Science.gov

Sample records for flight paths

  1. Aircraft flight path angle display system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1991-01-01

    A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.

  2. Optimal Paths in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Wolek, Artur

    Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.

  3. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  4. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  5. 14 CFR 25.123 - En route flight paths.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false En route flight paths. 25.123 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.123 En route flight paths. (a) For the en route configuration, the flight paths prescribed in paragraph (b) and (c) of this section must...

  6. 14 CFR 25.123 - En route flight paths.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false En route flight paths. 25.123 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.123 En route flight paths. (a) For the en route configuration, the flight paths prescribed in paragraph (b) and (c) of this section must...

  7. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  8. Quad-rotor flight path energy optimization

    NASA Astrophysics Data System (ADS)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  9. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  10. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  11. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  12. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  13. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  14. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  15. Efficiency Mode of Energy Management based on Optimal Flight Path

    NASA Astrophysics Data System (ADS)

    Yang, Ling-xiao

    2016-07-01

    One new method of searching the optimal flight path in target function is put forward, which is applied to energy section for reentry flight vehicle, and the optimal flight path in which the energy is managed to decline rapidly, is settled by this design. The research for energy management is meaningful for engineering, it can also improve the applicability and flexibility for vehicle. The angle-of-attack and the bank angle are used to regulate energy and range at unpowered reentry flight as control variables. Firstly, the angle-of-attack section for minimum lift-to-drag ratio is ensured by the relation of range and lift-to-drag ratio. Secondly, build the secure boundary for flight corridor by restrictions in flight. Thirdly, the D-e section is optimized for energy expending in corridor by the influencing rule of the D-e section and range. Finally, compare this design method with the traditional Pseudo-spectral method. Moreover, energy-managing is achieved by cooperating lateral motion, and the optimized D-e section is tracked to prove the practicability of programming flight path with energy management.

  16. Rotorcraft Noise Abatement Flight Path Modeling

    NASA Technical Reports Server (NTRS)

    Murty, Hema; Berezin, Charles R.

    2000-01-01

    This report addresses development of a rotor state/trim modeling capability for noise modeling of decelerating rotorcraft approaches. The resulting technique employs discretization of the descent trajectory as multiple steady state segments for input to CAMRAD.Mod 1 to predict rotor states for acoustic analysis. Deceleration is included by modifying the CAMRAD.Mod 1 free flight trim options to allow trim to the specified acceleration/deceleration components.

  17. Light airplane crash tests at three flight-path angles

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1978-01-01

    Three similar twin engine general aviation airplane specimens were crash tested at Langley impact dynamics research facility at 27 m/sec and at flight-path angles of -15 deg, -30 deg, and -45 deg. Other flight parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  18. The NASA super pressure balloon - A path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2009-07-01

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space

  19. Flight-path estimation in passive low-altitude flight by visual cues

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kohn, S.

    1993-01-01

    A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.

  20. 14 CFR 25.123 - En route flight paths.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provides adequate cooling in the hot-day condition. (b) The one-engine-inoperative net flight path data...) In non-icing conditions; and (2) In icing conditions with the en route ice accretion defined in appendix C, if: (i) A speed of 1.18 “VSR0 with the en route ice accretion exceeds the en route...

  1. 14 CFR 25.123 - En route flight paths.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provides adequate cooling in the hot-day condition. (b) The one-engine-inoperative net flight path data...) In non-icing conditions; and (2) In icing conditions with the en route ice accretion defined in appendix C, if: (i) A speed of 1.18 “VSR0 with the en route ice accretion exceeds the en route...

  2. 14 CFR 25.123 - En route flight paths.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provides adequate cooling in the hot-day condition. (b) The one-engine-inoperative net flight path data...) In non-icing conditions; and (2) In icing conditions with the en route ice accretion defined in appendix C, if: (i) A speed of 1.18 “VSR0 with the en route ice accretion exceeds the en route...

  3. NACA Flight-Path Angle and Air-Speed Recorder

    NASA Technical Reports Server (NTRS)

    Coleman, Donald G

    1926-01-01

    A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.

  4. Flight-Path Characteristics for Decelerating From Supercircular Speed

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W.

    1961-01-01

    Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.

  5. Integrated flight path planning system and flight control system for unmanned helicopters.

    PubMed

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  6. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    PubMed Central

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  7. Geophysical flight line flying and flight path recovery utilizing the Litton LTN-76 inertial navigation system

    SciTech Connect

    Mitkus, A.F.; Cater, D.; Farmer, P.F.; Gay, S.P. Jr.

    1981-11-01

    The Litton LTN-76 Inertial Navigation Systems (INS) with Inertial Track guidance System (ITGS) software is geared toward the airborne survey industry. This report is a summary of tests performed with the LTN-76 designed to fly an airborne geophysical survey as well as to recover the subsequent flight path utilizing INS derived coordinates.

  8. Flight 20 (STS-45) polysulfide gas path investigation

    NASA Technical Reports Server (NTRS)

    Bjorkman, Rey C.; Bown, Charles W.; Smith, Scott D.; Walters, Jerry L.; Kulkarni, Suresh B.; Cook, Roger V.; Sebahar, David A.; Walker, Craig S.; Haddock, M. Reed; Lindstrom, Robert E.

    1992-01-01

    This report documents the results of the investigation into causes of gas paths on the 20A and 20B case-to-nozzle joints on STS-42. The investigation was conducted by the Investigation Board appointed by the senior vice president and general manager of Space Operations, Mr. R. E. Lindstrom, on 7 Feb. 1992. The probability of gas path occurrence in the nozzle-to-case-joint polysulfide had been identified during joint redesign. However, actual flight gas path incidence has been limited to RSRM-11 and the 20A and 20B segments. The blow-by condition on the 20A segment was a first time occurrence which was a special concern. The investigation covered all technical aspects associated with the gas path and blow-by conditions: materials and processing history, design requirements and as-built compliance to the design, thermal and structural analyses, computer modeling, and laboratory experimentation with the materials involved. The investigation was coordinated with Mr. Ken Jones at NASA Marshall in bi-weekly teleconferences. The Board also supported Dr. James C. Blair's independent NASA investigation team by providing copies of collected data, conducting requested analyses, and supporting several all-day teleconferences to provide understanding and resolve issues. The Dr. Blair support requirement was successfully concluded on 4 Mar. 1992.

  9. The flight paths of honeybees recruited by the waggle dance.

    PubMed

    Riley, J R; Greggers, U; Smith, A D; Reynolds, D R; Menzel, R

    2005-05-12

    In the 'dance language' of honeybees, the dancer generates a specific, coded message that describes the direction and distance from the hive of a new food source, and this message is displaced in both space and time from the dancer's discovery of that source. Karl von Frisch concluded that bees 'recruited' by this dance used the information encoded in it to guide them directly to the remote food source, and this Nobel Prize-winning discovery revealed the most sophisticated example of non-primate communication that we know of. In spite of some initial scepticism, almost all biologists are now convinced that von Frisch was correct, but what has hitherto been lacking is a quantitative description of how effectively recruits translate the code in the dance into flight to their destinations. Using harmonic radar to record the actual flight paths of recruited bees, we now provide that description.

  10. Precise flight-path control using a predictive algorithm

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Jung, Y. C.

    1991-01-01

    Generalized predictive control describes an algorithm for the control of dynamic systems in which a control input is generated that minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. A design technique is discussed for applying the single-input/single-output generalized predictive control algorithm to a problem of longitudinal/vertical terrain-following flight of a rotorcraft. By using the generalized predictive control technique to provide inputs to a classically designed stability and control augmentation system, it is demonstrated that a robust flight-path control system can be created that exhibits excellent tracking performance.

  11. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  12. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  13. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  14. Flight path-driven mitigation of wavefront curvature effects in SAR images

    SciTech Connect

    Doerry, Armin W.

    2009-06-23

    A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.

  15. Cockpit simulation study of use of flight path angle for instrument approaches

    NASA Technical Reports Server (NTRS)

    Hanisch, B.; Ernst, H.; Johnston, R.

    1981-01-01

    The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.

  16. Flight-path and airspeed control during landing approach for powered-lift aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1974-01-01

    Manual control of flight path and airspeed during landing approach has been investigated for powered-lift transport aircraft. An analysis was conducted to identify the behavior of the aircraft which would be potentially significant to the pilot controlling flight path and airspeed during the approach. The response characteristics found to describe the aircraft behavior were (1) the initial flight-path response and flight-path overshoot for a step change in thrust, (2) the steady-state coupling of flight path and airspeed for a step change in thrust, and (3) the sensitivity of airspeed to changes in pitch attitude. The significance of these response characteristics was evaluated by pilots on a large-motion, ground-based simulator at Ames Research Center. Coupling between flight path and airspeed was considered by the pilot to be the dominant influence on handling qualities for the approach task. Results are compared with data obtained from flight tests of three existing powered-lift V/STOL aircraft.

  17. Spatial memory and stereotypy of flight paths by big brown bats in cluttered surroundings.

    PubMed

    Barchi, Jonathan R; Knowles, Jeffrey M; Simmons, James A

    2013-03-15

    The big brown bat, Eptesicus fuscus, uses echolocation for foraging and orientation. The limited operating range of biosonar implies that bats must rely upon spatial memory in familiar spaces with dimensions larger than a few meters. Prior experiments with bats flying in obstacle arrays have revealed differences in flight and acoustic emission patterns depending on the density and spatial extent of the obstacles. Using the same method, combined with acoustic microphone array tracking, we flew big brown bats in an obstacle array that varied in density and distribution in different locations in the flight room. In the initial experiment, six bats learned individually stereotyped flight patterns as they became familiar with the space. After the first day, the repetition rate of sonar broadcasts dropped to a stable level, consistent with low-density clutter. In a second experiment, after acquiring their stable paths, each bat was released from each of two unfamiliar locations in the room. Each bat still followed the same flight path it learned originally. In a third experiment, performed 1 month after the first two experiments, three of the bats were re-flown in the same configuration of obstacles; these three resumed flying in their accustomed path. The other three bats were flown in a mirror-image reconfiguration of the obstacles; these bats quickly found stable flight paths that differed from their originally learned paths. Overall, the flight patterns indicate that the bats perceive the cluttered space as a single scene through which they develop globally organized flight paths.

  18. Functional integration of vertical flight path and speed control using energy principles

    NASA Technical Reports Server (NTRS)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  19. Automatic flight performance of a transport airplane on complex microwave landing system paths

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.; Weener, E. F.

    1977-01-01

    Essential characteristics of the U.S. microwave landing system (MLS) and the TCV B-737 aircraft used in flight demonstrations are described, with special emphasis on the analysis of the approach paths. MLS is used to provide the aircraft with guidance for automatic control on complex, curved descending paths with precision turns into short final approaches terminating in landing and rollout, even when subjected to strong and gusty tail- and cross-wind components and severe wind shear. The tracking performance achieved on these paths under MLS guidance is examined in detail, and the wind environment where the flights are conducted are quantified. The flights demonstrate the utility of the wide-area coverage of MLS for curved, descending paths commencing with a standard RNAV approach into a terminal area and continuation of this approach throughout the MLS coverage and onto the runway.

  20. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  1. Aerodynamic investigations to determine possible ice flight paths

    NASA Technical Reports Server (NTRS)

    Burgsmueller, W.; Frenz, H.; May, P.; Anders, G.

    1982-01-01

    After flights with the VFW 614 under severe icing conditions, damage to the engine was found. In wind tunnel tests a determination of the origin of this ice was made; it is supposed that the damage was caused by this ice. On the modified flight test model of the VFW 614 on a 1:15 scale, measurements were conducted in the VFW-Fokker wind tunnel with exposed particles which represented the free ice. The results of this testing are presented.

  2. Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.

    2004-01-01

    Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.

  3. Stability of simulated flight path control at +3 Gz in a human centrifuge.

    PubMed

    Guardiera, Simon; Dalecki, Marc; Bock, Otmar

    2010-04-01

    Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.

  4. An evaluation of flight path formats head-up and head-down

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.

    1988-01-01

    Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.

  5. Automatic flight performance of a transport airplane on complex microwave landing system paths

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.; Weener, E. F.

    1978-01-01

    During this demonstration the microwave landing system was utilized to provide the terminal configured vehicle B-737 airplane with guidance for automatic control on complex, curved descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail- and cross-wind components and severe wind shear. The data collected from more than fifty approach flights during the demonstration provided an opportunity to analyze airplane flight performance on a statistical basis rather than on a single flight record basis as is customarily done with limited data replication. Mean and standard deviation data are presented for approach flight path tracking parameters. In addition, the adverse wind conditions encountered during these flights are described using three-dimensional wind vector characteristics computed from the extensive on-board sensor data.

  6. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9 percent for three-engine airplanes; and (3) 1.0 percent for four-engine airplanes. (c) The prescribed reduction in... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum...

  7. Simulator evaluation of a flight-path-angle control system for a transport airplane with direct lift control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    A piloted simulator was used to evaluate the flight path angle control capabilities of a system that employs spoiler direct lift control. The system was designated the velocity vector control system and was compared with a baseline flight path angle control system which used elevator for control. The simulated airplane was a medium jet transport. Research pilots flew a manual instrument landing system glide slope tracking task and a variable flight path angle task in the landing configuration to obtain comparative performance data.

  8. Pilot usage of decoupled flight path and pitch controls

    NASA Technical Reports Server (NTRS)

    Berkhout, J.; Osgood, R.; Berry, D.

    1985-01-01

    Data from decoupled flight maneuvers have been collected and analyzed for four AFTI-F-16 pilots operating this aircraft's highly augmented fly-by-wire control system, in order to obtain spectral density, cross spectra, and Bode amplitude data, as well as coherences and phase angles for the two longitudinal axis control functions of each of 50 20-sec epochs. The analysis of each epoch yielded five distinct plotted parameters for the left hand twist grip and right hand sidestick controller output time series. These two control devices allow the left hand to generate vertical translation, direct lift, or pitch-pointing commands that are decoupled from those of the right hand. Attention is given to the control patterns obtained for decoupled normal flight, air-to-air gun engagement decoupled maneuvering, and decoupled air-to-surface bombing run maneuvering.

  9. Optimized Flight Path for Localization Using Line of Bearing

    DTIC Science & Technology

    2015-03-26

    speed and angular velocity of heading angle will be considered. MATLAB / Simulink is used for solving the optimal control problem. Among the many...from real-world data can be compared to the result of the MATLAB / Simulink simulation predictions for future flight tests can be made. 6 1.6 Thesis...targeting. In addition, the specific process of the algorithm is explained using a sample result using MATLAB / Simulink . Sensitivity of the result and

  10. NASA-FAA helicopter Microwave Landing System curved path flight test

    NASA Technical Reports Server (NTRS)

    Swenson, H. N.; Hamlin, J. R.; Wilson, G. W.

    1983-01-01

    An ongoing series of joint NASA/FAA helicopter Microwave Landing System (MLS) flight tests was conducted at Ames Research Center. This paper deals with tests done from the spring through the fall of 1983. This flight test investigated and developed solutions to the problem of manually flying curved-path and steep glide slope approaches into the terminal area using the MLS and flight director guidance. An MLS-equipped Bell UH-1H helicopter flown by NASA test pilots was used to develop approaches and procedures for flying these approaches. The approaches took the form of Straight-in, U-turn, and S-turn flightpaths with glide slopes of 6 deg, 9 deg, and 12 deg. These procedures were evaluated by 18 pilots from various elements of the helicopter community, flying a total of 221 hooded instrument approaches. Flying these curved path and steep glide slopes was found to be operationally acceptable with flight director guidance using the MLS.

  11. NASA-FAA helicopter Microwave Landing System curved path flight test

    NASA Technical Reports Server (NTRS)

    Swenson, H. N.; Hamlin, J. R.; Wilson, G. W.

    1984-01-01

    An ongoing series of joint NASA/FAA helicopter Microwave Landing System (MLS) flight tests was conducted at Ames Research Center. This paper deals with tests done from the spring through the fall of 1983. This flight test investigated and developed solutions to the problem of manually flying curved-path and steep glide slope approaches into the terminal area using the MLS and flight director guidance. An MLS-equipped Bell UH-1H helicopter flown by NASA test pilots was used to develop approaches and procedures for flying these approaches. The approaches took the form of Straight-in, U-turn, and S-turn flightpaths with glide slopes of 6 deg, 9 deg, and 12 deg. These procedures were evaluated by 18 pilots from various elements of the helicopter community, flying a total of 221 hooded instrument approaches. Flying these curved path and steep glide slopes was found to be operationally acceptable with flight director guidance using the MLS.

  12. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

    SciTech Connect

    D. H. BULTMAN; D. WEINACHT - AIRES CORP.

    2000-08-01

    This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule).

  13. Analysis and Simulation for a Spotlight-Mode Aircraft SAR in Circular Flight Path

    NASA Technical Reports Server (NTRS)

    Jin, M.; Chen, M.

    1993-01-01

    A spotlight aircraft SAR in a circular flight path can efficiently obtain an image with very high azimuth resolution or a wider azimuth viewing angle. An analysis on the spotlight SAR is made regarding the required PRF, the predicted resolution, and the computation complexity as a function of the aircraft altitude and the distance between a target and the center of the flight path projection. An efficient processing algorithm based on the exact wide beam spectrum is presented. The results of simulation indicate that the impulse responses meet the predicted resolution performance.

  14. Determination of Flight Paths of an SBD-1 Airplane in Simulated Diving Attacks, Special Report

    NASA Technical Reports Server (NTRS)

    Johnson, Harold I.

    1943-01-01

    An investigation has been made to determine the motions of and the flight paths describe by a Navy dive-bombing airplane in simulated diving attacks. The data necessary to evaluate these items, with the exception of the atmospheric wind data, were obtained from automatic recording instruments installed entirely within the airplane. The atmospheric wind data were obtained from the ground by the balloon-theodolite method. The results of typical dives at various dive angles are presented in the form of time histories of the motion of the airplane as well as flight paths calculated with respect to still air and with respect to the ground.

  15. Mapping a Path to Autonomous Flight in the National Airspace

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.

    2011-01-01

    The introduction of autonomous flight, whether military, commercial, or civilian, into the National Airspace System (NAS) will present significant challenges. Minimizing the impact and preventing the changes from becoming disruptive, rather than an enhancing technology will not be without difficulty. From obstacle detection and avoidance to real-time verification and validation of system behavior, there are significant problems which must be solved prior to the general acceptance of autonomous systems. This paper examines some of the key challenges and the multi-disciplinary collaboration which must occur for autonomous systems to be accepted as equal partners in the NAS.

