Carbon Nanotubes (MWCNTs) are exceptionally good absorbers, with potential to provide order-of-magnitude improvement over current surface treatments and a resulting factor of 10,000 reduction in stray light when applied to an entire optical train. Development of this technology will provide numerous benefits including: a.) simplification of instrument stray light controls to achieve equivalent performance, b.) increasing observational efficiencies by recovering currently unusable scenes in high contrast regions, and c.) enabling low-noise observations that are beyond current capabilities. Our objective was to develop and apply MWCNTs to instrument components to realize these benefits. We have addressed the technical challenges to advance the technology by tuning the MWCNT geometry using a variety of methods to provide a factor of 10 improvement over current surface treatments used in space flight hardware. Techniques are being developed to apply the optimized geometry to typical instrument components such as spiders, baffles and tubes. Application of the nanostructures to alternate materials (or by contact transfer) is also being investigated. In addition, candidate geometries have been tested and optimized for robustness to survive integration, testing, launch and operations associated with space flight hardware. The benefits of this technology extend to space science where observations of extremely dim objects require suppression of stray light.

  13. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  14. 77 FR 46185 - United States v. United Technologies Corporation and Goodrich Corporation; Proposed Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... for generating power for all the in-flight systems that run on electricity, including pumping breathable air into the fuselage, operating the lights, and running the navigation and communication... turning a propeller blade on a turboprop engine, a rotor shaft on a turboshaft engine, or a fan in front...

  15. Development and evaluation of automatic landing control laws for light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Degani, O.; Gevaert, G.

    1981-01-01

    Automatic flare and decrab control laws were developed for NASA's experimental Twin Otter. This light wing loading STOL aircraft was equipped with direct lift control (DLC) wing spoilers to enhance flight path control. Automatic landing control laws that made use of the spoilers were developed, evaluated in a simulation and the results compared with these obtained for configurations that did not use DLC. The spoilers produced a significant improvement in performance. A simulation that could be operated faster than real time in order to provide statistical landing data for a large number of landings over a wide spectrum of disturbances in a short time was constructed and used in the evaluation and refinement of control law configurations. A longitudinal control law that had been previously developed and evaluated in flight was also simulated and its performance compared with that of the control laws developed. Runway alignment control laws were also defined, evaluated, and refined to result in a final recommended configuration. Good landing performance, compatible with Category 3 operation into STOL runways, was obtained.

  16. Short term hearing loss in general aviation operations, phase 1, part 1

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.

    1972-01-01

    The effects of light aircraft noise on six subjects during flight operations were investigated. The noise environment in the Piper Apache light aircraft was found to be capable of producing hearing threshold shifts. The following are the principal findings and conclusions: (1) Through most of the frequency range for which measurements were taken (500 to 6000 Hz), there was a regular progression showing increased loss of auditory acuity as a function of increased exposure time. (2) Extensive variability was found in the results among subjects, and in the measured loss at discrete frequencies for each subject. (3) The principal loss of hearing occurred at the low frequencies, around 500 Hz.

  17. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1991-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in operating empty weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BIT) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  18. Dental equipment test during zero-gravity flight

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well.

  19. Synchronous Crepuscular Flight of Female Asian Gypsy Moths: Relationships of Light Intensity and Ambient and Body Temperatures

    Treesearch

    Ralph E. Charlton; Ring T. Carde; William E. Wallner; William E. Wallner

    1999-01-01

    Female gypsy moths (Lymantria dispar) of Asian heritage studied in central Siberia and Germany exhibit a highly synchronous flight at dusk, after light intensity falls to about 2 lux. This critical light intensity sets the timing of flight behaviors independent of ambient temperature. Flight follows several minutes of preflight wing fanning during which females in...

  20. STS-37 Pilot Cameron and MS Godwin work on OV-104's aft flight deck

    NASA Image and Video Library

    1991-04-11

    STS037-33-031 (5-11 April 1991) --- Astronauts Kenneth D. Cameron, STS-37 pilot, and Linda M. Godwin, mission specialist, take advantage of a well-lighted crew cabin to pose for an in-space portrait on the Space Shuttle Atlantis' aft flight deck. The two shared duties controlling the Remote Manipulator System (RMS) during operations involving the release of the Gamma Ray Observatory (GRO) and the Extravehicular Activity (EVA) of astronauts Jerry L. Ross and Jerome (Jay) Apt. The overhead window seen here and nearby eye-level windows (out of frame at left) are in a busy location on Shuttle missions, as they are used for payload surveys, Earth observation operations, astronomical studies and other purposes. Note the temporarily stowed large format still photo camera at lower right corner. This photo was made with a 35mm camera. This was one of the visuals used by the crew members during their April 19 Post Flight Press Conference (PFPC) at the Johnson Space Center (JSC).

  1. Characterization of pseudosingle bunch kick-and-cancel operational mode

    DOE PAGES

    Sun, C.; Robin, D. S.; Steier, C.; ...

    2015-12-18

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments andmore » drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.« less

  2. Designing Flight Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  3. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag minimization demonstrates the effectiveness of the proposed solution. In-flight structural loads are also an important consideration. As wing flexibility increases, maneuver load and gust load responses can be significant and therefore can pose safety and flight control concerns. In this paper, we will extend the multi-objective flight control framework to include load alleviation control. The study will focus initially on maneuver load minimization control, and then subsequently will address gust load alleviation control in future work.

  4. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft equipped with wing spoilers

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1984-01-01

    As part of a comprehensive flight-test investigation of short takeoff and landing (STOL) operating systems for the terminal systems for the terminal area, an automatic landing system has been developed and evaluated for a light wing-loading turboprop-powered aircraft. An advanced digital avionics system performed display, navigation, guidance, and control functions for the test aircraft. Control signals were generated in order to command powered actuators for all conventional controls and for a set of symmetrically driven wing spoilers. This report describes effects of the spoiler control on longitudinal autoland (automatic landing) performance. Flight-test results, with and without spoiler control, are presented and compared with available (basically, conventional takeoff and landing) performance criteria. These comparisons are augmented by results from a comprehensive simulation of the controlled aircraft that included representations of the microwave landing system navigation errors that were encountered in flight as well as expected variations in atmospheric turbulence and wind shear. Flight-test results show that the addition of spoiler control improves the touchdown performance of the automatic landing system. Spoilers improve longitudinal touchdown and landing pitch-attitude performance, particularly in tailwind conditions. Furthermore, simulation results indicate that performance would probably be satisfactory for a wider range of atmospheric disturbances than those encountered in flight. Flight results also indicate that the addition of spoiler control during the final approach does not result in any measurable change in glidepath track performance, and results in a very small deterioration in airspeed tracking. This difference contrasts with simulations results, which indicate some improvement in glidepath tracking and no appreciable change in airspeed tracking. The modeling problem in the simulation that contributed to this discrepancy with flight was not resolved.

  5. 75 FR 15353 - Airworthiness Directives; Airbus Model A330-200 and -300 Series Airplanes, and A340-200, -300...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... all applicable corrective actions (replacing damaged parts). This supplemental NPRM would also require... of time that corresponds to the normal scheduled maintenance for most affected operators. In light of... ``before further flight'' for doing the corrective actions specified in paragraphs (f)(1)(i), (f)(1)(ii...

  6. Advanced Welding Torch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys.

  7. Benefit from NASA

    NASA Image and Video Library

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys.

  8. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The SOFIA project to develop and operate a 2 5-meter infrared telescope in a Boeing 747-SP is in its final stages of development First science flights will begin in 2008 with the observatory designed to operate for over 20 years Status of the development and technical issues will be discussed along with the expected sensitivity and first light science instruments Also discussed will be examples of the science to be carried out and opportunities for the science community to use SOFIA

  9. Hubble Watches Super Star Create Holiday Light Show

    NASA Image and Video Library

    2017-12-08

    This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights. The bright southern hemisphere star RS Puppis, at the center of the image, is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. The super star is ten times more massive than our sun and 200 times larger. RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. Its average intrinsic brightness is 15,000 times greater than our sun’s luminosity. The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo." Even though light travels through space fast enough to span the gap between Earth and the moon in a little over a second, the nebula is so large that reflected light can actually be photographed traversing the nebula. By observing the fluctuation of light in RS Puppis itself, as well as recording the faint reflections of light pulses moving across the nebula, astronomers are able to measure these light echoes and pin down a very accurate distance. The distance to RS Puppis has been narrowed down to 6,500 light-years (with a margin of error of only one percent). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Acknowledgment: H. Bond (STScI and Pennsylvania State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2008-07-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project will operate a 2.5-meter infrared airborne telescope in a Boeing 747SP. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations in the infrared and submillimeter region with an average transmission of 80%. SOFIA has a wide instrument complement including broadband imaging cameras, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas and will conclude in winter of 2008-09. SOFIA will be staged out of Dryden's aircraft operations facility at Palmdale, Site 9, CA for science operations. The SOFIA Science Center will be at NASA Ames Research Center, Moffet Field, CA. First science flights will begin in 2009, the next instrument call and first General Observer science call will be in 2010, and a full operations schedule of ~120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities, and examples of first light and early mission science are discussed.

  11. Flexible imaging payload for real-time fluorescent biological imaging in parabolic, suborbital and space analog environments

    NASA Astrophysics Data System (ADS)

    Bamsey, Matthew T.; Paul, Anna-Lisa; Graham, Thomas; Ferl, Robert J.

    2014-10-01

    Fluorescent imaging offers the ability to monitor biological functions, in this case biological responses to space-related environments. For plants, fluorescent imaging can include general health indicators such as chlorophyll fluorescence as well as specific metabolic indicators such as engineered fluorescent reporters. This paper describes the Flex Imager a fluorescent imaging payload designed for Middeck Locker deployment and now tested on multiple flight and flight-related platforms. The Flex Imager and associated payload elements have been developed with a focus on 'flexibility' allowing for multiple imaging modalities and change-out of individual imaging or control components in the field. The imaging platform is contained within the standard Middeck Locker spaceflight form factor, with components affixed to a baseplate that permits easy rearrangement and fine adjustment of components. The Flex Imager utilizes standard software packages to simplify operation, operator training, and evaluation by flight provider flight test engineers, or by researchers processing the raw data. Images are obtained using a commercial cooled CCD image sensor, with light-emitting diodes for excitation and a suite of filters that allow biological samples to be imaged over wavelength bands of interest. Although baselined for the monitoring of green fluorescent protein and chlorophyll fluorescence from Arabidopsis samples, the Flex Imager payload permits imaging of any biological sample contained within a standard 10 cm by 10 cm square Petri plate. A sample holder was developed to secure sample plates under different flight profiles while permitting sample change-out should crewed operations be possible. In addition to crew-directed imaging, autonomous or telemetric operation of the payload is also a viable operational mode. An infrared camera has also been integrated into the Flex Imager payload to allow concurrent fluorescent and thermal imaging of samples. The Flex Imager has been utilized to assess, in real-time, the response of plants to novel environments including various spaceflight analogs, including several parabolic flight environments as well as hypobaric plant growth chambers. Basic performance results obtained under these operational environments, as well as laboratory-based tests are described. The Flex Imager has also been designed to be compatible with emerging suborbital platforms.

  12. KSC-07pp1461

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis rockets into the blue sky above Launch Pad 39A after liftoff. Beneath Atlantis' main engines are blue cones of light, known as shock or mach diamonds. They are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Liftoff of Atlantis on mission STS-117 to the International Space Station was on time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo Credit: NASA/Tony Gray & Don Kight

  13. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution

    PubMed Central

    Ebert, Dieter

    2016-01-01

    The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. PMID:27072407

  14. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution.

    PubMed

    Altermatt, Florian; Ebert, Dieter

    2016-04-01

    The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. © 2016 The Author(s).

  15. Calibration aspects of the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will be, after calibration, a very accurate instrument which yields the number of received photons from the number of measured photo-electrons. The project is in phase A (demonstration of the concept) including already operating prototype instruments, i.e. many parts of the instrument have been constructed and tested. Calibration is a crucial part of the instrument and its use. The focal surface (FS) of the JEM-EUSO telescope will consist of about 5000 photo-multiplier tubes (PMTs), which have to be well calibrated to reach the required accuracy in reconstructing the air-shower parameters. The optics system consists of 3 plastic Fresnel (double-sided) lenses of 2.5 m diameter. The aim of the calibration system is to measure the efficiencies (transmittances) of the optics and absolute efficiencies of the entire focal surface detector. The system consists of 3 main components: (i) Pre-flight calibration devices on ground, where the efficiency and gain of the PMTs will be measured absolutely and also the transmittance of the optics will be. (ii) On-board relative calibration system applying two methods: a) operating during the day when the JEM-EUSO lid will be closed with small light sources on board. b) operating during the night, together with data taking: the monitoring of the background rate over identical sites. (iii) Absolute in-flight calibration, again, applying two methods: a) measurement of the moon light, reflected on high altitude, high albedo clouds. b) measurements of calibrated flashes and tracks produced by the Global Light System (GLS). Some details of each calibration method will be described in this paper.

  16. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  17. Multi-User Space Link Extension (SLE) System

    NASA Technical Reports Server (NTRS)

    Perkins, Toby

    2013-01-01

    The Multi-User Space (MUS) Link Extension system, a software and data system, provides Space Link Extension (SLE) users with three space data transfer services in timely, complete, and offline modes as applicable according to standards defined by the Consultative Committee for Space Data Systems (CCSDS). MUS radically reduces the schedule, cost, and risk of implementing a new SLE user system, minimizes operating costs with a lights-out approach to SLE, and is designed to require no sustaining engineering expense during its lifetime unless changes in the CCSDS SLE standards, combined with new provider implementations, force changes. No software modification to MUS needs to be made to support a new mission. Any systems engineer with Linux experience can begin testing SLE user service instances with MUS starting from a personal computer (PC) within five days. For flight operators, MUS provides a familiar-looking Web page for entering SLE configuration data received from SLE. Operators can also use the Web page to back up a space mission's entire set of up to approximately 500 SLE service instances in less than five seconds, or to restore or transfer from another system the same amount of data from a MUS backup file in about the same amount of time. Missions operate each MUS SLE service instance independently by sending it MUS directives, which are legible, plain ASCII strings. MUS directives are usually (but not necessarily) sent through a TCP-IP (Transmission Control Protocol Internet Protocol) socket from a MOC (Mission Operations Center) or POCC (Payload Operations Control Center) system, under scripted control, during "lights-out" spacecraft operation. MUS permits the flight operations team to configure independently each of its data interfaces; not only commands and telemetry, but also MUS status messages to the MOC. Interfaces can use single- or multiple-client TCP/IP server sockets, TCP/IP client sockets, temporary disk files, the system log, or standard in, standard out, or standard error as applicable. By defining MUS templates in ASCII, the flight operations team can include any MUS system variable in telemetry or command headers or footers, and/or in status messages. Data fields can be arranged within messages in different sequences, according to the mission s needs. The only constraints imposed are on the format of MUS directive strings, and some bare minimum logical requirements that must be met in order for MUS to read the mission control center's spacecraft command inputs. The MUS system imposes no limits or constraints on the numbers and combinations of missions and SLE service instances that it will support simultaneously. At any time, flight operators may add, change, delete, bind, connect, or disconnect.

