Minimum-fuel, three-dimensional flight paths for jet transports
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1985-01-01
A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.
A flight investigation with a STOL airplane flying curved, descending instrument approach paths
NASA Technical Reports Server (NTRS)
Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.
1974-01-01
A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Wind and fairness in ski jumping: A computer modelling analysis.
Jung, Alexander; Müller, Wolfram; Staat, Manfred
2018-06-25
Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping. Copyright © 2018 Elsevier Ltd. All rights reserved.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Keller, James F.
This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric polynomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented.
NASA Astrophysics Data System (ADS)
Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.
2015-11-01
Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.
NASA Astrophysics Data System (ADS)
Baumgart, M.; Druml, N.; Consani, M.
2018-05-01
This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For each commuter category airplane, the takeoff flight path must be determined as follows...
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For each commuter category airplane, the takeoff flight path must be determined as follows...
14 CFR 25.123 - En route flight paths.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false En route flight paths. 25.123 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.123 En route flight paths. (a) For the en route configuration, the flight paths prescribed in paragraph (b) and (c) of this section must...
14 CFR 25.123 - En route flight paths.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false En route flight paths. 25.123 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.123 En route flight paths. (a) For the en route configuration, the flight paths prescribed in paragraph (b) and (c) of this section must...
14 CFR 25.115 - Takeoff flight path.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff flight path. 25.115 Section 25.115... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff flight path shall be considered to begin 35 feet above the takeoff surface at the end of the takeoff...
14 CFR 25.115 - Takeoff flight path.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 25.115 Section 25.115... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff flight path shall be considered to begin 35 feet above the takeoff surface at the end of the takeoff...
Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T
2010-03-10
Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
Combining control input with flight path data to evaluate pilot performance in transport aircraft.
Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney
2008-11-01
When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.
NASA Technical Reports Server (NTRS)
Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)
2012-01-01
Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.
NASA Technical Reports Server (NTRS)
Knox, Charles E.
1993-01-01
A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds...
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.
Cometary particulate analyzer. [mass spectrometry of laser plasmas
NASA Technical Reports Server (NTRS)
Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.
1979-01-01
A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
Functional integration of vertical flight path and speed control using energy principles
NASA Technical Reports Server (NTRS)
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
Okada, E; Firbank, M; Schweiger, M; Arridge, S R; Cope, M; Delpy, D T
1997-01-01
Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measured mean optical path length as a function of source-detector spacing agrees well with predictions from either a Monte Carlo model or a finite-element method based on diffusion theory or a hybrid radiosity-diffusion theory. Light propagation in the adult head is shown to be highly affected by the presence of the clear CSF layer, and both the optical path length and the spatial sensitivity profile of the models with a CSF layer are quite different from those without the CSF layer. However, the geometry of the sulci and the boundary between the gray and the white matter have little effect on the detected light distribution.
NASA Technical Reports Server (NTRS)
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
AFMS Flight Path: Building Future Leaders
2009-02-12
small numbers of deactivated squadrons were reactivated. In general, the Flight Path maintains the four squadron framework of OMG with an additional...MC fill all but two. Vast differences in rank and promotion rates further bias the AFMS to a non-DOPMA corps led entity . The Flight Path has done...Aeromedical Squadron (AMDS) can combine into an Aeromedical Dental Squadron ( ADOS ) or can reside as flights under the Medical Operations Squadron
Flight path-driven mitigation of wavefront curvature effects in SAR images
Doerry, Armin W [Albuquerque, NM
2009-06-23
A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.
14 CFR 25.123 - En route flight paths.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must represent the actual climb performance diminished by a gradient of climb of 1.1 percent for two... degradation of the gradient of climb is greater than one-half of the applicable actual-to-net flight path...-inoperative net flight path data must represent the actual climb performance diminished by a gradient of climb...
DOT National Transportation Integrated Search
1999-03-01
This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...
Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.
2008-03-01
Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.
Automated flight path planning for virtual endoscopy.
Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S
1998-05-01
In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.
An evaluation of head-up displays in civil transport operations
NASA Technical Reports Server (NTRS)
Lauber, J. K.; Bray, R. S.; Scott, B. C.
1981-01-01
To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches.
Stability of simulated flight path control at +3 Gz in a human centrifuge.
Guardiera, Simon; Dalecki, Marc; Bock, Otmar
2010-04-01
Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.
Context Aware TCP for Intelligence, Surveillance and Reconnaissance Missions on Autonomous Platforms
2014-10-08
under the Unmanned Vehicle Experimental Communications Testbed (UVECT) flight test plan and were done over the Stockbridge Research Facility in the...sure the payload did not interfere with the command and control systems of the aircraft several flight paths were selected to exert the link and the...throughput from data source to destination. Figure 1 shows the flight path of a small RPA in a PoL flight path scenario. The change of SNR
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Cockpit simulation study of use of flight path angle for instrument approaches
NASA Technical Reports Server (NTRS)
Hanisch, B.; Ernst, H.; Johnston, R.
1981-01-01
The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.
NASA Technical Reports Server (NTRS)
1983-01-01
A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.
Adding computationally efficient realism to Monte Carlo turbulence simulation
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1985-01-01
Frequently in aerospace vehicle flight simulation, random turbulence is generated using the assumption that the craft is small compared to the length scales of turbulence. The turbulence is presumed to vary only along the flight path of the vehicle but not across the vehicle span. The addition of the realism of three-dimensionality is a worthy goal, but any such attempt will not gain acceptance in the simulator community unless it is computationally efficient. A concept for adding three-dimensional realism with a minimum of computational complexity is presented. The concept involves the use of close rational approximations to irrational spectra and cross-spectra so that systems of stable, explicit difference equations can be used to generate the turbulence.
Analysis of the Chinese air route network as a complex network
NASA Astrophysics Data System (ADS)
Cai, Kai-Quan; Zhang, Jun; Du, Wen-Bo; Cao, Xian-Bin
2012-02-01
The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.
Optimum Strategies for Selecting Descent Flight-Path Angles
NASA Technical Reports Server (NTRS)
Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)
2016-01-01
An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays
NASA Technical Reports Server (NTRS)
Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.
2004-01-01
Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.
Uludag, K; Kohl, M; Steinbrink, J; Obrig, H; Villringer, A
2002-01-01
Using the modified Lambert-Beer law to analyze attenuation changes measured noninvasively during functional activation of the brain might result in an insufficient separation of chromophore changes ("cross talk") due to the wavelength dependence of the partial path length of photons in the activated volume of the head. The partial path length was estimated by performing Monte Carlo simulations on layered head models. When assuming cortical activation (e.g., in the depth of 8-12 mm), we determine negligible cross talk when considering changes in oxygenated and deoxygenated hemoglobin. But additionally taking changes in the redox state of cytochrome-c-oxidase into account, this analysis results in significant artifacts. An analysis developed for changes in mean time of flight--instead of changes in attenuation--reduces the cross talk for the layers of cortical activation. These results were validated for different oxygen saturations, wavelength combinations and scattering coefficients. For the analysis of changes in oxygenated and deoxygenated hemoglobin only, low cross talk was also found when the activated volume was assumed to be a 4-mm-diam sphere.
NASA Technical Reports Server (NTRS)
2008-01-01
A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
NASA Astrophysics Data System (ADS)
Woo, Sungsoo; Kang, Sungsam; Yoon, Changhyeong; Choi, Wonshik
2016-03-01
With the advancement of 3D display technology, 3D imaging of macroscopic objects has drawn much attention as they provide the contents to display. The most widely used imaging methods include a depth camera, which measures time of flight for the depth discrimination, and various structured illumination techniques. However, these existing methods have poor depth resolution, which makes imaging complicated structures a difficult task. In order to resolve this issue, we propose an imaging system based upon low-coherence interferometry and off-axis digital holographic imaging. By using light source with coherence length of 200 micro, we achieved the depth resolution of 100 micro. In order to map the macroscopic objects with this high axial resolution, we installed a pair of prisms in the reference beam path for the long-range scanning of the optical path length. Specifically, one prism was fixed in position, and the other prism was mounted on a translation stage and translated in parallel to the first prism. Due to the multiple internal reflections between the two prisms, the overall path length was elongated by a factor of 50. In this way, we could cover a depth range more than 1 meter. In addition, we employed multiple speckle illuminations and incoherent averaging of the acquired holographic images for reducing the specular reflections from the target surface. Using this newly developed system, we performed imaging targets with multiple different layers and demonstrated imaging targets hidden behind the scattering layers. The method was also applied to imaging targets located around the corner.
An experimental evaluation of head-up display formats
NASA Technical Reports Server (NTRS)
Naish, J. M.; Miller, D. L.
1980-01-01
Three types of head-up display format are investigated. Type 1 is an unreferenced (conventional) flight director, type 2 is a ground referenced flight path display, and type 3 is a ground referenced director. Formats are generated by computer and presented by reflecting collimation against a simulated forward view in flight. Pilots, holding commercial licenses, fly approaches in the instrument flight mode and in a combined instrument and visual flight mode. The approaches are in wind shear with varied conditions of visibility, offset, and turbulence. The displays are equivalent in pure tracking but there is a slight advantage for the unreferenced director in poor conditions. Flight path displays are better for tracking in the combined flight mode, possibly because of poor director control laws and the division of attention between superimposed fields. Workloads is better for the type 2 displays. The flight path and referenced director displays are criticized for effects of symbol motion and field limiting. In the subjective judgment of pilots familiar with the director displays, they are rated clearly better than path displays, with a preference for the unreferenced director. There is a fair division of attention between superimposed fields.
The flight planning - flight management connection
NASA Technical Reports Server (NTRS)
Sorensen, J. A.
1984-01-01
Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
Computational imaging of light in flight
NASA Astrophysics Data System (ADS)
Hullin, Matthias B.
2014-10-01
Many computer vision tasks are hindered by image formation itself, a process that is governed by the so-called plenoptic integral. By averaging light falling into the lens over space, angle, wavelength and time, a great deal of information is irreversibly lost. The emerging idea of transient imaging operates on a time resolution fast enough to resolve non-stationary light distributions in real-world scenes. It enables the discrimination of light contributions by the optical path length from light source to receiver, a dimension unavailable in mainstream imaging to date. Until recently, such measurements used to require high-end optical equipment and could only be acquired under extremely restricted lab conditions. To address this challenge, we introduced a family of computational imaging techniques operating on standard time-of-flight image sensors, for the first time allowing the user to "film" light in flight in an affordable, practical and portable way. Just as impulse responses have proven a valuable tool in almost every branch of science and engineering, we expect light-in-flight analysis to impact a wide variety of applications in computer vision and beyond.
Optimal Paths in Gliding Flight
NASA Astrophysics Data System (ADS)
Wolek, Artur
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
NASA Technical Reports Server (NTRS)
Solimani, Jason A.; Rosanova, Santino
2015-01-01
Thermocouples require two thin wires to be routed out of the spacecraft to connect to the ground support equipment used to monitor and record the temperature data. This large number of wires that exit the observatory complicates integration and creates an undesirable heat path during testing. These wires exiting the spacecraft need to be characterized as a thermal short that will not exist during flight. To minimize complexity and reduce thermal variables from these ground support equipment (GSE) wires, MMS pursued a hybrid path for temperature monitoring, utilizing thermocouples and digital 1-wire temperature sensors. Digital 1-wire sensors can greatly reduce harness mass, length and complexity as they can be spliced together. For MMS, 350 digital 1-wire sensors were installed on the spacecraft with only 18 wires exiting as opposed to a potential 700 thermocouple wires. Digital 1-wire sensors had not been used in such a large scale at NASAGSFC prior to the MMS mission. During the MMS thermal vacuum testing a lessons learned matrix was formulated that will assist future integration of 1-wires into thermal testing and one day into flight.
Development and Testing of the Europa Mission's Venturi Flow Meter
NASA Technical Reports Server (NTRS)
Diaz, C. E.; McKim, S. A.
2017-01-01
NASA's Marshall Space Flight Center (MSFC), in collaboration with NASA's Goddard Space Flight Center (GSFC), Fox Valve Development Corp. and Oxford Lasers, is developing a set of venturi flow meters for use on the Europa Mission's propulsion subsystem. The requirement for the venturi flow meters' throat diameters is approximately 0.040". An early risk reduction activity conducted by MSFC revealed that a venturi flow meter produced by FOX with a throat diameter near 0.040" had much higher pressure loss than venturi flow meters with larger throat diameters and venturis of similar throat diameter size but with no pressure taps (i.e. venturis with a throat length to diameter ratio of zero). In response, a series of venturi flow meters was fabricated and flow tested to gain insight into pressure recovery as it is affected by pressure port diameter, throat length and diffuser angle in an effort to improve the performance of a venturi flow meter. This presentation provides a summary of the venturi flow meter development activity including: a description of the test's objectives, a detailed description of each venturi configuration, a description of the manufacturing processes of the venturis, and observations from the test data. A summary of the current development activities will also be given, as well as the current development path forward. Ultimately, the knowledge gained through the fabrication and testing of these venturis provides guidance to design a flight venturi flow meters with pressure recoveries that is acceptable for the Europa flight application.
An Exact Algebraic Evaluation of Path-Length Difference for Two-Source Interference
ERIC Educational Resources Information Center
Hopper, Seth; Howell, John
2006-01-01
When studying wave interference, one often wants to know the difference in path length for two waves arriving at a common point P but coming from adjacent sources. For example, in many contexts interference maxima occur where this path-length difference is an integer multiple of the wavelength. The standard approximation for the path-length…
NACA Flight-Path Angle and Air-Speed Recorder
NASA Technical Reports Server (NTRS)
Coleman, Donald G
1926-01-01
A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.
An avionics sensitivity study. Volume 1: Operational considerations
NASA Technical Reports Server (NTRS)
Scott, R. W.; Mcconkey, E. D.
1976-01-01
Equipment and operational concepts affecting aircraft in the terminal area are reported. Curved approach applications and modified climb and descent procedures for minimum fuel consumption are considered. The curved approach study involves the application of MLS guidance to enable execution of the current visual approach to Washington National Airport under instrument flight conditions. The operational significance and the flight path control requirements involved in the application of curved approach paths to this situation are considered. Alternative flight path control regimes are considered to achieve minimum fuel consumption subject to constraints related to air traffic control requirements, flight crew and passenger reactions, and airframe and powerplant limitations.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
NASA Technical Reports Server (NTRS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-01-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
Flying qualities criteria for GA single pilot IFR operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.
1982-01-01
The flying qualities criteria in general aviation (GA) to decrease accidents are discussed. The following in-flight research is discussed: (1) identification of key aerodynamic configurations; (2) implementation of an in-flight simulator; (3) mission matrix design; (4) experimental systems; (5) data reduction; (6) optimal flight path reconstruction. Some of the accomplished work is reported: an integrated flight testing and flight path reconstruction methodology was developd, high accuracy in trajectory estimation was achieved with an experimental setup, and a part of the flight test series was flown.
A study of interior noise levels, noise sources and transmission paths in light aircraft
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Murray, B. S.; Theobald, M. A.
1983-01-01
The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.
Method and apparatus for timing of laser beams in a multiple laser beam fusion system
Eastman, Jay M.; Miller, Theodore L.
1981-01-01
The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
Trajectory specification for high capacity air traffic control
NASA Technical Reports Server (NTRS)
Paielli, Russell A. (Inventor)
2010-01-01
Method and system for analyzing and processing information on one or more aircraft flight paths, using a four-dimensional coordinate system including three Cartesian or equivalent coordinates (x, y, z) and a fourth coordinate .delta. that corresponds to a distance estimated along a reference flight path to a nearest reference path location corresponding to a present location of the aircraft. Use of the coordinate .delta., rather than elapsed time t, avoids coupling of along-track error into aircraft altitude and reduces effects of errors on an aircraft landing site. Along-track, cross-track and/or altitude errors are estimated and compared with a permitted error bounding space surrounding the reference flight path.
Kuiper Belt Objects Along the Pluto Express Path
NASA Technical Reports Server (NTRS)
Jewitt, David C.
1998-01-01
The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.
Flight in low-level wind shear
NASA Technical Reports Server (NTRS)
Frost, W.
1983-01-01
Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.
An evaluation of flight path formats head-up and head-down
NASA Technical Reports Server (NTRS)
Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.
1988-01-01
Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.
NASA Technical Reports Server (NTRS)
Smith, G. A.; Meyer, G.; Nordstrom, M.
1986-01-01
A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.
Flight-Path Characteristics for Decelerating From Supercircular Speed
NASA Technical Reports Server (NTRS)
Luidens, Roger W.
1961-01-01
Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.
The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors
NASA Astrophysics Data System (ADS)
Moongweluwan, M.
2016-02-01
The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol
2012-01-01
In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.
Chord-length and free-path distribution functions for many-body systems
NASA Astrophysics Data System (ADS)
Lu, Binglin; Torquato, S.
1993-04-01
We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case of mutually impenetrable (i.e., spatially correlated) polydispersed spheres.
Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments
NASA Astrophysics Data System (ADS)
Hofmeister, Paul Gerke; Blum, Jürgen
2011-02-01
We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.
Lightning discharge protection rod
NASA Technical Reports Server (NTRS)
Bryan, Charles F., Jr. (Inventor)
1987-01-01
A system for protecting an in-air vehicle from damage due to a lighning strike is disclosed. It is an extremely simple device consisting of a sacrificial graphite composite rod, approximately the diameter of a pencil with a length of about five inches. The sacrificial rod is constructed with the graphite fibers running axially within the rod in a manner that best provides a path of conduction axially from the trailing edge of an aircraft to the trailing end of the rod. The sacrificial rod is inserted into an attachment hole machined into trailing edges of aircraft flight surfaces, such as a vertical fin cap and attached with adhesive in a manner not prohibiting the conduction path between the rod and the aircraft. The trailing end of the rod may be tapered for aerodynamic and esthetic requirements. This rod is sacrificial but has the capability to sustain several lightning strikes and still provide protection.
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Optimum flight paths of turbojet aircraft
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.
Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations
DOT National Transportation Integrated Search
1995-04-01
A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...
Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.
Dalecki, Marc; Bock, Otmar; Guardiera, Simon
2010-05-01
We have previously shown that subjects produce exaggerated manual forces in +3 Gz. When subjects execute discrete flight path changes in a flight simulator, their performance is less stable in +3 Gz than in +1 Gz. Here we explore whether Gz-related deficits are found with continuous flight path changes. Novice subjects and fighter pilots sat in a high-fidelity flight simulator equipped with the reproduction of the Eurofighter 2000 cockpit, including the realistic flight stick, and pursued continuous altitude changes of a target airplane in +1 Gz and +3 Gz. Subjects also produced verbal responses in a Stroop task. Pursuit and Stroop tasks were administered alone and concurrently. Flight instability increased in +3 Gz compared to +1 Gz in novices (+46%), but not in pilots (+3%), and even there only during the first minute. Flight performance improved after the first minute in both subject groups. Stroop reaction time was higher in novices (+5.27%) than in pilots (+3.77%) at +3 Gz. Dual-task costs did not differ between groups or Gz levels. Deficits of force production in high Gz are largely compensated for when subjects apply forces to produce a continuously changing flight path. This compensation seems not to require additional cognitive resources and may be achieved by using visual feedback. Force production deficits in high Gz seem to have no appreciable effects on flight performance and cognitive load of experienced pilots using a force-plus-displacement stick in +3 Gz. It remains to be shown whether this conclusion extends to purely isometric sticks and to higher Gz levels.
Collins, Melanie M; Johnson, Ian J M; Clifford, Elaine; Birchall, John P; O'Donoghue, Gerald M
2003-04-01
The objective was to evaluate the preoperative postural stability of acoustic neuroma patients using sway magnetometry. Prospective two-center study. Fifty-one patients (mean age, 53 years) diagnosed with unilateral acoustic neuroma on magnetic resonance imaging at two tertiary referral centers were studied. Preoperatively, each patient had sway patterns (with eyes open and with eyes closed, and standing on foam) recorded for 120 seconds by sway magnetometry. Path length for 30 seconds was calculated. The Romberg coefficient (path length with eyes open divided by path length with eyes closed) was calculated. Forty-four percent of patients had abnormal path lengths with eyes open, and 49% with eyes closed. The Romberg coefficients were significantly lower than normal (P <.001; 95% CI, 0.19-0.87). Mean Romberg coefficient was 0.59 (normal value = 0.73), and all patients had a coefficient of less than 1. Half of preoperative acoustic neuroma patients are unsteady, exhibiting abnormal sway patterns based on path length measurements. The increase in sway path length demonstrable in normal subjects with eyes closed was significantly exaggerated in patients with acoustic neuroma.
Flight testing and simulation of an F-15 airplane using throttles for flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas
1992-01-01
Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
Spiral tendency in blind flying
NASA Technical Reports Server (NTRS)
Carroll, Thomas; Mcavoy, William H
1929-01-01
The flight path followed by an airplane which was being flown by a blindfolded pilot was observed and recorded. When the pilot attempted to make a straight-away flight there was a tendency to deviate from the straight path and to take up a spiral one.
JPL-ANTOPT antenna structure optimization program
NASA Technical Reports Server (NTRS)
Strain, D. M.
1994-01-01
New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.
B-737 flight test of curved-path and steep-angle approaches using MLS guidance
NASA Technical Reports Server (NTRS)
Branstetter, J. R.; White, W. F.
1989-01-01
A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics.
NASA Technical Reports Server (NTRS)
Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan
2010-01-01
The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.
Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.
de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E
2012-01-01
Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.
Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys
NASA Astrophysics Data System (ADS)
Konstantinov, M. S.; Thein, M.
2017-07-01
The method developed to avoid the complexity of solving the multipoint boundary value problem while optimizing interplanetary trajectories of the spacecraft with electric propulsion and a sequence of swing-bys is presented in the paper. This method is based on the use of the preliminary problem solutions for the impulsive trajectories. The preliminary problem analyzed at the first stage of the study is formulated so that the analysis and optimization of a particular flight path is considered as the unconstrained minimum in the space of the selectable parameters. The existing methods can effectively solve this problem and make it possible to identify rational flight paths (the sequence of swing-bys) to receive the initial approximation for the main characteristics of the flight path (dates, values of the hyperbolic excess velocity, etc.). These characteristics can be used to optimize the trajectory of the spacecraft with electric propulsion. The special feature of the work is the introduction of the second (intermediate) stage of the research. At this stage some characteristics of the analyzed flight path (e.g. dates of swing-bys) are fixed and the problem is formulated so that the trajectory of the spacecraft with electric propulsion is optimized on selected sites of the flight path. The end-to-end optimization is carried out at the third (final) stage of the research. The distinctive feature of this stage is the analysis of the full set of optimal conditions for the considered flight path. The analysis of the characteristics of the optimal flight trajectories to Jupiter with Earth, Venus and Mars swing-bys for the spacecraft with electric propulsion are presented. The paper shows that the spacecraft weighing more than 7150 kg can be delivered into the vicinity of Jupiter along the trajectory with two Earth swing-bys by use of the space transportation system based on the "Angara A5" rocket launcher, the chemical upper stage "KVTK" and the electric propulsion system with input electrical power of 100 kW.
NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Crittenden, Lucille
1988-01-01
Stereo 3-D was researched as a means to present cockpit displays which enhance a pilot's situational awareness while maintaining a desirable level of mental workload. The initial study at the NASA Langley Research Center used two different pathways-in-the-sky to augment a computer-generated pictorial primary flight display. One pathway resembled the outline of signposts, while the other pathway resembled a monorail. That display was configured for a curved approach to a landing such as could be used in a Microwave Landing System (MLS) approach. It could also be used for military transports which would have to fly a precision curved pathway. Each trial was initialized with the pilot on the desired flight path. After 2 seconds, he suddenly was shifted to one of eight flight path offsets. The pilot was then required to make the initial pitch and/or roll input to correct back to the nominal flight path. As soon as the input was made, the trial was over. No input was required for control trials with no flight path offset. Pilots responded statistically significantly faster when the display was presented in the stereo version than when it was presented in the nonstereo version.
Baier, David Bradley
2012-02-01
Control of movement in the avian shoulder joint is fundamental to understanding the avian wingstroke. The acrocoracohumeral ligament (AHL) is thought to play a key role in stabilizing the glenoid and balancing the pectoralis in gliding flight. If the AHL has to be taut to balance the pectoralis, then it must constrain glenohumeral motion during flapping flight as well. However, birds vary wing kinematics depending on flight speed and behavior. How can a passive ligament accommodate such varying joint movements? Herein, mechanical testing and 3-D modeling are used to link the mechanical properties and morphology of the AHL to its functional role during flapping flight. The bone-ligament-bone complex of the pigeon (Columba livia) fails at a tensile loading of 141 ± 18 N (± s .D., n = 10) or 39 times body weight, which corresponds to a failure stress of 51 MPa, well above expected loads during flight. Simulated AHL length changes, comparisons to glenohumeral kinematics from the literature, and manipulations of partially dissected pigeon specimens all support the hypothesis that the AHL remains taut through downstroke and most of upstroke while becoming slack during the downstroke/upstroke transition. The digital AHL model provides a mechanism for explaining how the AHL can stabilize the shoulder joint under a broad array of humeral paths by constraining the coordination of glenohumeral degrees of freedom. © 2011 WILEY PERIODICALS, INC.
Minimum noise impact aircraft trajectories
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Melton, R. G.
1981-01-01
Numerical optimization is used to compute the optimum flight paths, based upon a parametric form that implicitly includes some of the problem restrictions. The other constraints are formulated as penalties in the cost function. Various aircraft on multiple trajectores (landing and takeoff) can be considered. The modular design employed allows for the substitution of alternate models of the population distribution, aircraft noise, flight paths, and annoyance, or for the addition of other features (e.g., fuel consumption) in the cost function. A reduction in the required amount of searching over local minima was achieved through use of the presence of statistical lateral dispersion in the flight paths.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
Homing by path integration when a locomotion trajectory crosses itself.
Yamamoto, Naohide; Meléndez, Jayleen A; Menzies, Derek T
2014-01-01
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
NASA Astrophysics Data System (ADS)
Gagne, Jocelyn
Usually, flights optimization and planning will take place before flight, on ground. However, it is not always feasible to do such optimization, or sometime unpredictable events may force pilots to change the flight path. In those circumstances, the pilots can only rely on charts or their Flight Management System (FMS) in order to maintain an economic flight. However, those FMS often rely on those same charts, which will not take into consideration different parameters, such as the cost index, the length on the flight or the weather. Even if some FMS take into consideration the weather, they may only rely on manually entered or limited data that could be outdated, insufficient or incomplete. The alleviate these problems, the function program's that was developed is mainly to determine the optimum flight profile for an aircraft, or more precisely, at the lowest overall cost, considering a take-off weight and weather conditions. The total cost is based on the value of time as well as the cost of fuel, resulting in the use of a ratio called the cost index. This index allows both to prioritize either the time or fuel consumption according to the costs related to a specific flight and/or airline. Thus, from a weight, the weather (wind, temperature, pressure), and the cost index, the program will calculate from the "Performance DataBase" (PDB) of a specific airplane an optimal flight profile over a given distance. The algorithm is based on linear interpolations in the performances tables using the Lagrange method. Moreover, in order to fully optimize the flight, the current program can, according to departure date and coordinates, download the latest available forecast from environment Canada website and calculate the optimum flight accordingly. The forecast data use by the program take the form of a 0.6 × 0.6 degrees grid in which the effects of wind, pressure and temperature are interpolated according to the aircraft geographical position and time. Using these tables, performances and forecasts, the program is therefore able to calculate the optimum profile from ground, but also in flight, if any change would occur on the path. Because all data is tabulated and not calculated, the required calculation power remains low, resulting in a short calculation time. Keywords: optimization, algorithm, simulation, cost.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Terrestrial Planet Finder cryogenic delay line development
NASA Technical Reports Server (NTRS)
Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.
2004-01-01
Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.;
2016-01-01
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures
de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F. E.
2012-01-01
Background Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. Methodology/Principal Findings As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Conclusions Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality. PMID:23152764
Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
Enhanced flight symbology for wide-field-of-view helmet-mounted displays
NASA Astrophysics Data System (ADS)
Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.
2003-09-01
A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.
2016-04-01
polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image
A complete VLBI delay model for deforming radio telescopes: the Effelsberg case
NASA Astrophysics Data System (ADS)
Artz, T.; Springer, A.; Nothnagel, A.
2014-12-01
Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost 100 mm when comparing observations at 90 and at 0 elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.
Automatic guidance and control laws for helicopter obstacle avoidance
NASA Technical Reports Server (NTRS)
Cheng, Victor H. L.; Lam, T.
1992-01-01
The authors describe the implementation of a full-function guidance and control system for automatic obstacle avoidance in helicopter nap-of-the-earth (NOE) flight. The guidance function assumes that the helicopter is sufficiently responsive so that the flight path can be readily adjusted at NOE speeds. The controller, basically an autopilot for following the derived flight path, was implemented with parameter values to control a generic helicopter model used in the simulation. Evaluation of the guidance and control system with a 3-dimensional graphical helicopter simulation suggests that the guidance has the potential for providing good and meaningful flight trajectories.
A comparison of optimal and noise-abatement trajectories of a tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Schmitz, F. H.; Stepniewski, W. Z.; Gibs, J.; Hinterkeuser, W. Z.
1972-01-01
The potential benefits of flight path control to optimize performance and/or reduce the noise of a tilt-rotor aircraft operating in the takeoff and landing phases of flight are investigated. A theoretical performance-acoustic model is developed and then mathematically flown to yield representative takeoff and landing profiles. Minimum-time and minimum-fuel trajectories are compared to proposed noise-abatement profiles to assess the reductions in annoyance possible through flight path control. Significant reductions are feasible if a nearly vertical-takeoff flight profile is flown near the landing site; however, the time expended and fuel consumed increase.
Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb
1989-01-01
Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.
Comparison of workload measures on computer-generated primary flight displays
NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Abbott, Terence S.
1987-01-01
Four Air Force pilots were used as subjects to assess a battery of subjective and physiological workload measures in a flight simulation environment in which two computer-generated primary flight display configurations were evaluated. A high- and low-workload task was created by manipulating flight path complexity. Both SWAT and the NASA-TLX were shown to be effective in differentiating the high and low workload path conditions. Physiological measures were inconclusive. A battery of workload measures continues to be necessary for an understanding of the data. Based on workload, opinion, and performance data, it is fruitful to pursue research with a primary flight display and a horizontal situation display integrated into a single display.
Optimal symmetric flight with an intermediate vehicle model
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1983-01-01
Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Aviation Safety Simulation Model
NASA Technical Reports Server (NTRS)
Houser, Scott; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.
Low-Coherence light source design for ESPI in-plane displacement measurements
NASA Astrophysics Data System (ADS)
Heikkinen, J. J.; Schajer, G. S.
2018-01-01
The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.
Results of a simulator test comparing two display concepts for piloted flight-path-angle control
NASA Technical Reports Server (NTRS)
Kelley, W. W.
1978-01-01
Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.
The NASA super pressure balloon - A path to flight
NASA Astrophysics Data System (ADS)
Cathey, H. M.
2009-07-01
The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
Elevation effects in volcano applications of the COSPEC
Gerlach, T.M.
2003-01-01
Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.
NASA Astrophysics Data System (ADS)
Defrère, D.; Hinz, P.; Downey, E.; Böhm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Pott, J.-U.; Skemer, A.; Spalding, E.; Stone, J.; Vaz, A.
2016-08-01
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes
Kitamura, Tasuku; Imafuku, Michio
2015-01-01
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. PMID:26041360
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes.
Kitamura, Tasuku; Imafuku, Michio
2015-06-22
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Kinetographic determination of airplane flight characteristics
NASA Technical Reports Server (NTRS)
Raethjen, P; Knott, H
1927-01-01
The author's first experiments with a glider on flight characteristics demonstrated that an accurate flight-path measurement would enable determination of the polar diagram from a gliding flight. Since then he has endeavored to obtain accurate flight measurements by means of kinetograph (motion-picture camera). Different methods of accomplishing this are presented.
Airline meteorological requirements
NASA Technical Reports Server (NTRS)
Chandler, C. L.; Pappas, J.
1985-01-01
A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.
NASA Technical Reports Server (NTRS)
Raofi, Behzad
2005-01-01
This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.
Abort-once-around entry corridor analysis program document
NASA Technical Reports Server (NTRS)
Kyle, H. C.
1975-01-01
The abort once around entry target corridor analysis program (ABECAP) was studied. The allowable range of flight path angles at entry interface for acceptable entry trajectories from a shuttle abort once around (AOA) situation was established. The solutions thus determined may be shown as corridor plots of entry interface flight path angle versus range from entry interface (EI) to the target.
Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean
2009-10-01
Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.
Design and analysis of advanced flight planning concepts
NASA Technical Reports Server (NTRS)
Sorensen, John A.
1987-01-01
The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.
NASA Astrophysics Data System (ADS)
Iwamoto, Y.; Shigyo, N.; Satoh, D.; Kunieda, S.; Watanabe, T.; Ishimoto, S.; Tenzou, H.; Maehata, K.; Ishibashi, K.; Nakamoto, T.; Numajiri, M.; Meigo, S.; Takada, H.
2004-08-01
Neutron-production double-differential cross sections for 870 MeV π+ and π- and 2.1 GeV π+ mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120, and 150° . The typical flight path length was 1.5 m . Neutron detection efficiencies were evaluated by calculation results of SCINFUL and CECIL codes. The experimental results were compared with JAERI quantum molecular dynamics code. For the meson incident reactions, adoption of NN in-medium effects was slightly useful for reproducing 870 MeV π+ -incident neutron yields at neutron energies of 10 30 MeV , as was the case for proton incident reactions. The π- incident reaction generates more neutrons than π+ incidence as the number of nucleons in targets decrease.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1979-01-01
A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.
Optimal guidance with obstacle avoidance for nap-of-the-earth flight
NASA Technical Reports Server (NTRS)
Pekelsma, Nicholas J.
1988-01-01
The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning, it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.
NASA Technical Reports Server (NTRS)
Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.
2003-01-01
The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).
Design and Testing of a Low Noise Flight Guidance Concept
NASA Technical Reports Server (NTRS)
Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.
2004-01-01
A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.
Measurement of the Correlation and Coherence Lengths in Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.
2011-01-01
Wall pressure data acquired during flight tests at several flight conditions are analyzed and the correlation and coherence lengths of the data reported. It is shown how the frequency bandwidth of the analysis biases the correlation length and how the convection of the flow acts to reduce the coherence length. Coherence lengths measured in the streamwise direction appear much longer than would be expected based on classical results for flow over a flat plat.
Ovaskainen, Otso; Smith, Alan D.; Osborne, Juliet L.; Reynolds, Don R.; Carreck, Norman L.; Martin, Andrew P.; Niitepõld, Kristjan; Hanski, Ilkka
2008-01-01
We used harmonic radar to track freely flying Glanville fritillary butterfly (Melitaea cinxia) females within an area of 30 ha. Butterflies originated from large and continuous populations in China and Estonia, and from newly established or old (> 5 years) small local populations in a highly fragmented landscape in Finland. Caterpillars were raised under common garden conditions and unmated females were tested soon after eclosion. The reconstructed flight paths for 66 individuals comprised a total distance of 51 km with high spatial resolution. Butterflies originating from large continuous populations and from old local populations in Finland exhibited similar movement behaviors, whereas butterflies originating from newly established local populations in the fragmented landscape in Finland moved significantly more than the others. There was no difference in the lengths of individual flight bouts, but the new-population females flew more frequently, resulting in longer daily movement tracks. The flight activity of all individuals was affected by environmental conditions, peaking at 19–23°C (depending on population type), in the early afternoon, and during calm weather. Butterflies from all population types showed a strong tendency to follow habitat edges between the open study area and the neighboring woodlands. PMID:19060191
Turgut, Enis T; Usanmaz, Oznur; Rosen, Marc A
2018-05-01
In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NO x and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NO x . For a five-tonne aircraft mass increase, the average change in emissions indices are found to be -4.1% and -5.7% (CO), -5.4% and -8.2% (HC), and +1.1% and +1.6% (NO x ) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NO x during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7-8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NO x ). Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
El Boghdady, Michael; Tang, Benjie; Alijani, Afshin
2017-05-01
Surgical checklists are in use as means to reduce errors. Checklists are infrequently applied during emergency situations in surgery. We aimed to study the effect of a simple self-administered performance-based checklist on the laparoscopic task when applied during an emergency-simulated scenario. The aviation checklist for unexpected situations is commonly used for simulated training of pilots to handle emergency during flights. This checklist was adopted for use as a standardised-performance-based checklist during emergency surgical tasks. Thirty consented laparoscopic novices were exposed unexpectedly to a bleeding vessel in a laparoscopic virtual reality simulator as an emergency scenario. The task consisted of using laparoscopic clips to achieve haemostasis. Subjects were randomly allocated into two equal groups; those using the checklist that was applied once every 20 s (checklist group) and those without (control group). The checklist group performed significantly better in 5 out of 7 technical factors when compared to the control group: right instrument path length (m), median (IQR) 1.44 [1.22] versus 2.06 [1.70] (p = 0.029), right instrument angular path (degree) 312.10 (269.44 versus 541.80 [455.16] (p = 0.014), left instrument path length (m) 1.20 [0.60] versus 2.08 [2.02] (p = 0.004), and left instrument angular path (degree) 277.62 [132.11] versus 385.88 [428.42] (p = 0.017). The checklist group committed significantly fewer number of errors in the application of haemostatic clips, 3 versus 28 (p = 0.006). Although statistically not significant, total blood loss (lit) decreased in the checklist group from 0.83 [1.23] to 0.78 [0.28] (p = 0.724) and total time (sec) from 186.51 [145.69] to 125.14 [101.46] (p = 0.165). The performance-based intra-procedural checklist significantly enhanced the surgical task performance of novices in an emergency-simulated scenario.
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
Three Dimensional Lightning Launch Commit Criteria Visualization Tool
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could display all of the data in a single visualization. The AMU determined there are two viable software packages that could satisfy the 45 WS requirement with further development and recommends the KSC Weather Office follow-up with both organizations to request development costs.
Pilots strategically compensate for display enlargements in surveillance and flight control tasks.
Stelzer, Emily Muthard; Wickens, Christopher D
2006-01-01
Experiments were conducted to assess the impact of display size on flight control, airspace surveillance, and goal-directed target search. Research of 3-D displays has shown that display scale compression influences the perception of flight path deviation, though less is known about the causes that drive this effect. In addition, research on attention-based tasks has shown that information displaced to significant eccentricities can amplify effort, but it is unclear whether the effect generates a performance difference in complex displays. In Experiment 1, 16 pilots completed a low-fidelity flight control task under single- and dual-axis control. In Experiment 2, the control task from Experiment 1 was scaled up to a more realistic flight environment, and pilots performed hazard surveillance and target search tasks. For flight control, pilots exhibited less path error and greater stick activity with a large display, which was attributed both to greater enhanced resolution and to the fact that larger depictions of error lead to greater urgency in correcting deviations. Size did not affect hazard surveillance or search, as pilots were adaptive in altering scanning patterns in response to the enlargement of the displays. Although pilots were adaptive to display changes in search and surveillance, display size reduction diminished estimates of flight path deviation and control performance because of lowered resolution and control urgency. Care should be taken when manipulating display size, as size reduction can diminish control performance.
Echolocating bats use future-target information for optimal foraging.
Fujioka, Emyo; Aihara, Ikkyu; Sumiya, Miwa; Aihara, Kazuyuki; Hiryu, Shizuko
2016-04-26
When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi
The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.
Lock-In Imaging System for Detecting Disturbances in Fluid
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Dimarcantonio, Albert L. (Inventor)
2014-01-01
A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.
Two-path plasmonic interferometer with integrated detector
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
The Flight Track Noise Impact Model
NASA Technical Reports Server (NTRS)
Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III
1997-01-01
To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.
Progress Towards the Remote Sensing of Aircraft Icing Hazards
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Brinker, David; Politovich, Marcia; Serke, David; Ryerson, Charles; Pazmany, Andrew; Solheim, Fredrick
2009-01-01
NASA has teamed with the FAA, DoD, industry, and academia for research into the remote detection and measurement of atmospheric conditions leading to aircraft icing hazards. The ultimate goal of this effort is to provide pilots, controllers, and dispatchers sufficient information to allow aircraft to avoid or minimize their exposure to the hazards of in-flight icing. Since the hazard of in-flight icing is the outcome of aircraft flight through clouds containing supercooled liquid water and strongly influenced by the aircraft s speed and configuration and by the length of exposure, the hazard cannot be directly detected, but must be inferred based upon the measurement of conducive atmospheric conditions. Therefore, icing hazard detection is accomplished through the detection and measurement of liquid water in regions of measured sub-freezing air temperatures. The icing environment is currently remotely measured from the ground with a system fusing radar, lidar, and multifrequency microwave radiometer sensors. Based upon expected ice accretion severity for the measured environment, a resultant aircraft hazard is then calculated. Because of the power, size, weight, and view angle constraints of airborne platforms, the current ground-based solution is not applicable for flight. Two current airborne concepts are based upon the use of either multifrequency radiometers or multifrequency radar. Both ground-based and airborne solutions are required for the future since groundbased systems can provide hazard detection for all aircraft in airport terminal regions while airborne systems will be needed to provide equipped aircraft with flight path coverage between terminal regions.
A Limited Study of a Hypothetical Winged Anti-ICBM Point-Defense Missile
NASA Technical Reports Server (NTRS)
Brown, Clarence A., Jr.; Edwards, Frederick G.
1959-01-01
A preliminary investigation was conducted to determine whether a warhead stage of an antimissile missile could be placed within an arbitrary 2-nautical-mile-radius maneuver cylinder around an intercontinental-ballistic-missile (ICBM) flight path above an altitude of 140,000 feet, a horizontal range of 40 nautical miles, at a flight-path angle of approximately 20 deg, and within 50 seconds after take-off using only aerodynamic forces to turn the antimissile missile. The preliminary investigation indicated that an antimissile missile using aerodynamic forces for turning was capable of intercepting the ICBM for the stated conditions of this study although the turning must be completed below an altitude of approximately 70,000 feet to insure that the antimissile missile will be at the desired flight-path angle. Trim lift coefficients on the order of 2 to 3 and a maximum normal-acceleration force of from 25g to 35g were necessary to place the warhead stage in intercept position. The preliminary investigation indicated that for the two boosters investigated the booster having a burning time of 10 seconds gave greater range up the ICBM flight path than did the booster having a burning time of 15 seconds for the same trim lift coefficient and required the least trim lift coefficient for the same range.
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Sun, Di; Han, Tongshuai; Guo, Chao; Liu, Jin
2016-10-01
In the non-invasive blood components measurement using near infrared spectroscopy, the useful signals caused by the concentration variation in the interested components, such as glucose, hemoglobin, albumin etc., are relative weak. Then the signals may be greatly disturbed by a lot of noises in various ways. We improved the signals by using the optimum path-length for the used wavelength to get a maximum variation of transmitted light intensity when the concentration of a component varies. And after the path-length optimization for every wavelength in 1000-2500 nm, we present the detection limits for the components, including glucose, hemoglobin and albumin, when measuring them in a tissue phantom. The evaluated detection limits could be the best reachable precision level since it assumed the measurement uses a high signal-to-noise ratio (SNR) signal and the optimum path-length. From the results, available wavelengths in 1000-2500 nm for the three component measurements can be screened by comparing their detection limit values with their measurement limit requirements. For other blood components measurement, the evaluation their detection limits could also be designed using the method proposed in this paper. Moreover, we use an equation to estimate the absorbance at the optimum path-length for every wavelength in 1000-2500 nm caused by the three components. It could be an easy way to realize the evaluation because adjusting the sample cell's size to the precise path-length value for every wavelength is not necessary. This equation could also be referred to other blood components measurement using the optimum path-length for every used wavelength.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang
2016-08-01
Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.
Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard
2017-09-01
In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.
Design and development of flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Solomon, A. Jeffey Markus; Kathiresh, E.; Brighton, D.; Velu, P. Shenbaga
2018-05-01
Birds and insects have different methods of producing lift and thrust for hovering and forward flight. Most birds, however, cannot hover. Wing tips of birds follow simple paths in flight, whereas insects have very complicated wing tip paths, for hovering and forward flight, which vary with each species. FMAV based on avian flight. Development of Flapping Wing Air Vehicle (FWAV) is an on-going quest to master the natural flyers by mechanical means. It is characterized by unsteady aerodynamics, whose knowledge is still developing. The present work aims at include being capable of manoeuvring around and over obstacles by adjusting pitch, yaw, and roll, able to glide for five seconds under its own power, skilful at alternating between flapping and gliding with minimal disruption of flight pattern and being durable enough to withstand impacts with minimal to no damage.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Person, L. H., Jr.