  16. Pitch attitude, flight path, and airspeed control during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.

  17. Command Flight Path Display. Phase I and II. Appendix F.

    DTIC Science & Technology

    1983-09-01

    DEVIRTIONW*T~eSLSGY - ROUTES METHER.efE S0 1 S .. !. GOiJU , U, - -. SGOO so 120 ISO ISO 2104 2." DISTANCE (FT) IN THOUSANDS I ’ C . 2 !H1 I F-64 LRTERL...12 VELOCITY ST?edLIG - 61UTES~ ILI .. .__ _ \\ " --o * _. .[, \\ S2O ISO so DiSTRNCE (FT’ i T - -F-13 I CR : i .L] p F-130 VELOCITY ST~e!L4GT - AYl*UTEZ...AHEEL 3400 I- C 2500 -A - 2200" 1400’ , 9o0 120 1SO ISO 210 2*0 270 DISTANCE (FT3 IN THOUSANDS LzzFLIGHT PLAN CASE 1 (HUD) F-162 ALTITUDE CFPD ROUWTES 8

  18. A Flight-Path Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper presents an automatic flight-path control of aircraft. In the control, a desired flight trajectory is first determined as a sequence of straight lines, arcs and spirals in the three-dimensional space. Commands and command rates of heading and flight-path (climb) angles are then obtained from the desired trajectory. A required acceleration vector of the aircraft is calculated based on the command rates and angle deviations. Desired roll, pitch and yaw rates are then obtained by acceleration controller and are fed to attitude control. The feedback control of acceleration employs conventional PID control technology, without using inverse dynamics of the aircraft, and the attitude control can employ any existing control technologies suitable for the aircraft to be controlled. These make the proposed control relatively simple and easy to implement. Numerical simulations illustrate the effectiveness of the control.

  19. Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes.

    PubMed

    Kitamura, Tasuku; Imafuku, Michio

    2015-06-22

    Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. B-737 flight test of curved-path and steep-angle approaches using MLS guidance

    NASA Technical Reports Server (NTRS)

    Branstetter, J. R.; White, W. F.

    1989-01-01

    A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics.

  1. Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes

    PubMed Central

    Kitamura, Tasuku; Imafuku, Michio

    2015-01-01

    Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. PMID:26041360

  2. Laser measurements of distances from the ORELA neutron target to experiment stations along flight paths 1 and 6

    SciTech Connect

    Larson, D.C.; Larson, N.M.; Harvey, J.A.; Perey, F.G.; Pierce, D.E.; Seals, R.H.

    1985-03-01

    Flight-path lengths have been measured by laser techniques for the 200-, 80-, and 18-m stations along flight path 1, and for the 5-, 20-, 40-, and 150-m stations along flight path 6 at the Oak Ridge Electron Linear Accelerator (ORELA). In each case the distance evaluated from the measurements is the slope distance from the center of the neutron-producing target to a position along the beam path, directly above a suitable benchmark at the experiment station. A total of 25 laser measurements were performed between the various stations. These data, along with appropriate uncertainties, were combined using Bayes' method. From this analysis we obtained the desired flight-path lengths, which typically have uncertainties less than 1.5 mm. The measurment technique, uncertainties, analysis method, and results are documented in detail in this report.

  3. A new chirp scaling algorithm of bistatic SAR with parallel flight paths

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wang, Luping

    2011-10-01

    The precise point target reference spectrum of bistatic SAR has been a difficult problem for a long time. Many of the current available algorithms have approximation during deducing. This paper deduces the precise expression in Doppler- Frequency domain with the configuration of parallel flight paths and constant velocity of each platform. Then a new chirp scaling algorithm is put forward. At last, simulations are given to demonstrate the good focusing performance.

  4. Flight Path

    ERIC Educational Resources Information Center

    Ernst, Heidi

    2004-01-01

    Aviation High is a career and technical education school in the Long Island City neighborhood of Queens and the nation's largest aviation-focused high school. Required courses for all 2,000 students include the usual English, math, science, and foreign languages, but also airframe and power plant shops. A 5,000-square-foot annex at John F. Kennedy…

  5. Flight Path

    ERIC Educational Resources Information Center

    Ernst, Heidi

    2004-01-01

    Aviation High is a career and technical education school in the Long Island City neighborhood of Queens and the nation's largest aviation-focused high school. Required courses for all 2,000 students include the usual English, math, science, and foreign languages, but also airframe and power plant shops. A 5,000-square-foot annex at John F. Kennedy…

  6. From falling to flying: the path to powered flight of a robotic samara nano air vehicle.

    PubMed

    Ulrich, Evan R; Pines, Darryll J; Humbert, J Sean

    2010-12-01

    This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajectories of a samara in flight were observed to differ in-flight path and descent velocity. The body roll and pitch angular rates for the differing trajectories were observed to be coupled to variations in wing pitch, and thus provide a means of control. Inspired by the flight modalities of the bio-inspired samaras, a robotic device has been created that mimics the autorotative capability of the samara, whilst providing the ability to hover, climb and translate. A high-speed camera-based motion capture system is used to observe the flight dynamics of the mechanical and robotic samara. Similarities in the flight dynamics are compared and discussed as it relates to the design of the robotic samara.

  7. A review of supersonic cruise flight path control experience with the YF-12 aircraft

    NASA Technical Reports Server (NTRS)

    Berry, D. T.; Gilyard, G. B.

    1976-01-01

    Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.

  8. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    NASA Technical Reports Server (NTRS)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  9. Rotorcraft brownout mitigation through flight path optimization using a high fidelity rotorcraft simulation model

    NASA Astrophysics Data System (ADS)

    Alfred, Jillian Samantha

    Brownout conditions often occur during approach, landing, and take off in a desert environment and involve the entrainment and mobilization of loose sediment and dust into the rotor flow field. For this research, a high fidelity flight dynamics model is used to perform a study on brownout mitigation through operational means of flight path. In order for the high fidelity simulation to model an approach profile, a method for following specific profiles was developed. An optimization study was then performed using this flight dynamics model in a comprehensive brownout simulation. The optimization found a local shallow optimum approach and a global steep optimum approach minimized the intensity of the resulting brownout clouds. These results were consistent previous mitigation studies and operational methods. The results also demonstrated that the addition of a full rotorcraft model into the brownout simulation changed the characteristics of the velocity flow field, and hence changing the character of the brownout cloud that was produced.

  10. Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.

    2002-01-01

    Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.

  11. Influence of internal moving parts on the ballistic flight path of a projectile

    SciTech Connect

    Morgan, T.

    1985-06-04

    The ballistic flight path of an artillery shell containing an internal component, which is only partially restrained with respect to the geometric axes, can differ significantly, and in some cases disastrously, from the expected flight path of an inertially equivalent rigid shell. Dynamic behavior of the internal component creates gyrodynamic torques ultimately affecting the shell's instantaneous heading angle and spin rate. The ability of a shell to damp these torques and retain both aerodynamic and gyroscopic stability depends in large measure on initial rotational and translational kinetic energy, expected apogee, and inertial properties. To investigate the consequences of nonrigid shell trajectories, a model is proposed comprised of a shell case with an internal body capable of independent rotation and translation. Examination of the resulting equation of motion shows that the shell's heading angle resembles the description of a linear damped harmonic oscillator driven by a forcing function created solely from the internal component. Any resulting phase behavior between the principal axes of inertia of the body and component can drive the internal component at a forced and free natural nutation frequency. In a departure from earlier research done in this field, it is contended that not all internal motion leads to the destabilization of flight behavior. Instead, stability depends on: (1) the ratio of moments of inertia of the internal part; (2) the applied aerodynamic moments (whether supersonic, transonic, or subsonic); and (3) the combined component/body transfer function.

  12. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  13. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  14. ''Latest Capabilities of Pov-Ray Ricochet Flight Path Analysis & Impact Probability Prediction Software''

    SciTech Connect

    Price, D.E.; Brereton, S.; Newton, M.; Moore, B.; Muirhead, D.; Pastrnak, J.; Prokosch, D.; Spence, B.; Towle, R.

    2000-09-05

    POV-Ray Ricochet Tracker is a freeware computer code developed to analyze high-speed fragment ricochet trajectory paths in complex 3-D areas such as explosives tiring chambers, facility equipment rooms, or shipboard Command and Control Centers. The code analyzes as many as millions of individual fragment trajectory paths in three dimensions and tracks these trajectory paths for up to four bounces through the three-dimensional model. It allows determination of the probabilities of hitting any designated areas or objects in the model. It creates renderings of any ricochet flight paths of interest in photo realistic renderings of the 3-D model. POV-Ray Ricochet Tracker is a customized version of the Persistence of Vision{trademark} Ray-Tracer (POV-Ray{trademark}) version 3.02 code for the Macintosh{trademark} Operating System (MacOS{trademark}). POV-Ray is a third generation graphics engine that creates three-dimensional, very high quality (photo-realistic) images with realistic reflections, shading, textures, perspective, and other effects using a rendering technique called ray-tracing. It reads a text tile that describes the objects, lighting, and camera location in a scene and generates an image of that scene from the viewpoint of the camera. More information about POV-Ray, including the executable and source code, may be found at http://www.povray.org. The customized code (POV-Ray Shrapnel Tracker, V3.02-Custom Build 2) generates individual fragment trajectory paths at any desired angle intervals in three dimensions. The code tracks these trajectory paths through any complex three-dimensional space, and outputs detailed data for each ray as requested by the user. The output may include trajectory source location, initial direction of each trajectory, vector data for each bounce point, and any impacts with designated model target surfaces during any trajectory segment (direct path or reflected paths). This allows determination of the three-dimensional trajectory of

  15. Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.

    PubMed

    Boeddeker, N; Lindemann, J P; Egelhaaf, M; Zeil, J

    2005-12-01

    The retinal image flow a blowfly experiences in its daily life on the wing is determined by both the structure of the environment and the animal's own movements. To understand the design of visual processing mechanisms, there is thus a need to analyse the performance of neurons under natural operating conditions. To this end, we recorded flight paths of flies outdoors and reconstructed what they had seen, by moving a panoramic camera along exactly the same paths. The reconstructed image sequences were later replayed on a fast, panoramic flight simulator to identified, motion sensitive neurons of the so-called horizontal system (HS) in the lobula plate of the blowfly, which are assumed to extract self-motion parameters from optic flow. We show that under real life conditions HS-cells not only encode information about self-rotation, but are also sensitive to translational optic flow and, thus, indirectly signal information about the depth structure of the environment. These properties do not require an elaboration of the known model of these neurons, because the natural optic flow sequences generate--at least qualitatively--the same depth-related response properties when used as input to a computational HS-cell model and to real neurons.

  16. UAV-Based L-Band SAR with Precision Flight Path Control

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  17. UAV-based L-band SAR with precision flight path control

    NASA Astrophysics Data System (ADS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.

    2005-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  18. UAV-Based L-Band SAR with Precision Flight Path Control

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  19. Strategies for Choosing Descent Flight-Path Angles for Small Jets

    NASA Technical Reports Server (NTRS)

    Wu, Minghong Gilbert; Green, Steven M.

    2012-01-01

    Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution.

  20. Singular perturbation techniques for on-line optimal flight path control

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1979-01-01

    This paper presents a partial evaluation on the use of singular perturbation methods for developing computer algorithms for on-line optimal control of aircraft. The evaluation is based on a study of the minimum time intercept problem using F-4 aerodynamic and propulsion data as a base line. The extensions over previous work on this subject are that aircraft turning dynamics (in addition to position and energy dynamics) are included in the analysis, the algorithm is developed for a moving end point and is adaptive to unpredictable target maneuvers, and short range maneuvers that do not have a cruise leg are included. Particular attention is given to identifying those quantities that can be precomputed and stored (as a function of aircraft total energy), thus greatly reducing the onboard computational load. Numerical results are given that illustrate the nature of the optimal intercept flight paths, and an estimate is given for the execution time and storage requirements of the control algorithm.

  1. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  2. Singular perturbation techniques for on-line optimal flight path control

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1979-01-01

    This paper presents a partial evaluation on the use of singular perturbation methods for developing computer algorithms for on-line optimal control of aircraft. The evaluation is based on a study of the minimum time intercept problem using F-4 aerodynamic and propulsion data as a base line. The extensions over previous work on this subject are that aircraft turning dynamics (in addition to position and energy dynamics) are included in the analysis, the algorithm is developed for a moving end point and is adaptive to unpredictable target maneuvers, and short range maneuvers that do not have a cruise leg are included. Particular attention is given to identifying those quantities that can be precomputed and stored (as a function of aircraft total energy), thus greatly reducing the onboard computational load. Numerical results are given that illustrate the nature of the optimal intercept flight paths, and an estimate is given for the execution time and storage requirements of the control algorithm.

  3. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    NASA Astrophysics Data System (ADS)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  4. Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.

    PubMed

    Dalecki, Marc; Bock, Otmar; Guardiera, Simon

    2010-05-01

    We have previously shown that subjects produce exaggerated manual forces in +3 Gz. When subjects execute discrete flight path changes in a flight simulator, their performance is less stable in +3 Gz than in +1 Gz. Here we explore whether Gz-related deficits are found with continuous flight path changes. Novice subjects and fighter pilots sat in a high-fidelity flight simulator equipped with the reproduction of the Eurofighter 2000 cockpit, including the realistic flight stick, and pursued continuous altitude changes of a target airplane in +1 Gz and +3 Gz. Subjects also produced verbal responses in a Stroop task. Pursuit and Stroop tasks were administered alone and concurrently. Flight instability increased in +3 Gz compared to +1 Gz in novices (+46%), but not in pilots (+3%), and even there only during the first minute. Flight performance improved after the first minute in both subject groups. Stroop reaction time was higher in novices (+5.27%) than in pilots (+3.77%) at +3 Gz. Dual-task costs did not differ between groups or Gz levels. Deficits of force production in high Gz are largely compensated for when subjects apply forces to produce a continuously changing flight path. This compensation seems not to require additional cognitive resources and may be achieved by using visual feedback. Force production deficits in high Gz seem to have no appreciable effects on flight performance and cognitive load of experienced pilots using a force-plus-displacement stick in +3 Gz. It remains to be shown whether this conclusion extends to purely isometric sticks and to higher Gz levels.

  5. Flight path control strategies and preliminary deltaV requirements for the 2007 Mars Phoenix (PHX) mission

    NASA Technical Reports Server (NTRS)

    Raofi, Behzad

    2005-01-01

    This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.

  6. Flight path control strategies and preliminary deltaV requirements for the 2007 Mars Phoenix (PHX) mission

    NASA Technical Reports Server (NTRS)

    Raofi, Behzad

    2005-01-01

    This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.

  7. Experiments to investigate the effect of flight path on direct containment heating (DCH) in the Surtsey test facility

    SciTech Connect

    Allen, M.D.; Pilch, M.; Griffith, R.O. ); Nichols, R.T. )

    1991-10-01

    The goal of the Limited Flight Path (LFP) test series was to investigate the effect of reactor subcompartment flight path length on direct containment heating (DCH). The test series consisted of eight experiments with nominal flight paths of 1, 2, or 8 m. A thermitically generated mixture of iron, chromium, and alumina simulated the corium melt of a severe reactor accident. After thermite ignition, superheated steam forcibly ejected the molten debris into a 1:10 linear scale the model of a dry reactor cavity. The blowdown steam entrained the molten debris and dispersed it into the Surtsey vessel. The vessel pressure, gas temperature, debris temperature, hydrogen produced by steam/metal reactions, debris velocity, mass dispersed into the Surtsey vessel, and debris particle size were measured for each experiment. The measured peak pressure for each experiment was normalized by the total amount of energy introduced into the Surtsey vessel; the normalized pressures increased with lengthened flight path. The debris temperature at the cavity exit was about 2320 K. Gas grab samples indicated that steam in the cavity reacted rapidly to form hydrogen, so the driving gas was a mixture of steam and hydrogen. These experiments indicate that debris may be trapped in reactor subcompartments and thus will not efficiently transfer heat to gas in the upper dome of a containment building. The effect of deentrainment by reactor subcompartments may significantly reduce the peak containment load in a severe reactor accident. 8 refs., 49 figs., 6 tabs.

  8. Empirical determination of solar proton access to the atmosphere: Impact on polar flight paths

    NASA Astrophysics Data System (ADS)

    Neal, Jason J.; Rodger, Craig J.; Green, Janet C.

    2013-07-01

    Violent expulsions on the Sun's surface release high energy solar protons that ultimately affect HF communication used by aircraft. The geomagnetic field screens the low altitude equatorial region, but these protons can access the atmosphere over the poles. The latitudes over which the solar protons can reach vary with geomagnetic indices such as Kp and Dst. In this study we use observations from low Earth orbit to determine the atmospheric access of solar protons and hence the flights paths most likely to be affected. Observations taken by up to six polar orbiting satellites during 15 solar proton events are analyzed. From this we determine 16,850 proton rigidity cutoff estimates across three energy channels. Empirical fits are undertaken to estimate the most likely behavior of the cutoff dependence with geomagnetic activity. The changing Kp value is found to lead the variation in the cutoffs by 3 h. We provide simple equations by which the geomagnetic latitude at which the protons impact the atmosphere can be determined from a given Kp or Dst value. The variation found in the cutoff with Kp is similar to that used in existing operational models, although we suggest that a 1-2° equatorward shift in latitude would provide greater accuracy. We find that a Kp predictive model can provide additional warning to the variation in proton cutoffs. Hence, a prediction of the cutoff latitudes can be made 3 h to as much as 7 h into the future, meeting suggested minimum planning times required by the aviation industry.

  9. Effects of Inboard Horizontal Field of View Display Limitations on Pilot Path Control During Total In-Flight Simulator (TIFS) Flight Test

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.

    1999-01-01

    A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.

  10. Differences in published characteristics of GLE60 and their consequences on computed radiation dose rates along selected flight paths

    NASA Astrophysics Data System (ADS)

    Bütikofer, R.; Flückiger, E. O.

    2013-02-01

    The radiation dose rates at flight altitudes can increase by orders of magnitude for a short time during energetic solar cosmic ray events, so called ground level enhancements (GLEs). Especially at high latitudes and flight altitudes, solar energetic particles superposed on galactic cosmic rays may cause radiation that exceeds the maximum allowed dosage limit for the general public. Therefore the determination of the radiation dose rate during GLEs should be as reliable as possible. Radiation dose rates along flight paths are typically determined by computer models that are based on cosmic ray flux and anisotropy parameters derived from neutron monitor and/or satellite measurements. The characteristics of the GLE on 15 April 2001 (GLE60) were determined and published by various authors. In this work we compare these results and investigate the consequences on the computed radiation dose rates along selected flight paths. In addition, we compare the computed radiation dose rates with measurements that were made during GLE60 on board two transatlantic flights.

  11. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    NASA Astrophysics Data System (ADS)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  12. Aircraft automatic digital flight control system with inversion of the model in the feed-forward path

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1984-01-01

    A full-flight-envelope automatic trajectory control system concept is being investigated at Ames Research Center. This concept was developed for advanced aircraft configurations with severe nonlinear characteristics. A feature of the system is an inverse of the complete nonlinear aircraft model as part of the feed-forward control path. Simulation and flight tests have been reported at previous Digital Avionics Systems conferences. A new method for the continuous real-time inversion of the aircraft model using a Newton-Raphson trim algorithm instead of the original inverse table look-up procedure has been developed. The results of a simulation study of a vertical attitude takeoff and landing aircraft using the new inversion technique are presented. Maneuvers were successfully carried out in all directions in the vertical-attitude hover mode. Transition runs from conventional flight through the region of lift-curve-slope reversal at an angle of attack of about 32 deg and to hover at zero speed in the vertical attitude showed satisfactory transient response. Simulations were also conducted in conventional flight at high subsonic speed in steep climb and with turns up to 4 g. Successful flight tests of the system with the new model-inversion technique in a UH-1H helicopter have recently been carried out.