  18. Synthetic Vision Systems - Operational Considerations Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-01-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents/accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  19. Synthetic vision systems: operational considerations simulation experiment

    NASA Astrophysics Data System (ADS)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-04-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents / accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  20. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  1. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  2. Review of Flight Training Technology

    DTIC Science & Technology

    1976-07-01

    the cockpit. They might be used to train pilots in procedures to cope with NOE-altitude emergencies; howeve-r, a combination of cinematic simulation...airplanes. Although cockpit motion adds realism , thereby i-nproving pilot performanc, in the simulater Fedderqon, Vil; Guercio and Wall, i7?. Ince...operations. Light aircraft, part-task trainers, motion pictures and video tares, cinematic simulators, and digital teaching machines are among the

  3. BRDF Calibration of Sintered PTFE in the SWIR

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  4. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity.

    PubMed

    Baird, Emily; Fernandez, Diana C; Wcislo, William T; Warrant, Eric J

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.

  5. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity

    PubMed Central

    Baird, Emily; Fernandez, Diana C.; Wcislo, William T.; Warrant, Eric J.

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion—a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus. PMID:26578977

  6. Status of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.; de Buizer, J.; Herter, T.; Keller, L. D.; Krabbe, A.; Marcum, P. M.; Roellig, T. L.; Sandell, G. H. L.; Temi, P.; Vacca, W. D.; Young, E. T.; Zinnecker, H.

    2011-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA), a joint US/German project, is a 2.5-m infrared airborne telescope carried by a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 ft (13.72 km). This facility is capable of observing from 0.3 μm to 1.6 mm with an average transmission greater than 80% averaged over all wavelengths. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA. The SOFIA Science Mission Operations (SMO) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights began in 2010 and a full operations schedule of up to one hundred 8 to 10 hour-long flights per year will be reached by 2014. The observatory is expected to operate until the mid-2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs that will resolve broad features due to dust and large molecules, and high-resolution spectrometers capable of studying the kinematics of atomic and molecular gas at sub-km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and for future instrumentation development. The operational characteristics of the SOFIA first-generation instruments are summarized. The status of the flight test program is discussed and we show First Light images obtained at wavelengths from 5.4 to 37 μm with the FORCAST imaging camera. Additional information about SOFIA is available at http://www.sofia.usra.edu and http://www.sofia.usra.edu/Science/docs/SofiaScienceVision051809-1.pdf.

  7. Design and evaluation of a payload to support plant growth onboard COMET 1

    NASA Technical Reports Server (NTRS)

    Hoehn, A.; Kliss, M. H.; Luttges, M. W.; Robinson, M. C.; Stodieck, L. S.

    1992-01-01

    The paper describes the design and the operation principles of the Plant Module for Autonomous Space Support (P-MASS), designed to provide life support for a variety of plants, algae, and bacteria in low earth orbit during the maiden flight of COMET-1, scheduled for 1993. During flight (scheduled to continue for 30 days), both color video images and collected environmental data (including light intensity, temperature, relative humidity, CO2 and O2 concentrations, soil moisture, and nutrients released) will be downlinked to earth several times a day. These data will also be stored within the payload and retrieved from it after reentry and recovery.

  8. Time-of-flight range imaging for underwater applications

    NASA Astrophysics Data System (ADS)

    Merbold, Hannes; Catregn, Gion-Pol; Leutenegger, Tobias

    2018-02-01

    Precise and low-cost range imaging in underwater settings with object distances on the meter level is demonstrated. This is addressed through silicon-based time-of-flight (TOF) cameras operated with light emitting diodes (LEDs) at visible, rather than near-IR wavelengths. We find that the attainable performance depends on a variety of parameters, such as the wavelength dependent absorption of water, the emitted optical power and response times of the LEDs, or the spectral sensitivity of the TOF chip. An in-depth analysis of the interplay between the different parameters is given and the performance of underwater TOF imaging using different visible illumination wavelengths is analyzed.

  9. Progress of research on water vapor lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Singh, U. N.

    1989-01-01

    Research is summarized on applications of stimulated Raman scattering (SRS) of laser light into near infrared wavelengths suitable for atmospheric monitoring. Issues addressed are conversion efficiency, spectral purity, optimization of operating conditions, and amplification techniques. A Raman cell was developed and built for the laboratory program, and is now available to NASA-Langley, either as a design or as a completed cell for laboratory or flight applications. The Raman cell has been approved for flight in NASA's DC-8 aircraft. The self-seeding SRS technique developed here is suggested as an essential improvement for tunable near-IR DIAL applications at wavelengths of order 1 micrometer or greater.

  10. Hardware

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The full complement of EDOMP investigations called for a broad spectrum of flight hardware ranging from commercial items, modified for spaceflight, to custom designed hardware made to meet the unique requirements of testing in the space environment. In addition, baseline data collection before and after spaceflight required numerous items of ground-based hardware. Two basic categories of ground-based hardware were used in EDOMP testing before and after flight: (1) hardware used for medical baseline testing and analysis, and (2) flight-like hardware used both for astronaut training and medical testing. To ensure post-landing data collection, hardware was required at both the Kennedy Space Center (KSC) and the Dryden Flight Research Center (DFRC) landing sites. Items that were very large or sensitive to the rigors of shipping were housed permanently at the landing site test facilities. Therefore, multiple sets of hardware were required to adequately support the prime and backup landing sites plus the Johnson Space Center (JSC) laboratories. Development of flight hardware was a major element of the EDOMP. The challenges included obtaining or developing equipment that met the following criteria: (1) compact (small size and light weight), (2) battery-operated or requiring minimal spacecraft power, (3) sturdy enough to survive the rigors of spaceflight, (4) quiet enough to pass acoustics limitations, (5) shielded and filtered adequately to assure electromagnetic compatibility with spacecraft systems, (6) user-friendly in a microgravity environment, and (7) accurate and efficient operation to meet medical investigative requirements.

  11. Automated moth flight analysis in the vicinity of artificial light.

    PubMed

    Gaydecki, P

    2018-05-10

    Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.

  12. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Caption: Ellesmere Island mountain tops bathed in light as the sun began to peak over the horizon during Operation IceBridge’s first flight of its 2017 Arctic campaign, on March 9, 2017. Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Night vision imaging systems design, integration, and verification in military fighter aircraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Cantiello, Maurizio; Toscano, Mario; Fiorini, Pietro; Jia, Huamin; Zammit-Mangion, David

    2012-04-01

    This paper describes the developmental and testing activities conducted by the Italian Air Force Official Test Centre (RSV) in collaboration with Alenia Aerospace, Litton Precision Products and Cranfiled University, in order to confer the Night Vision Imaging Systems (NVIS) capability to the Italian TORNADO IDS (Interdiction and Strike) and ECR (Electronic Combat and Reconnaissance) aircraft. The activities consisted of various Design, Development, Test and Evaluation (DDT&E) activities, including Night Vision Goggles (NVG) integration, cockpit instruments and external lighting modifications, as well as various ground test sessions and a total of eighteen flight test sorties. RSV and Litton Precision Products were responsible of coordinating and conducting the installation activities of the internal and external lights. Particularly, an iterative process was established, allowing an in-site rapid correction of the major deficiencies encountered during the ground and flight test sessions. Both single-ship (day/night) and formation (night) flights were performed, shared between the Test Crews involved in the activities, allowing for a redundant examination of the various test items by all participants. An innovative test matrix was developed and implemented by RSV for assessing the operational suitability and effectiveness of the various modifications implemented. Also important was definition of test criteria for Pilot and Weapon Systems Officer (WSO) workload assessment during the accomplishment of various operational tasks during NVG missions. Furthermore, the specific technical and operational elements required for evaluating the modified helmets were identified, allowing an exhaustive comparative evaluation of the two proposed solutions (i.e., HGU-55P and HGU-55G modified helmets). The results of the activities were very satisfactory. The initial compatibility problems encountered were progressively mitigated by incorporating modifications both in the front and rear cockpits at the various stages of the test campaign. This process allowed a considerable enhancement of the TORNADO NVIS configuration, giving a good medium-high level NVG operational capability to the aircraft. Further developments also include the design, integration and test of internal/external lighting for the Italian TORNADO "Mid Life Update" (MLU) and other programs, such as the AM-X aircraft internal/external lights modification/testing and the activities addressing low-altitude NVG operations with fast jets (e.g., TORNADO, AM-X, MB-339CD), a major issue being the safe ejection of aircrew with NVG and NVG modified helmets. Two options have been identified for solving this problem: namely the modification of the current Gentex HGU-55 helmets and the design of a new helmet incorporating a reliable NVG connection/disconnection device (i.e., a mechanical system fully integrated in the helmet frame), with embedded automatic disconnection capability in case of ejection.

  14. Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim

    2011-01-01

    This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.

  15. Characterization of modulated time-of-flight range image sensors

    NASA Astrophysics Data System (ADS)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2009-01-01

    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.

  16. 14 CFR 121.597 - Flight release authority: Supplemental operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight following system without specific authority from the person authorized by the operator to exercise operational control over the flight. (b) No person may start a flight unless the pilot in command or the person authorized by the operator to exercise operational control over the flight has executed a flight...

  17. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  18. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  19. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  20. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  1. Journal of Air Transportation, Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)

    2007-01-01

    Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.

  2. Advanced topographic laser altimeter system (ATLAS) receiver telescope assembly (RTA) and transmitter alignment and test

    NASA Astrophysics Data System (ADS)

    Hagopian, John; Bolcar, Matthew; Chambers, John; Crane, Allen; Eegholm, Bente; Evans, Tyler; Hetherington, Samuel; Mentzell, Eric; Thompson, Patrick L.; Ramos-Izquierdo, Luis; Vaughnn, David

    2016-09-01

    The sole instrument on NASA's ICESat-2 spacecraft shown in Figure 1 will be the Advanced Topographic Laser Altimeter System (ATLAS)1. The ATLAS is a Light Detection and Ranging (LIDAR) instrument; it measures the time of flight of the six transmitted laser beams to the Earth and back to determine altitude for geospatial mapping of global ice. The ATLAS laser beam is split into 6 main beams by a Diffractive Optical Element (DOE) that are reflected off of the earth and imaged by an 800 mm diameter Receiver Telescope Assembly (RTA). The RTA is composed of a 2-mirror telescope and Aft Optics Assembly (AOA) that collects and focuses the light from the 6 probe beams into 6 science fibers. Each fiber optic has a field of view on the earth that subtends 83 micro Radians. The light collected by each fiber is detected by a photomultiplier and timing related to a master clock to determine time of flight and therefore distance. The collection of the light from the 6 laser spots projected to the ground allows for dense cross track sampling to provide for slope measurements of ice fields. NASA LIDAR instruments typically utilize telescopes that are not diffraction limited since they function as a light collector rather than imaging function. The more challenging requirements of the ATLAS instrument require better performance of the telescope at the ¼ wave level to provide for improved sampling and signal to noise. NASA Goddard Space Flight Center (GSFC) contracted the build of the telescope to General Dynamics (GD). GD fabricated and tested the flight and flight spare telescope and then integrated the government supplied AOA for testing of the RTA before and after vibration qualification. The RTA was then delivered to GSFC for independent verification and testing over expected thermal vacuum conditions. The testing at GSFC included a measurement of the RTA wavefront error and encircled energy in several orientations to determine the expected zero gravity figure, encircled energy, back focal length and plate scale. In addition, the science fibers had to be aligned to within 10 micro Radians of the projected laser spots to provide adequate margin for operations on-orbit. This paper summarizes the independent testing and alignment of the fibers performed at the GSFC.

  3. Female Flight Propensity and Capability in Lymantria dispar (Lepidoptera: Lymantriidae) from Russia, North America, and Their Reciprocal F1 Hybrids

    Treesearch

    M.A. Keena

    2001-01-01

    In the laboratory, the timing of both preflight and flight behaviors of the Asian strain of female gypsy moths, Lymantria dispar L., was regulated primarily by light intensity. The shortest times to initiation of wing fanning and flight occurred at 0.1 lux, the lowest light intensity evaluated. A gradual decrease in light intensity, compared with an instantaneous...

  4. Lock-In Imaging System for Detecting Disturbances in Fluid

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2014-01-01

    A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.

  5. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum.

    PubMed

    Drury, Douglas W; Whitesell, Matthew E; Wade, Michael J

    2016-03-01

    We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution.

  6. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  7. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  8. Fuel cell powered small unmanned aerial systems (UASs) for extended endurance flights

    NASA Astrophysics Data System (ADS)

    Chu, Deryn; Jiang, R.; Dunbar, Z.; Grew, Kyle; McClure, J.

    2015-05-01

    Small unmanned aerial systems (UASs) have been used for military applications and have additional potential for commercial applications [1-4]. For the military, these systems provide valuable intelligence, surveillance, reconnaissance and target acquisition (ISRTA) capabilities for units at the infantry, battalion, and company levels. The small UASs are light-weight, manportable, can be hand-launched, and are capable of carrying payloads. Currently, most small UASs are powered by lithium-ion or lithium polymer batteries; however, the flight endurance is usually limited less than two hours and requires frequent battery replacement. Long endurance small UAS flights have been demonstrated through the implementation of a fuel cell system. For instance, a propane fueled solid oxide fuel cell (SOFC) stack has been used to power a small UAS and shown to extend mission flight time. The research and development efforts presented here not only apply to small UASs, but also provide merit to the viability of extending mission operations for other unmanned systems applications.

  9. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  10. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  11. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  12. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  13. Visual Odometry for Autonomous Deep-Space Navigation Project

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory’s considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm’s performance and ability to process ‘flight-like’ imagery formats with a ‘flight-like’ trajectory, positioning ourselves to easily process flight data from the upcoming ‘ISS Selfie’ activity and then compare the algorithm’s quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system.Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.

  14. Visual Odometry for Autonomous Deep-Space Navigation Project

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory's considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm's performance and ability to process 'flight-like' imagery formats with a 'flight-like' trajectory, positioning ourselves to easily process flight data from the upcoming 'ISS Selfie' activity and then compare the algorithm's quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system. Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.

  15. Flywheel Energy Storage System Designed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  16. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  17. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Whitesell, Matthew E.; Wade, Michael J.