1981-01-01
The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.
A Measurement of the Energy Spectra of Cosmic Rays from 20 to 1000 GeV Per Amu
NASA Technical Reports Server (NTRS)
Gregory, J. C.; Thoburn, C.; Smith, A. E.; Petruzzo, J. J., III; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.; Masheder, M. R. W.; Fowler, P. H.
1997-01-01
The design features and operational performance from the test flight of the fourth generation of spherical geometry cosmic ray detectors developed at Bristol University (Bristol University Gas Scintillator 4 - BUGS-4) are presented. The flight from Ft. Sumner (NM) in Sept. 1993 was the premier flight of a large (1m radius) spherical drift chamber which also gave gas scintillation and Cerenkov signals. The combinations of this chamber with one gas and two solid Cerenkov radiators lead to a large aperture factor (4.5 m2sr), but low (approximately 3.5 g/sq cm) instrument mass over the energy sensitive range 1 to several hundred GeV/a. Moreover, one simple timing measurement determined the impact parameter which provided a trajectory (path length) correction for all detector elements. This innovative and efficient design will be of interest to experimental groups engaged in studies of energetic charged particles. Although there were technical problems on the flight, which were compounded by the total destruction of BUGS-4 by fire while landing in Oklahoma, there was a period of stable operation during which the instrument was exposed at float altitude (approximately 125,000 ft.) to high energy cosmic rays. We present the performance of the instrument as determined from the analysis of these data and an appraisal of its novel design features. Suggestions for design improvements in a future instrument are made.
Multi-chord fiber-coupled interferometer with a long coherence length laser
NASA Astrophysics Data System (ADS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.
2012-03-01
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.
Moderation of near-field pressure over a supersonic flight model using laser-pulse energy deposition
NASA Astrophysics Data System (ADS)
Furukawa, D.; Aoki, Y.; Iwakawa, A.; Sasoh, A.
2016-05-01
The impact of a thermal bubble produced by energy deposition on the near-field pressure over a Mach 1.7 free-flight model was experimentally investigated using an aeroballistic range. A laser pulse from a transversely excited atmospheric (TEA) CO2 laser was sent into a test chamber with 68 kPa ambient pressure, focused 10 mm below the flight path of a conically nosed cylinder with a diameter of 10 mm. The pressure history, which was measured 150 mm below the flight path along the acoustic ray past the bubble, exhibited precursory pressure rise and round-off peak pressure, thereby demonstrating the proof-of-concept of sonic boom alleviation using energy deposition.
Mathematical model for path selection by ants between nest and food source.
Bodnar, Marek; Okińczyc, Natalia; Vela-Pérez, M
2017-03-01
Several models have been proposed to describe the behavior of ants when moving from nest to food sources. Most of these studies where based on numerical simulations with no mathematical justification. In this paper, we propose a mechanism for the formation of paths of minimal length between two points by a collection of individuals undergoing reinforced random walks taking into account not only the lengths of the paths but also the angles (connected to the preference of ants to move along straight lines). Our model involves reinforcement (pheromone accumulation), persistence (tendency to preferably follow straight directions in absence of any external effect) and takes into account the bifurcation angles of each edge (represented by a probability of willingness of choosing the path with the smallest angle). We describe analytically the results for 2 ants and different path lengths and numerical simulations for several ants. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimal guidance for the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented. The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be transformed to one of fixed terminal energy. In its ultimate form, E-Guidance obtains energy balance (including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous maneuver limits and destination. Numerical results illustrate the E-Guidance concept and the optimal trajectories on which it is based.
Kuiper Belt Objects Along the Pluto-Express Path
NASA Technical Reports Server (NTRS)
Jewitt, David (Principal Investigator)
1997-01-01
The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan
2014-01-01
Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance
NASA Astrophysics Data System (ADS)
Everaers, Ralf
2012-08-01
We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.
Fade Analysis of ORCA DATA Beam at NTTR and Pax River
2010-08-01
bit-error-rate (BER) of the data beam on the downlink path. 15 Start Time-PST (Duration) Range Scin Index 1 Rx=5.1cm... Scin Index 2 Rx=13.7cm Scin Index 3 Rx=27.2cm Path Ave Cn2 (m-2/3) Path Ave Inner Scale Path Ave Outer Scale Flight 2 May 16
Synthetic vision systems: the effects of guidance symbology, display size, and field of view.
Alexander, Amy L; Wickens, Christopher D; Hardy, Thomas J
2005-01-01
Two experiments conducted in a high-fidelity flight simulator examined the effects of guidance symbology, display size, and geometric field of view (GFOV) within a synthetic vision system (SVS). In Experiment 1, 18 pilots flew highlighted and low-lighted tunnel-in-the-sky displays, as well as a less cluttered follow-me aircraft (FMA), through a series of curved approaches over rugged terrain. The results revealed that both tunnels supported better flight path tracking and lower workload levels than did the FMA because of the availability of more preview information. Increasing tunnel intensity had no benefit on tracking and, in fact, degraded traffic awareness because of clutter and attentional tunneling. In Experiment 2, 24 pilots flew a lowlighted tunnel configured according to different display sizes (small or large) and GFOVs (30 degrees or 60 degrees). Measures of flight path tracking and terrain awareness generally favored the 60 degrees GFOV; however, there were no effects of display size. Actual or potential applications of this research include understanding the impact of SVS properties on flight path tracking, traffic and terrain awareness, workload, and the allocation of attention.
A vector-based representation of the chemical bond for the substituted torsion of biphenyl
NASA Astrophysics Data System (ADS)
Li, Jiahui; Huang, Weijie; Xu, Tianlv; Kirk, Steven R.; Jenkins, Samantha
2018-06-01
We use a new interpretation of the chemical bond within QTAIM, the bond-path framework set B = {p, q, r} with associated linkages with lengths H∗, H and the familiar bond-path length is used to describe a torsion θ, 0.0° ≤ θ < 22.0° of para-substituted biphenyl, C12H9-x, x = N(CH3)2, NH2, CH3, CHO, CN, NO2. We include consideration of the H--H bonding interactions and find that the lengths H > H∗ that we explain in terms of the most and least preferred directions of charge density accumulation. We also consider the fractional eigenvector-following path with lengths Hf and Hfθmin.
Asymmetry in Determinants of Running Speed During Curved Sprinting.
Ishimura, Kazuhiro; Sakurai, Shinji
2016-08-01
This study investigates the potential asymmetries between inside and outside legs in determinants of curved running speed. To test these asymmetries, a deterministic model of curved running speed was constructed based on components of step length and frequency, including the distances and times of different step phases, takeoff speed and angle, velocities in different directions, and relative height of the runner's center of gravity. Eighteen athletes sprinted 60 m on the curved path of a 400-m track; trials were recorded using a motion-capture system. The variables were calculated following the deterministic model. The average speeds were identical between the 2 sides; however, the step length and frequency were asymmetric. In straight sprinting, there is a trade-off relationship between the step length and frequency; however, such a trade-off relationship was not observed in each step of curved sprinting in this study. Asymmetric vertical velocity at takeoff resulted in an asymmetric flight distance and time. The runners changed the running direction significantly during the outside foot stance because of the asymmetric centripetal force. Moreover, the outside leg had a larger tangential force and shorter stance time. These asymmetries between legs indicated the outside leg plays an important role in curved sprinting.
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
Flight operations noise tests of eight helicopters
DOT National Transportation Integrated Search
1985-08-01
This document presents acoustical data and flight path information acquired during the FAA/HAI Helicopter Flight Operations Noise Test Program. 'As-measured' noise levels of the Aerospatiale 365N, Agusta 109A, Bell 206L-1 and 222A, Hughes 500D, MBB B...
NASA Astrophysics Data System (ADS)
Sidibe, Souleymane
The implementation and monitoring of operational flight plans is a major occupation for a crew of commercial flights. The purpose of this operation is to set the vertical and lateral trajectories followed by airplane during phases of flight: climb, cruise, descent, etc. These trajectories are subjected to conflicting economical constraints: minimization of flight time and minimization of fuel consumed and environmental constraints. In its task of mission planning, the crew is assisted by the Flight Management System (FMS) which is used to construct the path to follow and to predict the behaviour of the aircraft along the flight plan. The FMS considered in our research, particularly includes an optimization model of flight only by calculating the optimal speed profile that minimizes the overall cost of flight synthesized by a criterion of cost index following a steady cruising altitude. However, the model based solely on optimization of the speed profile is not sufficient. It is necessary to expand the current optimization for simultaneous optimization of the speed and altitude in order to determine an optimum cruise altitude that minimizes the overall cost when the path is flown with the optimal speed profile. Then, a new program was developed. The latter is based on the method of dynamic programming invented by Bellman to solve problems of optimal paths. In addition, the improvement passes through research new patterns of trajectories integrating ascendant cruises and using the lateral plane with the effect of the weather: wind and temperature. Finally, for better optimization, the program takes into account constraint of flight domain of aircrafts which utilize the FMS.
V/STOL Systems Research Aircraft: A Tool for Cockpit Integration
NASA Technical Reports Server (NTRS)
Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)
1995-01-01
The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.
Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.
ERIC Educational Resources Information Center
Pradels, Jean Louis
Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…
Tentative civil airworthiness flight criteria for powered-lift transports
NASA Technical Reports Server (NTRS)
Hynes, C. S.; Scott, B. C.
1976-01-01
Representatives of the U.S., British, French, and Canadian airworthiness authorities participated in a NASA/FAA program to formulate tentative civil airworthiness flight criteria for powered-lift transports. The ultimate limits of the flight envelope are defined by boundaries in the airspeed/path-angle plane. Angle of attack and airspeed margins applied to these ultimate limits provide protection against both atmospheric disturbances and disturbances resulting from pilot actions or system variability, but do not ensure maneuvering capability directly, as the 30% speed margin does for conventional transports. Separate criteria provide for direct demonstration of adequate capability for approach path control, flare and landing, and for go-around. Demonstration maneuvers are proposed, and appropriate abuses and failures are suggested. Taken together, these criteria should permit selection of appropriate operating points within the flight envelopes for the approach, landing, and go-around flight phases which are likely to be most critical for powered-lift aircraft.
Prediction and Warning of Transported Turbulence in Long-Haul Aircraft Operations
NASA Technical Reports Server (NTRS)
Ellrod, Gary P. (Inventor); Spence, Mark D. (Inventor); Shipley, Scott T. (Inventor)
2017-01-01
An aviation flight planning system is used for predicting and warning for intersection of flight paths with transported meteorological disturbances, such as transported turbulence and related phenomena. Sensed data and transmitted data provide real time and forecast data related to meteorological conditions. Data modelling transported meteorological disturbances are applied to the received transmitted data and the sensed data to use the data modelling transported meteorological disturbances to correlate the sensed data and received transmitted data. The correlation is used to identify transported meteorological disturbances source characteristics, and identify predicted transported meteorological disturbances trajectories from source to intersection with flight path in space and time. The correlated data are provided to a visualization system that projects coordinates of a point of interest (POI) in a selected point of view (POV) to displays the flight track and the predicted transported meteorological disturbances warnings for the flight crew.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.
1960-01-01
An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.
Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit
2017-06-01
To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Christodoulou, Manolis A; Kontogeorgou, Chrysa
2008-10-01
In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.
A review of supersonic cruise flight path control experience with the YF-12 aircraft
NASA Technical Reports Server (NTRS)
Berry, D. T.; Gilyard, G. B.
1976-01-01
Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.
The Primary Flight Display and Its Pathway Guidance: Workload, Performance, and Situation Awareness
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Alexander, Amy L.; Hardy, Thomas J.
2003-01-01
In two experiments carried out in a high fidelity general aviation flight simulator, 42 instrument rated pilots flew a pathway-in-the-sky (tunnel) display through a series of multi-leg curved stepdown approaches through mountainous terrain. Both experiments examined how properties of the tunnel influenced flight path tracking performance, traffic awareness, terrain awareness and workload (assessed both by subjective and secondary task performance measures). Experiment 1, flown in simulated VMC, compared high and low intensity tunnels, with a less cluttered follow-me-airplane (FMA). The results revealed that both tunnels supported better flight path tracking than the FMA, because of the availability of more preview information. Increasing tunnel intensity, while reducing subjective workload, had no benefit on tracking, and degraded traffic detection performance. In Experiment 2, flown mostly in IMC, the low intensity tunnel was flown with a large (10 inch x 8 inch) and small (8 inch x 6.5 inch) display, representing a geometric field of view (GFOV) of either 30 degrees or 60 degrees. Most measures of flight path tracking performance favored the smaller display, and particularly the 60 degree GFOV, which presented a smaller appearing tunnel, and a wider range of terrain depiction. The larger GFOV also supported better terrain awareness, and yielded a lower secondary task assessment of workload. In both experiments, the final landing approach was terminated by a runway obstruction, and the tunnel guided pilots on a missed approach. In nearly all cases, pilots failed to notice an air hazard that lay in the missed approach path, but was only depicted in the outside view.
Quasi-monolithic tunable optical resonator
NASA Technical Reports Server (NTRS)
Arbore, Mark (Inventor); Tapos, Francisc (Inventor)
2003-01-01
An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.
In-Service Evaluation of the Dalmo Victor Active Beacon Collision Avoidance System (BCAS/TCAS).
1982-10-01
expected to make any substantial change to this report on operational performance. Collectively, this report and the additional technical per- fomance...deviation from the recorded flight path, while 10 others might have required some change in flight path, depending on the vertical rate of the TCAS...They are based on data collected with no response by the TCAS aircraft crew and will change when the crew initiates response action to resolution
Multi-Sensor Fusion and Enhancement for Object Detection
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur
2005-01-01
This was a quick &week effort to investigate the ability to detect changes along the flight path of an unmanned airborne vehicle (UAV) over time. Video was acquired by the UAV during several passes over the same terrain. Concurrently, GPS data and UAV attitude data were also acquired. The purpose of the research was to use information from all of these sources to detect if any change had occurred in the terrain encompassed by the flight path.
A concept for a fuel efficient flight planning aid for general aviation
NASA Technical Reports Server (NTRS)
Collins, B. P.; Haines, A. L.; Wales, C. J.
1982-01-01
A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.
Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin
2009-09-01
Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2013 CFR
2013-01-01
... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5... flight, power, and equipment controls, including emergency fuel shutoff valves, electrical controls... crew action to guard against loss of hydraulic or electric power to flight controls or to other...
VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids
NASA Astrophysics Data System (ADS)
Svensson, T.; Andersson, M.; Rippe, L.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S.
2008-02-01
We present a minimalistic and flexible single-beam instrumentation based on sensitive tunable diode laser absorption spectroscopy (TDLAS) and its use in structural analysis of highly scattering pharmaceutical solids. By utilising a vertical cavity surface emitting laser (VCSEL) for sensing of molecular oxygen dispersed in tablets, we address structural properties such as porosity. Experiments involve working with unknown path lengths, severe backscattering and diffuse light. These unusual experimental conditions has led to the use of the term gas in scattering media absorption spectroscopy (GASMAS). By employing fully digital wavelength modulation spectroscopy and coherent sampling, system sensitivity in ambient air experiments reaches the 10-7 range. Oxygen absorption exhibited by our tablets, being influenced by both sample porosity and scattering, was in the range 8×10-5 to 2×10-3, and corresponds to 2-50 mm of path length through ambient air (Leq). The day-to-day reproducibility was on average 1.8% (0.3 mm Leq), being limited by mechanical positioning. This is the first time sub-millimetre sensitivity is reached in GASMAS. We also demonstrate measurements on gas transport on a 1-s time scale. By employing pulsed illumination and time-correlated single-photon counting, we reveal that GASMAS exhibits excellent correlation with time-domain photon migration. In addition, we introduce an optical measure of porosity by relating oxygen absorption to average photon time-of-flight. Finally, the simplicity, robustness and low cost of this novel TDLAS instrumentation provide industrial potential.
Carotid-Femoral Pulse Wave Velocity: Impact of Different Arterial Path Length Measurements
Sugawara, Jun; Hayashi, Koichiro; Yokoi, Takashi; Tanaka, Hirofumi
2009-01-01
Background Carotid-femoral pulse wave velocity (PWV) is the most established index of arterial stiffness. Yet there is no consensus on the methodology in regard to the arterial path length measurements conducted on the body surface. Currently, it is not known to what extent the differences in the arterial path length measurements affect absolute PWV values. Methods Two hundred fifty apparently healthy adults (127 men and 123 women, 19-79 years) were studied. Carotid-femoral PWV was calculated using (1) the straight distance between carotid and femoral sites (PWVcar–fem), (2) the straight distance between suprasternal notch and femoral site minus carotid arterial length (PWV(ssn–fem)-(ssn–car)), (3) the straight distance between carotid and femoral sites minus carotid arterial length (PWV(car–fem)-(ssn–car)), and (4) the combined distance from carotid site to the umbilicus and from the umbilicus to femoral site minus carotid arterial length (PWV(ssn–umb–fem)-(ssn–car)). Results All the calculated PWV were significantly correlated with each other (r=0.966-0.995). PWV accounting for carotid arterial length were 16-31% lower than PWVcar–fem. PWVcar–fem value of 12 m/sec corresponded to 8.3 m/sec for PWV(ssn–fem)-(ssn–car), 10.0 m/sec for PWV(car–fem)-(ssn–car), and 8.9 m/sec for PWV(ssn–umb–fem)-(ssn–car). Conclusion Different body surface measurements used to estimate arterial path length would produce substantial variations in absolute PWV values. PMID:20396400
Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain
2017-04-10
Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.
NASA Astrophysics Data System (ADS)
Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.
2006-02-01
Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.
A testbed for the evaluation of computer aids for enroute flight path planning
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.
1990-01-01
A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
When severe convective weather requires rerouting aircraft, FAA traffic managers employ severe weather avoidance plans (e.g., Playbook routes, Coded Departure Routes, etc.) These routes provide pilots with safe paths around weather-affected regions, and provide controllers with predictable, and often well-established flight plans. However, they often introduce large deviations to the nominal flight plans, which may not be necessary as weather conditions change. If and when the imposed traffic management initiatives (TMIs) become stale, updated shorter path flight trajectories may be found en route, providing significant time-savings to the affected flights. Multiple Flight Common Routes (MFCR) is a concept that allows multiple flights that are within a specified proximity or region, to receive updated shorter flight plans in an operationally efficient manner. MFCR is believed to provide benefits to the National Airspace System (NAS) by allowing traffic managers to update several flight plans of en route aircraft simultaneously, reducing operational workload within the TMUs of all affected ARTCCs. This paper will explore some aspects of the MFCR concept by analyzing multiple flights that have been selected for rerouting by the NAS Constraint Evaluation and Notification Tool (NASCENT). Various methods of grouping aircraft with common or similar routes will be presented, along with a comparison of the efficacy of these methods.
NASA Technical Reports Server (NTRS)
Provost, David E.
1990-01-01
Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.
Possible methods for distinguishing icebergs from ships by aerial remote sensing
NASA Technical Reports Server (NTRS)
Howes, W. L.
1979-01-01
The simplest methods for aerial remote sensing which are least affected by atmospheric opacities are summarized. Radar is preferred for targets off the flight path, and microwave radiometry for targets along the flight path. Radar methods are classified by ability to resolve targets. Techniques which do not require target resolution are preferred. Among these techniques, polarization methods appear most promising, specifically those which differentiate the expected relatively greater depolarization by icebergs from that by ships or which detect doubly-reversed circular polarization.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
Command Flight Path Display. Phase I and II. Appendix F.
1983-09-01
AD -R145 858 COMMAND FLIGHT PATH DISPLAY PHASE I AND 11 APPENDIX F / (U) SYSTEMS ASSOCIATES INC LONG BEACH CA RESOURCE MANAGEMENT SYSTEMS DIY SEP...34- (Appendix F) .ś. SYSTEMS ASSOCIATES INC* of CALIFORNIA t. Resource Management Systems Division DTICL it~~~ll ELECTE 1 o..-- , ~SEP 2 4 1984...Availability Codos Avail and/or Dist Special "i j L i 7 7 .... Contained in this appendix are the various plots generated dur- ing data reduction. Parameters
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
14 CFR 25.1321 - Arrangement and visibility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and line of vision when he is looking forward along the flight path. (b) The flight instruments... center position. (c) Required powerplant instruments must be closely grouped on the instrument panel. In...
14 CFR 25.1321 - Arrangement and visibility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and line of vision when he is looking forward along the flight path. (b) The flight instruments... center position. (c) Required powerplant instruments must be closely grouped on the instrument panel. In...
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.
1988-01-01
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).
The Effect of Lift on Entry Corridor Depth and Guidance Requirements for the Return Lunar Flight
NASA Technical Reports Server (NTRS)
Wong, Thomas J.; Slye, Robert E.
1961-01-01
Corridors for manned vehicles are defined consistent with requirements for avoiding radiation exposure and for limiting values of peak deceleration. Use of lift increases the depth of the entry corridor. Mid-course guidance requirements appear to be critical only for the flight-path angle. Increasing the energy of the transport orbit increases the required guidance accuracy for the flight-path angle. Corrective thrust applied essentially parallel to the local horizontal produces the maximum change in perigee altitude for a given increment of velocity. Energy required to effect a given change in perigee altitude varies inversely with range measured from the center of the earth.
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
NASA Astrophysics Data System (ADS)
Benaron, David A.; Lennox, M.; Stevenson, David K.
1992-05-01
Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac assessment. The technique may lead to real-time optical imaging and quantitation of tissues oxygen delivery.
Automatic Control Of Length Of Welding Arc
NASA Technical Reports Server (NTRS)
Iceland, William F.
1991-01-01
Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.
Application of Calspan pitch rate control system to the Space Shuttle for approach and landing
NASA Technical Reports Server (NTRS)
Weingarten, N. C.; Chalk, C. R.
1983-01-01
A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended.
NASA Technical Reports Server (NTRS)
Berthe, C. J.; Chalk, C. R.; Sarrafian, S.