  13. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace

    NASA Astrophysics Data System (ADS)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new

  14. A Flight Dynamic Simulation Program in Air-Path Axes Using ACSL (Advanced Continuous Simulation Language).

    DTIC Science & Technology

    1986-06-01

    NO-A±?3 649 A FLIGHT DYNANIC SINULRTION PROGRAM IN AIR-PRTH AXES 11𔃼 USING ACSL (ADVANCED.. (U) AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) P W...Aeronajutical Restvarch Laboratrmes, ....,. i P.O. Box 4331,M lo re Vic:toria. 3001, Aus trali ."-" Melbourne.-a ’ 𔃾’ -- .-,, : _" • , (C) CMMONWALTH F...of time dependent results . e Tne DERIVATIVE section contains tne aitnd1- of the six degrees look- of freedom flight model. Tr imm inrg o f tnte a ir

  15. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  16. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  17. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  18. [An experimental study of the flight path orientation of Hybomitra horseflies (Diptera: Tabanidae) under field conditions].

    PubMed

    Ivanov, V P

    1994-01-01

    Examined specimens of horseflies flew out of 3 start points disposed on the water surface of the lake, about 250-300 m from the coast line (I start point), 90 m (II start point), 20 m (III start point). This position of start points minimised the number of topographic landmarks for the horseflies and gave the possibility for a visual monitoring of flight trajectories. In favorable weather circumstances for the flight (17-22 degrees C, wind 0-1 m/sec, cloud 0-5%) the majority of horseflies demonstrated the flight trajectories to the most close points of the coast. The lesser favorable weather circumstances (16-17 degrees C, wind 3-5 m/sec, cloud 60-100%) decreased the number of horseflies flying to far points of the coast line; unfavorable weather circumstances (16-17 degrees C, wind 5-8 m/sec, cloud 80-100%) almost completely suppressed the flight activity on I start point and decreased it on II and III start points.

  19. The deep fovea, sideways vision and spiral flight paths in raptors.

    PubMed

    Tucker, V A

    2000-12-01

    the raptor down. Raptors could resolve this conflict by diving along a logarithmic spiral path with their head straight and one eye looking sideways at the prey, rather than following the straight path to the prey with their head turned sideways. Although the spiral path is longer than the straight path, a mathematical model for an 'ideal falcon' shows that the falcon could reach the prey more quickly along the spiral path because the speed advantage of a straight head more than compensates for the longer path.

  20. Analysis and Simulation for a Spotlight-Mode Aircraft SAR in Circular Flight Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.; Chen, Ming

    1993-01-01

    A wide azimuth beam SAR can offer higher resolution or wider azimuth viewing angle; two factors that help better characterize the backscattering property of targets for various science applications. One disadvantage of wide beam SAR is that a much higher pulse repetition frequency (PRF) is usually required since PRF is proportional to the radar beam angle. This problem can be resolved using a spotlight-mode concept: steering a narrow beam SAR to a fixed spot on the ground. The drawback of a spotlight-mode SAR is its limited coverage. A conventional spotlight-mode SAR operates along a straight line path as shown in Figure 1. It can be shown that spotlight-mode SAR that follows a straight line path has difficulty in achieving the ultimate resolution of lambda/4. It also cannot utilize the full 180 degree of azimuth viewing angle that can be attained only when the synthetic aperture length approaches infinity.

  1. Sensing and reconstruction of arbitrary light-in-flight paths by a relativistic imaging approach

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Klein, Jonathan; Bacher, Emmanuel; Metzger, Nicolas; Christnacher, Frank

    2016-10-01

    Transient light imaging is an emerging technology and interesting sensing approach for fundamental multidisciplinary research ranging from computer science to remote sensing. Recent developments in sensor technologies and computational imaging has made this emerging sensing approach a candidate for next generation sensor systems with rapidly increasing maturity but still relay on laboratory technology demonstrations. At ISL, transient light sensing is investigated by time correlated single photon counting (TCSPC). An eye-safe shortwave infrared (SWIR) TCSPC setup, consisting of an avalanche photodiode array and a pulsed fiber laser source, is used to investigate sparsely scattered light while propagating through air. Fundamental investigation of light in light are carried out with the aim to reconstruct the propagation path of arbitrary light paths. Light pulses are observed in light at various propagation angles and distances. As demonstrated, arbitrary light paths can be distinguished due to a relativistic effect leading to a distortion of temporal signatures. A novel method analyzing the time difference of arrival (TDOA) is carried out to determine the propagation angle and distance with respect to this relativistic effect. Based on our results, the performance of future laser warning receivers can be improved by the use of single photon counting imaging devices. They can detect laser light even when the laser does not directly hit the sensor or is passing at a certain distance.

  2. Synthesis of Generalized Vertical-Plane Weather Radar Imagery Along Aircraft Flight Paths

    DTIC Science & Technology

    2005-07-25

    weather data are derived from a number of Doppler radars covering different parts of...displayed. Such display is of great value for flight planning. I. INTRODUCTION Doppler weather radars are the primary source of de- tailed multi-parameter... weather radar chains such as the WSR-88D network and the more dedicated radars such as the Terminal Doppler Weather radar (TDWR). A number of

  3. Lévy flights in confining environments: Random paths and their statistics

    NASA Astrophysics Data System (ADS)

    Żaba, Mariusz; Garbaczewski, Piotr; Stephanovich, Vladimir

    2013-09-01

    We analyze a specific class of random systems that, while being driven by a symmetric Lévy stable noise, asymptotically set down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) ρ∗(x)˜exp[-Φ(x)]. This behavior needs to be contrasted with the standard Langevin representation of Lévy jump-type processes. It is known that the choice of the drift function in the Newtonian form ˜-∇Φ excludes the existence of the Boltzmannian pdf ˜exp[-Φ(x)] (Eliazar-Klafter no go theorem). In view of this incompatibility statement, our main goal here is to establish the appropriate path-wise description of the equilibrating jump-type process. A priori given inputs are (i) jump transition rates entering the master equation for ρ(x,t) and (ii) the target (invariant) pdf ρ∗(x) of that equation, in the Boltzmannian form. We resort to numerical methods and construct a suitable modification of the Gillespie algorithm, originally invented in the chemical kinetics context. The generated sample trajectories show up a qualitative typicality, e.g. they display structural features of jumping paths (predominance of small vs large jumps) specific to particular stability indices μ∈(0,2). The obtained random paths statistical data allow us to infer an associated pdf ρ(x,t) dynamics which stands for a validity check of our procedure. The considered exemplary Boltzmannian equilibria ˜exp[-Φ(x)] refer to (i) harmonic potential Φ˜x2, (ii) logarithmic potential Φ˜nln(1+x2) with n=1,2 and (iii) locally periodic confining potential Φ˜sin2(2πx),|x|≤2, Φ˜(x2-4),|x|>2.

  4. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    PubMed Central

    Hall, Graham P.; McDonald, Paul G.

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  5. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  6. The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors

    NASA Astrophysics Data System (ADS)

    Moongweluwan, M.

    2016-02-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.

  7. Evaluation of a computer-generated perspective tunnel display for flight path following

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.; Robertson, J. B.; Hatfield, J. J.

    1980-01-01

    The display was evaluated by monitoring pilot performance in a fixed base simulator with the vehicle dynamics of a CH-47 tandem rotor helicopter. Superposition of the predicted future vehicle position on the tunnel image was also investigated to determine whether, and to what extent, it contributes to better system performance (the best predicted future vehicle position was sought). Three types of simulator experiments were conducted: following a desired trajectory in the presence of disturbances; entering the trajectory from a random position, outside the trajectory; detecting and correcting failures in automatic flight. The tunnel display with superimposed predictor/director symbols was shown to be a very successful combination, which outperformed the other two displays in all three experiments. A prediction time of 4 to 7 sec. was found to optimize trajectory tracking for the given vehicle dynamics and flight condition. Pilot acceptance of the tunnel plus predictor/director display was found to be favorable and the time the pilot needed for familiarization with the display was found to be relatively short.

  8. Volume-imaging lidar observations of the convective structure surrounding the flight path of a flux-measuring aircraft

    NASA Astrophysics Data System (ADS)

    Eloranta, Edwin W.; Forrest, Daniel K.

    1992-11-01

    The University of Wisconsin volume imaging lidar has been used to portray images of the three-dimensional structure of clear air convective plumes in the atmosphere surrounding the flight path of the instrumented Twin Otter aircraft operated by the National Aeronautical Establishment (NAE) of Canada. Lidar images provide a context for interpretation of the aircraft measurements. The position of data points within a convective element can be determined and the temporal development of the plume can be observed to time the observation with respect to the life cycle of the plume. Plots of the vertical flux of water vapor, q'w', superimposed on lidar images clearly demonstrate the well-known sampling difficulties encountered when attempting to measure fluxes near the top of the convective layer. When Loran was used to determine average aircraft velocity, flight-leg-averaged horizontal winds measured by the aircraft and area-averaged winds measured by lidar agree to within 0.2 m s-1 in speed and 1° in direction.

  9. Volume-imaging lidar observations of the convective structure surrounding the flight path of a flux-measuring aircraft

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W.; Forrest, Daniel K.

    1992-01-01

    The University of Wisconsin volume imaging lidar has been used to portray images of the three-dimensional structure of clear air convective plumes in the atmosphere surrounding the flight path of the instrumented Twin Otter aircraft operated by the National Aeronautical Establishment of Canada. Lidar images provide a context for interpretation of the aircraft measurements. The position of data points within a convective element can be determined and the temporal development of the plume can be observed to time the observation with respect to the life cycle of the plume. Plots of the vertical flux of water vapor, superimposed on lidar images clearly demonstrate the well-known sampling difficulties encountered when attempting to measure fluxes near the top of the convective layer. When loran was used to determine average aircraft velocity, flight-leg-averaged horizontal winds measured by the aircraft and area-averaged winds measured by lidar agree to within 0.2 m/s in speed and 1 deg in direction.

  10. An evaluation of flight path management automation in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.

    1991-01-01

    A desk-top simulation of a Boeing 757/767 Electronic Flight Instrumentation System (EFIS) and Control Display Unit (CDU) was used in an experiment to compare three modes of communication for the clearance amendment process: standard voice procedures, a textual delivery method, and a graphical delivery method. Eight qualified Boeing 757/767 pilots served as subjects. Each flew nine landing scenarios with three amendments given in each scenario. Both acceptable and unacceptable clearance amendments were presented in order to assess situational awareness. Times for comprehension and execution of the amendment were recorded along with workload ratings, responses to unacceptable amendments, and subjective impressions. The graphical mode was found to be superior in terms of the time measures and subjective ratings. No difference was found between the modes in the ability to detect unacceptable clearances.

  11. An evaluation of flight path management automation in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.

    1991-01-01

    A desk-top simulation of a Boeing 757/767 Electronic Flight Instrumentation System (EFIS) and Control Display Unit (CDU) was used in an experiment to compare three modes of communication for the clearance amendment process: standard voice procedures, a textual delivery method, and a graphical delivery method. Eight qualified Boeing 757/767 pilots served as subjects. Each flew nine landing scenarios with three amendments given in each scenario. Both acceptable and unacceptable clearance amendments were presented in order to assess situational awareness. Times for comprehension and execution of the amendment were recorded along with workload ratings, responses to unacceptable amendments, and subjective impressions. The graphical mode was found to be superior in terms of the time measures and subjective ratings. No difference was found between the modes in the ability to detect unacceptable clearances.

  12. Conformal flight path symbology for head-up displays: Defining the distribution of visual attention in three-dimensional space

    NASA Astrophysics Data System (ADS)

    Ververs, Patricia May

    An extensive investigation of the format for head-up display (HUD) instrumentation was conducted in a two-part experiment. First, a pilot's information requirements for the tasks of approach, landing, and taxi were determined through a survey administered to professional commercial pilots via the world wide web. The results of the survey were applied in the development of two symbology sets, one set for flight navigation and the second for ground navigation. Second, twenty pilots from the University of Illinois at Urbana-Champaign were recruited to participate in a 3-day experiment. The study was designed to investigate the format for symbology on HUDs and the performance effects of using conformal and partially conformal symbology to support the pilots' tasks. In addition, two different methods were investigated for supporting the pilots' transition between the task of flying and the task of landing. A seamless transition used visual momentum techniques to smoothly guide the pilots' cognitive transition between the serial displays and the associated tasks. A seamed approach employed an abrupt change between the displays to alert the pilots of the task switch. The results indicate that incorporating a virtually conformal, tunnel-in-the-sky symbology into a complete HUD instrumentation set offers promising pilot performance effects. Pilots easily navigated the complex curved approaches with little to no deviation from the flight path (approximately 10 feet), while performing the secondary tasks of the scanning their instruments and the environment. The seamless transition between the flight and ground symbology offered the pilots a preview of the upcoming landing task, thereby preparing them for the task switch. On the ground, the perspective (scene-linked) symbology set supported landing and taxi navigation tasks with the equal efficiency to the plan view display but with much greater precision. Theories of allocation of attention were used to interpret the

  13. Flight tests of three-dimensional path-redefinition algorithms for transition from Radio Navigation (RNAV) to Microwave Landing System (MLS) navigation when flying an aircraft on autopilot

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1988-01-01

    This report contains results of flight tests for three path update algorithms designed to provide smooth transition for an aircraft guidance system from DME, VORTAC, and barometric navaids to the more precise MLS by modifying the desired 3-D flight path. The first algorithm, called Zero Cross Track, eliminates the discontinuity in cross-track and altitude error at transition by designating the first valid MLS aircraft position as the desired first waypoint, while retaining all subsequent waypoints. The discontinuity in track angle is left unaltered. The second, called Tangent Path, also eliminates the discontinuity in cross-track and altitude errors and chooses a new desired heading to be tangent to the next oncoming circular arc turn. The third, called Continued Track, eliminates the discontinuity in cross-track, altitude, and track angle errors by accepting the current MLS position and track angle as the desired ones and recomputes the location of the next waypoint. The flight tests were conducted on the Transportation Systems Research Vehicle, a small twin-jet transport aircraft modified for research under the Advanced Transport Operating Systems program at Langley Research Center. The flight tests showed that the algorithms provided a smooth transition to MLS.

  14. Path-integral formulation for Lévy flights: Evaluation of the propagator for free, linear, and harmonic potentials in the over- and underdamped limits

    NASA Astrophysics Data System (ADS)

    Janakiraman, Deepika; Sebastian, K. L.

    2012-12-01

    Lévy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases.

  15. Comparative Flow Path Analysis and Design Assessment of an Axisymmetric Hydrogen Fueled Scramjet Flight Test Engine at a Mach Number of 6.5

    NASA Technical Reports Server (NTRS)

    McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.

    1991-01-01

    NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.

  16. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  17. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  18. Motion of a ballistic missile angularly misaligned with the flight path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic loads, and miss distance

    NASA Technical Reports Server (NTRS)

    Allen, Julian H

    1957-01-01

    An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.

  19. Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Barber, M. R.; Garodz, L. J.

    1976-01-01

    A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria.

  20. Goldstein-Kac telegraph processes with random speeds: Path probabilities, likelihoods, and reported Lévy flights

    NASA Astrophysics Data System (ADS)

    Sim, Aaron; Liepe, Juliane; Stumpf, Michael P. H.

    2015-04-01

    The Goldstein-Kac telegraph process describes the one-dimensional motion of particles with constant speed undergoing random changes in direction. Despite its resemblance to numerous real-world phenomena, the singular nature of the resultant spatial distribution of each particle precludes the possibility of any a posteriori empirical validation of this random-walk model from data. Here we show that by simply allowing for random speeds, the ballistic terms are regularized and that the diffusion component can be well-approximated via the unscented transform. The result is a computationally efficient yet robust evaluation of the full particle path probabilities and, hence, the parameter likelihoods of this generalized telegraph process. We demonstrate how a population diffusing under such a model can lead to non-Gaussian asymptotic spatial distributions, thereby mimicking the behavior of an ensemble of Lévy walkers.

  1. Goldstein-Kac telegraph processes with random speeds: Path probabilities, likelihoods, and reported Lévy flights.

    PubMed

    Sim, Aaron; Liepe, Juliane; Stumpf, Michael P H

    2015-04-01

    The Goldstein-Kac telegraph process describes the one-dimensional motion of particles with constant speed undergoing random changes in direction. Despite its resemblance to numerous real-world phenomena, the singular nature of the resultant spatial distribution of each particle precludes the possibility of any a posteriori empirical validation of this random-walk model from data. Here we show that by simply allowing for random speeds, the ballistic terms are regularized and that the diffusion component can be well-approximated via the unscented transform. The result is a computationally efficient yet robust evaluation of the full particle path probabilities and, hence, the parameter likelihoods of this generalized telegraph process. We demonstrate how a population diffusing under such a model can lead to non-Gaussian asymptotic spatial distributions, thereby mimicking the behavior of an ensemble of Lévy walkers.

  2. Path discrepancies between great circle and rhumb line

    NASA Technical Reports Server (NTRS)

    Kaul, Rajan

    1987-01-01

    A simulation of a mathematical model to compute path discrepancies between great circle and rhumb line flight paths is presented. The model illustrates that the path errors depend on the latitude, the bearing, and the trip length of the flight.

  3. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  4. Flight Planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  5. UAVSAR Flight-Planning System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  6. A Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS sensor following flight under the path of the F-5E SSBE aircraft

    NASA Image and Video Library

    2004-01-13

    A United States Air Force Test Pilot School Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS (Boom Amplitudes Direction System) sensor following flight at an altitude of 10 thousand feet under the path of the F-5E SSBE aircraft. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.

  7. Path Finder

    SciTech Connect

    Rigdon, J. Brian; Smith, Marcus Daniel; Mulder, Samuel A

    2014-01-07

    PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

  8. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    SciTech Connect

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sender and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.

  9. Kinetographic determination of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Raethjen, P; Knott, H

    1927-01-01

    The author's first experiments with a glider on flight characteristics demonstrated that an accurate flight-path measurement would enable determination of the polar diagram from a gliding flight. Since then he has endeavored to obtain accurate flight measurements by means of kinetograph (motion-picture camera). Different methods of accomplishing this are presented.

  10. Path ANalysis

    SciTech Connect

    Snell, Mark K.

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.

  11. Propulsion PathFinder (PPF)

    NASA Technical Reports Server (NTRS)

    Marmie, John A.

    2015-01-01

    NASA's Propulsion PathFinder (PPF) project will flight test a variety of CubeSat propulsion systems in a relevant space environment, thereby elevating the Technology Readiness Level (TRL), or technology maturity level, of these subsystems to TRL 7. A series of flights are planned in low Earth orbit to characterize the performance of each propulsion system and demonstrate the capability to perform orbital maneuvers.