    2016-01-01

    We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution. PMID:27087697

  18. Optico-photographic measurements of airplane deformations

    NASA Technical Reports Server (NTRS)

    Kussner, Hans Georg

    1931-01-01

    The deformation of aircraft wings is measured by photographically recording a series of bright shots on a moving paper band sensitive to light. Alternating deformations, especially vibrations, can thus be measured in operation, unaffected by inertia. A handy recording camera, the optograph, was developed by the static division of the D.V.L. (German Experimental Institute for Aeronautics) for the employment of this method of measurement on airplanes in flight.

  19. Sunglass Filter Transmission and Its Operational Effect in Solar Protection for Civilian Pilots.

    PubMed

    Chorley, Adrian C; Lyachev, Andrey; Higlett, Michael P; Khazova, Marina; Benwell, Martin J; Evans, Bruce J W

    2016-05-01

    The ocular effects of excess solar radiation exposure are well documented. Recent evidence suggests that ocular ultraviolet radiation (UVR) exposure to professional pilots may fall outside international guideline limits unless eye protection is used. Nonprescription sunglasses should be manufactured to meet either international or national standards. The mean increase in UVR and blue light hazards at altitude has been quantified and the aim of this research was to assess the effectiveness of typical pilot sunglasses in reducing UVR and blue light hazard exposure in flight. A series of sunglass filter transmittance measurements were taken from personal sunglasses (N = 20) used by pilots together with a series of new sunglasses (N = 18). All nonprescription sunglasses measured conformed to international standards for UVR transmittance and offered sufficient UVR protection for pilots. There was no difference between right and left lenses or between new and used sunglasses. All sunglasses offered sufficient attenuation to counter the mean increase in blue light exposure that pilots experience at altitude, although used sunglasses with scratched lenses were marginally less effective. One pair of prescription sunglasses offered insufficient UVR attenuation for some flights, but would have met requirements of international and national standards for UV-A transmittance. This was likely due to insufficient UVR blocking properties of the lens material. Lenses manufactured to minimally comply with standards for UVR transmittance could result in excess UVR exposure to a pilot based on in-flight irradiance data; an additional requirement of less than 10% transmittance at 380 nm is recommended.

  20. Practical color vision tests for air traffic control applicants: en route center and terminal facilities.

    PubMed

    Mertens, H W; Milburn, N J; Collins, W E

    2000-12-01

    Two practical color vision tests were developed and validated for use in screening Air Traffic Control Specialist (ATCS) applicants for work at en route center or terminal facilities. The development of the tests involved careful reproduction/simulation of color-coded materials from the most demanding, safety-critical color task performed in each type of facility. The tests were evaluated using 106 subjects with normal color vision and 85 with color vision deficiency. The en route center test, named the Flight Progress Strips Test (FPST), required the identification of critical red/black coding in computer printing and handwriting on flight progress strips. The terminal option test, named the Aviation Lights Test (ALT), simulated red/green/white aircraft lights that must be identified in night ATC tower operations. Color-coding is a non-redundant source of safety-critical information in both tasks. The FPST was validated by direct comparison of responses to strip reproductions with responses to the original flight progress strips and a set of strips selected independently. Validity was high; Kappa = 0.91 with original strips as the validation criterion and 0.86 with different strips. The light point stimuli of the ALT were validated physically with a spectroradiometer. The reliabilities of the FPST and ALT were estimated with Chronbach's alpha as 0.93 and 0.98, respectively. The high job-relevance, validity, and reliability of these tests increases the effectiveness and fairness of ATCS color vision testing.

  1. Engine throat/nozzle optics for plume spectroscopy

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Duncan, D. B.

    1991-01-01

    The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.

  2. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  3. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  4. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  5. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  6. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  7. Enhanced Flight Vision Systems Operational Feasibility Study Using Radar and Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2015-01-01

    Approach and landing operations during periods of reduced visibility have plagued aircraft pilots since the beginning of aviation. Although techniques are currently available to mitigate some of the visibility conditions, these operations are still ultimately limited by the pilot's ability to "see" required visual landing references (e.g., markings and/or lights of threshold and touchdown zone) and require significant and costly ground infrastructure. Certified Enhanced Flight Vision Systems (EFVS) have shown promise to lift the obscuration veil. They allow the pilot to operate with enhanced vision, in lieu of natural vision, in the visual segment to enable equivalent visual operations (EVO). An aviation standards document was developed with industry and government consensus for using an EFVS for approach, landing, and rollout to a safe taxi speed in visibilities as low as 300 feet runway visual range (RVR). These new standards establish performance, integrity, availability, and safety requirements to operate in this regime without reliance on a pilot's or flight crew's natural vision by use of a fail-operational EFVS. A pilot-in-the-loop high-fidelity motion simulation study was conducted at NASA Langley Research Center to evaluate the operational feasibility, pilot workload, and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 feet RVR by use of vision system technologies on a head-up display (HUD) without need or reliance on natural vision. Twelve crews flew various landing and departure scenarios in 1800, 1000, 700, and 300 RVR. This paper details the non-normal results of the study including objective and subjective measures of performance and acceptability. The study validated the operational feasibility of approach and departure operations and success was independent of visibility conditions. Failures were handled within the lateral confines of the runway for all conditions tested. The fail-operational concept with pilot in the loop needs further study.

  8. SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.

    1995-01-01

    Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.

  9. Assembling the Infrared Extragalactic Background Light with CIBER-2: Probing Inter-Halo Light and the Epoch of Reionization.

    NASA Astrophysics Data System (ADS)

    Bock, James

    We propose to carry out a program of observations with the Cosmic Infrared Background Experiment (CIBER-2). CIBER-2 is a near-infrared sounding rocket experiment designed to measure spatial fluctuations in the extragalactic background light. CIBER-2 scientifically follows on the detection of fluctuations with the CIBER-1 imaging instrument, and will use measurement techniques developed and successfully demonstrated by CIBER-1. With high-sensitivity, multi-band imaging measurements, CIBER-2 will elucidate the history of interhalo light (IHL) production and carry out a deep search for extragalactic background fluctuations associated with the epoch of reionization (EOR). CIBER-1 has made high-quality detections of large-scale fluctuations over 4 sounding rocket flights. CIBER-1 measured the amplitude and spatial power spectrum of fluctuations, and observed an electromagnetic spectrum that is close to Rayleigh-Jeans, but with a statistically significant turnover at 1.1 um. The fluctuations cross-correlate with Spitzer images and are significantly bluer than the spectrum of the integrated background derived from galaxy counts. We interpret the CIBER-1 fluctuations as arising from IHL, low-mass stars tidally stripped from their parent galaxies during galaxy mergers. The first generation of stars and their remnants are likely responsible for the for the reionization of the intergalactic medium, observed to be ionized out to the most distant quasars at a redshift of 6. The total luminosity produced by first stars is uncertain, but a lower limit can be placed assuming a minimal number of photons to produce and sustain reionization. This 'minimal' extragalactic background component associated with reionization is detectable in fluctuations at the design sensitivity of CIBER-2. The CIBER-2 instrument is optimized for sensitivity to surface brightness in a short sounding rocket flight. The instrument consists of a 28 cm wide-field telescope operating in 6 spectral bands between 0.5 and 2.0 um, cooled to a temperature of 77 K with a liquid nitrogen cryostat. Images are composed using 3 focal plane assemblies operating H2RG detector arrays. The instrument is currently being fabricated with expected delivery during summer 2014, and will be ready for its first flight in 2015. CIBER-2 will extend the CIBER-1 observations from the near-infrared into the optical, where the EOR and IHL components of the extragalactic background can be cleanly distinguished and separated. We will study the history of IHL production by implementing a multi-band cross-correlation analysis, and use this information to carry out a deep search for an EOR component. In subsequent flights we plan joint observations with weak lensing maps, with an optimized set of filter bands to measure spectral cross-correlations, to fully elucidate the history of IHL light production.

  10. Progress on an external occulter testbed at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Kim, Yunjong; Sirbu, Dan; Galvin, Michael; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-01-01

    An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The occulter testbed uses 78 m optical propagation distance to realize the flight Fresnel numbers. We will use an etched silicon mask as the occulter. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the mechanical design of the testbed. We compare the experimental results with simulations that predict the ultimate contrast performance.

  11. Structural Properties of the Brazilian Air Transportation Network.

    PubMed

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  12. Evaluation of the Effects of Light Intensity and Time Interval After the Start of Scotophase on the Female Flight Propensity of Asian Gypsy Moth (Lepidoptera: Erebidae).

    PubMed

    Chen, Fang; Shi, Juan; Keena, Melody

    2016-04-01

    Asian gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae), females are capable of flight, but little is known about what causes the variation in flight propensity that has been observed. The female flight propensity and capability of Asian gypsy moth from seven geographic populations (three from China, two from Russia, one from Japan, and one from Korea) were compared under all combinations of three light intensities (0.05, 0.10, and 0.40 lux) and during three time intervals after the start of scotophase. A total of 567 females were flight tested. Female flight propensity, time to initiate walking, fanning, and flying, and duration of fanning differed significantly among geographic populations. Females were less likely to voluntarily fly during the 0-1-h time interval after the start of scotophase than during the later time intervals (1-2 and 2-3 h), suggesting that the light intensity cue has to occur at the correct time after the expected start of scotophase for flight initiation. Light intensity did not significantly affect the proportion of females that voluntarily flew, but did impact the timing of the walking and fanning preflight behaviors. The interaction between light intensity and time interval after the start of scotophase had a significant effect on the proportion of females that fanned. The proportion of females with sustained flight capability varied among the populations evaluated. These results may aid in determining the risk of Asian gypsy moth dispersal, but further work is needed to assess other factors that play a role in flight propensity. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  13. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  14. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  15. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  16. Astronauts Need Their Rest Too: Sleep-Wake Actigraphy and Light Exposure During Space Flight

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    The success and effectiveness of human space flight depends on astronauts' ability to maintain a high level of cognitive performance and vigilance. This alert state ensures the proper operation of sophisticated instrumentation. An important way for humans to remedy fatigue and maintain alertness is to get plenty of rest. Astronauts, however, commonly experience difficulty sleeping while in space. During flight, they may also experience disruption of the body's circadian rhythm - the natural phases the body goes through every day as we oscillate between states of high activity during the waking day and recuperation, rest, and repair during nighttime sleep. Both of these factors are associated with impairment of alertness and performance, which could have important consequences during a mission in space. The human body was designed to sleep at night and be alert and active during the day. We receive these cues from the time of day or amount of light, such as the rising or setting of the sun. However, in the environment of the Space Shuttle or the International Space Station where light levels are highly variable, the characteristics of a 24-hour light/dark cycle are not present to cue the astronauts' bodies about what time of the day it is. Astronauts orbiting Earth see a sunset and sunrise every 90 minutes, sending potentially disruptive signals to the area of the brain that regulates sleep. On STS-107, researchers will measure sleep-wake activity with state-of-the-art technology to quantify how much sleep astronauts obtain in space. Because light is the most powerful time cue to the body's circadian system, individual light exposure patterns of the astronauts will also be monitored to determine if light exposure is associated with sleep disruption. The results of this research could lead to the development of a new treatment for sleep disturbances, enabling crewmembers to avoid the decrements in alertness and performance due to sleep deprivation. What we learn about sleep in space informs treatment for earthbound populations, such as the elderly and insomniacs, who experience frequent sleep disturbances or altered sleep patterns.

  17. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  18. Airborne measurements of Black Carbon using miniature high-performance Aethalometers during global circumnavigation campaign GLWF 2012

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2013-04-01

    While ground-level measurements of atmospheric aerosols are routinely performed around the world, there exists very little data on their vertical and geographical distribution in the global atmosphere. This data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Its presence at altitude is unequivocal. Recent technical advances have led to the development of miniaturized instruments which can be operated on ultra-light aircraft, balloons or UAV's. From January to April 2012, a 'Pipistrel Virus' single-seat ultra-light aircraft flew around the world on a photographic and environmental-awareness mission. The flight track covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity (see Reference below). We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Back-trajectories are used to show transport of polluted air masses. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations. 1. __, Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M. Lenarčič, Airborne measurements of Black Carbon during the GLW Flight using miniature high-performance Aethalometers, accessed 8 January 2013 http://www.cgsplus.si/portals/0/WGF/wglfPage.htm

  19. 14 CFR 91.303 - Aerobatic flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...

  20. 14 CFR 91.303 - Aerobatic flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...

  1. 14 CFR 91.303 - Aerobatic flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...

  2. 14 CFR 91.303 - Aerobatic flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...

  3. 14 CFR 91.303 - Aerobatic flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of a...

  4. International Space Station Payload Operations Integration

    NASA Technical Reports Server (NTRS)

    Fanske, Elizabeth Anne

    2011-01-01

    The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).

  5. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    NASA Technical Reports Server (NTRS)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  6. Hybrid Aircraft for Heavy Lift / High Speed Strategic Mobility

    DTIC Science & Technology

    2011-04-01

    Those advancements that reduce onboard power requirements are beneficial, whether high efficiency lighting or computing, innovative cargo management ...of operations projected to become more common in the 2035 time frame. This paper proposes that the US military procure a new class of vehicle to...first attempt to fly a HA was made by Alberto Santos-Dumont, a Brazilian living in France and a pioneer in the controlled flight of airships. In 1905

  7. LANDSAT D to test thematic mapper, inaugurate operational system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.

  8. Zeno: Critical Fluid Light Scattering Experiment

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen

    1996-01-01

    The Zeno (Critical Fluid Light Scattering) experiment is the culmination of a long history of critical fluid light scattering in liquid-vapor systems. The major limitation to making accurate measurements closer to the critical point was the density stratification which occurs in these extremely compressible fluids. Zeno was to determine the critical density fluctuation decay rates at a pair of supplementary angles in the temperature range 100 mK to 100 (mu)K from T(sub c) in a sample of xenon accurately loaded to the critical density. This paper gives some highlights from operating the instrument on two flights March, 1994 on STS-62 and February, 1996 on STS-75. More detail of the experiment Science Requirements, the personnel, apparatus, and results are displayed on the Web homepage at http://www.zeno.umd.edu.

  9. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  10. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  11. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  12. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  13. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  14. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  15. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  16. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  17. Crew factors in flight operations IX : effects of planned cockpit rest on crew performance and alertness in long-haul operations

    DOT National Transportation Integrated Search

    1994-07-01

    This report is the ninth in a series on physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Long-haul flight operations often involve rapid multiple time-zone changes, sl...