1984-01-01
The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1984-01-01
Attention is given to a computer algorithm yielding the data required for a flight crew to navigate from an entry fix, about 100 nm from an airport, to a metering fix, and arrive there at a predetermined time, altitude, and airspeed. The flight path is divided into several descent and deceleration segments. Results for the case of a B-737 airliner indicate that wind and nonstandard atmospheric properties have a significant effect on the flight path and must be taken into account. While a range of combinations of Mach number and calibrated airspeed is possible for the descent segments leading to the metering fix, only small changes in the fuel consumed were observed for this range of combinations. A combination that is based on scheduling flexibility therefore seems preferable.
A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds
NASA Technical Reports Server (NTRS)
Drinkwater, Fred J., III; Cooper, George E.
1958-01-01
The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
HyPlane for Space Tourism and Business Transportation
NASA Astrophysics Data System (ADS)
Savino, R.
In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.
Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure
NASA Technical Reports Server (NTRS)
Williams, M. S.; Fasanella, E. L.
1982-01-01
Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
75 FR 75870 - Airworthiness Directives; Airbus Model A300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... to the aeroplane has two load paths, a Primary Load Path (PLP) and a Secondary Load Path (SLP), which is only engaged in case of PLP failure. Following the design intent, engagement of the SLP leads to... representative flights have demonstrated that, when the SLP is engaged, it does not systematically jam the THSA...
75 FR 52652 - Airworthiness Directives; Airbus Model A300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... to the aeroplane has two load paths, a Primary Load Path (PLP) and a Secondary Load Path (SLP), which is only engaged in case of PLP failure. Following the design intent, engagement of the SLP leads to... representative flights have demonstrated that, when the SLP is engaged, it does not systematically jam the THSA...
Through the eyes of a bird: modelling visually guided obstacle flight
Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.
2014-01-01
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052
Through the eyes of a bird: modelling visually guided obstacle flight.
Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A
2014-07-06
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.
NASA Technical Reports Server (NTRS)
Bartolone, Anthony P.; Hughes, Monica F.; Wong, Douglas T.; Takallu, Mohammad A.
2004-01-01
Spatial disorientation induced by inadvertent flight into instrument meteorological conditions (IMC) continues to be a leading cause of fatal accidents in general aviation. The Synthetic Vision Systems General Aviation (SVS-GA) research element, an integral part of NASA s Aviation Safety and Security Program (AvSSP), is investigating a revolutionary display technology designed to mitigate low visibility events such as controlled flight into terrain (CFIT) and low-visibility loss of control (LVLoC). The integrated SVS Primary Flight Display (SVS-PFD) utilizes computer generated 3-dimensional imagery of the surrounding terrain augmented with flight path guidance symbology. This unique combination will provide GA pilots with an accurate representation of their environment and projection of their flight path, regardless of time of day or out-the-window (OTW) visibility. The initial Symbology Development for Head-Down Displays (SD-HDD) simulation experiment examined 16 display configurations on a centrally located high-resolution PFD installed in NASA s General Aviation Work Station (GAWS) flight simulator. The results of the experiment indicate that situation awareness (SA) can be enhanced without having a negative impact on flight technical error (FTE), by providing a general aviation pilot with an integrated SVS display to use when OTW visibility is obscured.
Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.
Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Rozema, Jos J; Atchison, David A
2015-01-01
To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Method for Veterbi decoding of large constraint length convolutional codes
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor); Jing, Sun (Inventor)
1988-01-01
A new method of Viterbi decoding of convolutional codes lends itself to a pipline VLSI architecture using a single sequential processor to compute the path metrics in the Viterbi trellis. An array method is used to store the path information for NK intervals where N is a number, and K is constraint length. The selected path at the end of each NK interval is then selected from the last entry in the array. A trace-back method is used for returning to the beginning of the selected path back, i.e., to the first time unit of the interval NK to read out the stored branch metrics of the selected path which correspond to the message bits. The decoding decision made in this way is no longer maximum likelihood, but can be almost as good, provided that constraint length K in not too small. The advantage is that for a long message, it is not necessary to provide a large memory to store the trellis derived information until the end of the message to select the path that is to be decoded; the selection is made at the end of every NK time unit, thus decoding a long message in successive blocks.
HUD Guidance for the ASKA Experimental STOL Aircraft using Radar Position Information
NASA Technical Reports Server (NTRS)
Yazawa, Kenji; Terui, Yushi; Hardy, Gordon H.
1992-01-01
The paper describes a high performance HUD guidance system installed on the experimental powered-lift STOL aircraft Aska. Since the maiden flight in October 1985, the HUD system has been used in all the flight tests. The HUD has an accurate flight path symbol generated by inertial velocity from the IRS which is updated by up-linked precision radar position data. The flight path symbol is very useful for precise approach and flare control for Aska which has large ground effects. A synthetic runway is also presented, which is conformal with the real runway, using the position data from the ground tracking radar system. Under instrument meteorological conditions, the pilot can approach and land using the HUD synthetic runway as well as in visual meteorological conditions. The HUD system proved to be a valuable aid to the pilot for all the Aska flight tests. A NASA Ames Research Center test pilot demonstrated touch down accuracy of less than 8 meters (peak to peak) for a series of three landings.
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
NASA Astrophysics Data System (ADS)
Li, Xiang
2016-10-01
Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.
NASA Technical Reports Server (NTRS)
James, R.; Brownlow, J. D.
1985-01-01
A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altitude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This report is in two parts. This is part 2, a discussion of the modeling of propagation path errors.
Display Provides Pilots with Real-Time Sonic-Boom Information
NASA Technical Reports Server (NTRS)
Haering, Ed; Plotkin, Ken
2013-01-01
Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1984-01-01
Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.
Effects of Scene-Linked Symbology on Flight Performance
DOT National Transportation Integrated Search
1997-01-01
Previous research has shown that the presence of aircraft head-up display (HUD) : symbology indicating altitude improves maintenance of altitude, but at a cost : to (ground) path-following ability. We term this the altitude/path performance : trade-o...
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
Evidence for Endothermy in Pterosaurs Based on Flight Capability Analyses
NASA Astrophysics Data System (ADS)
Jenkins, H. S.; Pratson, L. F.
2005-12-01
Previous attempts to constrain flight capability in pterosaurs have relied heavily on the fossil record, using bone articulation and apparent muscle allocation to evaluate flight potential (Frey et al., 1997; Padian, 1983; Bramwell, 1974). However, broad definitions of the physical parameters necessary for flight in pterosaurs remain loosely defined and few systematic approaches to constraining flight capability have been synthesized (Templin, 2000; Padian, 1983). Here we present a new method to assess flight capability in pterosaurs as a function of humerus length and flight velocity. By creating an energy-balance model to evaluate the power required for flight against the power available to the animal, we derive a `U'-shaped power curve and infer optimal flight speeds and maximal wingspan lengths for pterosaurs Quetzalcoatlus northropi and Pteranodon ingens. Our model corroborates empirically derived power curves for the modern black-billed magpie ( Pica Pica) and accurately reproduces the mechanical power curve for modern cockatiels ( Nymphicus hollandicus) (Tobalske et al., 2003). When we adjust our model to include an endothermic metabolic rate for pterosaurs, we find a maximal wingspan length of 18 meters for Q. northropi. Model runs using an exothermic metabolism derive maximal wingspans of 6-8 meters. As estimates based on fossil evidence show total wingspan lengths reaching up to 15 meters for Q. northropi, we conclude that large pterosaurs may have been endothermic and therefore more metabolically similar to birds than to reptiles.
NASA Technical Reports Server (NTRS)
Clement, James L., Jr.; Ritsher, Jennifer Boyd
2006-01-01
As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.
NASA Technical Reports Server (NTRS)
Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.
1973-01-01
A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.
Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting
2016-01-01
Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes “recharging while moving” into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle. PMID:28025567
NASA Astrophysics Data System (ADS)
Humphries, Nicolas E.
2015-09-01
The comprehensive review of Lévy patterns observed in the moves and pauses of a vast array of organisms by Reynolds [1] makes clear a need to attempt to unify phenomena to understand how organism movement may have evolved. However, I would contend that the research on Lévy 'movement patterns' we detect in time series of animal movements has to a large extent been misunderstood. The statistical techniques, such as Maximum Likelihood Estimation, used to detect these patterns look only at the statistical distribution of move step-lengths and not at the actual pattern, or structure, of the movement path. The path structure is lost altogether when move step-lengths are sorted prior to analysis. Likewise, the simulated movement paths, with step-lengths drawn from a truncated power law distribution in order to test characteristics of the path, such as foraging efficiency, in no way match the actual paths, or trajectories, of real animals. These statistical distributions are, therefore, null models of searching or foraging activity. What has proved surprising about these step-length distributions is the extent to which they improve the efficiency of random searches over simple Brownian motion. It has been shown unequivocally that a power law distribution of move step lengths is more efficient, in terms of prey items located per unit distance travelled, than any other distribution of move step-lengths so far tested (up to 3 times better than Brownian), and over a range of prey field densities spanning more than 4 orders of magnitude [2].
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Multiple-wavelength tunable laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)
2010-01-01
A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.
Are flying wildlife attracted to (or do they avoid) wind turbines?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Ronald
A DOE-sponsored research project found strong evidence that flying wildlife avoid or are attracted to commercial-scale wind turbines from a distance. Some nocturnally migrating birds avoid flying near turbines and few or none change flight paths to approach them. High-flying bats less often avoid flying near turbines and some are attracted to them from a distance, although bats’ flight paths were often complex and convoluted. The findings are being prepared for submission to a peer-reviewed scientific journal (Larkin, in prep 2013).
Maneuver sequence design for the post-Jupiter leg of Pioneer Saturn
NASA Technical Reports Server (NTRS)
Frauenholz, R. B.; Brady, W. F.
1976-01-01
After passing the planet Jupiter in December 1974, Pioneer 11 is on a flight path on which it will encounter Saturn in late 1979. Following an uncorrected trajectory, the spacecraft would pass 2 million km behind Saturn. A sequence of midcourse maneuvers for modifying the Pioneer trajectory is discussed. The corrected flight path is to bring the spacecraft within 500,000 km of Saturn's satellite Titan. Attention is given to maneuver capabilities and constraints, the maneuver design concept, questions related to the selection of an interim aimpoint, and aspects of maneuver implementation.
Trajectory generation for an on-road autonomous vehicle
NASA Astrophysics Data System (ADS)
Horst, John; Barbera, Anthony
2006-05-01
We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.
Path changing methods applied to the 4-D guidance of STOL aircraft.
DOT National Transportation Integrated Search
1971-11-01
Prior to the advent of large-scale commercial STOL service, some challenging navigation and guidance problems must be solved. Proposed terminal area operations may require that these aircraft be capable of accurately flying complex flight paths, and ...
Douglas, David R.; Neil, George R.
2005-04-26
A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.
A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland
2003-01-01
Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Gilyard, Glenn B.
1989-01-01
A flight experiment was conducted to evaluate a pressure measurement system which uses pneumatic tubing and remotely located electronically scanned pressure transducer modules for in-flight unsteady aerodynamic studies. A parametric study of tubing length and diameter on the attenuation and lag of the measured signals was conducted. The hardware was found to operate satisfactorily at rates of up to 500 samples/sec per port in flight. The signal attenuation and lag due to tubing were shown to increase with tubing length, decrease with tubing diameter, and increase with altitude over the ranges tested. Measurable signal levels were obtained for even the longest tubing length tested, 4 ft, at frequencies up to 100 Hz. This instrumentation system approach provides a practical means of conducting detailed unsteady pressure surveys in flight.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.
1999-01-01
A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Miklós, István; Darling, Aaron E
2009-06-22
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.
Resource acquisition, distribution and end-use efficiencies and the growth of industrial society
NASA Astrophysics Data System (ADS)
Jarvis, A. J.; Jarvis, S. J.; Hewitt, C. N.
2015-10-01
A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end-use. With respect to energy, the growth of industrial society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However, despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate of ~ 2.4 % yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.
Finding False Paths in Sequential Circuits
NASA Astrophysics Data System (ADS)
Matrosova, A. Yu.; Andreeva, V. V.; Chernyshov, S. V.; Rozhkova, S. V.; Kudin, D. V.
2018-02-01
Method of finding false paths in sequential circuits is developed. In contrast with heuristic approaches currently used abroad, the precise method based on applying operations on Reduced Ordered Binary Decision Diagrams (ROBDDs) extracted from the combinational part of a sequential controlling logic circuit is suggested. The method allows finding false paths when transfer sequence length is not more than the given value and obviates the necessity of investigation of combinational circuit equivalents of the given lengths. The possibilities of using of the developed method for more complicated circuits are discussed.
The path to an experiment in space (from concept to flight)
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.
AG Channel Measurement and Modeling Results for Over-Sea Conditions
NASA Technical Reports Server (NTRS)
Matolak, David; Sun, Rouyu
2014-01-01
This report describes results from flight tests conducted in an over-sea environment, for the purpose of characterizing the air-to-ground (AG) channel, for future unmanned aircraft system (UAS) communication system analysis and design. These results are for the first of a set of several flight tests conducted in different ground site (GS) environments. An ultimate aim of all these tests is the development of models for the AG channel that can be used in communication system evaluation. In this report we provide measured results for propagation path loss, root-mean square delay spread (RMS-DS), and the correlation coefficient of the primary received signal components on the four antennas (two antennas for C-band, two for L-band). For path loss, the curved-earth two-ray model provides a reasonable fit to the measured data, altered by several dB at the shortest link distances by aircraft antenna pattern effects. This two-ray model also accounts for the majority of measured RMS-DS results of a few tens of nanoseconds, except for the occasional intermittent reflections from surface objects. These intermittent reflections yield RMS-DS values up to several hundred nanoseconds. For portions of the flight path that were over a harbor area highly populated with boats, the channel was found to be more "continuously dispersive," with RMS-DS reaching approximately 250 ns. A separate model will be developed for this over-harbor setting. The correlation coefficient results are still undergoing analysis; preliminary observations are that correlation between signals on the same-band antennas is generally large (>0.6) for the C-band straight flight paths, whereas for the L-band signals and for the oval-shaped flight paths the correlation is generally small (below 0.4). Inter-band correlations are typically very small, and are well modeled as zero-mean Gaussian in distribution, with a standard deviation less than 0.2. Hence the over-sea channel effects in the two bands can be considered uncorrelated, which will allow for good diversity gains in dual-band systems. We describe initial modeling approaches for the over-sea channel; complete models for this and the over-harbor setting will appear in a subsequent report.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
Anisotropy of Observed and Simulated Turbulence in Marine Stratocumulus
NASA Astrophysics Data System (ADS)
Pedersen, J. G.; Ma, Y.-F.; Grabowski, W. W.; Malinowski, S. P.
2018-02-01
Anisotropy of turbulence near the top of the stratocumulus-topped boundary layer (STBL) is studied using large-eddy simulation (LES) and measurements from the POST and DYCOMS-II field campaigns. Focusing on turbulence ˜100 m below the cloud top, we see remarkable similarity between daytime and nocturnal flight data covering different inversion strengths and free-tropospheric conditions. With λ denoting wavelength and zt cloud-top height, we find that turbulence at λ/zt≃0.01 is weakly dominated by horizontal fluctuations, while turbulence at λ/zt>1 becomes strongly dominated by horizontal fluctuations. Between are scales at which vertical fluctuations dominate. Typical-resolution LES of the STBL (based on POST flight 13 and DYCOMS-II flight 1) captures observed characteristics of below-cloud-top turbulence reasonably well. However, using a fixed vertical grid spacing of 5 m, decreasing the horizontal grid spacing and increasing the subgrid-scale mixing length leads to increased dominance of vertical fluctuations, increased entrainment velocity, and decreased liquid water path. Our analysis supports the notion that entrainment parameterizations (e.g., in climate models) could potentially be improved by accounting more accurately for anisotropic deformation of turbulence in the cloud-top region. While LES has the potential to facilitate improved understanding of anisotropic cloud-top turbulence, sensitivity to grid spacing, grid-box aspect ratio, and subgrid-scale model needs to be addressed.
NASA Technical Reports Server (NTRS)
Hacker, Paul T.
1956-01-01
An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
NASA Technical Reports Server (NTRS)
Moran, J. M.; Rosen, B. R.
1980-01-01
The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.
NASA Astrophysics Data System (ADS)
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
Development of flying qualities criteria for single pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.; Nixon, W. B.; Miller, G. E.
1982-01-01
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.
Determining Correlation and Coherence Lengths in Turbulent Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Dan
2012-01-01
Wall pressure data acquired during flight tests at several flight conditions are analysed and the correlation and coherence lengths of the data reported. It is found that the correlation and coherence lengths are influenced by the origin of the structure producing the pressure and the frequency bandwidth over which the analyses are performed. It is shown how the frequency bandwidth biases the correlation length and how the convection of the pressure field might reduce the coherence measured between sensors. A convected form of the cross correlation and cross spectrum is introduced to compensate for the effects of convection. Coherence lengths measured in the streamwise direction appear much longer than expected. Coherent structures detected using the convected cross correlation do not exhibit an exponential coherent power decay.
Attentional Issues with Superimposed Symbology: Formats for Scene-Linked Displays
DOT National Transportation Integrated Search
1995-01-01
The head-up display (HUD) has been shown to be a superior presentation method : for flight path symbology over that of traditional flight director. Recent : studies, however, have shown that there are specific performance problems : associated with H...
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Testing the time-of-flight model for flagellar length sensing.
Ishikawa, Hiroaki; Marshall, Wallace F
2017-11-07
Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
Baier, David B; Gatesy, Stephen M; Dial, Kenneth P
2013-01-01
Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight, recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR (ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories. Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears "truncated" relative to ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is opposite of that observed in starlings (Sturnus vulgaris).
Survey to Determine Flight Plan Data and Flight Scheduling Accuracy
DOT National Transportation Integrated Search
1972-01-01
This survey determined Operational Flight Plan Data and Flight schduling accuracy vs. published schedules an/or stored flight plan data. This accuracy was determined by sampling tracer flights of varying lengths, selected terminals, and high altitude...
Field tests of a new, extractive, airborne 1.4 μm -TDLAS hygrometer (SEALDH-I) on a Learjet 35A
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Ebert, Volker
2013-04-01
A highly accurate and precise quantification of atmospheric humidity is a prerequisite for cloud studies as well as for environmental models in order to get a deeper understanding of physical processes and effects. On the one hand numerous trace gases measurements in airborne "laboratories" have to be corrected for water vapor influence; on the other hand satellite measurements have to be validated by in-situ H2O measurements on aircrafts. The vast majority of the airborne hygrometers require a precise and frequent sensor calibration in order to ensure a sufficient performance. UT/LS sensors in particular are often calibrated before and after each individual flight. But even this might not be sufficient which explains why recently in-flight calibrations are becoming more common. Nevertheless all calibrated sensors completely depend on the performance of the water standard used for calibration. Therefore it remains an open question if in-flight calibrations are the way to go: They also might suffer from inflight disturbances and they would need validation during flight conditions. Water calibrations at low humidity are even more complicated due to the strong water adsorption and the resulting sampling problems. An abstention from calibration would avoid many of these problems. In addition, calibration free sensors are much easier to debug as they can hardly have errors which can be hidden by calibration parameters (such as leaks, etc.). Robust cal-free sensors should therefore perform more stable in flight when the sensors boundary conditions might change. The situation can be improved further with extractive cal-free sensors as the boundary condition in measurement volume (pressure, temperature, path length, flow pattern, etc.), i.e. in an extractive cell, are much better controlled than for an open path sensor. Further cal-free extractive sensors can be designed maintain its integrity when attaching and detaching it from the carrier (airplane). This makes it much easier to validate the sensor function e.g. by a direct comparison with a primary water standard and to ensure traceability of the results to metrological standards. On the other hand it remains important to investigate sampling effects and artifacts in order to provide true measurements of the outside air. The SEALDH-I (Selective Extractive Airborne Laser Diode Hygrometer) is a new, absolute 1.37 μm Tunable Diode Laser Absorption Spectroscopy (TDLAS) hygrometer, which uses an advanced spectroscopic multiline fit and instrument stabilization process to enable a calibrations-free [1] evaluation of TDLAS signals [2]. SEALDHI is a compact (19" 4 HU), light weight (23 kg), fully extractive TDL hygrometer especially designed for space- and weight-limited airborne applications. It is based on an internal optical cell with 1.5 m optical path length. SEALDH-I's time resolution is limited by the flow through the cell: With an unpressurized inlet and gas handling system, we achieve with typical flows of 40 liter/min which leads to exchange times in the order of 0.5 sec. The laser scanning frequency of typically 140 Hz sets a maximum time resolution of 7 msec. Averaging data for about 2.1 sec ensures an excellent precision of 0.033 ppmv, which results in a band width and path length normalized precision of 72 ppbv?m?(Hz)-1-2. A dynamic range from 30 to 30000 ppmv has been proved and already validated in a blind intercomparison campaign [3]. The fast measurements, its excellent precision, validated accuracy, and absolute, calibration-free evaluation in combination with the compact, robust setup, allows airborne measurements from ground level up to the lower stratosphere. Furthermore SEALDH-I permits via its fast response time in combination with the large concentration range the resolution of fine atmospheric spatial structures and temporal fluctuations, particularly in clouds [4], where concentration gradients of 1000 ppmv per second can be present. We will present the result of the first successful flights of SEALDH-I on board of a Learjet 35A. Further detailed evaluations of the inflight data and discussion on the performance and future application possibilities will be presented at the meeting. The flights, supported by enviscope GmbH, took place during the DENCHAR campaign (Development and Evaluation of Novel Compact Hygrometer for Airborne Research, Grant No 227159), organized by H. G. J. Smit (FZ Jülich) within the framework of the EU-funded EUFAR network. [1] C. Lauer, D. Weber, S. Wagner, and V. Ebert, "Calibration Free Measurement of Atmospheric Methane Background via Tunable Diode Laser Absorption Spectroscopy at 1.6um," Laser Applications to Chemical, Security and Environmental Analysis (LACSEA), St. Petersburg, Florida, USA" vol. LMA2, 2008. [2] V. Ebert and J. Wolfrum, "Absorption spectroscopy," in OPTICAL MEASUREMENTS-Techniques and Applications, ed. F. Mayinger, Springer, 1994, pp. 273-312. [3] B. Buchholz, B. Kühnreich, H. G. J. Smit, and V. Ebert, "Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison," Applied Physics B, pp. DOI 10.1007/s00340-012-5143-1, Sep. 2012. [4] B. J. Murray, T. W. Wilson, S. Dobbie, Z. Cui, S. M. R. K. Al-Jumur, O. Möhler, M. Schnaiter, R. Wagner, S. Benz, M. Niemand, H. Saathoff, V. Ebert, S. Wagner, and B. Kärcher, "Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions," Nature Geoscience, vol. 3, no. 4, pp. 233-237, Mar. 2010.