  12. Path Pascal

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.

    1983-01-01

    Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.

  13. Path Pascal

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.

    1983-01-01

    Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.

  14. Flying complex approach paths using the microwave landing system

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1986-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide guidance for manually controlled flight along complex, curved approach paths within the microwave landing system signal coverage. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on complex, curved approach paths. Each of the three guidance algorithms tested could be used to fly the paths. However, pilot comments indicated that the use of guidance based on capturing the next straight path segment may not be acceptable since full-scale lateral deflections normally resulted during turns. Pilot comments indicated that all the approach paths tested could be used in normal airline operations. Approach paths with both multiple, sequential turns and short final path segments were demonstrated.

  15. AFMS Flight Path: Building Future Leaders

    DTIC Science & Technology

    2009-02-12

    Better Leaders: Developing Air Force Squadron Leadership for the Next Century. National Security Program Discussion Paper Series 03-001. Cambridge, Mass...Building Better Leaders: Developing Air Force Squadron Leadership for the Next Century. National Security Program Discussion Paper Series 03‐001

  16. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  17. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  18. Utilization of path length fuzing in the Peacekeeper Weapon System

    NASA Astrophysics Data System (ADS)

    Jackson, A. D.

    This paper presents a discussion of the utilization and implementation of path length fuzing in the Peacekeeper Weapon System. Some background information which introduces the concept of path length fuzing and discusses its applicability to the Peacekeeper is first presented. Mathematical modeling of path length fuzing is discussed, and some novel algorithms and techniques developed by the author for implementation of path length fuzing in the Peacekeeper Operational Flight Program are presented. The scope of this paper is confined to the flight software and targeting aspects of path length fuzing; details of of the fuze hardware and electronics are not addressed.

  19. Multiple paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene; Wiegand, Thomas; Mark, Gloria

    1987-01-01

    The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.

  20. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  1. Flight Simulation.

    DTIC Science & Technology

    1986-09-01

    lefthand corner of the flight envelope relatively unexplored. This is precisely the flight regime where asymmetric thrust is most critical, however, due...seven data flights were conducted in the late spring of 1979. Seven right-seat subjects (all Caispan employees ) with differing flight experience were

  2. Flight evaluation: Ohio University omega receiver base

    NASA Technical Reports Server (NTRS)

    Chamberlin, K. A.; Lilley, R. W.; Salter, R. J.

    1974-01-01

    A flight evaluation is presented of the Ohio University Omega Receiver Base, developed under the NASA Tri-University Program in Air Transportation, to provide a vehicle for the transfer of flight-test data to NASA and to other participants in the Tri-University program. Chart recordings of flight data are given, along with chronological listings of significant events which occurred during the flight. Digital data was prepared in data-processing card form for distribution. Data include phase measurements from all eight Omega time-slots for the duration of the flight, plus event marks which serve to correlate the phase data with flight-path documentation.

  3. Last Flight for GRAIL's Twin Spacecraft

    NASA Image and Video Library

    This animation shows the final flight path for NASA’s twin GravityRecovery and Interior Laboratory (GRAIL) mission spacecraft, which willimpact the moon on Dec. 17, 2012, around 2:28 p.m. PST. ...

  4. Flight in low-level wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.

  5. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  6. 75 FR 22519 - Airworthiness Directives; Honeywell International Inc., Primus EPIC and Primus APEX Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... its scheduled flight path, and result in possible collision with other aircraft or terrain. DATES... transport airplanes: Chip Adam, Flight Test Pilot, Flight Test Branch, ANM-160L, FAA, Los Angeles Aircraft... during flight. Because of our requirement to promote safe flight of civil aircraft and thus the...

  7. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  8. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  9. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  10. Design of energy-based terrain following flight control system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Aijun; Xie, Yanwu; Tan, Jian

    2006-11-01

    Historically, aircraft longitudinal control has been realized by means of two loops: flight path (the control variable is elevator displacement) and speed control (the control variable is propulsive thrust or engine power). Both the elevator and throttle control cause coupled altitude and speed response, which exerts negative effects on longitudinal flight performance of aircraft, especially for Terrain Following(TF) flight. Energy-based method can resolve coupled problem between flight speed and path by controlling total energy rate and energy distribution rate between elevator and throttle. In this paper, energy-based control method is applied to design a TF flight control system for controlling flight altitude directly. An error control method of airspeed and altitude is adopted to eliminate the stable error of the total energy control system when decoupling control. Pitch loop and pitch rate feedback loop are designed for the system to damp the oscillatory response produced by TF system. The TF flight control system structure diagram and an aircraft point-mass energy motion model including basic control loops are given and used to simulate decoupling performance of the TF fight control system. Simulation results show that the energy-based TF flight control system can decouple flight velocity and flight path angle, exactly follow planned flight path, and greatly reduce altitude error, which is between +10m and -8m.

  11. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  12. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  13. The Thinnest Path Problem

    DTIC Science & Technology

    2016-07-22

    single source to all other nodes in the network do not form a tree . In other words, the thinnest path to a node does not necessarily go through the...thinnest path to any of its neighbors. The loss of the tree structure is one of the main reasons that the thinnest path problem is much more complex than...path (referred to as the secluded path in [6]) and the thinnest Steiner tree in graphs. They showed that the problem in a general graph is NP-complete

  14. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  15. The universal path integral

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Dreyer, Olaf

    2016-02-01

    Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  16. Flight directors for STOl aircraft

    NASA Technical Reports Server (NTRS)

    Rabin, U. H.

    1983-01-01

    Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

  17. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  18. Path Integrals and Hamiltonians

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2014-03-01

    1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.

  19. Pulled Motzkin paths

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  20. System and Method for Aiding Pilot Preview, Rehearsal, Review, and Real-Time Visual Acquisition of Flight Mission Progress

    NASA Technical Reports Server (NTRS)

    Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)

    2012-01-01

    Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.

  1. Path discrepancies between great circle and rhumb line

    NASA Technical Reports Server (NTRS)

    Kaul, R.

    1983-01-01

    A mathematical model for a comparative analysis of great circle vs. rhumb line navigation in the continental United States has been developed at the Avionics Engineering Center, Ohio University. A FORTRAN simulation of the model has been implemented on the IBM 370 computer. The simulation predicts pertinent navigation information for the two flight paths. The basis for the project, which is a part of an M.S. thesis, is to provide a data base for computing discrepancies between the two flight paths. This document briefly describes the model and discusses the implications of the results obtained.

  2. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David (Principal Investigator)

    1997-01-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  3. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Astrophysics Data System (ADS)

    Jewitt, David C.

    1997-11-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  4. Radiological Assistance Program Flight Planning Tool

    SciTech Connect

    Messick, C.; Pham, M.; Ridgeway, J.; Smith, R.

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  5. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Copies of the U.S. Human Space Flight Plans Committee report are seen in the foreground of Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, left, and committee member Ed Crawley, right, during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  6. Zero-Slack, Noncritical Paths

    ERIC Educational Resources Information Center

    Simons, Jacob V., Jr.

    2017-01-01

    The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…

  7. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  8. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  9. Paths to Remarriage.

    ERIC Educational Resources Information Center

    Spanier, Graham B.; Glick, Paul C.

    1980-01-01

    Presents a demographic analysis of the paths to remarriage--the extent and timing of remarriage, social factors associated with remarriage, and the impact of the event which preceded remarriage (divorce or widowhood). (Author)

  10. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  11. Development of Field Measurement Systems for Flight Vehicle Noise

    NASA Technical Reports Server (NTRS)

    Yu, James C.; Wright, Kenneth D.; Preisser, John S.; Marcolini, Michael A.

    1999-01-01

    Field measurement of noise radiated from flight vehicles is an important element of aircraft noise research programs. At NASA Langley, a dedicated effort that spans over two decades was devoted to the development of acoustic measurement systems to support the NASA noise research programs. The new challenge for vehicle operational noise reduction through varying glide slope and flight path require noise measurement to be made over a very large area under the vehicle flight path. Such a challenge can be met through the digital remote system currently under final development at NASA Langley.

  12. The reweighted path ensemble

    NASA Astrophysics Data System (ADS)

    Rogal, Jutta; Lechner, Wolfgang; Juraszek, Jarek; Ensing, Bernd; Bolhuis, Peter G.

    2010-11-01

    We introduce a reweighting scheme for the path ensembles in the transition interface sampling framework. The reweighting allows for the analysis of free energy landscapes and committor projections in any collective variable space. We illustrate the reweighting scheme on a two dimensional potential with a nonlinear reaction coordinate and on a more realistic simulation of the Trp-cage folding process. We suggest that the reweighted path ensemble can be used to optimize possible nonlinear reaction coordinates.

  13. A study of interior noise levels, noise sources and transmission paths in light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Murray, B. S.; Theobald, M. A.

    1983-01-01

    The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.

  14. Paths to nursing leadership.

    PubMed

    Bondas, Terese

    2006-07-01

    The aim was to explore why nurses enter nursing leadership and apply for a management position in health care. The study is part of a research programme in nursing leadership and evidence-based care. Nursing has not invested enough in the development of nursing leadership for the development of patient care. There is scarce research on nurses' motives and reasons for committing themselves to a career in nursing leadership. A strategic sample of 68 Finnish nurse leaders completed a semistructured questionnaire. Analytic induction was applied in an attempt to generate a theory. A theory, Paths to Nursing Leadership, is proposed for further research. Four different paths were found according to variations between the nurse leaders' education, primary commitment and situational factors. They are called the Path of Ideals, the Path of Chance, the Career Path and the Temporary Path. Situational factors and role models of good but also bad nursing leadership besides motivational and educational factors have played a significant role when Finnish nurses have entered nursing leadership. The educational requirements for nurse leaders and recruitment to nursing management positions need serious attention in order to develop a competent nursing leadership.

  15. Optimal nonlinear estimation for aircraft flight control in wind shear

    NASA Technical Reports Server (NTRS)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  16. Command Flight Path Display. Phase I and II.

    DTIC Science & Technology

    1983-09-01

    cards with ribbon cable, an RS-449 extension cable, an E&S RS-449 SYNC six-foot cable assembly, a RS-449 loop back plug and a DEC/rMRll software...Support was provided as required. c. Ribbon cables were routed to prevent chafing. d. Clips were added across the tops of the DEC circuit cards to...insure faultless operation in the aircraft environment. A... Three ribbon cables provided the connections from the tape transport to the tape controller

  17. Flight Path Control Design for the Cassini Solstice Mission

    NASA Technical Reports Server (NTRS)

    Ballard, Christopher G.; Ionasescu, Rodica

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn for just over 7 years, with a planned 7-year extension, called the Solstice Mission, which started on September 27, 2010. The Solstice Mission includes 205 maneuvers and 70 flybys which consist of the moons Titan, Enceladus, Dione, and Rhea. This mission is designed to use all available propellant with a statistical margin averaging 0.6 m/s per encounter, and the work done to prove and ensure the viability of this margin is highlighted in this paper.

  18. AN ANALYSIS OF TERMINAL FLIGHT PATH CONTROL IN CARRIER LANDING

    DTIC Science & Technology

    Fresnel lens optical landing system/(FLOLS)/pilot/aircraft system, considering deck motions and air turbulence inputs. Performance of this model in terms of terminal conditions in the vertical plane (ramp clearance, impact velocity, dispersion of the touchdown point) and aircraft longitudinal motions in the groove prior to touchdown is consistent with and validated by actual performance. The terminal dispersions are statistically combined to yield probabilities of potential ramp strikes, landing gear failures, and bolters, which, when put through a simplified pilot/LSO

  19. On-line determination of optimal flight paths for helicopters

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Stoughton, M.

    1984-01-01

    A procedure for computing fuel optimal fixed range trajectories is developed for helicopters. The algorithm uses a simplified dynamic model and a climb-cruise-descent assumption which simplifies the variational problem to an algebraic minimization. Development of the performance model is discussed extensively and representative results for the S-61 and S-76 helicopters are presented. The results show that the model and optimization algorithm are small enough and simple enough to be incorporated into an on-line optimization algorithm.

  20. Developing Air Force Systems Engineers - a Flight Path

    DTIC Science & Technology

    2012-12-01

    to viewing problems from different perspectives. Specialists generally see the world through the lens of their own specialty. To paraphrase Abraham ... Maslow : If all you have is a hammer, everything looks like a nail. Systems engineers are supposed to take a different approach to problem solving

  1. Flight Path Control Design for the Cassini Solstice Mission

    NASA Technical Reports Server (NTRS)

    Ballard, Christopher G.; Ionasescu, Rodica

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn for just over 7 years, with a planned 7-year extension, called the Solstice Mission, which started on September 27, 2010. The Solstice Mission includes 205 maneuvers and 70 flybys which consist of the moons Titan, Enceladus, Dione, and Rhea. This mission is designed to use all available propellant with a statistical margin averaging 0.6 m/s per encounter, and the work done to prove and ensure the viability of this margin is highlighted in this paper.

  2. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) of this section, reduced at each point by a gradient of climb equal to— (1) 0.8 percent for two... airplanes. (c) The prescribed reduction in climb gradient may be applied as an equivalent reduction...

  3. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... paragraph (a) of this section, reduced at each point by a gradient of climb equal to— (1) 0.8 percent for... airplanes. (c) The prescribed reduction in climb gradient may be applied as an equivalent reduction...

  4. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) of this section, reduced at each point by a gradient of climb equal to— (1) 0.8 percent for two... airplanes. (c) The prescribed reduction in climb gradient may be applied as an equivalent reduction...

  5. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... paragraph (a) of this section, reduced at each point by a gradient of climb equal to— (1) 0.8 percent for... airplanes. (c) The prescribed reduction in climb gradient may be applied as an equivalent reduction...

  6. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  7. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; hide

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  8. Slow Lévy flights

    NASA Astrophysics Data System (ADS)

    Boyer, Denis; Pineda, Inti

    2016-02-01

    Among Markovian processes, the hallmark of Lévy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Lévy laws, as well as Gaussian distributions, can also be the limit distributions of processes with long-range memory that exhibit very slow diffusion, logarithmic in time. These processes are path dependent and anomalous motion emerges from frequent relocations to already visited sites. We show how the central limit theorem is modified in this context, keeping the usual distinction between analytic and nonanalytic characteristic functions. A fluctuation-dissipation relation is also derived. Our results may have important applications in the study of animal and human displacements.

  9. In-flight turbulence benefits soaring birds

    USGS Publications Warehouse

    Mallon, Julie M; Bildstein, Keith L.; Katzner, Todd E.

    2015-01-01

    Birds use atmospheric updrafts to subsidize soaring flight. We observed highly variable soaring flight by Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in Virginia, USA, that was inconsistent with published descriptions of terrestrial avian flight. Birds engaging in this behavior regularly deviated vertically and horizontally from linear flight paths. We observed the soaring flight behavior of these 2 species to understand why they soar in this manner and when this behavior occurs. Vultures used this type of soaring mainly at low altitudes (<50 m), along forest edges, and when conditions were poor for thermal development. Because of the tortuous nature of this flight, we describe it as “contorted soaring.” The primary air movement suitable to subsidize flight at this altitude and under these atmospheric conditions is small-scale, shear-induced turbulence, which our results suggest can be an important resource for soaring birds because it permits continuous subsidized flight when other types of updraft are not available.

  10. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  11. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  12. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  13. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  14. Green Flight Challenge

    NASA Image and Video Library

    The CAFE Green Flight Challenge sponsored by Google will be held at the CAFE Foundation Flight Test Center at Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. The Green Flight Challeng...

  15. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  16. NASA's Flight Opportunities Program

    NASA Image and Video Library

    NASA's Flight Opportunities Program is facilitating low-cost access to suborbital space, where researchers can test technologies using commercially developed vehicles. Suborbital flights can quickl...

  17. Estimating mountain wave windspeeds from sailplane flight data

    NASA Astrophysics Data System (ADS)

    Millane, Rick P.; Brown, Richard G.; Enevoldson, Einar; Murray, James E.

    2004-10-01

    Airflow over mountainous terrain can produce atmospheric waves in the lee of the mountains that have large vertical air velocities. These waves are used as sources of lift by sailplane pilots. Methods are developed for inverting flight data of airspeed and GPS-derived position to obtain estimates of the vector windspeed in mountain waves. Data from flight path segments with significantly different ground velocities within a region of constant windspeed give a well-determined solution for the windspeed. The methods are applied to flight data from a Perlan Project flight in lee waves of the Sierra Nevada Mountains in California.

  18. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  19. Gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Johnson, R. D. (Inventor)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  20. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  1. Transition Path Sampling Methods

    NASA Astrophysics Data System (ADS)

    Dellago, C.; Bolhuis, P. G.; Geissler, P. L.

    Transition path sampling, based on a statistical mechanics in trajectory space, is a set of computational methods for the simulation of rare events in complex systems. In this chapter we give an overview of these techniques and describe their statistical mechanical basis as well as their application.

  2. Stirling to Flight Initiative

    NASA Technical Reports Server (NTRS)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  3. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Copies of the U.S. Human Space Flight Plans Committee report are seen at a press conference where the committee released it's report findings on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  4. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine answers a reporters question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  5. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    U.S. Human Space Flight Plans Committee member Ed Crawley answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  6. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  7. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    U.S. Human Space Flight Plans Committee member Ed Crawley, right, answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  8. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    NASA Public Affairs Officer Doc Mirelson, left, and Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, right, listen to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  9. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  10. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  11. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  12. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  13. Nonadiabatic transition path sampling

    NASA Astrophysics Data System (ADS)

    Sherman, M. C.; Corcelli, S. A.

    2016-07-01

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.

  14. Entanglement by Path Identity.

    PubMed

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-24

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  15. Entanglement by Path Identity

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  16. PathMaster

    PubMed Central

    Mattie, Mark E.; Staib, Lawrence; Stratmann, Eric; Tagare, Hemant D.; Duncan, James; Miller, Perry L.

    2000-01-01

    Objective: Currently, when cytopathology images are archived, they are typically stored with a limited text-based description of their content. Such a description inherently fails to quantify the properties of an image and refers to an extremely small fraction of its information content. This paper describes a method for automatically indexing images of individual cells and their associated diagnoses by computationally derived cell descriptors. This methodology may serve to better index data contained in digital image databases, thereby enabling cytologists and pathologists to cross-reference cells of unknown etiology or nature. Design: The indexing method, implemented in a program called PathMaster, uses a series of computer-based feature extraction routines. Descriptors of individual cell characteristics generated by these routines are employed as indexes of cell morphology, texture, color, and spatial orientation. Measurements: The indexing fidelity of the program was tested after populating its database with images of 152 lymphocytes/lymphoma cells captured from lymph node touch preparations stained with hematoxylin and eosin. Images of “unknown” lymphoid cells, previously unprocessed, were then submitted for feature extraction and diagnostic cross-referencing analysis. Results: PathMaster listed the correct diagnosis as its first differential in 94 percent of recognition trials. In the remaining 6 percent of trials, PathMaster listed the correct diagnosis within the first three “differentials.” Conclusion: PathMaster is a pilot cell image indexing program/search engine that creates an indexed reference of images. Use of such a reference may provide assistance in the diagnostic/prognostic process by furnishing a prioritized list of possible identifications for a cell of uncertain etiology. PMID:10887168

  17. Four paths of competition

    SciTech Connect

    Studness, C.M.