  18. Solar glint suppression in compact planetary ultraviolet spectrographs

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  19. The phototron: A light to RF energy conversion device

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1982-01-01

    The phototron, a photoelectric device that converts light to radio frequency energy, is described. It is a vacuum tube, free electron, device that is mechanically similar to a reflex klystron with the hot filament cathode replaced by a large area photocathode. The device can operate either with an external voltage source used to accelerate the photoelectrons or with zero bias voltage; in which case the photokinetic energy of the electrons sustains the R.F. oscillations in the tuned R.F. circuit. One basic design of the phototron was tested. Frequencies as high as about 1 GHz and an overall efficiency of about 1% in the biased mode were obtained. In the unbiased mode, the frequencies of operation and efficiences are considerably lower. Success with test model suggests that considerable improvements are possible through design refinements. One such design refinement is the reduction of the length of the electron flight path.

  20. Photometric analysis in the Kepler Science Operations Center pipeline

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-07-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) Science Processing Pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  1. Photometric Analysis in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  2. What made Apollo a success?

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.

  3. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic fieldmore » of 200 G.« less

  4. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  5. Re-Engineering the Tropical Rainfall Measuring Mission (TRMM) Satellite Utilizing Goddard Space Flight Center (GSFC) Mission Services Center (GMSEC) Middleware Based Technology to Enable Lights Out Operations and Autonomous Re-Dump of Lost Telemetry Data

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.; Busch, Jim

    2008-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft was launched in November of 1996 in order to obtain unique three dimensional radar cross sectional observations of cloud structures with particular interest in hurricanes. The TRMM mission life was recently extended with current estimates that operations will continue through the 2012-2013 timeframe. Faced with this extended mission profile, the project has embarked on a technology refresh and re-engineering effort. TRMM has recently implemented a re-engineering effort to expand a middleware based messaging architecture to enable fully redundant lights-out of flight operations activities. The middleware approach is based on the Goddard Mission Services Evolution Center (GMSEC) architecture, tools and associated open-source Applications Programming Interface (API). Middleware based messaging systems are useful in spacecraft operations and automation systems because private node based knowledge (such as that within a telemetry and command system) can be broadcast on the middleware messaging bus and hence enable collaborative decisions to be made by multiple subsystems. In this fashion, private data is made public and distributed within the local area network and multiple nodes can remain synchronized with other nodes. This concept is useful in a fully redundant architecture whereby one node is monitoring the processing of the 'prime' node so that in the event of a failure the backup node can assume operations of the prime, without loss of state knowledge. This paper will review and present the experiences, architecture, approach and lessons learned of the TRMM re-engineering effort centered on the GMSEC middleware architecture and tool suite. Relevant information will be presented that relates to the dual redundant parallel nature of the Telemetry and Command (T and C) and Front-End systems and how these systems can interact over a middleware bus to achieve autonomous operations including autonomous commanding to recover missing science data during the same spacecraft contact.

  6. Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera

    NASA Image and Video Library

    2015-05-14

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.

  7. Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry

    NASA Image and Video Library

    2014-11-05

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  8. Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin

    NASA Image and Video Library

    2014-10-17

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  9. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    PubMed Central

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  10. Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin

    2012-01-01

    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.

  11. Flying Drosophilamelanogaster maintain arbitrary but stable headings relative to the angle of polarized light.

    PubMed

    Warren, Timothy L; Weir, Peter T; Dickinson, Michael H

    2018-05-11

    Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals' wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D . melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D . melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination. © 2018. Published by The Company of Biologists Ltd.

  12. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...

  13. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...

  14. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...

  15. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transit flights, irregular operations. 375... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however...

  16. Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Mabe, James H.; Butler, George W.

    2006-03-01

    Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.

  17. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Expendable Launch Vehicle From a Non-Federal Launch Site § 415.127 Flight safety system design and operation...: flight termination system; command control system; tracking; telemetry; communications; flight safety... control system. (7) Flight termination system component storage, operating, and service life. A listing of...

  18. Presearch data conditioning in the Kepler Science Operations Center pipeline

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.

    2010-07-01

    We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) Science Processing Pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and removal of excess flux due to aperture crowding. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples from Kepler flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  19. Presearch Data Conditioning in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.

  20. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...

  1. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...

  2. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  3. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  4. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  5. Fatigue-Related Countermeasures for Long-Duration Exploration Missions

    NASA Technical Reports Server (NTRS)

    Whitmire, A.; Johnston, S.; Sipes, W.

    2014-01-01

    The NASA Human Research Program's (HRP) Behavioral Health and Performance Element (BHP) supports and conducts research to mitigate deleterious outcomes related to fatigue, sleep loss, circadian desynchronization, and work overload. Objective evidence indicates that within the context of the International Space Station (ISS), sleep is reduced and there is circadian misalignment. Despite chronic sleep loss and high workloads; however, astronauts successfully complete their missions. Contributing to their success is not only the tremendous skills and capabilities of each astronaut, but also the collaborative team efforts amongst the crew, between flight and ground crews, and through real-time care provided by medical personnel. It is anticipated that risks to human health and performance will increase in the context of exploration missions, where crewmembers will venture to deep space for extended durations and in small vehicles with limited communication with home. Hence, fatigue-related countermeasures are being developed and/or validated that include unobtrusive monitoring technologies to detect fatigue-related performance decrements, environmental countermeasures, and sleep education and training for flight and ground crews. Given that fatigue is an issue in current ISS missions, the BHP works collaboratively with Space Medicine operations to collect data in the operational environment, to validate fatigue-related countermeasures, and provide evidence-based mitigations. Our presentation will summarize fatigue-related operational research that is underway through NASA's BHP in partnership with its operational counterparts. Efforts include studies evaluating the effects of hypnotics, lighting protocols as countermeasures for circadian entrainment, and investigations involving education and training. This presentation will further identify, based on flight and terrestrial evidence, additional sleep and circadian countermeasures that may still be needed to support exploration missions. Lessons learned from transitioning research deliverables into ISS operations will also be discussed.

  6. Development of an integrated spacecraft Guidance, Navigation, & Control subsystem for automated proximity operations

    NASA Astrophysics Data System (ADS)

    Schulte, Peter Z.; Spencer, David A.

    2016-01-01

    This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using decision logic to autonomously determine when actions should be performed. The complexity of this decision logic is the primary challenge of the automated process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual hardware and software components. Once the integrated simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. Hardware-in-the-loop testing provides validation of the Guidance, Navigation, & Control subsystem performance.

  7. 14 CFR 121.537 - Responsibility for operational control: Supplemental operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...

  8. 14 CFR 121.537 - Responsibility for operational control: Supplemental operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...

  9. 14 CFR 121.537 - Responsibility for operational control: Supplemental operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...

  10. 14 CFR 121.537 - Responsibility for operational control: Supplemental operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...

  11. 14 CFR 121.537 - Responsibility for operational control: Supplemental operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations..., and termination of a flight in compliance with this chapter and the operations specifications. The... termination of a flight but he may not delegate the responsibility for those functions. (c) The director of...

  12. In situ measurements of the mesosphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Crosky, C.

    1976-01-01

    The operation of a subsonic, Gerdien condenser probe for in situ measurements of the mesosphere and stratosphere is presented. The inclusion of a flashing Lyman alpha ultraviolet source provides an artifically produced ionization of particular constituents. Detailed theory of operation is presented and the data results from two flights are shown. A great deal of fine structure in mobility is observed due to the presence of various hydrated positive ions. The effect of the Lyman alpha source in the 35 km region was to dissociate a light hydrate ion rather than produce additional ionization. At the 70 km region, photodissociation of the heaviest ions (probably ice crystals) was also observed.

  13. Microprocessor-based cardiopulmonary monitoring system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The system uses a dedicated microprocessor for transducer control and data acquisition and analysis. No data will be stored in this system, but the data will be transmitted to the onboard data system. The data system will require approximately 12 inches of rack space and will consume only 100 watts of power. An experiment specific control panel, through a series of lighted buttons, will guide the operator through the test series providing a smaller margin of error. The experimental validity of the system was verified, and the reproducibility of data and reliability of the system checked. In addition, ease of training, ease of operator interaction, and crew acceptance were evaluated in actual flight conditions.

  14. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  15. Three-year aging of prototype flight laser at 10 kHz and 1 ns pulses with external frequency doubler for ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; Culpepper, Charles F.; Strickler, Kathy

    2016-05-01

    We present the results of a three-year operational-aging test of a specially designed prototype flight laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and externally frequency-doubled. Fibertek designed and built the q-switched, 1064nm laser and this laser was in a sealed container of dry air pressurized to 1.3 atm. The external frequency doubler was in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm separately. The external frequency doubler consisted of a Lithium triborate, LiB3O5, non-critically phase-matched crystal. After some 1064 nm light was diverted for diagnostics, 13.7W of fundamental power was available to pump the doubling crystal. Between 8.5W and 10W of 532nm power was generated, depending on the level of stress and degradation. The test consisted of two stages, the first at 0.3 J/cm2 for almost 1 year, corresponding to expected operational conditions, and the second at 0.93 J/cm2 for the remainder of the experiment, corresponding to accelerated optical stress testing. We observed no degradation at the first stress-level and linear degradation at the second stress-level. The linear degradation was linked to doubler crystal output surface changes from laser-assisted contamination. We estimate the expected lifetime for the flight laser at 532 nm using fluence as the stress parameter. This work was done for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  16. The assembly, calibration, and preliminary results from the Colorado high-resolution Echelle stellar spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian

    2014-07-01

    The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.

  17. Operational Issues: What Science in Available?

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Neri, David F.

    1997-01-01

    Flight/duty/rest considerations involve two highly complex factors: the diverse demands of aviation operations and human physiology (especially sleep and circadian rhythms). Several core operational issues related to fatigue have been identified, such as minimum rest requirements, duty length, flight time considerations, crossing multiple time zones, and night flying. Operations also can involve on-call reserve status and callout, delays due to unforeseen circumstances (e.g., weather, mechanical), and on-demand flights. Over 40 years of scientific research is now available to apply to these complex issues of flight/duty/rest requirements. This research involves controlled 'laboratory studies, simulations, and data collected during regular flight operations. When flight/duty/rest requirements are determined they are typically based on a variety of considerations, such as operational demand, safety, economic, etc. Rarely has the available, state-of-the-art science been a consideration along with these other factors when determining flight/duty/rest requirements. While the complexity of the operational demand and human physiology precludes an absolute solution, there is an opportunity to take full advantage of the current scientific data. Incorporating these data in a rational operational manner into flight/duty/rest requirements can improve flight crew performance, alertness, and ultimately, aviation safety.

  18. Experiments to Determine Neighborhood Reactions to Light Airplanes With and Without External Noise Reduction

    NASA Technical Reports Server (NTRS)

    Elwell, Fred S

    1953-01-01

    The work reported was part of a program of experimentation with external noise reduction on light airplanes. This particular study was in effect a byproduct survey conceived to utilize already available equipment and personnel to further the findings of the original research and to determine reactions in populated neighborhoods to light aircraft with and without noise-reduction equipment. The findings indicate that at the 10 sites within and about metropolitan Boston the degree of noise reduction previously found to be aerodynamically and structurally feasible did eliminate substantially all neighborhood objections to noise per se. The evidence clearly suggests that, when the noise nuisance is minimized to the extent found feasible, the number and severity of other objections also diminish -- evidently because the flight operations are noticed less when heard less.

  19. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  20. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  1. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  2. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  3. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  4. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    NASA Technical Reports Server (NTRS)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  5. 14 CFR 121.535 - Responsibility for operational control: Flag operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...

  6. 14 CFR 121.535 - Responsibility for operational control: Flag operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...

  7. 14 CFR 121.535 - Responsibility for operational control: Flag operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...

  8. 14 CFR 121.535 - Responsibility for operational control: Flag operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...

  9. 14 CFR 121.535 - Responsibility for operational control: Flag operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...

  10. Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2017-01-01

    Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.

  11. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.

  12. Fatigue Management in Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra

    2011-01-01

    Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.

  13. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.

  14. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  15. Key Differences in Operating a Rover on the Moon vs. Mars

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2017-01-01

    The command and control model for spacecraft operations, as well as the distribution of tasks between ground assets and in space assets, whether with a crew or solely robotic, is fundamentally constrained by the round trip light time between the space asset and the control facility (presumably on Earth, though not required). For an asset on Mars, the round trip light time varies, from roughly fourteen minutes to up to forty minutes. For a Lunar asset the round-trip light time is measured in only a few seconds, but current communications systems may more than double the latency with system overhead. For a Lunar Asset the total command latency may range from six seconds to more than forty, depending on communications overhead and data rates. Further, these variables are not always predictable, thus complicating operations. There are several differentiating factors for Lunar vs. Mars operations, Round trip light time/Atmosphere/Lighting and ShadowsTerrain type and knowledge/Round trip light time has implications for the distribution of tasks between ground and in space assets. Even at Lunar Distances, the combination of round trip light time plus communications systems overhead does not enable joy stick driving of a rover. The best that can be done, if driving from Earth, is near real time command and control. By 2030, driving from in space may be possible. Productivity on Mars requires either long operational sequences of commands, as is done for current rovers such as Curiosity, significant autonomous capability or, as may be possible by 2030, command and control support from space. Another implication of the long round trip light time from Earth to Mars, is that flight software functions must be resident on the in space asset. On the Moon, there is considerably more flexibility, enabling processing functions, to be resident on Earth or in space. This provides the opportunity to take advantage of the considerable processing power available on the ground, but may be constrained by data rates. On the Moon, for practical operational purposes, there is no atmosphere. Hence there is no scattering of light in the shadows. This has implications for image interpretation and driving near the poles. The Moon has permanently shadowed regions (PSR), unique terrain with unknown surface properties. With no scattering of light in shadows, driving on the Moon, particularly at the poles, where we have strong evidence of water, may prove to be hazardous and complex, requiring non-optical sensors, such as LIDAR.

  16. In-flight performance of the solar UV radiometer LYRA/PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; BenMoussa, A.; Dammasch, I.; Defise, J.-M.; Dominique, M.; Halain, J.-P.; Hochedez, J.-F.; Koller, S.; Schmutz, W.; Schühle, U.

    2017-11-01

    LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is tracked by the ESA Redu Mission Operation Center. One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 Hz) in four soft X-Ray to VUV large passbands: the "Lyman-Alpha" channel, the "Herzberg" continuum range, the "Aluminium" and "Zirconium" filter channels. The radiometric calibration is traceable to synchrotron source standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become superfluous. To correlate the data of this new detector technology, silicon detectors with well known characteristics are also embarked. Due to the strict allocated mass and power budget (5 kg, 5W), and poor priority to the payload needs on such platform, an optimization and a robustness of the instrument was necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have been monitored and analyzed during the commissioning period. This paper presents the first-light and preliminary performance analysis.

  17. 14 CFR 61.419 - How do I obtain privileges to provide training in an additional category or class of light-sport...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training in an additional category or class of light-sport aircraft? 61.419 Section 61.419 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport...

  18. 14 CFR 61.419 - How do I obtain privileges to provide training in an additional category or class of light-sport...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... training in an additional category or class of light-sport aircraft? 61.419 Section 61.419 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport...