Multiple-path model of spectral reflectance of a dyed fabric.
Rogers, Geoffrey; Dalloz, Nicolas; Fournel, Thierry; Hebert, Mathieu
2017-05-01
Experimental results are presented of the spectral reflectance of a dyed fabric as analyzed by a multiple-path model of reflection. The multiple-path model provides simple analytic expressions for reflection and transmission of turbid media by applying the Beer-Lambert law to each path through the medium and summing over all paths, each path weighted by its probability. The path-length probability is determined by a random-walk analysis. The experimental results presented here show excellent agreement with predictions made by the model.
Energy management during the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.
NASA Astrophysics Data System (ADS)
Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.
2018-01-01
The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
An on-board near-optimal climb-dash energy management
NASA Technical Reports Server (NTRS)
Weston, A. R.; Cliff, E. M.; Kelley, H. J.
1982-01-01
On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.
Modeling the average shortest-path length in growth of word-adjacency networks
NASA Astrophysics Data System (ADS)
Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł
2015-03-01
We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.
Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.
2018-01-01
NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.
The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Sim, Ben W.
2013-01-01
In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.
High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations
NASA Astrophysics Data System (ADS)
Linford, Joel
2010-10-01
Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.
1959-01-01
A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
Darling, Aaron E.
2009-01-01
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186
Modifying Ship Air-Wake Vortices for Aircraft Operations
NASA Technical Reports Server (NTRS)
Lamar, John E.
2004-01-01
Columnar-vortex generators (CVG) have been proposed as means to increase the safety of takeoffs and landings of aircraft on aircraft or helicopter carriers and other ships at sea. According to the proposal, CVGs would be installed at critical edge locations on ships to modify the vortices in the air wakes of the ships. The desired effects of modifications are to smooth airflows over takeoff and landing deck areas and divert vortices from takeoff and landing flight paths. With respect to aircraft operations, the wake flows of primary interest are those associated with the bow and side edges of aircraft-carrier decks and with superstructures of ships in general (see Figure 1). The bow and deck-edge vortices can adversely affect airplane and helicopter operations on carriers, while the superstructure wakes can primarily affect operations of helicopters. The concept of the CVG is not new; what is new is the proposed addition of CVGs to ship structures to effect favorable modifications of air wakes. Figure 2 depicts a basic CVG, vertical and horizontal CVGs installed on a simple superstructure, and horizontal CVGs installed on the bow and deck edges. The vertical CVGs would be closed at the deck but open at the top. Each horizontal CVG would be open at both ends. The dimensions of the CVGs installed on the aft edges of the superstructure would be chosen so that the portion of the flow modified by the vertical CVGs would interact synergistically with the portion of the flow modified by the horizontal CVG to move the air wake away from the takeoff-and-landing zone behind the superstructure. The deck-edge CVGs would be mounted flush with, and would extend slightly ahead of the bow of, the flight deck. The overall length of each tube would exceed that of the flight deck. Each deck-edge CVG would capture that portion of the airflow that generates a deck-edge vortex and would generate a columnar vortex of opposite sense to that of the unmodified vortex. The vortex generated by the CVG could be dispersed at its base, thereby removing unwanted turbulence in the path of an approaching airplane. The deck-edge CVGs would promote smooth flow over the entire flight deck. In the case of a Nimitz-class aircraft carrier like that of Figure 1, there would be a CVG on each of the outer edges of the two left portions of the flight deck and a single CVG on the right side of the flight deck. The forward-most CVG on the left side would take the generated vortex underneath the angled flight deck. A CVG could also be installed on the bow of the flight deck to smooth the flow of air onto the flight deck. In the case of wind incident on the deck from an azimuth other than straight ahead, the vortex generated by the bow CVG could, perhaps, be used to feed the CVG(s) of the leeward side edge of the flight deck.
Aircraft landing control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)
1982-01-01
Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.
Study of the De-Icing Properties of the ASDE-3 Rotodome.
1982-04-01
Heat Transfer Coefficients ........................... 3 -18 3.2.3 Prediction of De-Icing Capability ...... 3 -23 3.2.4 Calculation of Mean DIA & PATH...kVA 3 -31 N NUL =ti: :6 i ::p :: %:::::28 -R) [ eN 23,100t Averaged for Laminar & Turbulent Regimes. SAssuming a transition from Laminar to. Turbulent...Calculation of Mean Dia .& Path Length for Roof Mean Path Length for Roof: y 4r 4x 9 3.82 ft 3 x 7 1 2(92 3.8221/2 1 = 2(92 - 3.822 = 8.15 ft x 2 16.3 ft 16.3
A function-based approach to cockpit procedure aids
NASA Technical Reports Server (NTRS)
Phatak, Anil V.; Jain, Parveen; Palmer, Everett
1990-01-01
The objective of this research is to develop and test a cockpit procedural aid that can compose and present procedures that are appropriate for the given flight situation. The procedure would indicate the status of the aircraft engineering systems, and the environmental conditions. Prescribed procedures already exist for normal as well as for a number of non-normal and emergency situations, and can be presented to the crew using an interactive cockpit display. However, no procedures are prescribed or recommended for a host of plausible flight situations involving multiple malfunctions compounded by adverse environmental conditions. Under these circumstances, the cockpit procedural aid must review the prescribed procedures for the individual malfunction (when available), evaluate the alternatives or options, and present one or more composite procedures (prioritized or unprioritized) in response to the given situation. A top-down function-based conceptual approach towards composing and presenting cockpit procedures is being investigated. This approach is based upon the thought process that an operating crew must go through while attempting to meet the flight objectives given the current flight situation. In order to accomplish the flight objectives, certain critical functions must be maintained during each phase of the flight, using the appropriate procedures or success paths. The viability of these procedures depends upon the availability of required resources. If resources available are not sufficient to meet the requirements, alternative procedures (success paths) using the available resources must be constructed to maintain the critical functions and the corresponding objectives. If no success path exists that can satisfy the critical functions/objectives, then the next level of critical functions/objectives must be selected and the process repeated. Information is given in viewgraph form.
A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle
NASA Astrophysics Data System (ADS)
Fields, Travis D.
Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight information during the ascent and descent. Simulation and real-world flight tests (using the developed low-cost hardware) demonstrate the significance of the improvements achievable when flying the developed system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... humidity, solar radiation, ultraviolet radiation, and/or precipitation. Metropolitan Statistical Area (MSA... receiver at opposite ends of the monitoring path; (2) Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... humidity, solar radiation, ultraviolet radiation, and/or precipitation. Metropolitan Statistical Area (MSA... receiver at opposite ends of the monitoring path; (2) Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... humidity, solar radiation, ultraviolet radiation, and/or precipitation. Metropolitan Statistical Area (MSA... receiver at opposite ends of the monitoring path; (2) Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or...
Nodal distances for rooted phylogenetic trees.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2010-08-01
Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).
Optimization of confocal laser induced fluorescence for long focal length applications
NASA Astrophysics Data System (ADS)
Jemiolo, Andrew J.; Henriquez, Miguel F.; Thompson, Derek S.; Scime, Earl E.
2017-10-01
Laser induced fluorescence (LIF) is a non-perturbative diagnostic for measuring ion and neutral particle velocities and temperatures in a plasma. The conventional method for single-photon LIF requires intersecting optical paths for light injection and collection. The multiple vacuum windows needed for such measurements are unavailable in many plasma experiments. Confocal LIF eliminates the need for perpendicular intersecting optical paths by using concentric injection and collection paths through a single window. One of the main challenges with using confocal LIF is achieving high resolution measurements at the longer focal lengths needed for many plasma experiments. We present confocal LIF measurements in HELIX, a helicon plasma experiment at West Virginia University, demonstrating spatial resolution dependence on focal length and spatial filtering. By combining aberration mitigating optics with spatial filtering, our results show high resolution measurements at focal lengths of 0.5 m, long enough to access the interiors of many laboratory plasma experiments. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.
Microscopic optical path length difference and polarization measurement system for cell analysis
NASA Astrophysics Data System (ADS)
Satake, H.; Ikeda, K.; Kowa, H.; Hoshiba, T.; Watanabe, E.
2018-03-01
In recent years, noninvasive, nonstaining, and nondestructive quantitative cell measurement techniques have become increasingly important in the medical field. These cell measurement techniques enable the quantitative analysis of living cells, and are therefore applied to various cell identification processes, such as those determining the passage number limit during cell culturing in regenerative medicine. To enable cell measurement, we developed a quantitative microscopic phase imaging system based on a Mach-Zehnder interferometer that measures the optical path length difference distribution without phase unwrapping using optical phase locking. The applicability of our phase imaging system was demonstrated by successful identification of breast cancer cells amongst normal cells. However, the cell identification method using this phase imaging system exhibited a false identification rate of approximately 7%. In this study, we implemented a polarimetric imaging system by introducing a polarimetric module to one arm of the Mach-Zehnder interferometer of our conventional phase imaging system. This module was comprised of a quarter wave plate and a rotational polarizer on the illumination side of the sample, and a linear polarizer on the optical detector side. In addition, we developed correction methods for the measurement errors of the optical path length and birefringence phase differences that arose through the influence of elements other than cells, such as the Petri dish. As the Petri dish holding the fluid specimens was transparent, it did not affect the amplitude information; however, the optical path length and birefringence phase differences were affected. Therefore, we proposed correction of the optical path length and birefringence phase for the influence of elements other than cells, as a prerequisite for obtaining highly precise phase and polarimetric images.
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-04-17
Impairments in dynamic balance have a detrimental effect in older adults at risk of falls (OARF). Gait initiation (GI) is a challenging transitional movement. Centre of pressure (COP) excursions using force plates have been used to measure GI performance. The Nintendo Wii Balance Board (WBB) offers an alternative to a standard force plate for the measurement of CoP excursion. To determine the reliability of COP excursions using the WBB, and its feasibility within a 4-week strength and balance intervention (SBI) treating OARF. Ten OARF subjects attending SBI and ten young healthy adults, each performed three GI trials after 10 s of quiet stance from a standardised foot position (shoulder width) before walking forward 3 m to pick up an object. Averaged COP mediolateral (ML) and anteroposterior (AP) excursions (distance) and path-length time (GI-onset to first toe-off) were analysed. WBB ML (0.866) and AP COP excursion (0.895) reliability (ICC 3,1 ) was excellent, and COP path-length reliability was fair (0.517). Compared to OARF, healthy subjects presented with larger COP excursion in both directions and shorter COP path length. OARF subjects meaningfully improved their timed-up-and-go and ML COP excursion between weeks 1-4, while AP COP excursions, path length, and confidence-in-balance remained stable. COP path length and excursion directions probably measure different GI postural control attributes. Limitations in WBB accuracy and precision in transition tasks needs to be established before it can be used clinically to measure postural aspects of GI viably. The WBB could provide valuable clinical evaluation of balance function in OARF.
NASA Technical Reports Server (NTRS)
McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.
1991-01-01
NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.
Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking.
Huang, Baixiang; Liu, Anfeng; Zhang, Chengyuan; Xiong, Naixue; Zeng, Zhiwen; Cai, Zhiping
2018-05-29
Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths. Because of some inconvenient transmission processes, the routing paths of previous schemes are prolonged, and users can only request data from Data Centers (DCs) until the data have been uploaded from Data Producers (DPs) to DCs. Hence, the first kind of shortcut is built from DPs to users directly. This shortcut could release the burden of whole network and reduce delay. Moreover, in the second shortcut routing method, a Content Router (CR) which could yield shorter length of uploading routing path from DPs to DCs is chosen, and then data packets are uploaded through this chosen CR. In this method, the uploading path shares some segments with the pre-caching path, thus the overall length of routing paths is reduced. (2) The second innovation of the CJSR scheme is that a cooperative pre-caching mechanism is proposed so that QoS could have a further increase. Besides being used in downloading routing, the pre-caching mechanism can also be used when data packets are uploaded towards DCs. Combining uploading and downloading pre-caching, the cooperative pre-caching mechanism exhibits high performance in different situations. Furthermore, to address the scarcity of storage size, an algorithm that could make use of storage from idle CRs is proposed. After comparing the proposed scheme with five existing schemes via simulations, experiments results reveal that the CJSR scheme could reduce the total number of processed interest packets by 54.8%, enhance the cache hits of each CR and reduce the number of total hop counts by 51.6% and cut down the length of routing path for users to obtain their interested data by 28.6⁻85.7% compared with the traditional NDN scheme. Moreover, the length of uploading routing path could be decreased by 8.3⁻33.3%.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
2014-03-26
This long expsoure photograph shows the flight path of the Soyuz TMA-12M rocket as it launches from the Baikonur Cosmodrome in Kazakhstan on Wednesday, March 26, 2014. The rocket is carrying Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Studies in Forecasting Upper-Level Turbulence
2006-09-01
path, where they begin 9 to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing tips. b...the flight path, where they begin to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing
Are Tornadoes Getting Stronger?
NASA Astrophysics Data System (ADS)
Elsner, J.; Jagger, T.
2013-12-01
A cumulative logistic model for tornado damage category is developed and examined. Damage path length and width are significantly correlated to the odds of a tornado receiving the next highest damage category. Given values for the cube root of path length and square root of path width, the model predicts a probability for each category. The length and width coefficients are insensitive to the switch to the Enhanced Fujita (EF) scale and to distance from nearest city although these variables are statistically significant in the model. The width coefficient is sensitive to whether or not the tornado caused at least one fatality. This is likely due to the fact that the dimensions and characteristics of the damage path for such events are always based on ground surveys. The model predicted probabilities across the categories are then multiplied by the center wind speed from the categorical EF scale to obtain an estimate of the highest tornado wind speed on a continuous scale in units of meters per second. The estimated wind speeds correlate at a level of .82 (.46, .95) [95% confidence interval] to wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. More work needs to be done to understand the upward trends in path length and width. The increases lead to an apparent increase in tornado intensity across all EF categories.
1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data
NASA Astrophysics Data System (ADS)
Chernokulsky, Alexander; Shikhov, Andrey
2018-07-01
The 1984 Ivanovo tornado outbreak is one of the most fatal tornado events in Europe with previously unspecified tornado track characteristics. In this paper, we used Landsat images to discover tornado-induced forest disturbances and restore actual characteristics of tornadoes during the outbreak. We defined boundaries of tornado-induced windthrows by visual comparison of satellite images and specified them with Normalized Difference Infrared Index. We confirmed the occurrence of eight tornadoes during the outbreak and determined their location, path width and length. Other tornadoes occurrence during the outbreak was discussed. Fujita-scale intensity of confirmed tornadoes was estimated based on the related literature corpus including previously omitted sources. In addition, information on tornado path lengths and widths was used to estimate minimal tornado intensity for those tornadoes that passed no settlements. In total, the Ivanovo outbreak includes 8-13 tornadoes with F-scale rating mean ranges from 1.8-2.5 and has adjusted Fujita length around 540 km, which makes the outbreak one the strongest in Europe and places it within the upper quartile of U.S. outbreaks. Characteristics of certain tornadoes within the Ivanovo outbreak are exceptional for Russia. The widest tornado path during the Ivanovo outbreak is 1740 m; the longest is from 81.5-85.9 km. With the example of the Ivanovo outbreak, we showed that existing databases on historical Russian tornadoes tend to overestimate tornado path length (for very long tornadoes) and underestimate maximum tornado path width.
Speed and path control for conflict-free flight in high air traffic demand in terminal airspace
NASA Astrophysics Data System (ADS)
Rezaei, Ali
To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.
Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy
NASA Technical Reports Server (NTRS)
Oh, Hongjong; Kondo, Tetsuro; Lee, Jinoo; Kim, Tuhwan; Kim, Myungho; Kim, Suchul; Park, Jinsik; Ju, Hyunhee
2010-01-01
The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG.
2016-01-01
tenance period to achieve planned expected service life ( ESL ), as well as the length, workload, and periodicity of a continuous maintenance...a ship’s service life but extends the length of each deployment. Figure 2.1 compares the number of deployments that can be made over the ESL of...ships in different cycle lengths. The ESL of DDG-51 Arleigh Burke–class destroyers Flight I and II is 35 years, and Flight IIA has an ESL of 40 years
Wind-tunnel acoustic results of two rotor models with several tip designs
NASA Technical Reports Server (NTRS)
Martin, R. M.; Connor, A. B.
1986-01-01
A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.
Using convolutional neural networks to estimate time-of-flight from PET detector waveforms
NASA Astrophysics Data System (ADS)
Berg, Eric; Cherry, Simon R.
2018-01-01
Although there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time-of-flight information from the detector signals. In most cases, the timing pick-off for each waveform is computed using leading edge discrimination or constant fraction discrimination, as these were historically easily implemented with analog pulse processing electronics. However, now with the availability of fast waveform digitizers, there is opportunity to make use of more of the timing information contained in the coincident detector waveforms with advanced signal processing techniques. Here we describe the application of deep convolutional neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the pair of digitized detector waveforms for a coincident event. One of the key features of this approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true time-of-flight is determined from the difference in path length between the positron emission and each of the coincident detectors, which can be easily controlled experimentally. The experimental setup used here made use of two photomultiplier tube-based scintillation detectors, and a point source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector waveforms were digitized at 10 GS s-1 using a bench-top oscilloscope. The results shown here demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% compared to leading edge discrimination (231 ps versus 185 ps), and 23% compared to constant fraction discrimination (242 ps versus 185 ps). By comparing several different CNN architectures, we also showed that CNN depth (number of convolutional and fully connected layers) had the largest impact on timing resolution, while the exact network parameters, such as convolutional filter size and number of feature maps, had only a minor influence.
Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.
2002-01-01
Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
Feasibility study of a procedure to detect and warn of low level wind shear
NASA Technical Reports Server (NTRS)
Turkel, B. S.; Kessel, P. A.; Frost, W.
1981-01-01
A Doppler radar system which provides an aircraft with advanced warning of longitudinal wind shear is described. This system uses a Doppler radar beamed along the glide slope linked with an on line microprocessor containing a two dimensional, three degree of freedom model of the motion of an aircraft including pilot/autopilot control. The Doppler measured longitudinal glide slope winds are entered into the aircraft motion model, and a simulated controlled aircraft trajectory is calculated. Several flight path deterioration parameters are calculated from the computed aircraft trajectory information. The aircraft trajectory program, pilot control models, and the flight path deterioration parameters are discussed. The performance of the computer model and a test pilot in a flight simulator through longitudinal and vertical wind fields characteristic of a thunderstorm wind field are compared.
Guidance and Control for Tactical Guided Weapons with Emphasis on Simulation and Testing
1979-05-01
VELOCITY TARGET TRAJECTORY NA MORE DIRECT MISSILE PATH NOTE: IN THE DIRECT PATH. LINE OF SIGHT RATE IS POSITIVE BEFORE BURNOUT AND NEGATIVE...FOLLOWING BURNOUT FIGURE 3-1 PROPORTIONAL NAVIGATION GUIDANCE AND A MORE DIRECT APPROACH PATH In thi Studie small two, b Becaus the ga for ot...During the tests, the missile was suspended in low- frequency slings, and both launch and burnout flight conditions were tested. An active
Overcoming Information Overload in the Cockpit
2009-07-15
has much dierent information needs than a Chinook pi- lot does ying an air assault mission. The former is concerned primarily with angle of attack...pi- lots with an altitude tracking cue. The device conveys path angle error, the error angle between the current ight path and the interception path... angle of attack, NASA’s Dryden Flight Research Center developed a Pressure Cu that utilized a number of inatable, pneumatic bladders, held to the
A Graduated Cylinder Colorimeter: An Investigation of Path Length and the Beer-Lambert Law
NASA Astrophysics Data System (ADS)
Gordon, James; Harman, Stephanie
2002-05-01
A 10-mL graduated cylinder was used to construct a colorimeter to investigate the relationship between absorbance and path length found in the Beer-Lambert law. Light-emitting diodes (LEDs) were used as the light sources and filter monochromators. The experiments were conducted on intensely colored permanganate and tetraamminecopper(II) solutions. The device also was useful for demonstrating the relationship between absorbance and concentration.
Video-Based Method of Quantifying Performance and Instrument Motion During Simulated Phonosurgery
Conroy, Ellen; Surender, Ketan; Geng, Zhixian; Chen, Ting; Dailey, Seth; Jiang, Jack
2015-01-01
Objectives/Hypothesis To investigate the use of the Video-Based Phonomicrosurgery Instrument Tracking System to collect instrument position data during simulated phonomicrosurgery and calculate motion metrics using these data. We used this system to determine if novice subject motion metrics improved over 1 week of training. Study Design Prospective cohort study. Methods Ten subjects performed simulated surgical tasks once per day for 5 days. Instrument position data were collected and used to compute motion metrics (path length, depth perception, and motion smoothness). Data were analyzed to determine if motion metrics improved with practice time. Task outcome was also determined each day, and relationships between task outcome and motion metrics were used to evaluate the validity of motion metrics as indicators of surgical performance. Results Significant decreases over time were observed for path length (P <.001), depth perception (P <.001), and task outcome (P <.001). No significant change was observed for motion smoothness. Significant relationships were observed between task outcome and path length (P <.001), depth perception (P <.001), and motion smoothness (P <.001). Conclusions Our system can estimate instrument trajectory and provide quantitative descriptions of surgical performance. It may be useful for evaluating phonomicrosurgery performance. Path length and depth perception may be particularly useful indicators. PMID:24737286
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai
2016-04-01
We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50 mm and the reflected optical path length was 2L=100 mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6 GHz and 4 MHz/h at a detuning of -5.2 GHz were also obtained for the transmitted and reflected light Faraday signal.
NASA Technical Reports Server (NTRS)
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Fabrication of Pop-up Detector Arrays on Si Wafers
NASA Technical Reports Server (NTRS)
Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.
1999-01-01
High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.
NASA Astrophysics Data System (ADS)
Miele, A.; Wang, T.; Williams, P. N.