    1995-05-01

    The financial community`s focus on utility competition has been riveted on the proceedings now in progress at state regulatory commissions. The fear that something immediately damaging will come out of these proceedings seems to have diminished in recent months, and the stock market has reacted favorably. However, regulatory developments are only one of four paths leading to competition; the others are the marketplace, the legislatures, and the courts. Each could play a critical role in the emergence of competition.

  18. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  19. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  20. Tentative civil airworthiness flight criteria for powered-lift transports

    NASA Technical Reports Server (NTRS)

    Hynes, C. S.; Scott, B. C.

    1976-01-01

    Representatives of the U.S., British, French, and Canadian airworthiness authorities participated in a NASA/FAA program to formulate tentative civil airworthiness flight criteria for powered-lift transports. The ultimate limits of the flight envelope are defined by boundaries in the airspeed/path-angle plane. Angle of attack and airspeed margins applied to these ultimate limits provide protection against both atmospheric disturbances and disturbances resulting from pilot actions or system variability, but do not ensure maneuvering capability directly, as the 30% speed margin does for conventional transports. Separate criteria provide for direct demonstration of adequate capability for approach path control, flare and landing, and for go-around. Demonstration maneuvers are proposed, and appropriate abuses and failures are suggested. Taken together, these criteria should permit selection of appropriate operating points within the flight envelopes for the approach, landing, and go-around flight phases which are likely to be most critical for powered-lift aircraft.

  1. Optimal symmetric flight with an intermediate vehicle model

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1983-01-01

    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.

  2. X-33 Flight Visualization

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    1998-01-01

    The X-33 flight visualization effort has resulted in the integration of high-resolution terrain data with vehicle position and attitude data for planned flights of the X-33 vehicle from its launch site at Edwards AFB, California, to landings at Michael Army Air Field, Utah, and Maelstrom AFB, Montana. Video and Web Site representations of these flight visualizations were produced. In addition, a totally new module was developed to control viewpoints in real-time using a joystick input. Efforts have been initiated, and are presently being continued, for real-time flight coverage visualizations using the data streams from the X-33 vehicle flights. The flight visualizations that have resulted thus far give convincing support to the expectation that the flights of the X-33 will be exciting and significant space flight milestones... flights of this nation's one-half scale predecessor to its first single-stage-to-orbit, fully-reusable launch vehicle system.

  3. Feasibility Study for Integrated Flight Trajectory Control (Fighter).

    DTIC Science & Technology

    1979-11-01

    ntamber) Flight Trajectory C.ntrol Control Law Development Profile Synthesis Tactical Situation Display Four -Dimensional Navigation Vertical Situation...realtime trajectory generation was developed as a vital part of the total solution. This trajectory, generator operates in four dimensions, X, Y...FLIGHT PROFILE SYNTHESIS 5-1 5.1 Four -Dimensional Trajectory Generator 5-1 5.1.1 Waypoint Parameters 5-1 5.1.2 Threat Avoidance 5-2 5.1.3 Horizontal Path

  4. Tracking hurricane paths

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Nagarajan; Rishe, Naphtali; Athauda, Rukshan

    1997-01-01

    The South East coastal region experiences hurricane threat for almost six months in every year. To improve the accuracy of hurricane forecasts, meteorologists would need the storm paths of both the present and the past. A hurricane path can be established if we could identify the correct position of the storm at different times right from its birth to the end. We propose a method based on both spatial and temporal image correlations to locate the position of a storm from satellite images. During the hurricane season, the satellite images of the Atlantic ocean near the equator are examined for the hurricane presence. This is accomplished in two steps. In the first step, only segments with more than a particular value of cloud cover are selected for analysis. Next, we apply image processing algorithms to test the presence of a hurricane eye in the segment. If the eye is found, the coordinate of the eye is recorded along with the time stamp of the segment. If the eye is not found, we examine adjacent segments for the existence of hurricane eye. It is probable that more than one hurricane eye could be found from different segments of the same period. Hence, the above process is repeated till the entire potential area for hurricane birth is exhausted. The subsequent/previous position of each hurricane eye will be searched in the appropriate adjacent segments of the next/previous period to mark the hurricane path. The temporal coherence and spatial coherence of the images are taken into account by our scheme in determining the segments and the associated periods required for analysis.

  5. Tracking hurricane paths

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Nagarajan; Rishe, Naphtali; Athauda, Rukshan

    1997-01-01

    The South East coastal region experiences hurricane threat for almost six months in every year. To improve the accuracy of hurricane forecasts, meteorologists would need the storm paths of both the present and the past. A hurricane path can be established if we could identify the correct position of the storm at different times right from its birth to the end. We propose a method based on both spatial and temporal image correlations to locate the position of a storm from satellite images. During the hurricane season, the satellite images of the Atlantic ocean near the equator are examined for the hurricane presence. This is accomplished in two steps. In the first step, only segments with more than a particular value of cloud cover are selected for analysis. Next, we apply image processing algorithms to test the presence of a hurricane eye in the segment. If the eye is found, the coordinate of the eye is recorded along with the time stamp of the segment. If the eye is not found, we examine adjacent segments for the existence of hurricane eye. It is probable that more than one hurricane eye could be found from different segments of the same period. Hence, the above process is repeated till the entire potential area for hurricane birth is exhausted. The subsequent/previous position of each hurricane eye will be searched in the appropriate adjacent segments of the next/previous period to mark the hurricane path. The temporal coherence and spatial coherence of the images are taken into account by our scheme in determining the segments and the associated periods required for analysis.

  6. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its

  7. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content

  8. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content

  9. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its

  10. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  11. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  12. Path Integrals and Supersolids

    NASA Astrophysics Data System (ADS)

    Ceperley, D. M.

    2008-11-01

    Recent experiments by Kim and Chan on solid 4He have been interpreted as discovery of a supersolid phase of matter. Arguments based on wavefunctions have shown that such a phase exists, but do not necessarily apply to solid 4He. Imaginary time path integrals, implemented using Monte Carlo methods, provide a definitive answer; a clean system of solid 4He should be a normal quantum solid, not one with superfluid properties. The Kim-Chan phenomena must be due to defects introduced when the solid is formed.

  13. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  14. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  15. Low Bandwidth Robust Controllers for Flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  16. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  17. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  18. The Path to NGATS

    NASA Technical Reports Server (NTRS)

    Scardina, John

    2006-01-01

    NGATS operational Improvements and benefits include: 1) Broad area and precision navigation to access and capacity; 2) Airspace access and management to capacity; 3) 4D trajectory based ATM to capacity and efficiency; 4) Reduced separation between aircraft to capacity; 5) Flight deck situational awareness and delegation to capacity and safety; 6) ATM decision support to capacity; 7) Improved weather data and dissemination to capacity and safety; 8) Reduced cost to deliver ATM services to cost; 9) Greatly expanded airport network and improved terminals to capacity.

  19. Flight experience with flight control redundancy management

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Larson, R. R.; Glover, R. D.

    1980-01-01

    Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.

  20. Photodeactivation paths in norbornadiene.

    PubMed

    Antol, Ivana

    2013-06-30

    The first high level ab initio quantum-chemical calculations of potential energy surfaces (PESs) for low-lying singlet excited states of norbornadiene in the gas phase are presented. The optimization of the stationary points (minima and conical intersections) and the recalculation of the energies were performed using the multireference configuration interaction with singles (MR-CIS) and the multiconfigurational second-order perturbation (CASPT2) methods, respectively. It was shown that the crossing between valence V2 and Rydberg R1 states close to the Franck-Condon (FC) point permits an easy population switch between these states. Also, a new deactivation path in which the doubly excited state with (π3)(2) configuration (DE) has a prominent role in photodeactivation from the R1 state due to the R1/DE and the DE/V1 conical intersections very close to the R1 and DE minima, respectively, was proposed. Subsequent deactivation from the V1 to the ground state goes through an Olivucci-Robb-type conical intersection that adopts a rhombic distorted geometry. The deactivation path has negligible barriers, thereby making ultrafast radiationless decay to the ground state possible.

  1. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  2. 'Mighty Eagle' Takes Flight

    NASA Image and Video Library

    The "Mighty Eagle," a NASA robotic prototype lander, had a successful first untethered flight Aug. 8 at the Marshall Center. During the 34-second flight, the Mighty Eagle soared and hovered at 30 f...

  3. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996.

  4. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996.

  5. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  6. Control-oriented reduced order modeling of dipteran flapping flight

    NASA Astrophysics Data System (ADS)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  7. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  8. Challenger's night flight

    NASA Astrophysics Data System (ADS)

    1983-08-01

    STS Mission 8 and its night flight (both launch and landing) are highlighted in this color video. The 5-member crew is introduced and their special assignments for this flight are discussed, along with their continuous weightlessness experiments performed during the flight. The first black astronaut, Guion S. Blufords, Jr., is introduced and file footage of an STS Mission orbiting the earth is shown.

  9. Challenger's Night Flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS Mission 8 and its night flight (both launch and landing) are highlighted in this color video. The 5-member crew is introduced and their special assignments for this flight are discussed, along with their continuous weightlessness experiments performed during the flight. The first black astronaut, Guion S. Blufords, Jr., is introduced and file footage of an STS Mission orbiting the earth is shown.

  10. Ornithopter flight stabilization

    NASA Astrophysics Data System (ADS)

    Dietl, John M.; Garcia, Ephrahim

    2007-04-01

    The quasi-steady aerodynamics model and the vehicle dynamics model of ornithopter flight are explained, and numerical methods are described to capture limit cycle behavior in ornithopter flight. The Floquet method is used to determine stability in forward flight, and a linear discrete-time state-space model is developed. This is used to calculate stabilizing and disturbance-rejecting controllers.

  11. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  12. Path following by a quadrotor using virtual target pursuit guidance

    NASA Astrophysics Data System (ADS)

    Manjunath, Abhishek

    Quadrotors, being more agile than fixed-wing vehicles, are the ideal candidates for autonomous missions in small, compact spaces. The immense challenge to navigate such environments is fulfilled by the concept of path following. Path following is the method of tracking/tracing a fixed, pre-defined path with minimum position error while exerting the lowest possible control effort. In this work, the missile guidance technique of Pure Pursuit is adopted and modified for a 3D quadrotor model to follow fixed, compact trajectories. A specialized hardware testing platform is developed to test this algorithm. The results obtained from simulation and flight tests are compared to results from another technique called Differential Flatness. A small part of this thesis also deals with the stability analysis of the modified 3D Pure Pursuit algorithm to track trajectories expending lower control effort.

  13. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  14. Flight testing TECS - The Total Energy Control System

    NASA Technical Reports Server (NTRS)

    Kelly, James R.; Person, Lee H., Jr.; Bruce, Kevin R.

    1986-01-01

    This paper describes some of the unique features of an integrated throttle-elevator control law known as the Total Energy Control System (TECS) which has been flight tested on NASA Langley's Transport Systems Research Vehicle. The TECS concept is designed around total energy principles. It utilizes a full-time autothrottle to control the total energy of the aircraft and the elevator to distribute the energy between speed and flight path objectives. Time histories of selected parameters generated from flight data are used to illustrate the pilot-like control strategy of the system and the priority logic employed when throttle limiting is encountered.

  15. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  16. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  17. Interactive cutting path analysis programs

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.; Williams, D. S.; Colley, S. R.

    1975-01-01

    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.

  18. X-37 Flight Demonstrator: X-40A Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Mitchell, Dan

    2004-01-01

    The flight test objectives are: Evaluate calculated air data system (CADS) experiment. Evaluate Honeywell SIGI (GPS/INS) under flight conditions. Flight operation control center (FOCC) site integration and flight test operations. Flight test and tune GN&C algorithms. Conduct PID maneuvers to improve the X-37 aero database. Develop computer air date system (CADS) flight data to support X-37 system design.

  19. An introduction to critical paths.

    PubMed

    Coffey, Richard J; Richards, Janet S; Remmert, Carl S; LeRoy, Sarah S; Schoville, Rhonda R; Baldwin, Phyllis J

    2005-01-01

    A critical path defines the optimal sequencing and timing of interventions by physicians, nurses, and other staff for a particular diagnosis or procedure. Critical paths are developed through collaborative efforts of physicians, nurses, pharmacists, and others to improve the quality and value of patient care. They are designed to minimize delays and resource utilization and to maximize quality of care. Critical paths have been shown to reduce variation in the care provided, facilitate expected outcomes, reduce delays, reduce length of stay, and improve cost-effectiveness. The approach and goals of critical paths are consistent with those of total quality management (TQM) and can be an important part of an organization's TQM process.

  20. Multi-Criteria Path Finding

    NASA Astrophysics Data System (ADS)

    Mohammadi, E.; Hunter, A.

    2012-07-01

    Path finding solutions are becoming a major part of many GIS applications including location based services and web-based GIS services. Most traditional path finding solutions are based on shortest path algorithms that tend to minimize the cost of travel from one point to another. These algorithms make use of some cost criteria that is usually an attribute of the edges in the graph network. Providing one shortest path limits user's flexibility when choosing a possible route, especially when more than one parameter is utilized to calculate cost (e.g., when length, number of traffic lights, and number of turns are used to calculate network cost.) K shortest path solutions tend to overcome this problem by providing second, third, and Kth shortest paths. These algorithms are efficient as long as the graphs edge weight does not change dynamically and no other parameters affect edge weights. In this paper we try to go beyond finding shortest paths based on some cost value, and provide all possible paths disregarding any parameter that may affect total cost. After finding all possible paths, we can rank the results by any parameter or combination of parameters, without a substantial increase in time complexity.

  1. Advanced flight software reconfiguraton

    NASA Technical Reports Server (NTRS)

    Porcher, Bryan

    1991-01-01

    Information is given in viewgraph form on advanced flight software reconfiguration. Reconfiguration is defined as identifying mission and configuration specific requirements, controlling mission and configuration specific data, binding this information to the flight software code to perform specific missions, and the release and distribution of the flight software. The objectives are to develop, demonstrate, and validate advanced software reconfiguration tools and techniques; to demonstrate reconfiguration approaches on Space Station Freedom (SSF) onboard systems displays; and to interactively test onboard systems displays, flight software, and flight data.

  2. Ariane flight testing

    NASA Astrophysics Data System (ADS)

    Vedrenne, M.

    1983-11-01

    The object of this paper is to present the way in which the flight development tests of the Ariane launch vehicle have enabled the definition to be frozen and its qualification to be demonstrated before the beginning of the operational phase. A first part is devoted to the in-flight measurement facilities, the acquisition and evaluation systems, and to the organization of the in-flight results evaluation. The following part consists of the comparison between ground predictions and flight results for the main parameters as classified by system (stages, trajectory, propulsion, flight mechanics, auto pilot and guidance). The corrective actions required are then identified and the corresponding results shown.

  3. Optimal Propellant Maneuver Flight Demonstrations on ISS

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis

    2013-01-01

    In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic

  4. Time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Atwood, W. B.

    1980-10-01

    Time of flight measurements are used in high energy particle physics experiments to: (1) distinguish background from events; and (2) identify particle types. An example of background separation is shown. The reaction studied was e + p e prime + p prime + X where the e(p) stand for an initial and detected electron (proton) and X is a produced but undetected final state with a mass in the rho meson region. The relative time between the detection of an electron and a proton in two of the spectrometers in End Station A is plotted. Data for two different kinematic settings taken in the experiment are shown. The time resolution has been partially corrected for the various flight paths through the instruments and the difference in time resolutions between the two settings results mainly from the incompleteness of this correction. The signal height above the background depends on the time resolution, (DELTA) tau. The chance background is proportional to the product of the electron counting rate, the proton counting rate, and (DELTA) tau.

  5. Time-of-flight measurements

    SciTech Connect

    Atwood, W.B.

    1980-10-01

    Time of flight (TOF) measurements are used in high energy particle physics experiments to: (1) distinguish background from events and (2) identify particle types. An example of background separation is shown. These data come from a coincidence electro-production experiment performed at SLAC. The reaction being studied was e + p ..-->.. e' + p' + X where the e(p) stand for an initial and detected electron (proton) and X is a produced but undetected final state with a mass in the rho meson region. The relative time between the detection of an electron and a proton in two of the spectrometers in End Station A is plotted. Data for two different kinematic settings taken in the experiment are shown. The time resolution has been partially corrected for the various flight paths through the instruments and the difference in time resolutions between the two settings results mainly from the incompleteness of this correction. The signal height above the background depends on the time resolution, ..delta.. tau. The chance background is proportional to the product of the electron counting rate, the proton counting rate, and ..delta.. tau. Smaller ..delta.. tau means that higher electron and proton counting rates may be tolerated and result in a similar signal-to-noise ratio.

  6. I-FORCAST: Rapid Flight Planning Tool

    NASA Technical Reports Server (NTRS)

    Oaida, Bogdan; Khan, Mohammed; Mercury, Michael B.

    2012-01-01

    I-FORCAST (Instrument - Field of Regard Coverage Analysis and Simulation Tool) is a flight planning tool specifically designed for quickly verifying the feasibility and estimating the cost of airborne remote sensing campaigns (see figure). Flights are simulated by being broken into three predefined routing algorithms as necessary: mapping in a snaking pattern, mapping the area around a point target (like a volcano) with a star pattern, and mapping the area between a list of points. The tool has been used to plan missions for radar, lidar, and in-situ atmospheric measuring instruments for a variety of aircraft. It has also been used for global and regional scale campaigns and automatically includes landings when refueling is required. The software has been compared to the flight times of known commercial aircraft route travel times, as well as a UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) campaign, and was within 15% of the actual flight time. Most of the discrepancy is due to non-optimal flight paths taken by actual aircraft to avoid restricted airspace and used to follow landing and take-off corridors.

  7. NASA Dryden Flight Research Center C-17 Research Overview

    NASA Technical Reports Server (NTRS)

    Miller, Chris

    2007-01-01

    A general overview of NASA Dryden Flight Research Center's C-17 Aircraft is presented. The topics include: 1) 2006 Activities PHM Instrumentation Refurbishment; 2) Acoustic and Vibration Sensors; 3) Gas Path Sensors; 4) NASA Instrumentation System Racks; 5) NASA C-17 Simulator; 6) Current Activities; 7) Future Work; 8) Lawn Dart ; 9) Weight Tub; and 10) Parachute Test Vehicle.

  8. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang

    2016-08-01

    Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.

  9. Flight Testing and Test Instrumentation of PHOENIX

    NASA Astrophysics Data System (ADS)

    Janovsky, R.; Behr, R.