  19. 14 CFR 61.419 - How do I obtain privileges to provide training in an additional category or class of light-sport...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... training in an additional category or class of light-sport aircraft? 61.419 Section 61.419 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport...

  20. 14 CFR 61.419 - How do I obtain privileges to provide training in an additional category or class of light-sport...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... training in an additional category or class of light-sport aircraft? 61.419 Section 61.419 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport...

  1. 14 CFR 61.419 - How do I obtain privileges to provide training in an additional category or class of light-sport...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... training in an additional category or class of light-sport aircraft? 61.419 Section 61.419 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport...

  2. 14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...

  3. 14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...

  4. 14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...

  5. 14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...

  6. 14 CFR 91.317 - Provisionally certificated civil aircraft: Operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... limitations of § 21.191 of this chapter and when flight testing, shall operate under the requirements of § 91..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.317 Provisionally certificated civil aircraft: Operating...

  7. 78 FR 79061 - Noise Exposure Map Notice; Key West International Airport, Key West, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., Flight Track Utilization by Aircraft Category for East Flow Operations; Table 4-3, Flight Track Utilization by Aircraft Category for West Flow Operations; Table 4-4, 2013 Air Carrier Flight Operations; Table 4-5, 2013 Commuter and Air Taxi Flight Operations; Table 4-6, 2013 Average Daily Engine Run-Up...

  8. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  9. First Deminsys (high speed FBG interrogator) flight

    NASA Astrophysics Data System (ADS)

    van Els, Thomas J.

    2009-03-01

    Deminsys is the world's fastest multi sensor / multi channel FBG interrogator, identifies one till four channels with typically 8 sensors per channel. The system is especially developed for the interrogation of signals up to 19,3 kHz for each sensor and the sample frequency is independent of the number of sensors. By having multiple sensors per fibre you can create a very compact network of sensors. Due to its revolutionary (light weight, compact and solid state) design, Deminsys seems to fit perfectly into (research) programs for aerospace, medic & life science, maritime, industrial, crash test and all other fast detection applications. Technobis Fibre Technologies (TFT) and NLR made a first test flight with the Deminsys optical fibre measurement system using the NLR test aircraft on October 24th 2008. This flight was a first step in the further development of the current system in order to make it suitable for operation on-board an aircraft and bring it from TRL3 towards TRL5, a functional model for aerospace applications.

  10. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.

  11. Orbiter entry aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1985-01-01

    The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.

  12. 78 FR 12233 - Policy Clarification on Charitable Medical Flights

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... on Charitable Medical Flights AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... operating charitable medical flights. Charitable medical flights are flights where a pilot, aircraft owner... Volunteer Pilots Operating Charitable Medical Flights. DATES: This action becomes effective on February 22...

  13. Development and system identification of a light unmanned aircraft for flying qualities research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, M.E.; Andrisani, D. II

    This paper describes the design, construction, flight testing and system identification of a light weight remotely piloted aircraft and its use in studying flying qualities in the longitudinal axis. The short period approximation to the longitudinal dynamics of the aircraft was used. Parameters in this model were determined a priori using various empirical estimators. These parameters were then estimated from flight data using a maximum likelihood parameter identification method. A comparison of the parameter values revealed that the stability derivatives obtained from the empirical estimators were reasonably close to the flight test results. However, the control derivatives determined by themore » empirical estimators were too large by a factor of two. The aircraft was also flown to determine how the longitudinal flying qualities of light weight remotely piloted aircraft compared to full size manned aircraft. It was shown that light weight remotely piloted aircraft require much faster short period dynamics to achieve level I flying qualities in an up-and-away flight task.« less

  14. STS-97 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Various shots highlight the STS-97 Endeavour mission. Footage shows the crew suiting up and leaving the Operations and Checkout (O&C) Building, the launch, and landing. Various on-orbit activities are seen, such as docking with the International Space Station (ISS), the spacewalks (installing the PV Module P6), array deployment, meeting the Expedition 1 crew, eating, and undocking. Shots show the northern lights and a meteorite entering Earth's atmosphere from above. The Andes can be seen from the Orbiter while the P6 arrays are deploying.

  15. Photographic Equipment Test System (PETS)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Photographic Equipment Test System is presented. The device is a mobile optical system designed for evaluating performance of various sensors in a laboratory, in a vacuum chamber or on a flight line. The carriage is designed to allow elevation as well as azimuth control of the direction of the light from the collimator. The pneumatic tires provide an effective vibration isolation system. A target/illumination system is mounted on a motor driven linear slide, and focusing and exposure control can be operated remotely from the small electronics control console.

  16. Case study: using a stereoscopic display for mission planning

    NASA Astrophysics Data System (ADS)

    Kleiber, Michael; Winkelholz, Carsten

    2009-02-01

    This paper reports on the results of a study investigating the benefits of using an autostereoscopic display in the training targeting process of the Germain Air Force. The study examined how stereoscopic 3D visualizations can help to improve flight path planning and the preparation of a mission in general. An autostereoscopic display was used because it allows the operator to perceive the stereoscopic images without shutter glasses which facilitates the integration into a workplace with conventional 2D monitors and arbitrary lighting conditions.

  17. STS-39 Discovery, OV-103, crew eats preflight breakfast at KSC O&C Bldg

    NASA Image and Video Library

    1991-04-28

    STS039-S-051 (28 April 1991) --- In KSC's Operations and Checkout Building, a very light breakfast is shared by the seven members of the STS-39 flight crew prior to their April 28, 1991 launch. Left to right are astronauts Donald R. McMonagle, Guion S. Bluford Jr., L. Blaine Hammond, Michael L. Coats, Gregory J. Harbaugh, Richard J. Hieb and Charles L. (Lacy) Veach. Launch occurred at 7:33:14 a.m. (EDT), April 28, 1991.

  18. Achieving Operability via the Mission System Paradigm

    NASA Technical Reports Server (NTRS)

    Hammer, Fred J.; Kahr, Joseph R.

    2006-01-01

    In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.

  19. 14 CFR 375.22 - Flight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...

  20. 14 CFR 375.22 - Flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...

  1. 14 CFR 375.22 - Flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...

  2. 14 CFR 375.22 - Flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...

  3. 14 CFR 375.22 - Flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted in...

  4. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  5. Flight Test Evaluation of the ATD-1 Interval Management Application

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.; Roper, Roy D.; Abbott, Terence S.; Levitt, Ian; Scharl, Julien

    2017-01-01

    Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.

  6. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  7. Predicting and Managing Lighting and Visibility for Human Operations in Space

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Peacock, Brian

    2003-01-01

    Lighting is critical to human visual performance. On earth this problem is well understood and solutions are well defined and executed. Because the sun rises and sets on average every 45 minutes during Earth orbit, humans working in space must cope with extremely dynamic lighting conditions varying from very low light conditions to severe glare and contrast conditions. For critical operations, it is essential that lighting conditions be predictable and manageable. Mission planners need to detelmine whether low-light video cameras are required or whether additional luminaires, or lamps, need to be flown . Crew and flight directors need to have up to date daylight orbit time lines showing the best and worst viewing conditions for sunlight and shadowing. Where applicable and possible, lighting conditions need to be part of crew training. In addition, it is desirable to optimize the quantity and quality of light because of the potential impacts on crew safety, delivery costs, electrical power and equipment maintainability for both exterior and interior conditions. Addressing these issues, an illumination modeling system has been developed in the Space Human Factors Laboratory at ASA Johnson Space Center. The system is the integration of a physically based ray-tracing package ("Radiance"), developed at the Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system developed by NASA and an extensive database of humans and their work environments. Measured and published data has been collected for exterior and interior surface reflectivity; luminaire beam spread distribution, color and intensity and video camera light sensitivity and has been associated with their corresponding geometric models. Selecting an eye-point and one or more light sources, including sun and earthshine, a snapshot of the light energy reaching the surfaces or reaching the eye point is computed. This energy map is then used to extract the required information needed for useful predictions. Using a validated, comprehensive illumination model integrated with empirically derived data, predictions of lighting and viewing conditions have been successfully used for Shuttle and Space Station planning and assembly operations. It has successfully balanced the needs for adequate human performance with the utili zation of resources. Keywords: Modeling, ray tracing, luminaires, refl ectivity, luminance, illuminance.

  8. Myotonometry as a Surrogate Measure of Muscle Strength

    NASA Technical Reports Server (NTRS)

    Ang, B. S.; Feeback, D. L.; Leonard, C. T.; Sykes, J.; Kruger, E.; Clarke, M. S. F.

    2007-01-01

    Space flight-induced muscle atrophy/neuromuscular degradation and the consequent decrements in crew-member performance are of increasing concern as mission duration lengthens, and planetary exploration after extended space flight is planned. Pre- to post-flight strength measures have demonstrated that specific countermeasures, such as resistive exercise, are effective at countering microgravity-induced muscle atrophy and preventing decrements in muscle strength. However, in-flight assessment/monitoring of exercise countermeasure effectiveness will be essential during exploration class missions due to their duration. The ability to modify an exercise countermeasure prescription based on such real-time information will allow each individual crew member to perform the optimal amount and type of exercise countermeasure to maintain performance. In addition, such measures can be used to determine if a crew member is physically capable of performing a particular mission-related task during exploration class missions. The challenges faced in acquiring such data are those common to all space operations, namely the requirement for light-weight, low power, mechanically reliable technologies that make valid measurements in microgravity, in this case of muscle strength/neuromuscular function. Here we describe a simple, light-weight, low power, non-invasive device, known as the Myotonometer, that measures tissue stiffness as an indirect measure of muscle contractile state and muscle force production. Repeat myotonometer measurements made at the same location on the surface of the rectis femoris muscle (as determined using a 3D locator device, SEM plus or minus 0.34 mm) were shown to be reproducible over time at both maximal voluntary contraction (MVC) and at rest in a total of 17 sedentary subjects assessed three times over a period of seven days. In addition, graded voluntary isometric force production (i.e. 20%, 40%, 60%, 80% & 100% of MVC) during knee extension was shown to be significantly (p less than 0.01) correlated with contemporaneous myotonometer measurements made on the rectis femoris muscle in a total of 16 healthy subjects (8 males, 8 females). Further-more, this device has been operationally tested during parabolic flight demonstrating its suitability for use in a microgravity environment. Our data indicates that the Myotonometer is a viable surrogate measure of muscle contractile state/tone and of muscle strength/force production. Additional studies are required to assess the suitability of this technique for assessing these measures in de-conditioned subjects such as crew-members.

  9. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2015-12-01

    The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north-west Germany, AirMAP clearly detected the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume centre. NOx emissions estimated from the AirMAP observations are consistent with reports in the European Pollutant Release and Transfer Register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected.

  10. Relationship between Brazilian airline pilot errors and time of day.

    PubMed

    de Mello, M T; Esteves, A M; Pires, M L N; Santos, D C; Bittencourt, L R A; Silva, R S; Tufik, S

    2008-12-01

    Flight safety is one of the most important and frequently discussed issues in aviation. Recent accident inquiries have raised questions as to how the work of flight crews is organized and the extent to which these conditions may have been contributing factors to accidents. Fatigue is based on physiologic limitations, which are reflected in performance deficits. The purpose of the present study was to provide an analysis of the periods of the day in which pilots working for a commercial airline presented major errors. Errors made by 515 captains and 472 co-pilots were analyzed using data from flight operation quality assurance systems. To analyze the times of day (shifts) during which incidents occurred, we divided the light-dark cycle (24:00) in four periods: morning, afternoon, night, and early morning. The differences of risk during the day were reported as the ratio of morning to afternoon, morning to night and morning to early morning error rates. For the purposes of this research, level 3 events alone were taken into account, since these were the most serious in which company operational limits were exceeded or when established procedures were not followed. According to airline flight schedules, 35% of flights take place in the morning period, 32% in the afternoon, 26% at night, and 7% in the early morning. Data showed that the risk of errors increased by almost 50% in the early morning relative to the morning period (ratio of 1:1.46). For the period of the afternoon, the ratio was 1:1.04 and for the night a ratio of 1:1.05 was found. These results showed that the period of the early morning represented a greater risk of attention problems and fatigue.

  11. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  12. FLASH fly-by-light flight control demonstration results overview

    NASA Astrophysics Data System (ADS)

    Halski, Don J.

    1996-10-01

    The Fly-By-Light Advanced Systems Hardware (FLASH) program developed Fly-By-Light (FBL) and Power-By-Wire (PBW) technologies for military and commercial aircraft. FLASH consists of three tasks. Task 1 developed the fiber optic cable, connectors, testers and installation and maintenance procedures. Task 3 developed advanced smart, rotary thin wing and electro-hydrostatic (EHA) actuators. Task 2, which is the subject of this paper,l focused on integration of fiber optic sensors and data buses with cable plant components from Task 1 and actuators from Task 3 into centralized and distributed flight control systems. Both open loop and piloted hardware-in-the-loop demonstrations were conducted with centralized and distributed flight control architectures incorporating the AS-1773A optical bus, active hand controllers, optical sensors, optimal flight control laws in high speed 32-bit processors, and neural networks for EHA monitoring and fault diagnosis. This paper overviews the systems level testing conducted under the FLASH Flight Control task. Preliminary results are summarized. Companion papers provide additional information.

  13. 14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...

  14. 14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...

  15. 14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot and flight attendant crewmember..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember...

  16. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  17. 14 CFR 61.45 - Practical tests: Required aircraft and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in a flight simulator or a flight training device, an applicant for a certificate or rating issued... limited, primary, or light-sport category. (2) At the discretion of the examiner who administers the..., or light-sport category, but that otherwise meets the requirements of paragraph (a)(1) of this...

  18. FIR Light Microscopy Module Set Up

    NASA Image and Video Library

    2009-11-09

    ISS021-E-022460 (9 Nov. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 21 flight engineer, installs the Light Microscopy Module (LMM) Spindle Bracket Assembly in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station. NASA astronaut Nicole Stott (out of frame), flight engineer, assisted Thirsk.

  19. 14 CFR 135.107 - Flight attendant crewmember requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight attendant crewmember requirement... Flight Operations § 135.107 Flight attendant crewmember requirement. No certificate holder may operate an... is a flight attendant crewmember on board the aircraft. ...

  20. 14 CFR 135.107 - Flight attendant crewmember requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight attendant crewmember requirement... Flight Operations § 135.107 Flight attendant crewmember requirement. No certificate holder may operate an... is a flight attendant crewmember on board the aircraft. ...

  1. 14 CFR 135.107 - Flight attendant crewmember requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight attendant crewmember requirement... Flight Operations § 135.107 Flight attendant crewmember requirement. No certificate holder may operate an... is a flight attendant crewmember on board the aircraft. ...