2005-12-01
The success of the solar-electric ion engine powering the DS1 spacecraft has paved the way toward the use of low-thrust electrical engines in future planetary/interplanetary missions. Vis-à-vis a chemical engine, an electrical engine has a higher specific impulse, implying a possible decrease in propellant mass; however, the low-thrust aspect discourages the use of an electrical engine in the near-planet phases of a trip, since this might result in an increase in flight time. Therefore, a fundamental design problem is to find the best combination of chemical propulsion and electrical propulsion for a given mission, for example, a mission from Earth to Mars. With this in mind, this paper is the third of a series dealing with the optimization of Earth Mars missions via the use of hybrid engines, namely the combination of high-thrust chemical engines for planetary flight and low-thrust electrical engines for interplanetary flight. We look at the deep-space interplanetary portion of the trajectory under rather idealized conditions. The two major performance indexes, the propellant mass and the flight time, are in conflict with one another for the following reason: any attempt at reducing the former causes an increase in the latter and vice versa. Therefore, it is natural to consider a compromise performance index involving the scaled values of the propellant mass and flight time weighted respectively by the compromise factor C and its complement 1-C. We use the compromise factor as the parameter of the one-parameter family of compromise trajectories. Analyses carried out with the sequential gradient-restoration algorithm for optimal control problems lead to results which can be highlighted as follows. Thrust profile. Generally speaking, the thrust profile of the compromise trajectory includes three subarcs: the first subarc is characterized by maximum thrust in conjunction with positive (upward) thrust direction; the second subarc is characterized by zero thrust (coasting flight); the third subarc is characterized by maximum thrust in conjunction with negative (downward) thrust direction. Effect of the compromise factor. As the compromise factor increases, the propellant mass decreases and the flight time increases; correspondingly, the following changes in the thrust profile take place: (a) the time lengths of the first and third subarcs (powered phases) decrease slightly, meaning that thrust application occurs for shorter duration; also, the average value of the thrust direction in the first and third subarcs decreases, implying higher efficiency of thrust application wrt the spacecraft energy level; as a result, the total propellant mass decreases; (b) the time length of the second subarc (coasting) increases considerably, resulting in total time increase. Minimum time trajectory. If C=0, the resulting minimum time trajectory has the following characteristics: (a) the time length of the coasting subarc reduces to zero and the three-subarc trajectory degenerates into a two-subarc trajectory; (b) maximum thrust is applied at all times and the thrust direction switches from upward to downward at midcourse. Minimum propellant mass trajectory. If C=1, the resulting minimum propellant mass trajectory has the following characteristics: (a) the thrust magnitude has a bang-zero-bang profile; (b) for the powered subarcs, the thrust direction is tangent to the flight path at all times.
Virtual hybrid test control of sinuous crack
NASA Astrophysics Data System (ADS)
Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane
2017-05-01
The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Hosseini, Ali; Qi, Wei; Tsai, Tsung-Yuan; Liu, Yujie; Rubash, Harry; Li, Guoan
2014-01-01
Purpose The knowledge of the function of the collateral ligaments – i.e., superficial medial collateral ligament (sMCL), deep medial collateral ligament (dMCL) and lateral collateral ligament (LCL) – in the entire range of knee flexion is important for soft tissue balance during total knee arthroplasty. The objective of this study was to investigate the length changes of different portions (anterior, middle and posterior) of the sMCL, dMCL and LCL during in vivo weightbearing flexion from full extension to maximal knee flexion. Methods Using a dual fluoroscopic imaging system eight healthy knees were imaged while performing a lunge from full extension to maximal flexion. The length changes of each portion of the collateral ligaments were measured along the flexion path of the knee. Results All anterior portions of the collateral ligaments were shown to have increasing length with flexion except that of the sMCL which showed a reduction in length at high flexion. The middle portions showed minimal change in lengths except that of the sMCL which showed a consistent reduction in length with flexion. All posterior portions showed reduction in lengths with flexion. Conclusions These data indicated that every portion of the ligaments may play important roles in knee stability at different knee flexion range. The soft tissue releasing during TKA may need to consider the function of the ligament portions along the entire flexion path including maximum flexion. PMID:25239504
Tropospheric delay ray tracing applied in VLBI analysis
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, D. S.; Gipson, John M.
2014-12-01
Tropospheric delay modeling error continues to be one of the largest sources of error in VLBI (very long baseline interferometry) analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from European Centre for Medium-Range Weather Forecasts data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption is not true, we have instead determined the ray trace delay along the signal path through the troposphere for each VLBI quasar observation. We determined the troposphere refractivity fields from the pressure, temperature, specific humidity, and geopotential height fields of the NASA Goddard Space Flight Center Goddard Earth Observing System version 5 numerical weather model. When applied in VLBI analysis, baseline length repeatabilities were improved compared with using the VMF1 mapping function model for 72% of the baselines and site vertical repeatabilities were better for 11 of 13 sites during the 2 week CONT11 observing period in September 2011. When applied to a larger data set (2011-2013), we see a similar improvement in baseline length and also in site position repeatabilities for about two thirds of the stations in each of the site topocentric components.
Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus
NASA Astrophysics Data System (ADS)
Zakir Hossain, M.; Grill, Wolfgang
2010-03-01
Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
precipitation rate ; humidity; aerosol concentration; Particle spectrum; local aeiosol inhomogeneities; air * -Q.!ZIBS’IRACT: A slant path for...test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude range permitting accurate measurements under...and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in transmission measurements which are very low
NASA Technical Reports Server (NTRS)
Allen, Julian H
1957-01-01
An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.
The aerodynamics of some guided projectiles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations are discussed.
The aerodynamics of some guided projectiles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations, are discussed.
Comparison of Low-Energy Lunar Transfer Trajectories to Invariant Manifolds
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Parker, Jeffrey S.
2011-01-01
In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants are computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.
DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.
2002-01-01
Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.
NASA Technical Reports Server (NTRS)
Gartner, W. B.; Baldwin, K. M.
1973-01-01
A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.
UAV-based L-band SAR with precision flight path control
NASA Astrophysics Data System (ADS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
UAV-Based L-Band SAR with Precision Flight Path Control
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul
2004-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
NASA Technical Reports Server (NTRS)
Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.
1995-01-01
A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.
2004-09-09
KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Terry White inspects plastic-covered flight hardware in the Orbiter Processing Facility following Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. There was no damage to the Space Shuttle orbiters or to any other flight hardware.
Main propulsion functional path analysis for performance monitoring fault detection and annunciation
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.
A new method for photon transport in Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sato, T.; Ogawa, K.
1999-12-01
Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.
Tornado Intensity Estimated from Damage Path Dimensions
Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.
Daugherty, Ana M.; Raz, Naftali
2016-01-01
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18–77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. PMID:27659539
Daugherty, Ana M; Raz, Naftali
2017-02-01
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. Copyright © 2016 Elsevier Inc. All rights reserved.
The phototron: A light to RF energy conversion device
NASA Technical Reports Server (NTRS)
Freeman, J. W.; Simons, S.
1982-01-01
The phototron, a photoelectric device that converts light to radio frequency energy, is described. It is a vacuum tube, free electron, device that is mechanically similar to a reflex klystron with the hot filament cathode replaced by a large area photocathode. The device can operate either with an external voltage source used to accelerate the photoelectrons or with zero bias voltage; in which case the photokinetic energy of the electrons sustains the R.F. oscillations in the tuned R.F. circuit. One basic design of the phototron was tested. Frequencies as high as about 1 GHz and an overall efficiency of about 1% in the biased mode were obtained. In the unbiased mode, the frequencies of operation and efficiences are considerably lower. Success with test model suggests that considerable improvements are possible through design refinements. One such design refinement is the reduction of the length of the electron flight path.
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1986-01-01
The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.
Cosmic-ray elemental abundances from 1 to 10 GeV per amu for boron through nickel
NASA Technical Reports Server (NTRS)
Dwyer, Robert; Meyer, Peter
1987-01-01
The relative abundances of cosmic-ray nuclei in the charge range boron through nickel over the energy range 1-10 GeV per amu were measured with a balloon-borne detector. The instrument consists of a scintillation and Cerenkov counter telescope with a multiwire proportional chamber hodoscope and has been flown in four high-altitude balloon flights. Good charge resolution (sigma = 0.2 charge units at iron) and high statistical accuracy have been achieved. These data are used to derive the energy dependence of the leakage path length using the leaky box model of propagation and confinement in the galaxy. This energy dependence is found to be best fit by lambda = E(tot) exp -n, where n = 0.49 + or - 0.06 over 1-10 GeV per amu. Relative abundances at the source are consistent with an energy-independent composition.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J
2017-02-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.
NASA Technical Reports Server (NTRS)
Naish, J. M.
1979-01-01
Two alternate head-up display devices (HUD) were compared for properties relevant to the accurate performance of concurrent tasks in real flight conditions and in various flight modes. The comparisons were made to find the disorientation resistance of the HUDs along with the tracking accuracy, interference resistance, fixation resistance, and error resistance. The use of displacement and flight path information for vertical control is discussed in terms of flight stability. Several combinations of symbols and driving signals are described, including a compensated control law, which were used in simulated flight to deal with wind shear.
Using wide area differential GPS to improve total system error for precision flight operations
NASA Astrophysics Data System (ADS)
Alter, Keith Warren
Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.
The Altimetric Wet Tropospheric Correction: Progress Since The ERS-1 Mission
NASA Astrophysics Data System (ADS)
Eymard, L.; Obligis, E.
2006-07-01
To correct for the path delay due to humidity in the troposphere, dedicated microwave radiometers have been added to altimeters on ESA and NASA/CNES missions. This paper presents the major issues with calibration and retrieval of the wet tropospheric path d elay s ince E RS1, a s w ell a s n ew developments for in-flight monitoring, retrieval of the path delay over the open ocean and in coastal regions.
Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.
2007-01-01
A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.
Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.
Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F
2014-12-15
Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.
Bats coordinate sonar and flight behavior as they forage in open and cluttered environments
Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632
B-52/Pegasus with X-43A departing on first captive flight.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
B-52/Pegasus with X-43A in flight over Pacific Ocean.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
Close view of B-52/Pegasus with X-43A in flight.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
B-52/Pegasus with X-43A landing after first captive carry flight.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
SNC’s Dream Chaser Achieves Successful Free Flight at NASA Armstrong
2017-11-17
Sierra Nevada Corporation's Dream Chaser® spacecraft underwent a successful free-flight test on November 11, 2017 at NASA’s Armstrong Flight Research Center, Edwards, California. The test verified and validated the performance of the Dream Chaser in the critical final approach and landing phase of flight, meeting expected models for a future return from the International Space Station. The full-scale Dream Chaser test vehicle was lifted to 12,400 feet altitude by a 234-UT Chinook helicopter, released and flew a pre-planned flight path ending with a successful autonomous landing.
Automation of On-Board Flightpath Management
NASA Technical Reports Server (NTRS)
Erzberger, H.
1981-01-01
The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.
Effect of repetitive pecking at working length for glide path preparation using G-file.
Ha, Jung-Hong; Jeon, Hyo-Jin; Abed, Rashid El; Chang, Seok-Woo; Kim, Sung-Kyo; Kim, Hyeon-Cheol
2015-05-01
Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10). Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0) and 1 mm level (D1) under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05). The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05). Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.
Root canal anatomy preservation of WaveOne reciprocating files with or without glide path.
Berutti, Elio; Paolino, Davide Salvatore; Chiandussi, Giorgio; Alovisi, Mario; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2012-01-01
This study evaluated the influence of glide path on canal curvature and axis modification after instrumentation with WaveOne Primary reciprocating files. Thirty ISO 15, 0.02 taper Endo Training Blocks were used. In group 1, glide path was created with PathFile 1, 2, and 3 at working length, whereas in group 2, glide path was not performed. In both groups, canals were shaped with WaveOne Primary reciprocating files at working length. Preinstrumentation and postinstrumentation digital images were superimposed and processed with Matlab r2010b software to analyze the curvature radius ratio (CRr) and the relative axis error (rAe), representing canal curvature modification. Data were analyzed with 1-way balanced analyses of variance at 2 levels (P < .05). Glide path was found to be extremely significant for both CRr parameter (F = 9.59; df = 1; P = .004) and rAe parameter (F = 13.55; df = 1; P = .001). Canal modifications seem to be significantly reduced when previous glide path is performed by using the new WaveOne nickel-titanium single-file system. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Path optimization with limited sensing ability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sung Ha, E-mail: kang@math.gatech.edu; Kim, Seong Jun, E-mail: skim396@math.gatech.edu; Zhou, Haomin, E-mail: hmzhou@math.gatech.edu
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducingmore » its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.« less
Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx
Zuidema, P.; Leon, D.; Pazmany, A.; ...
2012-01-05
Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less
ATIC Experiment: Elemental Spectra from the Flight in 2000
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a silicon matrix charge detector, a 0.75 nuclear interaction length graphite target, 3 scintillator strip hodoscopes, and an 18 radiation length thick BGO calorimeter to measure the cosmic ray composition and energy spectra from approximately 30 GeV to near 100 TeV. In this paper, we present preliminary results from the first flight, which was a test flight that lasted for 16 days, starting on 12/28/00.
Investigation of aircraft landing in variable wind fields
NASA Technical Reports Server (NTRS)
Frost, W.; Reddy, K. R.
1978-01-01
A digital simulation study is reported of the effects of gusts and wind shear on the approach and landing of aircraft. The gusts and wind shear are primarily those associated with wind fields created by surface wind passing around bluff geometries characteristic of buildings. Also, flight through a simple model of a thunderstorm is investigated. A two-dimensional model of aircraft motion was represented by a set of nonlinear equations which accounted for both spatial and temporal variations of winds. The landings of aircraft with the characteristics of a DC-8 and a DHC-6 were digitally simulated under different wind conditions with fixed and automatic controls. The resulting deviations in touchdown points and the controls that are required to maintain the desired flight path are presented. The presence of large bluff objects, such as buildings in the flight path is shown to have considerable effect on aircraft landings.
NASA Technical Reports Server (NTRS)
Weingarten, N. C.; Chalk, C. R.
1982-01-01
The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.
V/STOLAND digital avionics system for XV-15 tilt rotor
NASA Technical Reports Server (NTRS)
Liden, S.
1980-01-01
A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.
Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed
NASA Technical Reports Server (NTRS)
Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.
2006-01-01
Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in
Performance of the Chicago Water Isotope Spectrometer in the UTLS during the Asian Monsoon
NASA Astrophysics Data System (ADS)
Gaeta, D. C.; Clouser, B.; Sarkozy, L.; Singer, C. E.; Moyer, E. J.
2017-12-01
The preferential condensation of water vapor isotopologues makes the isotopic composition of water vapor a useful tracer of the processes responsible for the distribution of water in the UTLS, but the UTLS also offers particular challenges for its measurement. We report here on the field performance of a new instrument designed for measurement of HDO and H2O in the UTLS region: the Chicago Water Isotope Spectrometer (Chi-WIS). Chi-WIS is a laser-based infrared absorption spectrometer at 2.65 μm that uses a high-reflectivity optical cavity to obtain 6 km of effective path length, allowing sensitive measurements of scarce molecules. During the 2017 StratoClim aircraft campaign in Kathmandu, Nepal, Chi-WIS flew aboard the M-55 Geophysica high-altitude research aircraft in a series of flights to probe the Asian Monsoon. Preliminary results show in-flight performance consistent with laboratory performance and the achievement of design targets necessary to reach UTLS science goals. Residual noise on spectra is stable across flights at 4-5x10-4 with 1 second averaging (i.e. absorption depth of .04-.05%); the instrument is robust in terms of alignment and shows no evidence of optical resonances. The resulting measurement precision is as expected from these characteristics. Because we use a relatively strong water line, the water vapor measurement is extremely precise: constant-altitude flight legs in the stratosphere at 4 ppm H2O show 1 s standard deviation 0.03 ppmv for 1 s averaging, and 0.08 ppbv for HDO with 10 s averaging. We show comparisons with other StratoClim instruments and examples of how these measurements resolve scientifically relevant atmospheric features.
On the optical path length in refracting media
NASA Astrophysics Data System (ADS)
Hasbun, Javier E.
2018-04-01
The path light follows as it travels through a substance depends on the substance's index of refraction. This path is commonly known as the optical path length (OPL). In geometrical optics, the laws of reflection and refraction are simple examples for understanding the path of light travel from source to detector for constant values of the traveled substances' refraction indices. In more complicated situations, the Euler equation can be quite useful and quite important in optics courses. Here, the well-known Euler differential equation (EDE) is used to obtain the OPL for several index of refraction models. For pedagogical completeness, the OPL is also obtained through a modified Monte Carlo (MC) method, versus which the various results obtained through the EDE are compared. The examples developed should be important in projects involving undergraduate as well as graduate students in an introductory optics course. A simple matlab script (program) is included that can be modified by students who wish to pursue the subject further.
A Method of Flight Measurement of Spins
NASA Technical Reports Server (NTRS)
Soule, Hartley A; Scudder, Nathan F
1932-01-01
A method is described involving the use of recording turn meters and accelerometers and a sensitive altimeter, by means of which all of the physical quantities necessary for the complete determination of the flight path, motion, attitude, forces, and couples of a fully developed spin can be obtained in flight. Data are given for several spins of two training type airplanes which indicate that the accuracy of the results obtained with the method is satisfactory.
Flight 20 (STS-45) polysulfide gas path investigation
NASA Technical Reports Server (NTRS)
Bjorkman, Rey C.; Bown, Charles W.; Smith, Scott D.; Walters, Jerry L.; Kulkarni, Suresh B.; Cook, Roger V.; Sebahar, David A.; Walker, Craig S.; Haddock, M. Reed; Lindstrom, Robert E.
1992-01-01
This report documents the results of the investigation into causes of gas paths on the 20A and 20B case-to-nozzle joints on STS-42. The investigation was conducted by the Investigation Board appointed by the senior vice president and general manager of Space Operations, Mr. R. E. Lindstrom, on 7 Feb. 1992. The probability of gas path occurrence in the nozzle-to-case-joint polysulfide had been identified during joint redesign. However, actual flight gas path incidence has been limited to RSRM-11 and the 20A and 20B segments. The blow-by condition on the 20A segment was a first time occurrence which was a special concern. The investigation covered all technical aspects associated with the gas path and blow-by conditions: materials and processing history, design requirements and as-built compliance to the design, thermal and structural analyses, computer modeling, and laboratory experimentation with the materials involved. The investigation was coordinated with Mr. Ken Jones at NASA Marshall in bi-weekly teleconferences. The Board also supported Dr. James C. Blair's independent NASA investigation team by providing copies of collected data, conducting requested analyses, and supporting several all-day teleconferences to provide understanding and resolve issues. The Dr. Blair support requirement was successfully concluded on 4 Mar. 1992.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
Moments of inclination error distribution computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.
1990-01-01
A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
A Flight Dynamic Model of Aircraft Spinning
1990-06-01
r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
pathChirp: Efficient Available Bandwidth Estimation for Network Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, Les
2003-04-30
This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less
NASA Astrophysics Data System (ADS)
Aasen, Ailo; Blokhuis, Edgar M.; Wilhelmsen, Øivind
2018-05-01
The curvature dependence of the surface tension can be described by the Tolman length (first-order correction) and the rigidity constants (second-order corrections) through the Helfrich expansion. We present and explain the general theory for this dependence for multicomponent fluids and calculate the Tolman length and rigidity constants for a hexane-heptane mixture by use of square gradient theory. We show that the Tolman length of multicomponent fluids is independent of the choice of dividing surface and present simple formulae that capture the change in the rigidity constants for different choices of dividing surface. For multicomponent fluids, the Tolman length, the rigidity constants, and the accuracy of the Helfrich expansion depend on the choice of path in composition and pressure space along which droplets and bubbles are considered. For the hexane-heptane mixture, we find that the most accurate choice of path is the direction of constant liquid-phase composition. For this path, the Tolman length and rigidity constants are nearly linear in the mole fraction of the liquid phase, and the Helfrich expansion represents the surface tension of hexane-heptane droplets and bubbles within 0.1% down to radii of 3 nm. The presented framework is applicable to a wide range of fluid mixtures and can be used to accurately represent the surface tension of nanoscopic bubbles and droplets.
NASA Astrophysics Data System (ADS)
Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.
2014-12-01
Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.
A Concept of a Manned Satellite Reentry Which is Completed with a Glide Landing
NASA Technical Reports Server (NTRS)
Cheatham, Donald C. (Compiler)
1959-01-01
A concept for a manned satellite reentry from a near space orbit and a glide landing on a normal size airfield is presented. The reentry vehicle configuration suitable for this concept would employ a variable geometry feature in order that the reentry could be made at 90 deg. angle of attack and the landing could be made with a conventional glide approach. Calculated results for reentry at a flight-path angle of -1 deg. show that with an accuracy of 1 percent in the impulse of a retrorocket, the desired flight-path angle at reentry can be controlled within 0.02 deg. and the distance traveled to the reentry point, within 100 miles. The reentry point is arbitrarily defined as the point at which the satellite passes through an altitude of about 70 miles. Misalignment of the retrorocket by 10 deg. increased these errors by as much as 0.02 deg. and 500 miles. Intra-atmospheric trajectory calculations show that pure drag reentries starting with flight-path angles of -1 deg. or less produce a peak deceleration of 8g. Lift created by varying the angle of attack between 90 and 60 deg. is effective in decreasing the maximum deceleration and allows the range to the "recovery" point (where transition is made from reentry to gliding flight) to be increased by as much as 2,300 miles. A sideslip angle of 30 deg. allows lateral displacement of the flight path by as much as 60 deg. miles. Reaction controls would provide control-attitude alignment during the orbit phase. For the reentry phase this configuration should have low static longitudinal and roll stability in the 90 deg. angle-of-attack attitude. Control could be effected by leading-edge and trailing-edge flaps. Transition into the landing phase would be accomplished at an altitude of about 100,000 feet by unfolding the outer wing panels and pitching over to low angles of attack. Calculations indicate that glides can be made from the recovery point to airfields at ranges of from 150 to 200 miles, depending upon the orientation with respect to the original course.