    2005-02-01

    Within the frame of the German national ASTRA program, the need for in-flight experimentation as a key element in the development of the next generation launcher was addressed by the Phoenix project. The Phoenix 1 flight test vehicle was designed to demonstrate the un-powered horizontal landing of a representative, winged RLV configuration. The Phoenix 1 flight test vehicle is downscaled from the reference RLV shape "Hopper", with the dimensions of 7.8m overall length, 3.8m span, and 1200kg mass. In order to be representative of a full scale RLV, the scaling method preserves all features challenging the automatic landing from the flight control point of view. These are in particular the poor flying qualities of the static unstable vehicle and the high landing velocity of 71m/s, which is same as for the full scale vehicle. The landing demonstration scenario comprises a drop from the helicopter approximately 6km ahead of the runway threshold at 2.4km above runway level. The subsequent free flight includes an accelerating dive to merge with a steep final approach path representative of an RLV, followed by a long flare, touch down on the runway, and rollout to standstill. Besides its mandatory avionics system, the vehicle is also equipped with an additional flight test instrumentation to identify local aerodynamic flow and structural stress. This FTI system is designed to collect data by recording about 130 sensor signals during flight. This test instrumentation system was operated during a test campaign dedicated to verify the aerodynamic data base of Phoenix in the Dutch-German Wind-tunnel (DNW) in August 2003 and during three automatic landing flight tests after helicopter drop in May 2004. Post flight analysis of these data allows to validate the design models and the development tools in order to establish a flight validated data base for future work. This paper gives an overview on the Phoenix system including the flight test instrumentation, the test program and

  10. Symbology Development for General Aviation Synthetic Vision Primary Flight Displays for the Approach and Missed-Approach Modes of Flight

    NASA Technical Reports Server (NTRS)

    Bartolone, Anthony P.; Hughes, Monica F.; Wong, Douglas T.; Takallu, Mohammad A.

    2004-01-01

    Spatial disorientation induced by inadvertent flight into instrument meteorological conditions (IMC) continues to be a leading cause of fatal accidents in general aviation. The Synthetic Vision Systems General Aviation (SVS-GA) research element, an integral part of NASA s Aviation Safety and Security Program (AvSSP), is investigating a revolutionary display technology designed to mitigate low visibility events such as controlled flight into terrain (CFIT) and low-visibility loss of control (LVLoC). The integrated SVS Primary Flight Display (SVS-PFD) utilizes computer generated 3-dimensional imagery of the surrounding terrain augmented with flight path guidance symbology. This unique combination will provide GA pilots with an accurate representation of their environment and projection of their flight path, regardless of time of day or out-the-window (OTW) visibility. The initial Symbology Development for Head-Down Displays (SD-HDD) simulation experiment examined 16 display configurations on a centrally located high-resolution PFD installed in NASA s General Aviation Work Station (GAWS) flight simulator. The results of the experiment indicate that situation awareness (SA) can be enhanced without having a negative impact on flight technical error (FTE), by providing a general aviation pilot with an integrated SVS display to use when OTW visibility is obscured.

  11. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center have developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system. AVRADA's NUH-60A STAR (Systems Testbed for Avionics Research) helicopter was specially modified, in house, for the flight evaluation of the CALAHF system. The near terrain trajectory generation algorithm runs on a multiprocessor flight computer. Global Positioning System (GPS) data are integrated with Inertial Navigation Unit (INU) data in the flight computer to provide a precise navigation solution. The near-terrain trajectory and the aircraft state information are passed to a Silicon Graphics computer to provide the graphical 'pilot centered' guidance, presented on a Honeywell Integrated Helmet And Display Sighting System (IHADSS). The system design, piloted simulation, and initial flight test results are presented.

  12. The use of spatial coherence techniques for identifying noise transmission paths on the MDC-UHB demonstrator aircraft

    NASA Technical Reports Server (NTRS)

    Tran, Boi N.; Simpson, Myles A.

    1990-01-01

    Application of partial coherence techniques to determination of the transmission paths of sound into an airplane cabin interior has been studied. Accurate quantitative information on the dominant paths of acoustic energy transmission can be obtained with this technique as well as the relative contributions from airborne and structure-borne paths. This information is useful in making design changes in the fuselage to reduce the interior cabin noise. The techniques are successfully applied to noise and vibration data collected during flight tests of the McDonnel Douglas Ultra-High Bypass Demonstrator aircraft, and these results are compared with other data measured during the flight program.

  13. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  14. Path Analysis: A Brief Introduction.

    ERIC Educational Resources Information Center

    Carducci, Bernardo J.

    Path analysis is presented as a technique that can be used to test on a priori model based on a theoretical conceptualization involving a network of selected variables. This being an introductory source, no previous knowledge of path analysis is assumed, although some understanding of the fundamentals of multiple regression analysis might be…

  15. A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland

    2003-01-01

    Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.

  16. Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan

    2014-01-01

    Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance

  17. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  18. Collabortive Authoring of Walden's Paths

    SciTech Connect

    Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major

    2012-01-01

    This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.

  19. Vehicle path-planning in three dimensions using optics analogs for optimizing visibility and energy cost

    NASA Technical Reports Server (NTRS)

    Rowe, Neil C.; Lewis, David H.

    1989-01-01

    Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.

  20. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  1. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  2. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  3. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  4. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  5. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    NASA Astrophysics Data System (ADS)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  6. A Bat Algorithm with Mutation for UCAV Path Planning

    PubMed Central

    Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi

    2012-01-01

    Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518

  7. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  8. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  9. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  10. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  11. Automatic layout of integrated-optic time-of-flight circuits

    NASA Astrophysics Data System (ADS)

    Fogg, Ruth D.

    1996-11-01

    This work describes the architecture and algorithms used in the computer-aided design tool developed for the automatic layout of integrated-optic, time-of-flight circuit designs. As in VLSI circuit layout, total wire length and chip area minimization are the goals in the layout of time-of-flight circuits. However, there are two major differences between the layout of time of flight circuits and VLSI circuits. First, the interconnection lengths of time-of-flight designs are exactly specified in order to achieve the necessary delays for signal synchronization. SEcondly, the switching elements are 120 times longer than they are wide. This highly astigmatic aspect ratio causes severe constraints on how and where the switches are placed. Assuming the continued development of corner turning mirrors allows the use of a parallel, row-based device placement architecture and a rectangular, fixed-grid track system for the connecting paths. The layout process proceeds in two steps. The first step involves the use of a partial circuit graph representation to place the elements in rows, oriented in the direction of the signal flow. After iterative improvement of the placement, the second step proceeds with the routing of the connecting paths. The main problem in the automatic layout of time-of-flight circuits is achieving the correct path lengths without overlapping previously routed paths. This problem is solved by taking advantage of a certain degree of variability present in each path, allowing the use of simple heuristics to circumvent previously routed paths.

  12. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  13. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  14. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  15. Digital flight control research

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  16. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  17. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  18. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global

  19. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The PhoEnix aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Media and ground crew look at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA team look up at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Haley, Dennis

    1990-01-01

    Viewgraphs on the Space Station Flight Telerobotic Servicer (SSFTS) are presented. Topics covered include: SSFTS design; SSFTS elements; FTS mission requirements; FTS general requirements; flight telerobotic servicer - telerobot; FTS manipulator; force-torque transducer; end effector changeout mechanism; flight telerobotic servicer - end-of-arm tooling; user interfaces; FTS data management and processing; control subsystem; FTS vision subsystem and camera positioning assembly; FTS workstation display assembly panel; mini-master hand controller; and FTS NASREM system architecture.

  7. Flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Haley, Dennis

    1990-01-01

    Viewgraphs on the Space Station Flight Telerobotic Servicer (SSFTS) are presented. Topics covered include: SSFTS design; SSFTS elements; FTS mission requirements; FTS general requirements; flight telerobotic servicer - telerobot; FTS manipulator; force-torque transducer; end effector changeout mechanism; flight telerobotic servicer - end-of-arm tooling; user interfaces; FTS data management and processing; control subsystem; FTS vision subsystem and camera positioning assembly; FTS workstation display assembly panel; mini-master hand controller; and FTS NASREM system architecture.

  8. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors.

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. YF-17 in Flight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Northrop Aviation YF-17 technology demonstrator aircraft in flight during a 1976 flight research program at NASA's Dryden Flight Research Center, Edwards, California. From May 27 to July 14, 1976, the Dryden Flight Research Center, Edwards, California, flew the Northrop Aviation YF-17 technology demonstrator to test the high-performance U.S. Air Force fighter at transonic speeds. The objectives of the seven-week flight test program included the study of maneuverability of this aircraft at transonic speeds and the collection of in-flight pressure data from around the afterbody of the aircraft to improve wind-tunnel predictions for future fighter aircraft. Also studied were stability and control and buffeting at high angles of attack as well as handling qualities at high load factors. Another objective of this program was to familiarize center pilots with the operation of advanced high-performance fighter aircraft. During the seven-week program, all seven of the center's test pilots were able to fly the aircraft with Gary Krier serving as project pilot. In general the pilots reported no trouble adapting to the aircraft and reported that it was easy to fly. There were no familiarization flights. All 25 research flights were full-data flights. They obtained data on afterbody pressures, vertical-fin dynamic loads, agility, pilot physiology, and infrared signatures. Average flight time was 45 minutes, although two flights involving in-flight refueling lasted approximately one hour longer than usual. Dryden Project Manager Roy Bryant considered the program a success. Center pilots felt that the aircraft was generations ahead of then current active military aircraft. Originally built for the Air Force's lightweight fighter program, the YF-17 Cobra left Dryden to support the Northrop/Navy F-18 Program. The F-18 Hornet evolved from the YF-17.

  11. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  12. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  13. Pathways with PathWhiz.

    PubMed

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  15. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  16. Tapped-Hole Vent Path

    NASA Technical Reports Server (NTRS)

    Chandler, J. A.

    1983-01-01

    Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.

  17. Transition Path Theory

    NASA Astrophysics Data System (ADS)

    vanden-Eijnden, E.

    The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to

  18. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  19. Microprocessor Control of Low Speed VSTOL Flight.

    DTIC Science & Technology

    1979-06-08

    sec u Control vector V Total velocity, ft/sec v y -axis velocity, ft/sec -10- LIST OF SYMBOLS (Cont.) Variables Description w z-axis velocity, ft/sec...X Aerodynamic force along the x-axis x Axial position, ft x State vector Y Aerodynamic force along the y -axis y Lateral position, ft Z Aerodynamic...force along the z-axis z Vertical position, ft Variables (Greek) Angle of attack, deg Sideslip angle, deg A Disturbance quantity Y Vertical flight path

  20. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    NASA Astrophysics Data System (ADS)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  1. An Introduction to Path Analysis

    ERIC Educational Resources Information Center

    Wolfe, Lee M.

    1977-01-01

    The analytical procedure of path analysis is described in terms of its use in nonexperimental settings in the social sciences. The description assumes a moderate statistical background on the part of the reader. (JKS)

  2. Scattering theory with path integrals

    SciTech Connect

    Rosenfelder, R.

    2014-03-15

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  3. Flight calibration source development

    NASA Technical Reports Server (NTRS)

    Glicker, S.

    1988-01-01

    An important element in monitoring the sensitivity of flight instrumentation throughout a flight is a reliable reference. Tungsten filament quartz halogen and deuterium UV sources were tested for this purpose. All three types were obtained from available commercial supplies and were tested against various mission requirements, particularly long term stability characteristics. Stability tests were made before and after thermal vacuum and vibration tests.

  4. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  5. Flight Test Techniques

    DTIC Science & Technology

    2009-07-01

    Fort Rucker, AL 36362-5276 8. PERFORMING ORGANIZATION REPORT NUMBER TOP 7-4-020 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES...2 3. REQUIRED TEST CONDITIONS ............................................. 3 3.1...3. REQUIRED TEST CONDITIONS . 3.1 Air Vehicle Flight Test Techniques. Many different flight test techniques are in existence. As technology

  6. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  7. Perseus in Flight

    NASA Image and Video Library

    1991-11-15

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program.

  8. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  9. Flight termination receiver catalog

    NASA Astrophysics Data System (ADS)

    1993-02-01

    This catalog provides reference information on ultra-high frequency flight termination receivers used at various U.S. missile ranges and test facilities. It is not intended to be a comprehensive review of all available flight termination receivers. Inclusion in this catalog does not constitute approval or endorsement for use at any government installation. Information in this catalog was extracted from manufacturers' specifications.

  10. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  11. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  12. X-43A Flight Controls

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  13. The Flight Track Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.

  14. Formal language constrained path problems

    SciTech Connect

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  15. The flight of Archaeopteryx.

    PubMed

    Chatterjee, Sankar; Templin, R Jack

    2003-01-01

    The origin of avian flight is often equated with the phylogeny, ecology, and flying ability of the primitive Jurassic bird, Archaeopteryx. Debate persists about whether it was a terrestrial cursor or a tree dweller. Despite broad acceptance of its arboreal life style from anatomical, phylogenetic, and ecological evidence, a new version of the cursorial model was proposed recently asserting that a running Archaeopteryx could take off from the ground using thrust and sustain flight in the air. However, Archaeopteryx lacked both the powerful flight muscles and complex wing movements necessary for ground takeoff. Here we describe a flight simulation model, which suggests that for Archaeopteryx, takeoff from a perch would have been more efficient and cost-effective than from the ground. Archaeopteryx may have made short flights between trees, utilizing a novel method of phugoid gliding.

  16. Vortex attenuation flight experiments

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Hastings, E. C., Jr.; Champine, R. A.; Tymczyszyn, J. J.

    1977-01-01

    Flight tests evaluating the effects of altered span loading, turbulence ingestion, combinations of mass and turbulence ingestion, and combinations of altered span loading turbulance ingestion on trailed wake vortex attenuation were conducted. Span loadings were altered in flight by varying the deflections of the inboard and outboard flaps on a B-747 aircraft. Turbulence ingestion was achieved in flight by mounting splines on a C-54G aircraft. Mass and turbulence ingestion was achieved in flight by varying the thrust on the B-747 aircraft. Combinations of altered span loading and turbulence ingestion were achieved in flight by installing a spoiler on a CV-990 aircraft and by deflecting the existing spoilers on a B-747 aircraft. The characteristics of the attenuated and unattenuated vortexes were determined by probing them with smaller aircraft. Acceptable separation distances for encounters with the attenuated and unattenuated vortexes are presented.

  17. Miscarriage Among Flight Attendants

    PubMed Central

    Grajewski, Barbara; Whelan, Elizabeth A.; Lawson, Christina C.; Hein, Misty J.; Waters, Martha A.; Anderson, Jeri L.; MacDonald, Leslie A.; Mertens, Christopher J.; Tseng, Chih-Yu; Cassinelli, Rick T.; Luo, Lian

    2015-01-01

    Background Cosmic radiation and circadian disruption are potential reproductive hazards for flight attendants. Methods Flight attendants from 3 US airlines in 3 cities were interviewed for pregnancy histories and lifestyle, medical, and occupational covariates. We assessed cosmic radiation and circadian disruption from company records of 2 million individual flights. Using Cox regression models, we compared respondents (1) by levels of flight exposures and (2) to teachers from the same cities, to evaluate whether these exposures were associated with miscarriage. Results Of 2654 women interviewed (2273 flight attendants and 381 teachers), 958 pregnancies among 764 women met study criteria. A hypothetical pregnant flight attendant with median firsttrimester exposures flew 130 hours in 53 flight segments, crossed 34 time zones, and flew 15 hours during her home-base sleep hours (10 pm–8 am), incurring 0.13 mGy absorbed dose (0.36 mSv effective dose) of cosmic radiation. About 2% of flight attendant pregnancies were likely exposed to a solar particle event, but doses varied widely. Analyses suggested that cosmic radiation exposure of 0.1 mGy or more may be associated with increased risk of miscarriage in weeks 9–13 (odds ratio = 1.7 [95% confidence interval = 0.95–3.2]). Risk of a first-trimester miscarriage with 15 hours or more of flying during home-base sleep hours was increased (1.5 [1.1–2.2]), as was risk with high physical job demands (2.5 [1.5–4.2]). Miscarriage risk was not increased among flight attendants compared with teachers. Conclusions Miscarriage was associated with flight attendant work during sleep hours and high physical job demands and may be associated with cosmic radiation exposure. PMID:25563432

  18. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  19. An in-flight interaction of the X-29A canard and flight control system

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Bjarke, Lisa J.; Laurie, Edward J.

    1990-01-01

    Many of today's high performance airplanes use high gain, digital flight control systems. These sytems are liable to couple with the aircraft's structural dynamics and aerodynamics to cause an aeroservoelastic interaction. These interactions can be stable or unstable depending upon damping and phase relationships within the system. The details of an aeroservoelastic interaction experienced in flight by the X-29A forward-swept wing airplane. A 26.5-Hz canard pitch mode response was aliased by the digital sampling rate in the canard position feedback loop of the flight control system, resulting in a 13.5-Hz signal being commanded to the longitudinal control surfaces. The amplitude of this commanded signal increased as the wear of the canard seals increased, as the feedback path gains were increased, and as the canard aerodynamic loading decreased. The resultant control surface deflections were of sufficient amplitude to excite the structure. The flight data presented shows the effect of each component (structural dynamics, aerodynamics, and flight control system) for this aeroservoelastic interaction.

  20. Through the eyes of a bird: modelling visually guided obstacle flight

    PubMed Central

    Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.

    2014-01-01

    Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052

  1. Through the eyes of a bird: modelling visually guided obstacle flight.

    PubMed

    Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A

    2014-07-06

    Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.

  2. Pilot control through the TAFCOS automatic flight control system

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  3. Balloon-assisted flight of radio-controlled insect biobots.

    PubMed

    Bozkurt, Alper; F Gilmour, Robert; Lal, Amit

    2009-09-01

    We report on radio-controlled insect biobots by directing the flight of Manduca sexta through neuromuscular activation. Early metamorphosis insertion technology was used to implant metal wire probes into the insect brain and thorax tissue. Inserted probes were adopted by the developing tissue as a result of the metamorphic growth. A mechanically and electrically reliable interface with the insect tissue was realized with respect to the insect's behavioral and anatomical adoption. Helium balloons were used to increase the payload capacity and flight duration of the insect biobots enabling a large number of applications. A super-regenerative receiver with a weight of 650 mg and 750 muW of power consumption was built to control the insect flight path through remotely transmitted electrical stimulation pulses. Initiation and cessation of flight, as well as yaw actuation, were obtained on freely flying balloon-assisted moths through joystick manipulation on a conventional model airplane remote controller.

  4. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  5. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Pipistrel-USA Pilots Robin Reid, left, and David Morss, talk on their cell phones shortly after participating in the miles per gallon (MPG) flight in their Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Columbia's first shakedown flight

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The space shuttle orbiter Columbia, first of the planned fleet of spacecraft in the nation's space transportation system, will liftoff on its first orbital shakedown flight on or about the 10th of April 1981. Launch will be from the NASA Kennedy Space Center Launch Complex 39A, no earlier than 45 minutes after sunrise. Crew for the first orbital flight will be John W. Young, commander, veteran of two Gemini and two Apollo space flights, and U.S. Navy Capt. Robert L. Crippen, pilot. Crippen has not flown in space.