  2. Crew factors in flight operations VI : psychophysiological responses to helicopter operations

    DOT National Transportation Integrated Search

    1994-07-01

    This report is the sixth in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Thirty-two helicopter pilots were studied before, during, and after 4- to ...

  3. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezous missions presented unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading and contamination concerns. These issues, along with limited forward reaction control system propellant, drove a change from the Gemimi/Apollo coelliptic profile heritage to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions and crew exchange, assembly and replinishment flights to Mir and to the International Space Station drove further profile and piloting technique changes, including new relative navigation sensors and new computer generated piloting cues.

  4. Shuttle operations era planning for flight operations

    NASA Technical Reports Server (NTRS)

    Holt, J. D.; Beckman, D. A.

    1984-01-01

    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.

  5. Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2013-01-01

    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.

  6. A Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  7. The role of pineal gland in breast cancer development.

    PubMed

    Anisimov, Vladimir N

    2003-06-01

    The role of the modulation of the pineal gland function in development of breast cancer is discussed in this review. An inhibition of the pineal function with pinealectomy or with the exposure to the constant light regimen stimulates mammary carcinogenesis, whereas the light deprivation inhibits the carcinogenesis. Epidemiological observations on increased risk of breast cancer in night shift workers, flight attendants, radio and telegraph operators and on decreased risk in blind women are in accordance with the results of experiments in rodents. Treatment with pineal indole hormone melatonin inhibits mammary carcinogenesis in pinealectomized rats, in animals kept at the standard light/dark regimen (LD) or at the constant illumination (LL) regimen. Pineal peptide preparation Epithalamin and synthetic tetrapeptide Epitalon (Ala-Glu-Asp-Gly) are potent inhibitors of mammary carcinogenesis in rodents and might be useful in the prevention of breast cancer in women at risk.

  8. Proceedings of the 20th International Symposium on Space Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Mark (Editor); Stengle, Tom (Editor)

    2007-01-01

    Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.

  9. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  10. Improved specific energy Ni-H2 cell

    NASA Astrophysics Data System (ADS)

    Miller, L. E.

    1985-12-01

    Significant improvements in specific energy for Ni-H2 battery cells have been and will be achieved. Current flight cell designs in operation on multiple satellites have achieved a specific energy of 52 Whr/Kg (this value may be compared to 45 Whr/Kg for advanced, light-weight Ni-Cd space cells). Battery cells operating at increased pressures (61 atm/900 psi) have been manufactured and successfully tested demonstrating a specific energy of 70 Whr/Kg. Further optimization of electrode substrate, pressure vessel wall thickness and cell terminal/conductor assembly designs will permit achievement of specific energies between 75-80 Whr/Kg. Energy density (outline volume) will be improved from 49 Whr/L to 79 Whr/L.

  11. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.

  12. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  13. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  14. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less...

  15. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  16. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  17. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  18. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  19. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  20. 14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...

  1. 14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...

  2. 14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...

  3. 14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...

  4. 14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...

  5. Crew factors in flight operations II : psychophysiological responses to short-haul air transport operations

    DOT National Transportation Integrated Search

    1994-11-01

    This report is the second in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. This overview presents a comprehensive review and interpretation of the m...

  6. Summary results of the first United States manned orbital space flight

    NASA Technical Reports Server (NTRS)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  7. GPS tracking for mapping seabird mortality induced by light pollution.

    PubMed

    Rodríguez, Airam; Rodríguez, Beneharo; Negro, Juan J

    2015-06-02

    Light pollution and its consequences on ecosystems are increasing worldwide. Knowledge on the threshold levels of light pollution at which significant ecological impacts emerge and the size of dark refuges to maintain natural nocturnal processes is crucial to mitigate its negative consequences. Seabird fledglings are attracted by artificial lights when they leave their nest at night, causing high mortality. We used GPS data-loggers to track the flights of Cory's shearwater Calonectris diomedea fledglings from nest-burrows to ground, and to evaluate the light pollution levels of overflown areas on Tenerife, Canary Islands, using nocturnal, high-resolution satellite imagery. Birds were grounded at locations closer than 16 km from colonies in their maiden flights, and 50% were rescued within a 3 km radius from the nest-site. Most birds left the nests in the first three hours after sunset. Rescue locations showed radiance values greater than colonies, and flight distance was positively related to light pollution levels. Breeding habitat alteration by light pollution was more severe for inland colonies. We provide scientific-based information to manage dark refuges facilitating that fledglings from inland colonies reach the sea successfully. We also offer methodological approaches useful for other critically threatened petrel species grounded by light pollution.

  8. Seasonal Flight Activity of the Sugarcane Beetle (Coleoptera: Scarabaeidae) in North Carolina Using Black Light Traps.

    PubMed

    Billeisen, T L; Brandenburg, R L

    2016-04-01

    Seasonal flight activity, adult beetle sex count, and egg production were examined in sugarcane beetles Euetheola rugiceps (LeConte) caught in light traps in North Carolina from the fall of 2009 through the summer of 2014. A regression model using variable environmental conditions as predictive parameters was developed to examine the impact of these conditions on flight activity. Depending on flight trap location and sampling years, beetles exhibited an inconsistent flight pattern, with the majority of adults flying in the spring (April-June) and intermittently in the fall (September-October). Our model indicated that larger numbers of adults collected from traps coincided with an increase in average soil temperature. Sugarcane beetles also exhibit a synchronous emergence during both periods of flight activity. Eggs were detected in females collected from light traps every week throughout the entire sampling period. The majority of females produced 7-12 eggs, with most egg production occurring between 15 May and 1 August. The findings of this research provide adult sugarcane beetle emergence and flight behavior information necessary to determine optimal pesticide application timing. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.

  10. On the capabilities and limitations of high altitude pseudo-satellites

    NASA Astrophysics Data System (ADS)

    Gonzalo, Jesús; López, Deibi; Domínguez, Diego; García, Adrián; Escapa, Alberto

    2018-04-01

    The idea of self-sustaining air vehicles that excited engineers in the seventies has nowadays become a reality as proved by several initiatives worldwide. High altitude platforms, or Pseudo-satellites (HAPS), are unmanned vehicles that take advantage of weak stratospheric winds and solar energy to operate without interfering with current commercial aviation and with enough endurance to provide long-term services as satellites do. Target applications are communications, Earth observation, positioning and science among others. This paper reviews the major characteristics of stratospheric flight, where airplanes and airships will compete for best performance. The careful analysis of involved technologies and their trends allow budget models to shed light on the capabilities and limitations of each solution. Aerodynamics and aerostatics, structures and materials, propulsion, energy management, thermal control, flight management and ground infrastructures are the critical elements revisited to assess current status and expected short-term evolutions. Stratospheric airplanes require very light wing loading, which has been demonstrated to be feasible but currently limits their payload mass to few tenths of kilograms. On the other hand, airships need to be large and operationally complex but their potential to hover carrying hundreds of kilograms with reasonable power supply make them true pseudo-satellites with enormous commercial interest. This paper provides useful information on the relative importance of the technology evolutions, as well as on the selection of the proper platform for each application or set of payload requirements. The authors envisage prompt availability of both types of HAPS, aerodynamic and aerostatic, providing unprecedented services.

  11. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  12. 14 CFR 61.87 - Solo requirements for student pilots.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...

  13. 14 CFR 61.87 - Solo requirements for student pilots.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...

  14. 14 CFR 61.87 - Solo requirements for student pilots.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...

  15. 14 CFR 61.87 - Solo requirements for student pilots.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...

  16. 14 CFR 61.87 - Solo requirements for student pilots.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...

  17. An evaluation of head-up displays in civil transport operations

    NASA Technical Reports Server (NTRS)

    Lauber, J. K.; Bray, R. S.; Scott, B. C.

    1981-01-01

    To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches.

  18. Sports aviation accidents: fatality and aircraft specificity.

    PubMed

    de Voogt, Alexander J; van Doorn, Robert R A

    2010-11-01

    Sports aviation is a special category of general aviation characterized by diverse aircraft types and a predominantly recreational flight operation. A general comparison of aircraft accidents within sports aviation is missing, but should guide future research. A comparison of accidents in sports aviation was made using 2118 records from the National Transportation Safety Board for the period 1982-2007. In addition, the available denominator data from the Federal Aviation Administration were used to interpret the data. The highest number of accidents was found with gliders (N = 991), but the highest relative number of fatal accidents came from ultra-light (45%) and gyroplane operations (40%), which are homebuilt more often than other aircraft types. The most common cause of accident in sports aviation was in-flight planning and decision-making (N = 200, 9.4%). The most frequent occurrences were hard landings and undershoots, of which the numbers differ significantly from one aircraft type to the other. Homebuilt aircraft are at particular risk in sports aviation. Although denominator data remain problematic for motorized sports aviation, these aircraft show a high proportion of homebuilt aircraft and, more importantly, a higher relative number of fatal accidents.

  19. Lightning Current Measurement with Fiber-Optic Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  20. Flight Test Hazard Planning Near the Speed of Light

    NASA Technical Reports Server (NTRS)

    Henwood, Bart; Huete, Rod

    2007-01-01

    A viewgraph presentation describing flight test safety near the speed of light is shown. The topics include: 1) Concept; 2) Portal Content; 3) Activity to Date; 4) FTS Database Updatd FAA Program; 5) FAA Flight Test Risk Management; 6) CFR 14 Part 21.35 Current and proposed changes; 7) An Online Resource for Flight Test Safety Planning; 8) Data Gathering; 9) NTPS Role; 10) Example Maturation; 11) Many Varied Inputs; 12) Matured Stall Hazards; 13) Loss of Control Mitigations; 14) FAA Access; 15) NASA PBMA Website Link; 16) FAR Reference Search; 17) Record Field Search; 18) Keyword Search; and 19) Results of FAR Reference Search.

  1. Sleep and intercontinental flights.

    PubMed

    Nicholson, Anthony N

    2006-12-01

    At present there are no 'high-tech' solutions to the problems that may beset intercontinental travellers. Indications for the use of drugs are limited, and their use must accord with Good Clinical Practice. Essentially, travellers must look after their sleep, as far as possible, during and after the flight. The most useful time for sleep during the flight must be anticipated, caution exercised in the use of hypnotics in-flight as reduced mobility is a potential risk factor for venous thrombosis, and a strategy adopted, whether flying east or west, to adapt as quickly as possible to the working hours of the new locality. After an eastward flight a hypnotic may be useful, but this strategy is seldom necessary after a westward flight unless the journey has involved crossing more than 5 or 6 time zones. The claim that melatonin accelerates the shift of the sleep-wakefulness cycle to a new time zone is controversial, and its recommended use may prejudice alertness during working hours. Exposure to artificial light and avoidance of ambient light at certain times of the day could prove to be of help-possibly in conjunction with drugs. However, effective and practical alterations in the light environment must be devised before such strategies can be considered with confidence.

  2. Preparing For Antarctic Flights in the California Desert

    NASA Image and Video Library

    2017-12-08

    At first glance a dry lake bed in the southern California desert seems like the last place to prepare to study ice. But on Oct. 2, 2014, NASA’s Operation IceBridge carried out a ground-based GPS survey of the El Mirage lake bed in California’s Mojave Desert. Members of the IceBridge team are currently at NASA’s Armstrong Flight Research Center, preparing instruments aboard the DC-8 research aircraft for flights over Antarctica. Part of this preparation involves test flights over the desert, where researchers verify their instruments are working properly. El Mirage serves as a prime location for testing the mission’s laser altimeter, the Airborne Topographic Mapper, because the lake bed has a flat surface and reflects light similarly to snow and ice. This photo, taken shortly after the survey, shows the GPS-equipped survey vehicle and a stationary GPS station (left of the vehicle) on the lake bed with the constellation Ursa Major in the background. By driving the vehicle in parallel back and forth lines over a predefined area and comparing those GPS elevation readings with measurements from the stationary GPS, researchers are able to build an elevation map that will be used to precisely calibrate the laser altimeter for ice measurements. Credit: NASA/John Sonntag Operation IceBridge is scheduled to begin research flights over Antarctica on Oct. 15, 2014. The mission will be based out of Punta Arenas, Chile, until Nov. 23. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David K.

    2011-01-01

    This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.

  4. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  5. Aviation Safety: Efforts to Implement Flight Operational Quality Assurance Programs

    DOT National Transportation Integrated Search

    1997-12-01

    Flight Operational Quality Assurance (FOQA) programs seek to use flight data to : detect technical flaws, unsafe practices, or conditions outside of desired : operating procedures early enough to allow timely intervention to avert : accidents or inci...

  6. 14 CFR 121.542 - Flight crewmember duties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...

  7. 14 CFR 121.542 - Flight crewmember duties.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...

  8. 14 CFR 121.542 - Flight crewmember duties.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...

  9. 14 CFR 121.542 - Flight crewmember duties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...

  10. 14 CFR 121.542 - Flight crewmember duties.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmember duties. 121.542 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.542 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight crewmember perform, any duties during a...

  11. Low Mass Printable Devices for Energy Capture, Storage, and Use

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.

    2010-01-01

    The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function appropriately in such environments consistent with NASA s exploration missions. Advanced technologies such as this show promise for both space flight and terrestrial applications.

  12. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  13. Skylab crew health and changes related to space flight

    NASA Technical Reports Server (NTRS)

    Hawkins, W. R.; Burchard, E. C.; Hordinsky, J. R.

    1974-01-01

    All three manned Skylab missions were supported by a cadre of medical personnel who were responsible not only for the management and conduct of the medical experiments but also for the operational planning and crew health. The day-to-day medical care of the crewmen and their families was left to a team of flight surgeons who were responsible for the health care during all phases of the mission, as well as the development and use of the inflight medical support system. The preventive medicine aspects of the preflight and postflight health stabilization program are discussed. The clinical problems encountered are identified and the significance of these medical entities are reviewed. The inflight physiological changes of a clinical nature are discussed in light of the significance of these changes as result of the space environment.

  14. Creating an Optimal Environment for Fish in Space - A Study Involving KOI CARP in Microgravity

    NASA Astrophysics Data System (ADS)

    Solheim, B. G. B.; Pettersson, M.