Tofte, Josef N; Westerlind, Brian O; Martin, Kevin D; Guetschow, Brian L; Uribe-Echevarria, Bastián; Rungprai, Chamnanni; Phisitkul, Phinit
2017-03-01
To validate the knee, shoulder, and virtual Fundamentals of Arthroscopic Training (FAST) modules on a virtual arthroscopy simulator via correlations with arthroscopy case experience and postgraduate year. Orthopaedic residents and faculty from one institution performed a standardized sequence of knee, shoulder, and FAST modules to evaluate baseline arthroscopy skills. Total operation time, camera path length, and composite total score (metric derived from multiple simulator measurements) were compared with case experience and postgraduate level. Values reported are Pearson r; alpha = 0.05. 35 orthopaedic residents (6 per postgraduate year), 2 fellows, and 3 faculty members (2 sports, 1 foot and ankle), including 30 male and 5 female residents, were voluntarily enrolled March to June 2015. Knee: training year correlated significantly with year-averaged knee composite score, r = 0.92, P = .004, 95% confidence interval (CI) = 0.84, 0.96; operation time, r = -0.92, P = .004, 95% CI = -0.96, -0.84; and camera path length, r = -0.97, P = .0004, 95% CI = -0.98, -0.93. Knee arthroscopy case experience correlated significantly with composite score, r = 0.58, P = .0008, 95% CI = 0.27, 0.77; operation time, r = -0.54, P = .002, 95% CI = -0.75, -0.22; and camera path length, r = -0.62, P = .0003, 95% CI = -0.8, -0.33. Shoulder: training year correlated strongly with average shoulder composite score, r = 0.90, P = .006, 95% CI = 0.81, 0.95; operation time, r = -0.94, P = .001, 95% CI = -0.97, -0.89; and camera path length, r = -0.89, P = .007, 95% CI = -0.95, -0.80. Shoulder arthroscopy case experience correlated significantly with average composite score, r = 0.52, P = .003, 95% CI = 0.2, 0.74; strongly with operation time, r = -0.62, P = .0002, 95% CI = -0.8, -0.33; and camera path length, r = -0.37, P = .044, 95% CI = -0.64, -0.01, by training year. FAST: training year correlated significantly with 3 combined FAST activity average composite scores, r = 0.81, P = .0279, 95% CI = 0.65, 0.90; operation times, r = -0.86, P = .012, 95% CI = -0.93, -0.74; and camera path lengths, r = -0.85, P = .015, 95% CI = -0.92, -0.72. Total arthroscopy cases performed did not correlate significantly with overall FAST performance. We found significant correlations between both training year and knee and shoulder arthroscopy experience when compared with performance as measured by composite score, camera path length, and operation time during a simulated diagnostic knee and shoulder arthroscopy, respectively. Three FAST activities demonstrated significant correlations with training year but not arthroscopy case experience as measured by composite score, camera path length, and operation time. We attempt to validate an arthroscopy simulator that could be used to supplement arthroscopy skills training for orthopaedic residents. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Flight investigation of rotor/vehicle state feedback
NASA Technical Reports Server (NTRS)
Briczinski, S. J.; Cooper, D. E.
1975-01-01
The feasibility of using control feedback or rotor tip-path-plane motion or body state as a means of altering rotor and fuselage response in a prescribed manner was investigated to determine the practical limitations of in-flight utilization of a digital computer which conditions and shapes rotor flapping and fuselage state information as feedback signals, before routing these signals to the differential servo actuators. The analysis and test of various feedback schemes are discussed. Test results show that a Kalman estimator routine which is based on only the first harmonic contributions of blade flapping yields tip-path-plane coefficients which are adequate for use in feedback systems, at speeds up to 150 kts.
Fundamental limitations on V/STOL terminal guidance due to aircraft characteristics
NASA Technical Reports Server (NTRS)
Wolkovitch, J.; Lamont, C. W.; Lochtie, D. W.
1971-01-01
A review is given of limitations on approach flight paths of V/STOL aircraft, including limits on descent angle due to maximum drag/lift ratio. A method of calculating maximum drag/lift ratio of tilt-wing and deflected slipstream aircraft is presented. Derivatives and transfer functions for the CL-84 tilt-wing and X-22A tilt-duct aircraft are presented. For the unaugmented CL-84 in steep descents the transfer function relating descent angle to thrust contains a right-half plane zero. Using optimal control theory, it is shown that this zero causes a serious degradation in the accuracy with which steep flight paths can be followed in the presence of gusts.
2004-01-13
A United States Air Force Test Pilot School Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS (Boom Amplitudes Direction System) sensor following flight at an altitude of 10 thousand feet under the path of the F-5E SSBE aircraft. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.
2014-01-01
Background A balance test provides important information such as the standard to judge an individual’s functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Methods Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). Results The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. Conclusion The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment. PMID:24912769
Park, Dae-Sung; Lee, GyuChang
2014-06-10
A balance test provides important information such as the standard to judge an individual's functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment.
Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Bilimoria, Karl D.
2016-01-01
This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Elise; Gundlach-Graham, Alexander W.; Enke, Chris
2013-05-01
Time-of-flight (TOF) and distance-of-flight (DOF) mass spectrometers require means for focusing ions at the detector(s) because of initial dispersions of position and energy at the time of their acceleration. Time-of-flight mass spectrometers ordinarily employ constant energy acceleration (CEA), which creates a space-focus plane at which the initial spatial dispersion is corrected. In contrast, constant-momentum acceleration (CMA), in conjunction with an ion mirror, provides focus of the initial energy dispersion at the energy focus time for ions of all m/z at their respective positions along the flight path. With CEA, the initial energy dispersion is not simultaneously correctable as its effectmore » on ion velocity is convoluted with that of the spatial dispersion. The initial spatial dispersion with CMA remains unchanged throughout the field-free region of the flight path, so spatial dispersion can be reduced before acceleration. Improved focus is possible when each dispersion can be addressed independently. With minor modification, a TOF mass spectrometer can be operated in CMA mode by treating the TOF detector as though it were a single element in the array of detectors that would be used in a DOF mass spectrometer. Significant improvement in mass resolution is thereby achieved, albeit over a narrow range of m/z values. In this paper, experimental and theoretical results are presented that illustrate the energy-focusing capabilities of both DOF and TOF mass spectrometry.« less
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1990-01-01
A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.
Propulsion system/flight control integration for supersonic aircraft
NASA Technical Reports Server (NTRS)
Reukauf, P. J.; Burcham, F. W., Jr.
1976-01-01
Digital integrated control systems are studied. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. The existing analog air data computer, autothrottle, autopilot, and inlet control systems are converted to digital systems by using a general purpose airborne computer and interface unit. Existing control laws are programed and tested in flight. Integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are tested in flight. Analysis indicates that an integrated autothrottle autopilot gives good flight path control and that observers are used to replace failed sensors.
Commande de vol non lineaire d'un drone a voilure fixe par la methode du backstepping
NASA Astrophysics Data System (ADS)
Finoki, Edouard
This thesis describes the design of a non-linear controller for a UAV using the backstepping method. It is a fixed-wing UAV, the NexSTAR ARF from HobbicoRTM. The aim is to find the expressions of the aileron, the elevator, and the rudder deflection in order to command the flight path angle, the heading angle and the sideslip angle. Controlling the flight path angle allows a steady, climb or descent flight, controlling the heading cap allows to choose the heading and annul the sideslip angle allows an efficient flight. A good technical control has to ensure the stability of the system and provide optimal performances. Backstepping interlaces the choice of a Lyapunov function with the design of feedback control. This control technique works with the true non-linear model without any approximation. The procedure is to transform intermediate state variables into virtual inputs which will control other state variables. Advantages of this technique are its recursivity, its minimum control effort and its cascaded structure that allows dividing a high order system into several simpler lower order systems. To design this non-linear controller, a non-linear model of the UAV was used. Equations of motion are very accurate, aerodynamic coefficients result from interpolations between several essential variables in flight. The controller has been implemented in Matlab/Simulink and FlightGear.
Laser Radar Through the Window (LRTW) Coordinate Correction Method
NASA Technical Reports Server (NTRS)
Hadjimichael, Theodore John (Inventor); Ohl, IV, Raymond George (Inventor); Hayden, Joseph Ethan (Inventor); Kubalak, David Albert (Inventor); Eegholm, Bente Hoffmann (Inventor); Telfer, Randal Crawford (Inventor); Coulter, Phillip (Inventor)
2015-01-01
A method for corrections of measurements of points of interests measured by beams of radiation propagating through stratified media including performance of ray-tracing of at least one ray lunched from a metrology instrument in a direction of an apparent point of interest, calculation a path length of the ray through stratified medium, and determination of coordinates of true position of the point interest using the at least one path length and the direction of propagation of the ray.
Flight assessment of a data-link-based navigation-guidance concept
NASA Technical Reports Server (NTRS)
Abbott, T. S.
1983-01-01
With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.
Vortex-Free Flight Corridors for Aircraft Executing Compressed Landing Operations
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
2006-01-01
A factor that limits airport arrival and departure rates is the need to wait between operations for the wake vortices of preceding aircraft to decay to a safe level. As airport traffic demand increases, creative methods will be needed to overcome the limitations caused by the hazard posed by vortex wakes so that airport capacities can be increased. The problem addressed here is the design of vortex-free trajectories for aircraft as they fly from their cruise altitudes down to their final approach paths and to a landing. The guidelines presented recommend that the flight path of each aircraft in a group executing nearly-simultaneous landings be spaced far enough apart laterally along organized flight paths so that the vortex wakes of preceding aircraft will not intrude into the airspace to be used by following aircraft. An example is presented as to how a combination of straight lines and circular arcs is able to provide each aircraft in a group with a vortex-free trajectory so that all are able to safely form the pattern needed for nearly simultaneous landings on a set of closely-spaced parallel runways. Although the guidelines me described for aircraft on approach, they are also applicable to departure, and to en route operations.
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Ballistic Missile Intercept from UCAV
2011-12-01
aerodynamic forces acting on the ballistic missile , generates a ballistic flight path of the ballistic missile target based on the model developed by...for use against ballistic missile targets) [14] Hutchins, R., ME4703 “ Missile Flight Analysis ” Course Notes, Spring 2005. [15] Stevens, B., and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited BALLISTIC MISSILE
Water Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
1958-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
Water-Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.
1959-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
An improved global dynamic routing strategy for scale-free network with tunable clustering
NASA Astrophysics Data System (ADS)
Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan
2016-08-01
An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene.
Knowles, Jeffrey M; Barchi, Jonathan R; Gaudette, Jason E; Simmons, James A
2015-08-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80-100 cm wide and 2-4 m long. Using the two-choice Y-shaped paradigm to compensate for left-right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18-35 dB weaker than overlapping echoes from surrounding chains.
Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments
NASA Astrophysics Data System (ADS)
Makri, Nancy
2017-04-01
The iterative decomposition of the blip-summed path integral [N. Makri, J. Chem. Phys. 141, 134117 (2014)] is described. The starting point is the expression of the reduced density matrix for a quantum system interacting with a harmonic dissipative bath in the form of a forward-backward path sum, where the effects of the bath enter through the Feynman-Vernon influence functional. The path sum is evaluated iteratively in time by propagating an array that stores blip configurations within the memory interval. Convergence with respect to the number of blips and the memory length yields numerically exact results which are free of statistical error. In situations of strongly dissipative, sluggish baths, the algorithm leads to a dramatic reduction of computational effort in comparison with iterative path integral methods that do not implement the blip decomposition. This gain in efficiency arises from (i) the rapid convergence of the blip series and (ii) circumventing the explicit enumeration of between-blip path segments, whose number grows exponentially with the memory length. Application to an asymmetric dissipative two-level system illustrates the rapid convergence of the algorithm even when the bath memory is extremely long.
Measurement of refractive index of photopolymer for holographic gratings
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko
2007-02-01
We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.
Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...
2017-05-16
This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less
The GLC8 - A miniature low cost ring laser gyroscope
NASA Astrophysics Data System (ADS)
Godart, D.-F.; Peghaire, J.-P.
SAGEM is enlarging its family of ring laser gyros (RLG) which already includes a triangular 32-cm path-length gyro and a square 16-cm path-length gyro, in order to meet the increasing demand for low cost, medium accuracy strap-down inertial measurement units for applications such as short- and medium-range tactical missiles as well as aided navigation systems for aircrafts and land vehicles. Based on the experience acquired in the past 13 years in the RLG field, and especially in mirror manufacturing, SAGEM developed the GLC8 which has a square 8-cm path length cavity, central piezoelectric dither. It incorporates two cathodes, a single anode, and is technologically designed to minimize production-costs while optimizing the performance to global device size ratio. This gyro is characterized by a bias and a scale-factor stability respectively better than 0.5 deg/h and 100 ppm (1 sigma), and has an operating lifetime compatible with the most demanding relevant applications and a high robustness to mechanical environments.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, T.P.; Jannson, J.L.; Yeung, P.C.
1990-05-15
A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.
NASA Astrophysics Data System (ADS)
Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.
2017-03-01
Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.
Human Space Flight Plans Committee Report
2009-10-21
Copies of the U.S. Human Space Flight Plans Committee report are seen in the foreground of Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, left, and committee member Ed Crawley, right, during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Russell, P. B.; Pfister, L.; Selkirk, H. B.
1993-01-01
An overview is presented of the tropical component of STEP. The STEP cooperative experiments are described and summaries are presented of the STEP tropical ER-2 aircraft flights. STEP tropical results on dehydration and transfer and the mechanisms of upward transfer are summarized. Illustrations show flight paths for each sortie on satellite images and on 100 hPa synoptic flow charts, as well as the timing of flights with respect to overall cloudiness in the Australian region.
1995-09-01
path and aircraft attitude and other flight or aircraft parameters • Calculations in the frequency domain ( Fast Fourier Transform) • Data analysis...Signal filtering Image processing of video and radar data Parameter identification Statistical analysis Power spectral density Fast Fourier Transform...airspeeds both fast and slow, altitude, load factor both above and below 1g, centers of gravity (fore and aft), and with system/subsystem failures. Whether
Human Space Flight Plans Committee Report
2009-10-21
U.S. Human Space Flight Plans Committee member Ed Crawley, right, answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
U.S. Human Space Flight Plans Committee member Ed Crawley answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Copies of the U.S. Human Space Flight Plans Committee report are seen at a press conference where the committee released it's report findings on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine answers a reporters question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul
2017-01-01
Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
NASA Technical Reports Server (NTRS)
Prabu, Dinesh K.; Allen, Gary A., Jr.; Cappuccio, Gelsomina; Spilker, Thomas R.; Hwang, Helen H.; Moses, Robert W.
2013-01-01
The present study considers ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and capsule diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30 is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is placed on the peak deceleration load and 10 bar is assumed as the limit for heritage carbon-phenolic material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a heat flux 2.5 kW/sq cm is utilized as a threshold below which the heritage carbon phenolic is considered mass inefficient. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a range of "critical" ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of 10 bar. The results are verified against known performance of the various probes used in the Pioneer Venus mission. It is anticipated that the results presented here will serve as a baseline in the development of a new class of ablative materials for future Venus missions.
Human performance evaluation of a pathway HMD
NASA Astrophysics Data System (ADS)
Lorenz, Bernd; Tobben, Helmut; Schmerwitz, Sven
2005-05-01
Head-up displays (HUD) and helmet (or head)-mounted displays (HMD) aim at reducing the pilot's visual scanning cost in support of concurrent monitoring of both instrument information (near domain) and the outside environment (far domain). An HMD used in combination with a head tracker enables the assessment of the pilot"s head direction in real time allowing symbologies to remain spatially linked to elements of the outside environment. The paper examines the potential added benefits of improved flight path tracking to be expected by displaying symbologies of a virtual 3D perspective pathway plus predictor information on an HMD. Results of a high-fidelity flight-simulation experiment are reported that involved a series of curved approaches supported with such a pathway HMD. The study used a monocular retinal-scanning HMD and involved 18 pilots. Dependent human performance data were derived from flight path tracking measures, subjective measures of mental workload and situation awareness and pilot reactions in response to an unexpected rare event in the outside scene (intruding aircraft on the active runway for the intended landing). Comparison with a standard head-down ILS baseline condition revealed a mix of performance costs and benefits, which is consistent with most of the human factors literature on the general use of HUDs and of HUDs used in combination with pathway guidance: The pathway HMD promoted substantially better flight path tracking but caused also a delayed response to the unexpected event. This effect points to some disadvantages of HUDs referred to as 'attention capture', which may become exaggerated by the additional use of pathway guidance symbology.
Development of a digital automatic control law for steep glideslope capture and flare
NASA Technical Reports Server (NTRS)
Halyo, N.
1977-01-01
A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.
STS-41 mission charts, computer-generated and artist concept drawings, photos
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 related charts, computer-generated and artist concept drawings, and photos of the Ulysses spacecraft and mission flight path provided by the European Space Agency (ESA). Charts show the Ulysses mission flight path and encounter with Jupiter (45980, 45981) and sun (illustrating cosmic dust, gamma ray burst, magnetic field, x-rays, solar energetic particles, visible corona, interstellar gas, plasma wave, cosmic rays, solar radio noise, and solar wind) (45988). Computer-generated view shows the Ulysses spacecraft (45983). Artist concept illustrates Ulysses spacecraft deploy from the space shuttle payload bay (PLB) with the inertial upper stage (IUS) and payload assist module (PAM-S) visible (45984). Ulysses spacecraft is also shown undergoing preflight testing in the manufacturing facility (45985, 45986, 45987).
Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
Barker, Lee; Mamich, Harvey; McGregor, John
2016-01-01
On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.
In-flight turbulence benefits soaring birds
Mallon, Julie M.; Bildstein, Keith L.; Katzner, Todd E.
2016-01-01
Birds use atmospheric updrafts to subsidize soaring flight. We observed highly variable soaring flight by Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in Virginia, USA, that was inconsistent with published descriptions of terrestrial avian flight. Birds engaging in this behavior regularly deviated vertically and horizontally from linear flight paths. We observed the soaring flight behavior of these 2 species to understand why they soar in this manner and when this behavior occurs. Vultures used this type of soaring mainly at low altitudes (<50 m), along forest edges, and when conditions were poor for thermal development. Because of the tortuous nature of this flight, we describe it as “contorted soaring.” The primary air movement suitable to subsidize flight at this altitude and under these atmospheric conditions is small-scale, shear-induced turbulence, which our results suggest can be an important resource for soaring birds because it permits continuous subsidized flight when other types of updraft are not available.
2017-01-01
This paper presents a method for formation flight and collision avoidance of multiple UAVs. Due to the shortcomings such as collision avoidance caused by UAV’s high-speed and unstructured environments, this paper proposes a modified tentacle algorithm to ensure the high performance of collision avoidance. Different from the conventional tentacle algorithm which uses inverse derivation, the modified tentacle algorithm rapidly matches the radius of each tentacle and the steering command, ensuring that the data calculation problem in the conventional tentacle algorithm is solved. Meanwhile, both the speed sets and tentacles in one speed set are reduced and reconstructed so as to be applied to multiple UAVs. Instead of path iterative optimization, the paper selects the best tentacle to obtain the UAV collision avoidance path quickly. The simulation results show that the method presented in the paper effectively enhances the performance of flight formation and collision avoidance for multiple high-speed UAVs in unstructured environments. PMID:28763498
NASA Technical Reports Server (NTRS)
Dwyer, J. H., III; Palmer, E. A., III
1975-01-01
A simulator study was conducted to determine the usefulness of adding flight path vector symbology to a head-up display designed to improve glide-slope tracking performance during steep 7.5 deg visual approaches in STOL aircraft. All displays included a fixed attitude symbol, a pitch- and roll-stabilized horizon bar, and a glide-slope reference bar parallel to and 7.5 deg below the horizon bar. The displays differed with respect to the flight-path marker (FPM) symbol: display 1 had no FPM symbol; display 2 had an air-referenced FPM, and display 3 had a ground-referenced FPM. No differences between displays 1 and 2 were found on any of the performance measures. Display 3 was found to decrease height error in the early part of the approach and to reduce descent rate variation over the entire approach. Two measures of workload did not indicate any differences between the displays.
Evaluation of acoustic testing techniques for spacecraft systems
NASA Technical Reports Server (NTRS)
Cockburn, J. A.
1971-01-01
External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-09-28
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-01-01
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically. PMID:28956839
2001-12-13
6-18 6.13. Apollonius Circle for the Case of Two Unequal Power Radars . . . 6-20 6.14. Solution Triangle...Voronoi edge is an Apollonius circle [32, 19]. In this section, we are concerned with the optimality of the Voronoi path for the two radar exposure...Comparison of Cost vs. Path Length for Constrained Trajectories Around and Between Two Radars 6-18 from the two radars is an Apollonius circle
Flying qualities design criteria applicable to supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Chalk, C. R.
1980-01-01
A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.
Advances in the Remote Monitoring of Balloon Flights
NASA Astrophysics Data System (ADS)
Breeding, S.
At the National Scientific Balloon Facility (NSBF), we must staff the Long Duration Balloon (LDB) control center 24 hours a day during LDB flights. This requires three daily shifts of two operators (balloon control and tdrss scheduling). In addition to this we also have one engineer on-call as LDB Lead to resolve technical issues and one manager on-call for flight management. These on-call periods are typically 48 to 72 hours in length. In the past the on-call staff had to travel to the LDB control center in order to monitor the status of a flight in any detail. This becomes problematic as flight durations push out beyond 20 to 30 day lengths, as these staff members are not available for business travel during these periods. This paper describes recent advances which allow for the remote monitoring of scientific balloon flight ground station computer displays. This allows balloon flight managers and lead engineers to check flight status and performance from any location with a network or telephone connection. This capability frees key personnel from the NSBF base during flights. It also allows other interested parties to check on the flight status at their convenience.
Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications
NASA Technical Reports Server (NTRS)
Pellish, Jonathan
2018-01-01
This presentation describes the accelerating use of Commercial off the Shelf (COTS) parts in space applications. Component reliability and threats in the context of the mission, environment, application, and lifetime. Provides overview of traditional approaches applied to COTS parts in flight applications, and shows challenges and potential paths forward for COTS systems in flight applications it's all about data!
NASA Dryden Flight Research Center C-17 Research Overview
NASA Technical Reports Server (NTRS)
Miller, Chris
2007-01-01
A general overview of NASA Dryden Flight Research Center's C-17 Aircraft is presented. The topics include: 1) 2006 Activities PHM Instrumentation Refurbishment; 2) Acoustic and Vibration Sensors; 3) Gas Path Sensors; 4) NASA Instrumentation System Racks; 5) NASA C-17 Simulator; 6) Current Activities; 7) Future Work; 8) Lawn Dart ; 9) Weight Tub; and 10) Parachute Test Vehicle.