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation, right, briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The checkered flag is waved as the PhoEnix aircraft crosses the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Hanger Boss Mike Fenn waves the checkered flag as aircraft pass the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Embry-Riddle Aeronautical University, EcoEagle prepares to takeoff as an demonstration aircraft for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius pilots talk with a fellow team member prior to their takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft is seen as it participates in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  16. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  17. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  18. X-Hab Challenge: Students in the Critical Path

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Drew, B. A.; Bailey, L.; Gill, T.; Liolios, S.; Walsh, E.; Dory, J.; Howe, A. S.; Smitherman, D.; Bookout, P.; hide

    2012-01-01

    The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for university student competitions. Rather than provide a realistic simulated mission for the students to perform, the X-Hab Challenge puts the student teams in the critical path of NASA's human space flight Exploration systems research and development, and expects them to deliver a product that will likely become heritage for eventual flight systems in the years to come. The added responsibility has two major benefits: the university teams are given real ownership in the NASA vision; students are given Principal Investigator (PI) status for their contribution and are looked upon as peers in the development process. This paper introduces the X-Hab Challenge and discusses the successes behind the program.

  19. Systems Engineering Technical Authority: A Path to Mission Success

    NASA Technical Reports Server (NTRS)

    Andary, James F.; So, Maria M.; Breindel, Barry

    2008-01-01

    The systems engineering of space missions to study planet Earth has been an important focus of the National Aeronautics and Space Administration (NASA) since its inception. But all space missions are becoming increasingly complex and this fact, reinforced by some major mishaps, has caused NASA to reevaluate their approach to achieving safety and mission success. A new approach ensures that there are adequate checks and balances in place to maximize the probability of safety and mission success. To this end the agency created the concept of Technical Authority which identifies a key individual accountable and responsible for the technical integrity of a flight mission as well as a project-independent reporting path. At the Goddard Space Flight Center (GSFC) this responsibility ultimately begins with the Mission Systems Engineer (MSE) for each satellite mission. This paper discusses the Technical Authority process and then describes some unique steps that are being taken at the GSFC to support these MSEs in meeting their responsibilities.

  20. X-Hab Challenge: Students in the Critical Path

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Drew, B. A.; Bailey, L.; Gill, T.; Liolios, S.; Walsh, E.; Dory, J.; Howe, A. S.; Smitherman, D.; Bookout, P.; Howard, Robert; Tri, T.; Toups, Larry

    2012-01-01

    The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for university student competitions. Rather than provide a realistic simulated mission for the students to perform, the X-Hab Challenge puts the student teams in the critical path of NASA's human space flight Exploration systems research and development, and expects them to deliver a product that will likely become heritage for eventual flight systems in the years to come. The added responsibility has two major benefits: the university teams are given real ownership in the NASA vision; students are given Principal Investigator (PI) status for their contribution and are looked upon as peers in the development process. This paper introduces the X-Hab Challenge and discusses the successes behind the program.

  1. Flight evaluation of the terminal guidance system

    NASA Technical Reports Server (NTRS)

    Sandlin, D. R.

    1981-01-01

    The terminal guidance system (TGS) is avionic equipment which gives guidance along a curved descending flight path to a landing. A Cessna 182 was used as the test aircraft and the TGS was installed and connected to the altimeter, DME, RMI, and gyro compass. Approaches were flown by three different pilots. When the aircraft arrives at the termination point, it is set up on final approach for a landing. The TGS provides guidance for curved descending approaches with guideslopes of 6 deg which required, for experienced pilots, workloads that are approximately the same as for an ILS. The glideslope is difficult to track within 1/2 n.m. of the VOR/DME station. The system permits, for experienced pilots, satisfactory approaches with a turn radius as low as 1/2 n.m. and a glideslope of 6 deg. Turn angles have little relation to pilot workload for curved approaches. Pilot experience is a factor for curved approaches. Pilots with low instrument time have difficulty flying steep approaches with small turn radius. Turbulence increases the pilot workload for curved approaches. The TGS does not correct to a given flight path over the ground nor does it adequately compensate for wind drift.

  2. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  3. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  4. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  5. Flight Over Ceres

    NASA Image and Video Library

    2016-01-28

    This animated flight over Ceres explores the most prominent craters, as well as the mountain Ahuna Mons. The movie shows Ceres in enhanced color, using images taken by the NASA's Dawn spacecraft as it orbited the dwarf planet.

  6. Perseus in Flight

    NASA Image and Video Library

    1991-11-15

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle.

  7. SR-71 Flight

    NASA Image and Video Library

    Two SR-71A aircraft were loaned from the U.S. Air Force for use for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California. One of them was later returned...

  8. Hypersonic flight testing

    SciTech Connect

    Williamson, W.

    1987-01-01

    This presentation is developed for people attending the University of Texas week-long short course in hypersonics. The presentation will be late in the program after the audience has been exposed to computational tehniques and ground test methods. It will attempt to show why we flight test, flight test options, what we learn from flight tests and how we use this information to improve our knowledge of hypersonics. It presupposes that our primary interest is in developing vehicles which will fly in the hypersonic flight region and not in simply developing technology for technology's sake. The material is presented in annotated vugraph form so that the author's comments on each vugraph are on the back of the preceding page. It is hoped that the comments will help reinforce the message on the vugraph.

  9. BIOPAN -- Flight experiment CARD''

    SciTech Connect

    Harboe-Sorensen, R.; Meijer, H.; Ronnet, J.C.; Demets, R.; Adams, L. ); Heinrich, W.; Roecher, H. . Dept. of Physics)

    1994-12-01

    As part of the BIOPAN-0 test flight payload, ESA/ESTEC together with University of Siegen, designed an experiment called CARD, for flight on the first BIOPAN model. The CARD experiment, consisting of commercially available 128K-bit EEPROM cards and CR-39 plastic nuclear track detector foils, was flown in order to assess the EEPROMs sensitivity to cosmic rays and the CR-39 foils to measure the cosmic rays seen during the mission. The EEPROMs were unbiased during the flight so only the charged content of the memories could be assessed after returning to earth. This paper presents the results from a 15.6 day flight on-board the Russian Photon-8 satellite, launched October the 8th 1992 (altitude 300 km, inclination 62.8[degree]), and gives details of the ground testing and analyses performed.

  10. Beta experiment flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser Doppler velocimeter system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. The system was flight tested at several different locations and the results of these tests are summarized.

  11. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  12. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  13. Path planning and Ground Control Station simulator for UAV

    NASA Astrophysics Data System (ADS)

    Ajami, A.; Balmat, J.; Gauthier, J.-P.; Maillot, T.

    In this paper we present a Universal and Interoperable Ground Control Station (UIGCS) simulator for fixed and rotary wing Unmanned Aerial Vehicles (UAVs), and all types of payloads. One of the major constraints is to operate and manage multiple legacy and future UAVs, taking into account the compliance with NATO Combined/Joint Services Operational Environment (STANAG 4586). Another purpose of the station is to assign the UAV a certain degree of autonomy, via autonomous planification/replanification strategies. The paper is organized as follows. In Section 2, we describe the non-linear models of the fixed and rotary wing UAVs that we use in the simulator. In Section 3, we describe the simulator architecture, which is based upon interacting modules programmed independently. This simulator is linked with an open source flight simulator, to simulate the video flow and the moving target in 3D. To conclude this part, we tackle briefly the problem of the Matlab/Simulink software connection (used to model the UAV's dynamic) with the simulation of the virtual environment. Section 5 deals with the control module of a flight path of the UAV. The control system is divided into four distinct hierarchical layers: flight path, navigation controller, autopilot and flight control surfaces controller. In the Section 6, we focus on the trajectory planification/replanification question for fixed wing UAV. Indeed, one of the goals of this work is to increase the autonomy of the UAV. We propose two types of algorithms, based upon 1) the methods of the tangent and 2) an original Lyapunov-type method. These algorithms allow either to join a fixed pattern or to track a moving target. Finally, Section 7 presents simulation results obtained on our simulator, concerning a rather complicated scenario of mission.

  14. Gas-path seal technology

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    Improved gas-path seals are needed for better fuel economy, longer performance retention, and lower maintenance, particularly in advanced, high-performance gas turbine engines. Problems encountered in gas-path sealing are described, as well as new blade-tip sealing approaches for high-pressure compressors and turbines. These include a lubricant coating for conventional, porous-metal, rub-strip materials used in compressors. An improved hot-press metal alloy shows promise to increase the operating surface temperatures of high-pressure-turbine, blade-tip seals to 1450 K (2150 F). Three ceramic seal materials are also described that have the potential to allow much higher gas-path surface operating temperatures than are possible with metal systems.

  15. 1999 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  16. Hypersonic Flight Testing

    DTIC Science & Technology

    1994-08-01

    ACTUAL fLIGHT • VALIDATE OVERALL SYSTEMS PERFORMANCE • GENERATE INFORMATION NOT AVAILABLE ON THE GROUND • PROVIDE AN EFFICIENT EXPANSION OF THE FLIGHT...development. DESCRIPTION OBJECTIVES • SUPERSONIC/HYPERSONIC RAMJET ENGINE TESTBED CHARACTERISTICS • LENGTH: 10 m (33 FY) • SPAN: 3.7 m (12 FY) • GROSS...20, 21, 22 Using ground test data, the Russians have AEDC·TR·94·7 DESCRIPTION OBJECTIVES • DEMONSTRATE RAMJET /SCRAMJET PROPULSION OPERATION IN

  17. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  18. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  19. International Flight Planning Handbook.

    DTIC Science & Technology

    1985-04-01

    SAC pilots and navigators for international operations and provide increased confidence to deal effectively with contingencies that might occur. -, The...control and altitude separation. Therefore, aircrft separation is greater than operations within a radar enviro :..en:. The service is provided by the ICAO...within the CONUS ARTCC system are connected. Therefore, a handoff of a flight will be effected prior to entry into an adjoining FIR or UIR. Once a flight

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    A hot air balloon passes over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    A hot air balloons pass over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Sid Siddiqi, seated, and other support personnel prepare noise level measuring equipment for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Support personnel prepare noise level measuring equipment along the runway for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The PhoEnix aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The e-Genius aircraft crew wait as their aircraft is inspected during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Embry-Riddle Aeronautical University, EcoEagle aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    e-Genius Aircraft Pilot Eric Raymond poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn directs the EcoEagle aircraft to the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    e-Genius Aircraft Pilot Klaus Ohlmann poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Various team members applaud as aircraft return from the speed competition during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition start flag for the EcoEagle aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    PhoEnix Aircraft Co-Pilot Jeff Shingleton poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The e-Genius aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel-USA Taurus G4 Aircraft Pilot David Morss poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the e-Genius aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    The PhoEnix aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The campus of the 2011 Green Flight Challenge, sponsored by Google, is seen in this aerial view at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Team members of the e-Genius aircraft prepare their plane prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the EcoEagle aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition checkered flag for the PhoEnix aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn directs the e-Genius aircraft to the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel-USA Taurus G4 Aircraft Pilot Robin Reid poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The EcoEagle, left, and the PhoEnix aircraft are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    A Pipistrel-USA team member wipes down the Taurus G4 aircraft prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    PhoEnix Aircraft Pilot Jim Lee poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    EcoEagle Aircraft Pilot Mikhael Ponso poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    The e-Genius aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. X-29 in flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two X-29 aircraft, featuring one of the most unusual designs in aviation history, were flown at the NASA Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, Calif., as technology demonstrators to investigate a host of advanced concepts and technologies. This 23 second clip begins with a camera pan from the aircraft's right rear quarter forward as the X-29 flies along in a near- stall maneuver.

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Embry-Riddle Aeronautical University, EcoEagle is seen as it passes a Grumman Albatross during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  13. Automated ISS Flight Utilities

    NASA Technical Reports Server (NTRS)

    Offermann, Jan Tuzlic

    2016-01-01

    EVADES output. As mentioned above, GEnEVADOSE makes extensive use of ROOT version 6, the data analysis framework developed at the European Organization for Nuclear Research (CERN), and the code is written to the C++11 standard (as are the other projects). My second project is the Automated Mission Reference Exposure Utility (AMREU).Unlike GEnEVADOSE, AMREU is a combination of three frameworks written in both Python and C++, also making use of ROOT (and PyROOT). Run as a combination of daily and weekly cron jobs, these macros query the SRAG database system to determine the active ISS missions, and query minute-by-minute radiation dose information from ISS-TEPC (Tissue Equivalent Proportional Counter), one of the radiation detectors onboard the ISS. Using this information, AMREU creates a corrected data set of daily radiation doses, addressing situations where TEPC may be offline or locked up by correcting doses for days with less than 95% live time (the total amount time the instrument acquires data) by averaging the past 7 days. As not all errors may be automatically detectable, AMREU also allows for manual corrections, checking an updated plaintext file each time it runs. With the corrected data, AMREU generates cumulative dose plots for each mission, and uses a Python script to generate a flight note file (.docx format) containing these plots, as well as information sections to be filled in and modified by the space weather environment officers with information specific to the week. AMREU is set up to run without requiring any user input, and it automatically archives old flight notes and information files for missions that are no longer active. My other projects involve cleaning up a large data set from the Charged Particle Directional Spectrometer (CPDS), joining together many different data sets in order to clean up information in SRAG SQL databases, and developing other automated utilities for displaying information on active solar regions, that may be used by the

  14. Controlled Hypersonic Flight Air Data System and Flight Instrumentation

    DTIC Science & Technology

    2007-06-01

    strongly on the flight envelope, re-entry trajectory and vehicle structure. Flight envelope and re-entry trajectory influence primarily the sensor...6 3.3 Flight Wind angles and basic considerations...determination the Mach number independence principle can however be used to derive simple analytic expressions. 3.3 Flight Wind angles and basic

  15. Modern digital flight control system design for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  16. Flight behavior of charged droplets in electrohydrodynamic inkjet printing

    NASA Astrophysics Data System (ADS)

    Yudistira, Hadi Teguh; Nguyen, Vu Dat; Dutta, Prashanta; Byun, Doyoung

    2010-01-01

    Flight behaviors of charged droplets are presented for electrohydrodynamic (EHD) inkjet printing. Three different kinds of EHD spraying techniques, pulsed dc, ac, and single potential (SP) ac, have been investigated and both conductive and dielectric target surfaces were considered. Experimental results show that the flight paths of charged droplets may deviate from their regular straight route, i.e., directly from the nozzle to the substrate. Depending on the droplet charge and applied electric field, droplets may deflect, reflect, or retreat to the meniscus. We can solve these drawbacks by SP EHD printing.

  17. Cassini - Huygens: Heavily instrumented flight systems approaching Saturn and Titan

    NASA Technical Reports Server (NTRS)

    Doody, D.

    2003-01-01

    Abstract?? Cassini and Huygens flight systems are described including capabilities, launch, flight path, mission science objectives, and instruments. Interplanetary cruise, Saturn arrival, and science-tour operations are also discussed, including use of JPL's worldwide Deep Space Network for two-way communications. Launched 15 October 1997, Cassini/Huygens will arrive at the Saturnian system on 1 July 2004. The Cassini Orbiter begins a four-year tour of the ringed gas giant, and the Huygens Probe descends through Titan's dense atmosphere on 14 January 2005.

  18. Meteorological conditions during the summer 1986 CITE 2 flight series

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott

    1990-01-01

    An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.

  19. ROTEX: space telerobotic flight experiment

    NASA Astrophysics Data System (ADS)

    Hirzinger, Gerd; Landzettel, Klaus L.; Heindl, J.

    1993-12-01

    In early 1993 the space robot technology experiment ROTEX flew with the space-shuttle Columbia (spacelab mission D2 on flight STS-55 from April 26 to May 6). A multisensory robot on board the space-craft successfully worked in autonomous modes, teleoperated by astronauts, as well as in different telerobotic ground control modes. These include on-line teleoperation and tele-sensor-programming, a task-level oriented programming technique involving `learning by showing' concepts in a virtual environment. The robot's key features were its multisensory gripper and the local sensory feedback schemes which are the basis for shared autonomy. The corresponding man-machine interface concepts using a 6 dof non-force- reflecting control ball and visual feedback to the human operator are explained. Stereographic simulation on ground was used to predict not only the robot's free motion but even the sensor based path refinement on board; prototype tasks performed by this space robot were the assembly of a truss structure, connecting/disconnecting an electric plug (orbit replaceable unit exchange ORU), and grasping free-floating objects.

  20. Phonotactic flight of the parasitoid fly Emblemasoma auditrix (Diptera: Sarcophagidae).

    PubMed

    Tron, Nanina; Lakes-Harlan, Reinhard

    2017-01-01

    The parasitoid fly Emblemasoma auditrix locates its hosts using acoustic cues from sound producing males of the cicada Okanagana rimosa. Here, we experimentally analysed the flight path of the phonotaxis from a landmark to the target, a hidden loudspeaker in the field. During flight, the fly showed only small lateral deviations. The vertical flight direction angles were initially negative (directed downwards relative to starting position), grew positive (directed upwards) in the second half of the flight, and finally flattened (directed horizontally or slightly upwards), typically resulting in a landing above the loudspeaker. This phonotactic flight pattern was largely independent from sound pressure level or target distance, but depended on the elevation of the sound source. The flight velocity was partially influenced by sound pressure level and distance, but also by elevation. The more elevated the target, the lower was the speed. The accuracy of flight increased with elevation of the target as well as the landing precision. The minimal vertical angle difference eliciting differences in behaviour was 10°. By changing the elevation of the acoustic target after take-off, we showed that the fly is able to orientate acoustically while flying.

  1. Winds analysis for polar and equatorial stratospheric balloons flights

    NASA Astrophysics Data System (ADS)

    Ivano, Musso; Cardillo, Andrea; Ibba, Roberto; Spoto, Domenico; Amaro, Francesco; Memmo, Adelaide

    Astrophysicists, meteorologists and biologists are only some of the scientists that are requiring stratospheric flights and in particular Long Duration Balloon Flights for their researches and experiments. The Italian Space Agency (ASI) is therefore coordinating an effort for the developing of stratospheric balloons' campaigns from North Pole, where ASI collaborates with Andoya Rocket Range preparing the Nobile/Amundsen Stratospheric Balloon Centre at Svalbard and from the ASI satellite receiving station in Malindi Kenya. Flights have been ongoing by other agencies in Antarctica. From the Northern Polar Region and Equatorial Africa similar flights will be possible without the logistical difficulties of that area. Answering to a specific scientific requirement, polar nocturnal and equatorial flights are now being investigated. Missions during polar winter are interesting because they provide regions of the sky where measurements are normally impossible. Trajectories are evaluated with a statistical wind analysis. Summer flights provide circular paths from Svalbard around the Pole and a safe recovery in Greenland after two weeks or more. The nocturnal flights do not have the same stability: isobaric lines are not centred above the Pole and trajectories around Svalbard involving Russia, Norway and Greenland are usual between December and February. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds.

  2. Designing Flight Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  3. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  4. Interprofessional Flight Camp.