    Through the course of two ESA parabolic flight campaigns, koi carps (Cyprinus carpio) have been observed and tested in microgravity. The aim of this study was to gain knowledge on how to create the best possible environment for fish in microgravity. We are at a stage in history where the thought of longer human space flights, to Mars and beyond, are starting to seem possible. Before this can happen, extensive knowledge is needed of which species function well in this environment. For space flights lasting several years, all food needed cannot be brought onboard, but rather will have to be grown or bred during flight. Fish have a mechanism called the dorsal light response that have the effect of working as a pseudo night. We have also investigated whether the lateral line system, functioning as a sort of remote sensing system, in addition to information from tactile stimuli, can be taken advantage of. During two flights a physical rod structure was placed inside the aquarium. Two groups of fish accustomed to living in an environment with a rod structure, for a period of five days before flight, were compared to two similar groups never exposed to a rod structure before flight. There was a significant difference in behaviour, the group "trained" with rods showing much less abnormal, stressed behaviour. It was also observed that considerable variations in light sensitivity exists among the fish, but fish "trained" with rod structure were much less dependent on a given light level. When visual information was no longer available, they used the rods for orientation. Observations also confirm that light reflections from within the aquarium, as well as multiple light sources from different angles, have a clear negative effect causing rolling behaviour. Contrary to other experiments, we observed rolling both towards the left and right in most fish, although dominant in one direction. When the majority of light reflections were removed, rolling almost completely disappeared. A few occasions of looping were also observed, but only backwards. This variety of looping has only been observed in one other experiment before.

  15. Establishing BRDF calibration capabilities through shortwave infrared

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-09-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45° . Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  16. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED.

    PubMed

    Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% ( k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  17. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Aurell, J.; Mitchell, W.; Chirayath, V.; Jonsson, J.; Tabor, D.; Gullett, B.

    2017-10-01

    An emission sensor/sampler system was coupled to a National Aeronautics and Space Administration (NASA) hexacopter unmanned aerial vehicle (UAV) to characterize gases and particles in the plumes emitted from open burning of military ordnance. The UAV/sampler was tested at two field sites with test and sampling flights spanning over 16 h of flight time. The battery-operated UAV was remotely maneuvered into the plumes at distances from the pilot of over 600 m and at altitudes of up to 122 m above ground level. While the flight duration could be affected by sampler payload (3.2-4.6 kg) and meteorological conditions, the 57 sampling flights, ranging from 4 to 12 min, were typically terminated when the plume concentrations of CO2 were diluted to near ambient levels. Two sensor/sampler systems, termed ;Kolibri,; were variously configured to measure particulate matter, metals, chloride, perchlorate, volatile organic compounds, chlorinated dioxins/furans, and nitrogen-based organics for determination of emission factors. Gas sensors were selected based on their applicable concentration range, light weight, freedom from interferents, and response/recovery times. Samplers were designed, constructed, and operated based on U.S. Environmental Protection Agency (EPA) methods and quality control criteria. Results show agreement with published emission factors and good reproducibility (e.g., 26% relative standard deviation for PM2.5). The UAV/Kolibri represents a significant advance in multipollutant emission characterization capabilities for open area sources, safely and effectively making measurements heretofore deemed too hazardous for personnel or beyond the reach of land-based samplers.

  18. 14 CFR 135.100 - Flight crewmember duties.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmember duties. 135.100 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...

  19. 14 CFR 135.100 - Flight crewmember duties.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmember duties. 135.100 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...

  20. 14 CFR 91.105 - Flight crewmembers at stations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...

  1. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  2. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  3. 14 CFR 91.105 - Flight crewmembers at stations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...

  4. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  5. 14 CFR 135.100 - Flight crewmember duties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmember duties. 135.100 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.100 Flight crewmember duties. (a) No certificate holder shall require, nor may any flight...

  6. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  7. 14 CFR 91.105 - Flight crewmembers at stations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight crewmembers at stations. 91.105... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.105 Flight crewmembers at stations. (a) During takeoff and landing, and while en route, each...

  8. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  9. Degradation of HTL layers during device operation in PhOLEDs

    NASA Astrophysics Data System (ADS)

    Sivasubramaniam, Varatharajan; Brodkorb, Florian; Hanning, Stephanie; Buttler, Oliver; Loebl, Hans Peter; van Elsbergen, Volker; Boerner, Herbert; Scherf, Ullrich; Kreyenschmidt, Martin

    2009-11-01

    Different analytical tools and methodologies are currently employed to determine degradation products of organic blue light emitting devices in order to identify the failure mechanisms which determine the lifetime of these devices. This article provides a deeper understanding of degradation mechanisms of organic light emitting diodes (OLEDs) during device operation. Degradation products of blue emitting devices containing 8% of the phosphorescent emitter iridium(III)bis(4,6-difluorophenyl)-pyridinato-N,C 2' picolinate (FIrpic) in a matrix containing bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminium (BAlq) as electron transport layer (ETL), 4,4',4″-tri( N-carbazolyl)triphenylamine (TCTA) and N, N'-diphenyl- N, N'-bis(1-naphthyl)-1,1'-biphenyl-4,4″-diamine (α-NPD) were investigated using laser desorption ionization (LDI) coupled with a time of flight mass spectrometry (TOF/MS). Especially chemical degradation pathways of the hole transport materials TCTA and α-NPD were investigated. The comparison of experimental data of unstressed and stressed device revealed that new reaction products are formed during the device operation. The linkage of TCTA fragments to the α-NPD core in an interfacial reaction as well as a dimerization of TCTA itself was observed. Ten new reaction products could be characterized via LDI-TOF-MS. Some of these compounds might possess a negative influence on the drop of efficiency and lifetime of blue light emitting devices based on FIrpic.

  10. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  11. Helicopter flight test of 3D imaging flash LIDAR technology for safe, autonomous, and precise planetary landing

    NASA Astrophysics Data System (ADS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-05-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GNC) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 μm Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GNC system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of humanmade geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in realtime for later reconstruction into Digital Elevation Maps (DEM's).

  12. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    NASA Technical Reports Server (NTRS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  13. Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik

    2004-01-01

    Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.

  14. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  15. 14 CFR 91.883 - Special flight authorizations for jet airplanes weighing 75,000 pounds or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special flight authorizations for jet... OPERATING AND FLIGHT RULES Operating Noise Limits § 91.883 Special flight authorizations for jet airplanes weighing 75,000 pounds or less. (a) After December 31, 2015, an operator of a jet airplane weighing 75,000...

  16. Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft

    NASA Astrophysics Data System (ADS)

    Bahri, S.; Sasongko, R. A.

    2018-04-01

    The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.

  17. The FOT tool kit concept

    NASA Technical Reports Server (NTRS)

    Fatig, Michael

    1993-01-01

    Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.

  18. (abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.

  19. STS-3 FLIGHT DAY 1 ACTIVITIES - MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC

    NASA Image and Video Library

    1982-03-22

    MOCR during Flight Day 1 of the STS-3 Mission. View: Thomas L. Moser, of the Structures and Mechanics Division, briefing Flight Director Eugene Kranz, Flight Operations, and Dr. Kraft, JSC Director. JSC, HOUSTON, TX

  20. 14 CFR 91.501 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...

  1. 14 CFR 91.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...

  2. 14 CFR 91.501 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...

  3. 14 CFR 91.501 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...

  4. 14 CFR 91.501 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...

  5. 14 CFR 121.135 - Manual contents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight control or flight following procedures, as applicable. (5) En route flight, navigation, and... of equipment required for the particular type of operation becomes inoperative or unserviceable en route. (6) For domestic or flag operations, appropriate information from the en route operations...

  6. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road.

  7. Do monarch butterflies use polarized skylight for migratory orientation?

    PubMed

    Stalleicken, Julia; Mukhida, Maya; Labhart, Thomas; Wehner, Rüdiger; Frost, Barrie; Mouritsen, Henrik

    2005-06-01

    To test if migratory monarch butterflies use polarized light patterns as part of their time-compensated sun compass, we recorded their virtual flight paths in a flight simulator while the butterflies were exposed to patches of naturally polarized blue sky, artificial polarizers or a sunny sky. In addition, we tested butterflies with and without the polarized light detectors of their compound eye being occluded. The monarchs' orientation responses suggested that the butterflies did not use the polarized light patterns as a compass cue, nor did they exhibit a specific alignment response towards the axis of polarized light. When given direct view of the sun, migratory monarchs with their polarized light detectors painted out were still able to use their time-compensated compass: non-clockshifted butterflies, with their dorsal rim area occluded, oriented in their typical south-southwesterly migratory direction. Furthermore, they shifted their flight course clockwise by the predicted approximately 90 degrees after being advance clockshifted 6 h. We conclude that in migratory monarch butterflies, polarized light cues are not necessary for a time-compensated celestial compass to work and that the azimuthal position of the sun disc and/or the associated light-intensity and spectral gradients seem to be the migrants' major compass cue.

  8. A Comparison of Trap Types for Assessing Diversity of Scarabaeoidea on South Carolina Golf Courses.

    PubMed

    Chong, Juang-Horng; Hinson, Kevin R

    2015-10-01

    A 2-yr survey was conducted on golf courses in South Carolina to 1) document the species richness and seasonal activity of Scarabaeoidea; 2) assess any species compositional differences among three trap types (ultraviolet light, unbaited flight-intercept, and unbaited pitfall); and 3) identify any dominant taxa in each trap type. A total of 74,326 scarabaeoid beetles were captured, of which 77.4% were Aphodiinae (not identified to species). The remaining specimens belong to 104 species in 47 genera and 6 families. The most abundant species were Cyclocephala lurida Bland, Dyscinetus morator (F.), Euetheola humilis (Burmeister), Hybosorus illigeri Reiche, and Maladera castanea (Arrow). In all trap types, >90% of all specimens and taxa were collected between April and August. Ultraviolet light traps collected ∼94% of total specimens consisting of 83 taxa (of which 51 were unique to this trap type), whereas flight-intercept traps captured ∼2% of all specimens representing 53 taxa (18 of which were unique), and pitfall traps captured ∼4% of all specimens representing 15 taxa (no unique species; all species also captured by ultraviolet light traps). Indicator species analysis identified 2-3 and 10-13 taxa that were most frequently collected by flight-intercept and ultraviolet light traps, respectively. Flight-intercept traps complemented ultraviolet light traps by capturing more species of dung and carrion beetles and diurnal phytophagous scarab beetles. Results suggested that a similar survey for domestic or exotic scarabaeoid beetles in turfgrass systems should be conducted between April and August using ultraviolet light and flight-intercept traps at 13-58 sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  10. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola including the PTU sonde, transmission and batteries is below 1 kg. The results obtained during these flights and related campaigns such as the ground-based winter campaign Paris-Fog in Ile de France (fog life circle) and the Pre-ChArMEx/TRAQA summer campaign on the French Mediterranean coast will be presented, as well as future campaigns in which LOAC is involved, especially ChArMEx, (flights in the lower troposphere above the Mediterranean Sea), and Strateole (long duration flights in the tropical stratosphere). Balloon operation of LOAC will tentatively been shown during EGU.

  11. Alertness management in two-person long-haul flight operations

    NASA Technical Reports Server (NTRS)

    Rosekind, M. R.; Gander, P. H.

    1992-01-01

    Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.

  12. NASA Dryden's Dave Bushman aims the optics of a laser device at a panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

    NASA Image and Video Library

    2003-09-17

    NASA Dryden project engineer Dave Bushman carefully aims the optics of a laser device at a solar cell panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

  13. 78 FR 1838 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Sunday work window period. Although some of these flights would be conducted solely for the... at least once or up to two times per year within the proposed work window. Scheduled light... emergency repair event, the Society proposes to conduct a maximum of four flights (two arrivals and two...

  14. 14 CFR 23.1459 - Flight data recorders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight data recorders. 23.1459 Section 23... Equipment § 23.1459 Flight data recorders. (a) Each flight recorder required by the operating rules of this... electrical power from the bus that provides the maximum reliability for operation of the flight data recorder...

  15. 14 CFR 23.1459 - Flight data recorders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight data recorders. 23.1459 Section 23... Equipment § 23.1459 Flight data recorders. (a) Each flight recorder required by the operating rules of this... electrical power from the bus that provides the maximum reliability for operation of the flight data recorder...

  16. Health maintenance facility: Dental equipment requirements

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The objectives were to test the effectiveness of the Health Maintenance Facility (HMF) dental suction/particle containment system, which controls fluids and debris generated during simulated dental treatment, in microgravity; to test the effectiveness of fiber optic intraoral lighting systems in microgravity, while simulating dental treatment; and to evaluate the operation and function of off-the-shelf dental handheld instruments, namely a portable dental hand drill and temporary filling material, in microgravity. A description of test procedures, including test set-up, flight equipment, and the data acquisition system, is given.

  17. Transparent Alloys Operation

    NASA Image and Video Library

    2018-03-26

    iss055e005543 (March 26, 2018) --- Expedition 55 Flight Engineer and astronaut Scott Tingle is pictured conducting the Transparent Alloys experiment inside the Destiny lab module's Microgravity Science Glovebox. The Transparent Alloys study is a set of five experiments that seeks to improve the understanding of melting-solidification processes in plastics without the interference of Earth's gravity environment. Results may impact the development of new light-weight, high-performance structural materials for space applications. Observations may also impact fuel efficiency, consumption and recycling of materials on Earth potentially reducing costs and increasing industrial competitiveness.

  18. Fuel-conservation evaluation of US Army helicopters. Part 6. Performance calculator evaluation. Final report for period ending January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominick, F.; Lockwood, R.A.

    1986-07-01

    The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less

  19. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  20. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  1. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  2. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  3. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  4. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  5. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  6. 14 CFR 142.15 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...

  7. 14 CFR 142.15 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...

  8. 14 CFR 142.15 - Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...

  9. 14 CFR 142.15 - Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...

  10. Full-scale flight tests of aircraft morphing structures using SMA actuators

    NASA Astrophysics Data System (ADS)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration, electrical power, controls, data acquisition, and engine operability are discussed. Furthermore the authors layout a road map for the next stage of development of SMA aerospace actuators. A detailed look at the requirements and specifications that may define a production SMA actuator and the technology development required to meet them are presented. A path for meeting production requirements and achieving the next level of technology readiness for both autonomous and controlled SMA actuators is proposed. This path relies strongly on cross functional and organizational teaming including industry, academia, and government.

  11. Mycological studies housed in the Apollo 16 microbial ecology evaluation device

    NASA Technical Reports Server (NTRS)

    Volz, P. A.

    1973-01-01

    Survival, death, and phenotype count have yielded variation in the number of fungi recovered from the controls and the flight exposed cuvettes during preliminary analysis of postflight first phase data. Also the preliminary analysis was indicative that fungi exposed to specific space flight conditions demonstrated variable survival rates and phenotype counts. Specific space flight conditions included full light space exposure for Chaetomium globosum, exposure at 300- and 254-nanometer wavelengths for Rhodotorula rubra, full light and 280-nanometer wavelength exposure for Trichophyton terrestre, and 254-nanometer wavelength exposure for Saccharomyces cerevisiae. In general, phenotype counts for flight cuvettes and survival rates for control cuvettes were higher compared with the remaining cuvettes.

  12. LANDSAT-D flight segment operations manual. Appendix B: OBC software operations

    NASA Technical Reports Server (NTRS)

    Talipsky, R.

    1981-01-01

    The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.