Turbulence Model Effects on RANS Simulations of the HIFiRE Flight 2 Ground Test Configurations
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Mankbadi, Mina R.; Vyas, Manan A.
2014-01-01
The Wind-US Reynolds-averaged Navier-Stokes solver was applied to the Hypersonic International Flight Research Experimentation (HIFiRE) Flight 2 scramjet ground test configuration. Two test points corresponding to flight Mach numbers of 5.9 and 8.9 were examined. The emphasis was examining turbulence model effects on the prediction of flow path pressures. Three variants of the Menter k-omega turbulence model family were investigated. These include the baseline (BSL) and shear stress transport (SST) as well as a modified SST model where the shear stress limiter was altered. Variations in the turbulent Schmidt number were also considered. Choice of turbulence model had a substantial effect on prediction of the flow path pressures. The BSL model produced the highest pressures and the SST model produced the lowest pressures. As expected, the settings for the turbulent Schmidt number also had significant effects on predicted pressures. Small values for the turbulent Schmidt number enabled more rapid mass transfer, faster combustion, and in turn higher flowpath pressures. Optimal settings for turbulence model and turbulent Schmidt number were found to be rather case dependent, as has been concluded in other scramjet investigations.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-08-09
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-01-01
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932
Optimal short-range trajectories for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, G.L.; Erzberger, H.
1982-12-01
An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less
Assessment of ground effects on the propagation of aircraft noise: The T-38A flight experiment
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.
1980-01-01
A flight experiment was conducted to investigate air to ground propagation of sound at gazing angles of incidence. A turbojet powered airplane was flown at altitudes ranging from 10 to 160 m over a 20-microphone array positioned over grass and concrete. The dependence of ground effects on frequency, incidence angle, and slant range was determined using two analysis methods. In one method, a microphone close to the flight path is compared to down range microphones. In the other method, comparisons are made between two microphones which were equidistant from the flight path but positioned over the two surfaces. In both methods, source directivity angle was the criterion by which portions of the microphone signals were compared. The ground effects were largest in the frequency range of 200 to 400 Hz and were found to be dependent on incidence angle and slant range. Ground effects measured for angles of incidence greater than 10 deg to 15 deg were near zero. Measured attenuation increased with increasing slant range for slant ranges less than 750 m. Theoretical predictions were found to be in good agreement with the major details of the measured results.
Control Law for Automatic Landing Using Fuzzy-Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of a fuzzy-logic control law for automatically landing an aircraft that handles both the control to lead an aircraft from horizontal flight at an altitude of 500 meters to flight along the glide-path course near the runway, as well as the control to direct the aircraft to land smoothly on a runway, was investigated. The control law for the automatic landing was designed to match the design goals of directing an aircraft from horizontal flight to flight along a glide-path course quickly and smoothly, and for landing smoothly on a runway. The design of the control law and evaluation of the control performance were performed considering the ground effect at landing. As a result, it was confirmed that the design goals were achieved. Even if the characteristics of the aircraft change greatly, the proposed control law is able to maintain the control performance. Moreover, it was confirmed to be able to land an aircraft safely during air turbulence. The present paper indicates that fuzzy-logic control is an effective and flexible method when applied to the control law for automatic landing, and the design method of the control law using fuzzy-logic control was obtained.
Control Law for Automatic Landing Using Fuzzy Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.
Decomposition technique and optimal trajectories for the aeroassisted flight experiment
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Deaton, A. W.
1990-01-01
An actual geosynchronous Earth orbit-to-low Earth orbit (GEO-to-LEO) transfer is considered with reference to the aeroassisted flight experiment (AFE) spacecraft, and optimal trajectories are determined by minimizing the total characteristic velocity. The optimization is performed with respect to the time history of the controls (angle of attack and angle of bank), the entry path inclination and the flight time being free. Two transfer maneuvers are considered: direct ascent (DA) to LEO and indirect ascent (IA) to LEO via parking Earth orbit (PEO). By taking into account certain assumptions, the complete system can be decoupled into two subsystems: one describing the longitudinal motion and one describing the lateral motion. The angle of attack history, the entry path inclination, and the flight time are determined via the longitudinal motion subsystem. In this subsystem, the difference between the instantaneous bank angle and a constant bank angle is minimized in the least square sense subject to the specified orbital inclination requirement. Both the angles of attack and the angle of bank are shown to be constant. This result has considerable importance in the design of nominal trajectories to be used in the guidance of AFE and aeroassisted orbital transfer (AOT) vehicles.
NASA Technical Reports Server (NTRS)
Butera, M. K.
1981-01-01
An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.
Non-invasive method of determining diastolic intracranial pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor); Hargens, Alan R. (Inventor)
2004-01-01
A method is presented for determining diastolic intracranial pressure (ICP) in a patient. A first change in the length of a path across the skull of the patient caused by a known change in ICP is measured and used to determine an elasticity constant for the patient. Next, a second change in the length of the path across the patient's skull occurring between systolic and diastolic portions of the patient's heartbeat is measured. The patient's diastolic ICP is a function of the elasticity constant and the second change.
NASA Technical Reports Server (NTRS)
Almeida, O. G.
1972-01-01
Measurements of the total electron content of the plasmasphere up to geostationary heights were made using the beacon transmitters aboard the satellite ATS-3. The technique employed is a combination of the phase-path length difference and the Faraday rotation angle methods. Such a combination permits very accurate determination of the integration constant necessary to convert phase-path length difference data into information about the absolute value of the columnar content.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Optimal Propellant Maneuver Flight Demonstrations on ISS
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis
2013-01-01
In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic manipulator relative to the ISS. Since 2005 USTO has been used for nominal ISS operations.
Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848
Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.
Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus).
Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph
2014-01-01
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.
Speed of light demonstration using Doppler beat
NASA Astrophysics Data System (ADS)
Bernal, Luis; Bilbao, Luis
2018-05-01
From an apparatus previously designed for measuring the Doppler shift using a rotating mirror, an improved, versatile version was developed for speed of light demonstrations in a classroom or a teaching laboratory. By adding a second detector and adequate beam-splitter and mirrors, three different configurations are easily assembled. One configuration is used for time-of-flight measurements between a near and a far detector, allowing one to measure the speed of light provided that the path length between detectors is known. Another variation is the interferometric method obtained by superposing the far and near signals in such a way that a minimum of the combined signal is obtained when the time delay makes the signals arrive out of phase by π radians. Finally, the standard Doppler configuration allows the measurement of the frequency beat as a function of the rotation frequency. The main advantages of the apparatus are (a) the experimental setup is simple and completely accessible to undergraduate students, (b) the light is visible, students can see the rays, which, with the use of appropriate screens, can be blocked at any point along their paths, (c) the experiment can take place entirely within the teaching laboratory or demonstration room (using the interferometric method, the shortest distance to the far mirror was as small as 0.5 m), and (d) different configurations can be built, including some economical setups within the budget of teaching laboratories.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.; Monahan, S.P.
It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less
Lodeiro, Pablo; Achterberg, Eric P; El-Shahawi, Mohammad S
2017-03-01
Silver nanoparticles (AgNPs) are emerging contaminants that are difficult to detect in natural waters. UV-visible spectrophotometry is a simple technique that allows detection of AgNPs through analysis of their characteristic surface plasmon resonance band. The detection limit for nanoparticles using up to 10cm path length cuvettes with UV-visible spectrophotometry is in the 0.1-10ppm range. This detection limit is insufficiently low to observe AgNPs in natural environments. Here we show how the use of capillary cells with an optical path length up to 200cm, forms an excellent technique for rapid detection and quantification of non-aggregated AgNPs at ppb concentrations in complex natural matrices such as seawater. Copyright © 2016 Elsevier B.V. All rights reserved.
A link-adding strategy for transport efficiency of complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong; Zhang, Shuai
2016-12-01
The transport efficiency is one of the critical parameters to evaluate the performance of a network. In this paper, we propose an improved efficient (IE) strategy to enhance the network transport efficiency of complex networks by adding a fraction of links to an existing network based on the node’s local degree centrality and the shortest path length. Simulation results show that the proposed strategy can bring better traffic capacity and shorter average shortest path length than the low-degree-first (LDF) strategy under the shortest path routing protocol. It is found that the proposed strategy is beneficial to the improvement of overall traffic handling and delivering ability of the network. This study can alleviate the congestion in networks, and is helpful to design and optimize realistic networks.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
49 CFR 38.29 - Interior circulation, handrails and stanchions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... length with front-door lifts or ramps, vertical stanchions immediately behind the driver shall either... of 22 feet in length, the minimum interior height along the path from the lift to the securement location shall be 68 inches. For vehicles of 22 feet in length or less, the minimum interior height from...
Chon, Sang-Uk; Nelson, C Jerry; Coutts, John H
2003-11-01
Reseeding of alfalfa is affected until autotoxic chemicals break down or are dispersed, often requiring a year or more. Bioassays of seed germination and early seedling growth, on agar medium in petri dishes, were conducted to evaluate autotoxic responses of 20 alfalfa germplasms to water-soluble extracts of alfalfa leaf tissue. Root length, 120 hr after placing imbibed seed on agar, was more sensitive to the autotoxin(s) than was hypocotyl length, germination speed, and final germination percentage. Path coefficient analyses showed variation in root length had 7-17 times more effect than variation in hypocotyl length in determining autotoxic effects on total seedling length. Although variations in seed size and germination rate were negatively associated (P < 0.05) with final root length, the autotoxin had little effect on these factors relative to that on root length. Germplasms in the control differed (P < 0.05) in root length, requiring tolerance to be evaluated as percent of control. Germplasms, as percent of control, differed significantly (P < 0.05) at extract concentrations of 1.0 and 4.0 g l(-1), but the range and LSD were more favorable for selection at 1.0 g l(-1). Root length is appropriate for genetic assessments of tolerance to the autotoxin when expressed as percent of control.
MEAN FREE PATH OF HOT ELECTRONS AND HOLES IN METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, R.N.; Wooten, F.; Spicer, W.E.
1963-01-01
The mean free paths and attenuation lengths of hot electrons and holes in metals are calculated by Morte Cario methods. The results are compared with experimental results for electrons in Au,-Ag, Cu, and Pd and holes in Au. (T.F.H.)
HIGH SPEED KERR CELL FRAMING CAMERA
Goss, W.C.; Gilley, L.F.
1964-01-01
The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
Kinetic simulations of gas breakdown in the dense plasma focus
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.
2017-06-01
The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.
In-flight gust monitoring and aeroelasticity studies
NASA Astrophysics Data System (ADS)
Alvarez-Salazar, Oscar Salvador
An in-flight gust monitoring and aeroelasticity study was conducted on board NASA Dryden's F15-B/FTF-II test platform (``FTF''). A total of four flights were completed. This study is the first in a series of flight experiments being conducted jointly by NASA Dryden Flight Research Center and UCLA's Flight Systems Research Center. The first objective of the in-flight gust- monitoring portion of the study was to demonstrate for the first time anywhere the measurability of intensity variations of a collimated Helium-Neon laser beam due to atmospheric air turbulence while having both the source and target apertures mounted outside an airborne aircraft. Intensity beam variations are the result of forward scattering of the beam by variations in the air's index of refraction, which are carried across the laser beam's path by a cross flow or air (i.e., atmospheric turbulence shifting vertically in the atmosphere). A laser beam was propagated parallel to the direction of flight for 1/2 meter outside the flight test fixture and its intensity variations due to atmospheric turbulence were successfully measured by a photo- detector. When the aircraft did not fly through a field of atmospheric turbulence, the laser beam proved to be insensitive to the stream velocity's cross component to the path of the beam. The aeroelasticity portion of the study consisted of measurements of the dynamic response of a straight, 18.25 inch span, 4.00 inch chord, NACA 0006 airfoil thickness profile, one sided wing to in-flight aircraft maneuvers, landing gear buffeting, unsteady aerodynamics, atmospheric turbulence, and aircraft vibration in general. These measurements were accomplished through the use of accelerometers, strain gauges and in-flight video cameras. Data collected will be used to compute in-flight root loci for the wing as functions of the aircraft's stream velocity. The data may also be used to calibrate data collected by the gust-monitoring system flown, and help verify the accuracy of various aeroelastic modeling techniques for estimating the stability boundary of a flexible wing in flight (i.e., flutter).
Predictor laws for pictorial flight displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1985-01-01
Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.
The Aerodynamics of Hovering Insect Flight. III. Kinematics
NASA Astrophysics Data System (ADS)
Ellington, C. P.
1984-02-01
Insects in free flight were filmed at 5000 frames per second to determine the motion of their wings and bodies. General comments are offered on flight behaviour and manoeuvrability. Changes in the tilt of the stroke plane with respect to the horizontal provides kinematic control of manoeuvres, analogous to the type of control used for helicopters. A projection analysis technique is described that solves for the orientation of the animal with respect to a camera-based coordinate system, giving full kinematic details for the longitudinal wing and body axes from single-view films. The technique can be applied to all types of flight where the wing motions are bilaterally symmetrical: forward, backward and hovering flight, as well as properly banked turns. An analysis of the errors of the technique is presented, and shows that the reconstructed angles for wing position should be accurate to within 1-2^circ in general. Although measurement of the angles of attack was not possible, visual estimations are given. Only 11 film sequences show flight velocities and accelerations that are small enough for the flight to be considered as `hovering'. Two sequences are presented for a hover-fly using an inclined stroke plane, and nine sequences of hovering with a horizontal stroke plane by another hover-fly, two crane-flies, a drone-fly, a ladybird beetle, a honey bee, and two bumble bees. In general, oscillations in the body position from its mean motion are within measurement error, about 1-2% of the wing length. The amplitudes of oscillation for the body angle are only a few degrees, but the phase relation of this oscillation to the wingbeat cycle could be determined for a few sequences. The phase indicates that the pitching moments governing the oscillations result from the wing lift at the ends of the wingbeat, and not from the wing drag or inertial forces. The mean pitching moment of the wings, which determines the mean body angle, is controlled by shifting the centre of lift over the cycle by changing the mean positional angle of the flapping wings. Deviations of the wing tip path from the stroke plane are never large, and no consistent pattern could be found for the wing paths of different insects; indeed, variations in the path were even observed for individual insects. The wing motion is not greatly different from simple harmonic motion, but does show a general trend towards higher accelerations and decelerations at either end of the wingbeat, with constant velocities during the middle of half-strokes. Root mean square and cube root mean cube angular velocities are on average about 4 and 9% lower than simple harmonic motion. Angles of attack are nearly constant during the middle of half-strokes, typically 35^circ at a position 70% along the wing length. The wing is twisted along its length, with angles of attack at the wing base some 10-20^circ greater than at the tip. The wings rotate through about 110^circ at either end of the wingbeat during 10-20% of the cycle period. The mean velocity of the wing edges during rotation is similar to the mean flapping velocity of the wing tip and greater than the flapping velocity for more proximal wing regions, which indicates that vortex shedding during rotation is comparable with that during flapping. The wings tend to rotate as a flat plate during the first half of rotation, which ends just before, or at, the end of the half-stroke. The hover-fly using an inclined stroke plane provides a notable exception to this general pattern: pronation is delayed and overlaps the beginning of the downstroke. The wing profile flexes along a more or less localized longitudinal axis during the second half of rotation, generating the `flip' profile postulated by Weis-Fogh for the hover-flies. This profile occurs to some extent for all of the insects, and is not exceptionally pronounced for the hover-fly. By the end of rotation the wings are nearly flat again, although a slight camber can sometimes be seen. Weis-Fogh showed that beneficial aerodynamic interference can result when the left and right wings come into contact during rotation at the end of the wingbeat. His `fling' mechanism creates the circulation required for wing lift on the subsequent half-stroke, and can be seen on my films of the Large Cabbage White butterfly, a plume moth, and the Mediterranean flour moth. However, their wings `peel' apart like two pieces of paper being separated, rather than fling open rigidly about the trailing edges. A `partial fling' was found for some insects, with the wings touching only along posterior wing areas. A `near fling' with the wings separated by a fraction of the chord was also observed for many insects. There is a continuous spectrum for the separation distance between the wings, in fact, and the separation can vary for a given insect during different manoeuvres. It is suggested that these variants on Weis-Fogh's fling mechanism also generate circulation for wing lift, although less effectively than a complete fling, and that changes in the separation distance may provide a fine control over the amount of lift produced.
Fast orthogonal transforms and generation of Brownian paths
Leobacher, Gunther
2012-01-01
We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545
Automatic Alignment of Displacement-Measuring Interferometer
NASA Technical Reports Server (NTRS)
Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer
2006-01-01
A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.
Effect of sampling rate and record length on the determination of stability and control derivatives
NASA Technical Reports Server (NTRS)
Brenner, M. J.; Iliff, K. W.; Whitman, R. K.
1978-01-01
Flight data from five aircraft were used to assess the effects of sampling rate and record length reductions on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there were considerable reductions in sampling rate and/or record length. Small amplitude pulse maneuvers showed greater degradation of the derivative maneuvers than large amplitude pulse maneuvers when these reductions were made. Reducing the sampling rate was found to be more desirable than reducing the record length as a method of lessening the total computation time required without greatly degrading the quantity of the estimates.
Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft
NASA Technical Reports Server (NTRS)
Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.
1976-01-01
An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene
Knowles, Jeffrey M.; Barchi, Jonathan R.; Gaudette, Jason E.; Simmons, James A.
2015-01-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80–100 cm wide and 2–4 m long. Using the two-choice Y-shaped paradigm to compensate for left–right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18–35 dB weaker than overlapping echoes from surrounding chains. PMID:26328724
Proof-of-Concept Demonstrations of a Flight Adjustment Logging and Communication Network
NASA Technical Reports Server (NTRS)
Underwood, Matthew C.; Merlino, Daniel K.; Carboneau, Lindsey M.; Wilson, C. Logan; Wilder, Andrew J.
2016-01-01
The National Airspace System is a highly complex system of systems within which a number of participants with widely varying business and operating models exist. From the airspace user's perspective, a means by which to operate flights in a more flexible and efficient manner is highly desired to meet their business objectives. From the air navigation service provider's viewpoint, there is a need for increasing the capacity of the airspace, while maintaining or increasing the levels of efficiency and safety that currently exist in order to meet the charter under which they operate. Enhancing the communication between airspace operators and users is essential in order to meet these demands. In the spring of 2015, a prototype system that implemented an airborne tool to optimize en-route flight paths for fuel and time savings was designed and tested. The system utilized in-flight Internet as a high-bandwidth data link to facilitate collaborative decision making between the flight deck and an airline dispatcher. The system was tested and demonstrated in a laboratory environment, as well as in-situ. Initial results from these tests indicate that this system is not only feasible, but could also serve as a growth path and testbed for future air traffic management concepts that rely on shared situational awareness through data exchange and electronic negotiation between multiple entities operating within the National Airspace System.
NASA Astrophysics Data System (ADS)
Tse, S. C.; So, S. K.; Yeung, M. Y.; Lo, C. F.; Wen, S. W.; Chen, C. H.
2006-01-01
The charge transport properties of three tertiary-butyl (t-Bu) substituted anthracene derivatives (ADN), critical blue host materials for organic light-emitting diodes (OLEDs), have been investigated experimentally and computationally. From time-of-flight (TOF) measurements, all ADN compounds exhibit ambipolar characters. The hole and electron mobilities are in the range (1--5)× 10-7 cm2 V-1 s-1 under an external applied field of about 1 MV cm-1. Un-substituted ADN has the highest carrier mobilities while heavily t-Bu substituted ADN has the least. The electron and hole conducting properties of are consistent with ab initio calculation, which indicates that the frontier orbitals are localized mainly on the anthracene moiety. t-Bu substitutions in ADN increase the hopping path lengths among the molecules and hence reduce the electron and hole mobilities. The results demonstrate that t-Bu substitution is an effective means of engineering the conductivity of organic charge transporter for OLED applications.
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.
NASA Technical Reports Server (NTRS)
Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.
On the upstream boundary of electron foreshocks in the solar wind
NASA Technical Reports Server (NTRS)
Zimbardo, G.; Veltri, P.
1995-01-01
The upstream boundary of electron foreshocks is defined as the path of the fastest electrons reflected by collisionless shocks and moving along the magnetic field in the solar wind. Considerable levels of magnetic fluctuations are found in these regions of the solar wind, and their effect is to create both a broadening and a fine structure of the electron foreshock boundary. The magnetic structure is studied by means of a 3-D numerical simulation of a turbulent magnetic field. Enhanced, anomalous diffusion is found, (Delta x(exp 2)) varies as s(sup alpha), where alpha is greater than 1 for typical values of the parameters (here, Delta x(exp 2) is the mean square width of the tangent magnetic surface and s is the field line length). This corresponds to a Levy flight regime for the magnetic field line random walk, and allows very efficient electron propagation perpendicular to the magnetic field. Implications on the observations of planetary foreshocks and of the termination shock foreshock are considered.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J.
2017-01-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer–Lambert Law. Thus, iNIRS is a promising approach for quantitative and non-invasive monitoring of perfusion and optical properties in vivo. PMID:28146535
Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures
NASA Technical Reports Server (NTRS)
Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.
2012-01-01
Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.
2017-06-01
aboard the NASA WB-57 aircraft flying over outflow region of Tropical Storm Patricia. Source: Doyle et al. (2017...flight track of the NASA WB-57 through the center of Hurricane Patricia at approximately 1800 UTC 23 October ......28 Figure 20. HDSS-observed wind...29 Figure 21. NASA WB-57 flight path (yellow line) overlaid on GOES enhanced infrared
NASA Technical Reports Server (NTRS)
Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.
1979-01-01
A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.
Tiltrotor noise reduction through flight trajectory management and aircraft configuration control
NASA Astrophysics Data System (ADS)
Gervais, Marc
A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise approaches that take into account the first-order effects of deceleration on the acoustics were systematically designed and compared to a baseline approach profile. The low-noise approaches yielded substantial noise reduction benefits on a hemisphere surrounding the aircraft and on a ground plane below the aircraft's trajectory.
Design of the Longitudinal Dispersion Compensation System for the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Bagnuolo, W. G.
2001-05-01
In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.
Meteorological conditions during the summer 1986 CITE 2 flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott
1990-01-01
An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.