    PubMed

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  5. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  6. Lagrangean relaxation algorithm for disjoint paths with different path costs

    NASA Astrophysics Data System (ADS)

    Wang, Zeyan; Li, Li; Wang, Bo

    2004-04-01

    To improve the reliability of the increasing network two disjoint paths should be found between a given source and a given destination. The problem of finding two minimum cost node-disjoint/edge-disjoint paths with different costs in a directed network can be formulated as a linear integer programming problem minimizing the sum of the costs on the edges in two paths, which is strongly NP-complete problem. Linear relaxation programming which relaxes the integer variables in the original programming is often applied to solve this NP problem. Comparing with linear relaxation programming, Lagrangean relaxation affords a lower bound of the objective value of original programming. Based on this a Lagrangean relaxation method for solving two disjoint paths is presented after a mathematical programming model of the problem is established. By using a modified subgradient optimization technology a new algorithm to solve the Lagrangean relaxation is put forward. The complexity of the proposed algorithm is as same as the Dijkstra"s algorithm (O(n2)). The efficiency of this algorithm is demonstrated by test examples.

  7. Innovative development path of ethnomedicines: the interpretation of the path.

    PubMed

    Zhu, Zhaoyun; Fu, Dehuan; Gui, Yali; Cui, Tao; Wang, Jingkun; Wang, Ting; Yang, Zhizhong; Niu, Yanfei; She, Zhennan; Wang, Li

    2017-03-01

    One of the primary purposes of the innovative development of ethnomedicines is to use their excellent safety and significant efficacy to serve a broader population. To achieve this purpose, modern scientific and technological means should be referenced, and relevant national laws and regulations as well as technical guides should be strictly followed to develop standards and to perform systemic research in producing ethnomedicines. Finally, ethnomedicines, which are applied to a limited extent in ethnic areas, can be transformed into safe, effective, and quality-controllable medical products to relieve the pain of more patients. The innovative development path of ethnomedicines includes the following three primary stages: resource study, standardized development research, and industrialization of the achievements and efforts for internationalization. The implementation of this path is always guaranteed by the research and development platform and the talent team. This article is based on the accumulation of long-term practice and is combined with the relevant disciplines, laws and regulations, and technical guidance from the research and development of ethnomedicines. The intention is to perform an in-depth analysis and explanation of the major research thinking, methods, contents, and technical paths involved in all stages of the innovative development path of ethnomedicines to provide useful references for the development of proper ethnomedicine use.

  8. Optical Path, Phase, and Interference

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2005-11-01

    A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1-3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.

  9. Strings, Paths and Standard Tableaux

    NASA Astrophysics Data System (ADS)

    Dasmahapatra, Srinandan; Foda, Omar

    For the vacuum sectors of regime-III ABF models, we observe that two sets of combinatorial objects: the strings which parametrize the row-to-row transfer matrix eigenvectors, and the paths which parametrize the corner transfer matrix eigenvectors, can both be expressed in terms of the same set of standard tableaux. Furthermore, the momenta of the strings, the energies of the paths and the co-charges of the tableaux are such that there is a weight-preserving bijection between the two sets of eigenvectors, in which the tableaux play an interpolating role. This bijection is so natural, that we conjecture that it exists in general.

  10. Multiple state transition path sampling

    NASA Astrophysics Data System (ADS)

    Rogal, Jutta; Bolhuis, Peter G.

    2008-12-01

    We developed a multiple state transition path sampling (TPS) approach in which it is possible to simultaneously sample pathways connecting a number of different stable states. Based on the original formulation of the TPS we have extended the path ensemble to include trajectories connecting not only two distinct stable states but any two states defined within a system. The multiple state TPS approach is useful in complex systems exhibiting a number of intermediate stable states that are interconnected in phase space. Combining this approach with transition interface sampling we can also directly obtain an expression for the rate constants of all possible transitions within the system.

  11. Speckle Imaging Over Horizontal Paths

    SciTech Connect

    Carrano, C J

    2002-05-21

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  12. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    NASA Astrophysics Data System (ADS)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  13. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  14. Employer Resource Manual. Project Path.

    ERIC Educational Resources Information Center

    Kane, Karen R.; Del George, Eve

    Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…

  15. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  16. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali

    1989-01-01

    The complicated high-pressure cycle of the space shuttle main engine (SSME) propellant path provides many opportunities for external propellant path leaks while the engine is running. This mode of engine failure may be detected and analyzed with sufficient speed to save critical engine test hardware from destruction. The leaks indicate hardware failures which will damage or destroy an engine if undetected; therefore, detection of both cryogenic and hot gas leaks is the objective of this investigation. The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-the-art technology infrared (IR) thermal imaging systems combined with computer, digital image processing, and expert systems for the engine protection. The feasibility of IR leak plume detection is evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application.

  17. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  18. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  19. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  20. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  1. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  2. Antimicrobial Medication Stability During Space Flight

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Berens, Kurt; Du, Jianping

    2004-01-01

    The current vision for manned space flight involves lunar and Martian exploration within the next two decades. In order for NASA to achieve these goals, a significant amount of preparation is necessary to assure crew health and safety. A mission critical component of this vision centers around the stability of pharmaceutical preparations contained in the space medicine kits. Evidence suggests that even brief periods of space flight have significant detrimental effects for some pharmaceutical formulations. The effects observed include decreases in physical stability of drug formulations of sufficient magnitude to effect bioavailability. Other formulations exhibit decreases in chemical stability resulting in a loss of potency. Physical or-chemical instability of pharmaceutical formulations i n space medicine kits could render the products ineffective. Of additional concern is the potential for formation of toxic degradation products as a result of the observed product instability. This proposal addresses Question number 11 of Clinical Capabilities in the Critical Path Roadmap. In addition, this proposal will reduce the risks and/or enhance the capabilities of humans exposed to the environments of space flight or an extraterrestrial destination by identifying drugs that may be unstable during spaceflight.

  3. History of nutrition in space flight: overview.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  4. Computational imaging of light in flight

    NASA Astrophysics Data System (ADS)

    Hullin, Matthias B.

    2014-10-01

    Many computer vision tasks are hindered by image formation itself, a process that is governed by the so-called plenoptic integral. By averaging light falling into the lens over space, angle, wavelength and time, a great deal of information is irreversibly lost. The emerging idea of transient imaging operates on a time resolution fast enough to resolve non-stationary light distributions in real-world scenes. It enables the discrimination of light contributions by the optical path length from light source to receiver, a dimension unavailable in mainstream imaging to date. Until recently, such measurements used to require high-end optical equipment and could only be acquired under extremely restricted lab conditions. To address this challenge, we introduced a family of computational imaging techniques operating on standard time-of-flight image sensors, for the first time allowing the user to "film" light in flight in an affordable, practical and portable way. Just as impulse responses have proven a valuable tool in almost every branch of science and engineering, we expect light-in-flight analysis to impact a wide variety of applications in computer vision and beyond.

  5. Ellisoidal mirror for time-of-flight electron energy analysis

    SciTech Connect

    Waligorski, G.; Cooke, W.E.

    1993-05-01

    We have constructed an ellipsoidal electron mirror from a pair of molded stainless steel grids in a fashion similar to the parabolic mirror constructed by Trevor et al.. The ellipsoidal geometry provides superior collection efficiency while maintaining good temporal resolution for our small flight path of 19 cm. We will present data showing the use of this analyzer to separate electrons produced in various channels following the decay of doubly-excited autoionizing states of barium.

  6. KELVIN rare gas time-of-flight program

    SciTech Connect

    Vernon, M.

    1981-03-01

    The purpose of this appendix is to explain in detail the procedure for performing time-of-flight (TOF) calibration measurements. The result of the calibration measurements is to assign a correct length (L) to the path the molecules travel in a particular experimental configuration. In conjunction with time information (t) a velocity distribution (L/t) can then be determined. The program KELVIN is listed.

  7. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  8. Long duration flights management

    NASA Astrophysics Data System (ADS)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  9. XV-15 in flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The XV-15 Tilt-Rotor aircraft was designed by Bell Aircraft, Niagara Falls, New York, in the mid-1970's under a contract with NASA and the U.S. Army. It was capable of taking off and landing vertically like a helicopter and of flying horizontally when its 'prop rotors' were rotated forward and downward. NASA Ames Research Center, Mountain View, California, and the Army Air Mobility Laboratory cooperated in a program to obtain two of the aircraft for flight research. The first aircraft arrived at Ames on March 23, 1978. After wind-tunnel testing in the Ames 40-by-80-foot wind tunnel, the aircraft began its contractor flight tests at Ames on April 23, 1979. Bell, Army, and U.S. Marine pilots flew it on 140 separate missions over the next year before turning the aircraft over to Ames. That center, in turn, chose to perform the initial flight research at the Dryden Flight Research Center, Edwards, California, where aircraft Number 2 began flight research with Dryden pilots on October 3, 1980, followed by aircraft Number 1 (previously the wind-tunnel model) the following year. Service pilots continued to fly the aircraft, including missions at Fort Huachuca, Arizona, and aboard the Navy USS Tripoli. Ames pilots also flew the XV-15 extensively during its lengthy period of flight research. The Ames flight research team finally returned aircraft Number 2 to Bell Helicopter in April 1994. The successful flight research with the XV-15, spearheaded by the team at Ames, led to the military V-22 Osprey and to the possibility of using tilt-rotor aircraft as a solution to the problem of crowded airports and highways. The XV-15 weighed 9,076 pounds empty and measured slightly more than 46 feet in length. The distance from the ground to the top of the tail was nearly 13 feet, and the span of its forward-swept wings was about 32 feet. It featured two three-bladed rotors, each measuring 25 feet in diameter. This movie clip runs about 49 seconds showing the XV-15 aircraft turning and

  10. An in flight investigation of pitch rate flight control systems and application of frequency domain and time domain predictive criteria

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Sarrafian, S.

    1984-01-01

    The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.

  11. An in flight investigation of pitch rate flight control systems and application of frequency domain and time domain predictive criteria

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Sarrafian, S.

    1984-01-01

    The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.

  12. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  13. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially

  14. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  15. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  16. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  17. Lessons from dragonfly flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  18. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially

  19. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  20. Spreading paths in partially observed social networks

    PubMed Central

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-01-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, structurally realistic social network as a platform for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is. PMID:22587148

  1. Institutional care paths: Development, implementation, and evaluation.

    PubMed

    Leonard, Mandy C; Bauer, Seth R; Ahrens, Christine; Reddy, Anita; Katzan, Irene

    2017-09-15

    The Cleveland Clinic experience with care paths, including their creation and implementation, challenges overcome during development and testing, and outcomes of selected care path evaluations, is described. Care paths are tools to assist healthcare professionals in practicing evidence-based medicine. The Cleveland Clinic health system has implemented or is developing approximately 100 care paths, including care paths designed to optimize management of sepsis and septic shock and to promote timely use of i.v. tissue plasminogen activator and correct dosing of antithrombotics and statins in patients with stroke. Key steps in successful care path initiatives include (1) identifying key stakeholders, (2) achieving stakeholder consensus on a standardized approach to disease or condition management, (3) cultivating provider awareness of care paths, (4) incorporating care path tools into the electronic health record and workflow processes, and (5) securing the resources to develop, implement, and maintain care paths. Electronic health records facilitate the use of and adherence to care paths. After care path implementation, revisions are typically needed due to unexpected issues not initially identified and to optimize care path features and support resources for clinical practice. Ongoing evaluation is required to determine whether an implemented care path is producing the intended patient and quality performance outcomes. Care paths provide a standardized approach to treatment or prevention of a disease or condition, reducing unnecessary variability and expense while promoting optimal, cost-effective patient care. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. Flight Planning in the Cloud

    NASA Technical Reports Server (NTRS)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  3. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  4. QAM multi-path characterization due to ocean scattering

    SciTech Connect

    Petersen, T. L.; Bracht, R. R.; Pasquale, R. V.; Dimsdle, J.; Swanson, R.

    2002-01-01

    A series of RF channel flight characterization tests are to be run, in early March, to benchmark high speed, 16QAM multi-path performance over the ocean surface. The modulation format being tested is a 16 differential phase, absolute amplitude, two level polar quadrature amplitude modulation. The bit rate is 100 Megabits per second. This transmitted signal will be generated in a burst mode, being on for 40 microseconds once every 40 milliseconds. An aircraft will radiate the RF test signal at 5 different altitudes. The aircraft will make two inward flights at each altitude with vertical and horizontal polarization respectively. Receivers are to be placed in two different locations using circular antenna polarization. One receiver will be placed at an altitude of 230 feet above the ocean surface, and the other on a boat with the antenna placed just up off of the ocean surface. Data is to be collected over multiple wavelength changes in the difference between the line of sight and the reflected multi-path ray. The real time signal strength variation is to be recorded as well. Analysis of the resulting data will show flat fading and frequency selective fading effects. The test is run over two different days to provide for some variation in sea state conditions. This resulting information will help quantify the effectiveness of this novel modulation scheme for missile telemetry end event data applications.

  5. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  6. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  7. X-31 in flight - Post Stall Maneuver

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls

  8. X-31 in flight, Herbst maneuver

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International Palmdale, California, facility and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack--with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the X-31 aircraft exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust

  9. X-31 in flight - Post Stall Maneuver

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at Rockwell International's Palmdale, Calif., facility and the NASA Dryden Flight Research Center, Edwards, Calif., to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on Oct. 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft's body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the X-31's exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31s were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplyied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high

  10. X-37 Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The photograph depicts the X-37 neutral buoyancy simulator mockup at Dryden Flight Research Center. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliabiltiy, while reducing launch costs from $10,000 per pound to $1000 per pound. Managed by Marshall Space Flight Center and built by the boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  11. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  12. HOPE real time flight operations analyses for return to earth phase, part A

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The results of the HOPE (H-2 Orbiting Plane) real time flight operation analysis for return to earth phase are presented. The analyses of the flight parameter real time estimation accuracy was conducted (including definition of the estimate system operation, close examination of required function and programs, and study on the verification and experiment plans) and the following two items of the system verification and experiment are proposed: (1) utilization of the ETS-X (Engineering Test Satellite-X); and (2) utilization of mock-up landing experiment plane. The study on the limit of deviation from the flight path was conducted, and various factors to improve the flight path deviation are outlined.

  13. Comparison of workload measures on computer-generated primary flight displays

    NASA Technical Reports Server (NTRS)

    Nataupsky, Mark; Abbott, Terence S.

    1987-01-01

    Four Air Force pilots were used as subjects to assess a battery of subjective and physiological workload measures in a flight simulation environment in which two computer-generated primary flight display configurations were evaluated. A high- and low-workload task was created by manipulating flight path complexity. Both SWAT and the NASA-TLX were shown to be effective in differentiating the high and low workload path conditions. Physiological measures were inconclusive. A battery of workload measures continues to be necessary for an understanding of the data. Based on workload, opinion, and performance data, it is fruitful to pursue research with a primary flight display and a horizontal situation display integrated into a single display.

  14. A concept for a fuel efficient flight planning aid for general aviation

    NASA Technical Reports Server (NTRS)

    Collins, B. P.; Haines, A. L.; Wales, C. J.

    1982-01-01

    A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation safety volunteers Meg Hurt, left, and Gail Vann wait on the runway for the arrival of the next aircraft to take part in the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel Taurus G4 Pilot David Morss, center, is is weighed-in as CAFE Foundation Weights Chief Wayne Cook, right, and Weight crew member Ron Stout look on during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Pipistrel-USA Pilot David Morss, left, CAFE Foundation Weights Chief Wayne Cook, 2nd from left, and Weight crew member Ron Stout look on as Pipistrel-USA Pilot Robin Reid is weighed-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Space Flight Support Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. Building 264, also known as the Space Flight Support Building, hosts engineers supporting space missions in flight at NASA's Jet Propulsion Laboratory. It used to be just two stories, as seen in this image from January 1972, but then the Viking project to Mars needed more room. The building still serves the same function today, but now has eight floors. http://photojournal.jpl.nasa.gov/catalog/PIA21123

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Phoenix Air team members reattach the wings to their PhoEnix aircraft after pulling it out the weigh-in hanger as they start the day's 2011 Green Flight Challenge competition, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Soaring flight in Guinea

    NASA Technical Reports Server (NTRS)

    Idrac, P

    1920-01-01

    The term soaring is applied here to the flight of certain large birds which maneuver in the air without moving their wings. The author explains the methods of his research and here gives approximate figures for the soaring flight of the Egyptian Vulture and the African White backed Vulture. Figures are given in tabular form for relative air speed per foot per second, air velocity per foot per second, lift/drag ratio, and selected coefficients. The author argues that although the figures given were taken from a very limited series of observations, they have nevertheless thrown some light on the use by birds of the internal energy of the air.

  1. LSRA in flight

    NASA Image and Video Library

    1993-04-07

    A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  2. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    CAFE Foundation Weights Chief Wayne Cook, left, talks with the e-Genius aircraft crew about their weigh-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    CAFE Foundation Weights crew member Ron Stout, left, and Weights Chief Wayne Cook, weigh-in the e-Genius aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation Hanger Boss Mike Fenn waves the speed competition start flag for the Pipistrel-USA, Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The PhoEnix, lower left, EcoEagle, 2nd from left, Taurus G4, and e-Genius aircraft, top right, are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft is prepared to be rolled out of the weigh-in hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA Taurus G4 aircraft is pushed back to the weigh-in hanger as they start the day's 2011 Green Flight Challenge competition, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Team members of Pipistrel-USA prepare to have their Taurus G4 aircraft wings weighed using a scale built into the floor of the hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  10. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Wayne Cook, Weights Chief, inspects the Pipistrel-USA, Taurus G4 as it rest on a scale built into the floor of the hanger during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius, left, Taurus G4, 2nd from left, EcoEagle, and PhoEnix aircraft, top right, are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  13. LSRA in flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    CAFE Foundation volunteer Oliver Dyer-Bennet, left, CAFE Foundation Hanger Boss Mike Fenn, center, and CAFE Foundation volunteer, Justin Dyer-Bennett scan the sky for aircraft during the speed competition portion of the 2011 Green Flight Challenge, sponsored by Google, being held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft approaches for landing as a Grumman Albatross plane is seen in the forground during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  17. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  18. Physarum can compute shortest paths.

    PubMed

    Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish

    2012-09-21

    Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years.

  19. Noise Levels and Flight Profiles of Eight Helicopters Using Proposed International Certification Procedures

    DTIC Science & Technology

    1979-03-01

    pressure level SR Slant range distance, distance from the noise source to the receiver. Subscripts typically refer to the reference or test slant ranges...refere:,ce flight path As level flight 492 feet (150 meters) _:bove field elevation along the microphone array centtrline, The mirnimum slant di...the standard acoustical day conditions. Adjusting for the change in atmospheric absorption associated wiilh the difference in slant range between the

  20. Human Factors Affecting Pilot Performance in Vertical and Translational Instrument Flight.

    DTIC Science & Technology

    1983-12-01

    Corl, and Jensen, 1981). These advances in avionics capabilities, especially the explosion in low-cost, light-weight, and highly reliable computing...waypoints, VOR and TACAN information, course lines, deviation from desired course (and flight path prediction in some cases), time and distance to...display was developed such tizat control and display dynamics are directionally compatible. He als) provided flight prediction in both the horizontal