  13. GPS tracking for mapping seabird mortality induced by light pollution

    PubMed Central

    Rodríguez, Airam; Rodríguez, Beneharo; Negro, Juan J.

    2015-01-01

    Light pollution and its consequences on ecosystems are increasing worldwide. Knowledge on the threshold levels of light pollution at which significant ecological impacts emerge and the size of dark refuges to maintain natural nocturnal processes is crucial to mitigate its negative consequences. Seabird fledglings are attracted by artificial lights when they leave their nest at night, causing high mortality. We used GPS data-loggers to track the flights of Cory’s shearwater Calonectris diomedea fledglings from nest-burrows to ground, and to evaluate the light pollution levels of overflown areas on Tenerife, Canary Islands, using nocturnal, high-resolution satellite imagery. Birds were grounded at locations closer than 16 km from colonies in their maiden flights, and 50% were rescued within a 3 km radius from the nest-site. Most birds left the nests in the first three hours after sunset. Rescue locations showed radiance values greater than colonies, and flight distance was positively related to light pollution levels. Breeding habitat alteration by light pollution was more severe for inland colonies. We provide scientific-based information to manage dark refuges facilitating that fledglings from inland colonies reach the sea successfully. We also offer methodological approaches useful for other critically threatened petrel species grounded by light pollution. PMID:26035530

  14. Plane down in the city: Operation Crash and Surge.

    PubMed

    Kann, Duane F; Draper, Thomas W

    2014-01-01

    This article is about the experiences gained from the largest full-scale exercise ever conducted in the State of Florida, specifically regarding the Orlando International Airport (MCO) venues. The exercise was centred on an airplane crashing into a hotel just outside of MCO property. The scenario clarified details regarding Incident Command and the unique jurisdictional responsibilities associated with a large-scale mass casualty incident. There were additional challenges with airline operations, walking wounded, and information sharing that provided valuable experiences toward enhancing emergency operations. This article also outlines information gained by the MCO "go team" that traveled to San Francisco following the crash of Asiana flight 214. This real-life incident shone a light on many of the strengths and opportunities found throughout the MCO exercise and this article shows the interrelationship of both of these invaluable experiences.

  15. Vision requirements for Space Station applications

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.

    1985-01-01

    Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.

  16. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...

  17. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...

  18. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...

  19. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...

  20. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... operations, all-cargo flight operations, and dual flight operations involving the transport of both cargo and... capacity required for normal operation and service of the flight. In addition, the definition of “crew...) Date of birth; (iii) Gender (F = female; M = male); (iv) Citizenship; (v) Country of residence; (vi...

  1. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  2. OSIRIS-REx Flight Dynamics and Navigation Design

    NASA Astrophysics Data System (ADS)

    Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.

    2018-06-01

    OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).

  3. Design Improvements and X-Ray Performance of a Time Projection Chamber Polarimeter for Persistent Astronomical Sources

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Kaaret, Philip; Nolan, David S.; Tamagawa, Toru

    2014-01-01

    The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)3 and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime4, opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays.

  4. 14 CFR 133.41 - Flight characteristics requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight characteristics requirements. 133.41... EXTERNAL-LOAD OPERATIONS Airworthiness Requirements § 133.41 Flight characteristics requirements. (a) The applicant must demonstrate to the Administrator, by performing the operational flight checks prescribed in...

  5. 14 CFR 133.41 - Flight characteristics requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight characteristics requirements. 133.41... EXTERNAL-LOAD OPERATIONS Airworthiness Requirements § 133.41 Flight characteristics requirements. (a) The applicant must demonstrate to the Administrator, by performing the operational flight checks prescribed in...

  6. 14 CFR 133.41 - Flight characteristics requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight characteristics requirements. 133.41... EXTERNAL-LOAD OPERATIONS Airworthiness Requirements § 133.41 Flight characteristics requirements. (a) The applicant must demonstrate to the Administrator, by performing the operational flight checks prescribed in...

  7. 14 CFR 91.1025 - Program operating manual contents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...

  8. 14 CFR 91.1025 - Program operating manual contents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...

  9. 14 CFR 91.1025 - Program operating manual contents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...

  10. 14 CFR 91.1025 - Program operating manual contents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...

  11. 14 CFR 91.1025 - Program operating manual contents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... flight; (f) Procedures to be followed by the pilot in command for determining that mechanical irregularities or defects reported for previous flights have been corrected or that correction of certain...

  12. Crew Factors in Flight Operations. 8; A Survey of Fatigue Factors in Corporate/Executive A Viation Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.

    2000-01-01

    Corporate flight crews face unique challenges including unscheduled flights, quickly changing schedules, extended duty days, long waits, time zone changes, and peripheral tasks. Most corporate operations are regulated by Part 91 FARs which set no flight or duty time limits. The objective of this study was to identify operationally significant factors that may influence fatigue, alertness, and performance in corporate operations. In collaboration with the National Business Aircraft Association and the Flight Safety Foundation, NASA developed and distributed a retrospective survey comprising 107 questions addressing demographics, home sleep habits, flight experience, duty schedules, fatigue during operations, and work environment. Corporate crewmembers returned 1,488 surveys. Respondents averaged 45.2 years of age, had 14.9 years of corporate flying experience, and 9,750 total flight hours. The majority (89%) rated themselves as 'good' or 'very good' sleepers at home. Most (82%) indicated they are subject to call for duty and described an average duty day of 9.9 h. About two-thirds reported having a daily duty time limit and over half (57%) reported a daily flight time limit. Nearly three-quarters (71%) acknowledged having 'nodded off' during a flight. Only 21% reported that their flight departments offer training on fatigue issues. Almost three-quarters (74%) described fatigue as a 'moderate' or 'serious' concern, and a majority (61%) characterized it as a common occurrence. Most (85%) identified fatigue as a 'moderate' or 'serious' safety issue.

  13. Infrared system for monitoring movement of objects

    DOEpatents

    Valentine, Kenneth H.; Falter, Diedre D.; Falter, Kelly G.

    1991-01-01

    A system for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1.times.3.times.5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A "wake-up" circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described.

  14. Infrared system for monitoring movement of objects

    DOEpatents

    Valentine, K.H.; Falter, D.D.; Falter, K.G.

    1991-04-30

    A system is described for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array of solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1[times]3[times]5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A wake-up' circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described. 4 figures.

  15. 14 CFR 91.1059 - Flight time limitations and rest requirements: One or two pilot crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Rest 10 Hours 12 Hours. (6) Minimum After Duty Rest Period for Multi-Time Zone Flights 14 Hours 18... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight time limitations and rest... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1059 Flight time...

  16. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  17. Rendezvous Integration Complexities of NASA Human Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack P.; Goodman, John L.

    2009-01-01

    Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.

  18. 34. PRIMARY FLIGHT CONTROL STATION AFT LOOKING FORWARD ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. PRIMARY FLIGHT CONTROL STATION - AFT LOOKING FORWARD ON PORT SIDE SHOWING FLIGHT DECK LIGHTING BOARD, ARRESTING GEAR CONTROL CONSOLE AND FRESNEL LENS OPTICAL LANDING SYSTEM. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  19. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.

  20. 14 CFR 135.79 - Flight locating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight locating requirements. 135.79... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.79 Flight locating requirements. (a) Each certificate holder must have procedures...

  1. 14 CFR 91.533 - Flight attendant requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...

  2. 14 CFR 135.79 - Flight locating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight locating requirements. 135.79... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.79 Flight locating requirements. (a) Each certificate holder must have procedures...

  3. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...

  4. 14 CFR 91.533 - Flight attendant requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...

  5. 14 CFR 135.79 - Flight locating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight locating requirements. 135.79... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.79 Flight locating requirements. (a) Each certificate holder must have procedures...

  6. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...

  7. 14 CFR 91.1039 - IFR takeoff, approach and landing minimums.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...

  8. 14 CFR 91.1039 - IFR takeoff, approach and landing minimums.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...

  9. 14 CFR 91.1039 - IFR takeoff, approach and landing minimums.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...

  10. 14 CFR 91.1039 - IFR takeoff, approach and landing minimums.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...

  11. 14 CFR 91.1039 - IFR takeoff, approach and landing minimums.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...

  12. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Data acquired on the actual flight experience with the various subsystems are assessed. These subsystems include: flight control and performance, structural integrity, orbiter landing gear, lithium batteries, EVA and prebreathing, and main engines. Improvements for routine operations are recommended. Policy issues for operations and flight safety for aircraft operations are discussed.

  13. Orbital experiment ``Gravisensor'': phototropic reactions of the moss Physcomitrella patens to different types of LED lighting.

    NASA Astrophysics Data System (ADS)

    Nikitin, Vladimir; Berkovich, Yuliy A.; Skripnikov, Alexander; Zyablova, Natalya; Mukhoyan, Makar; Emelianov, Grigory

    The experiment was conducted on Russian Biological Satelite Bion-M #1 19.04-19.05 2013. Five transparent plastic cultural flasks were placed in five light isolated sections of Biocont-B2 cylindrical container with inner diameter of 120 mm and height of 230 mm. In four sections the flasks could be illuminated by top or side LED with wavelength of 458 nm, 630 nm, 730 nm, and white (color temperature 5000° K, peaks 453, 559 nm). Photon flux in each variant was 15 umol/(m2c). In the fifth section the flask with the shoots was in conditions of constant dark. Each section was equipped with its own video camera module. Cameras, video recorder and lighting were managed by micro controller. 12 days before launch, 5 tips of the moss shoots were explanted at each of the five flasks on the agar medium with nutrient components and were cultivated under white fluorescent lamps at 12 hour photo period till the launch. After entering the orbit and during next 14 days of flight top LEDs were turned on above the flasks. Then for the following 14 days of flight the side LEDs of similar wavelength were turned on. The moss gametophores were cultivated at 12-h photoperiod. During the experiment on an hourly basis a video recording of the moss was performed. Similar equipment was used for ground control. After the experiment video files were used to produce separate time-lapse films for each flask using AviSynth program. In flight the shoots demonstrated the maximum growth speed with far red lighting and slower speed with white lighting. With blue and red lighting after switching to side light stimuli the growth of shoots almost stopped. In the dark the shoots continued to grow until the 13 day after launch of the satellite, then their growth stopped. In ground control the relation of growth rate with various LEDs remained basically the same, with the exception of side blue lighting, where the shoots demonstrated considerable vertical growth. In flight the angle of inclination towards the light source was maximal (about 90º) with white lighting, and somewhat smaller with 730 nm. Under red and blue light the angle of phototropic inclination was difficult to measure due to poor growth of the shoots.In ground control the growth rate under blue light was several times higher, than in flight and final degree of inclination of the shoot tip came to about 10º. In ground control under side red lighting the growth was weak, while demonstrating a pronounced phototropic bend of 90º. In ground control in the dark a vertical growth of one shoot was observed with the rate somewhat larger, than in flight variant. Data on the dynamics of inclination of experimental and control plants are presented. The acquired data will be used to analyse the mechanisms of phototropic growth changes of moss shoots.

  14. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  15. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezvous missions present unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations, and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading, and contamination concerns. These issues, along with limited reaction control system propellant in the Shuttle nose, drove a change from the legacy Gemini/Apollo coelliptic profile to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions, and crew exchange, assembly and replenishment flights to Mir and to the International Space Station drove further profile and piloting technique changes. These changes included new proximity operations, relative navigation sensors, and new computer generated piloting cues. However, the Shuttle's baseline rendezvous navigation system has not required modification to place the Shuttle at the proximity operations initiation point for all rendezvous missions flown.

  16. Flight Operations . [Zero Knowledge to Mission Complete

    NASA Technical Reports Server (NTRS)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  17. 14 CFR 121.533 - Responsibility for operational control: Domestic operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...

  18. 14 CFR 121.533 - Responsibility for operational control: Domestic operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...

  19. 14 CFR 121.533 - Responsibility for operational control: Domestic operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...

  20. 14 CFR 121.533 - Responsibility for operational control: Domestic operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...

  1. 14 CFR 121.533 - Responsibility for operational control: Domestic operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations... aircraft dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in compliance with this chapter and operations specifications. (c) The aircraft dispatcher is...

  2. Video Guidance Sensor and Time-of-Flight Rangefinder

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas; Howard, Richard; Bell, Joseph L.; Roe, Fred D.; Book, Michael L.

    2007-01-01

    A proposed video guidance sensor (VGS) would be based mostly on the hardware and software of a prior Advanced VGS (AVGS), with some additions to enable it to function as a time-of-flight rangefinder (in contradistinction to a triangulation or image-processing rangefinder). It would typically be used at distances of the order of 2 or 3 kilometers, where a typical target would appear in a video image as a single blob, making it possible to extract the direction to the target (but not the orientation of the target or the distance to the target) from a video image of light reflected from the target. As described in several previous NASA Tech Briefs articles, an AVGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. In the original application, the two vehicles are spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In a prior AVGS system of the type upon which the now-proposed VGS is largely based, the tracked vehicle is equipped with one or more passive targets that reflect light from one or more continuous-wave laser diode(s) on the tracking vehicle, a video camera on the tracking vehicle acquires images of the targets in the reflected laser light, the video images are digitized, and the image data are processed to obtain the direction to the target. The design concept of the proposed VGS does not call for any memory or processor hardware beyond that already present in the prior AVGS, but does call for some additional hardware and some additional software. It also calls for assignment of some additional tasks to two subsystems that are parts of the prior VGS: a field-programmable gate array (FPGA) that generates timing and control signals, and a digital signal processor (DSP) that processes the digitized video images. The additional timing and control signals generated by the FPGA would cause the VGS to alternate between an imaging (direction-finding) mode and a time-of-flight (range-finding mode) and would govern operation in the range-finding mode.

  3. Initial flight qualification and operational maintenance of X-29A flight software

    NASA Technical Reports Server (NTRS)

    Earls, Michael R.; Sitz, Joel R.

    1989-01-01

    A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.

  4. 14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  6. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  7. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  8. 14 CFR 91.515 - Flight altitude rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight altitude rules. 91.515 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.515 Flight altitude rules. (a...

  9. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  10. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  11. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... telecommand operations for flight testing of aircraft and missiles, or their major components. The bands 2310... expendable and re-usable launch vehicles, whether or not such operations involve flight testing: 2364.5, 2370... Flight Test Stations § 87.303 Frequencies. (a) These frequencies are available for assignment to flight...

  12. 14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...

  13. 14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...

  14. 14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...

  15. 14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...

  16. 14 CFR 93.317 - Commercial Special Flight Rules Area operation curfew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Commercial Special Flight Rules Area operation curfew. 93.317 Section 93.317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operation curfew. Unless otherwise authorized by the Flight Standards District Office, no person may conduct...

  17. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  18. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  19. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  20. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

Top